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IMPLEMENTING INTERSECTION BOUNDS IN STATA

VICTOR CHERNOZHUKOV, WOOYOUNG KIM, SOKBAE LEE, AND ADAM M. ROSEN

Abstract. We present the clrbound, clr2bound, clr3bound, and clrtest com-
mands for estimation and inference on intersection bounds as developed by
Chernozhukov et al. (2013). The intersection bounds framework encompasses situa-
tions where a population parameter of interest is partially identified by a collection
of consistently estimable upper and lower bounds. The identified set for the pa-
rameter is the intersection of regions defined by this collection of bounds. More
generally, the methodology can be applied to settings where an estimable function
of a vector-valued parameter is bounded from above and below, as is the case when
the identified set is characterized by conditional moment inequalities.

The commands clrbound, clr2bound, and clr3bound provide bound estimates
that can be used directly for estimation or to construct asymptotically valid con-
fidence sets. clrtest performs an intersection bound test of the hypothesis that
a collection of lower intersection bounds is no greater than zero. The command
clrbound provides bound estimates for one-sided lower or upper intersection bounds
on a parameter, while clr2bound and clr3bound provide two-sided bound estimates
based on both lower and upper intersection bounds. clr2bound uses Bonferroni’s
inequality to construct two-sided bounds that can be used to perform asymptotically
valid inference on the identified set or the parameter of interest, whereas clr3bound
provides a generally tighter confidence interval for the parameter by inverting the
hypothesis test performed by clrtest. More broadly, inversion of this test can also
be used to construct confidence sets based on conditional moment inequalities as
described in Chernozhukov et al. (2013). The commands include parametric, series,
and local linear estimation procedures, and can be installed from within STATA by
typing “ssc install clrbound”.

Key words: clrbound, clr2bound, clr3bound, clrtest, bound analysis, conditional
moments, partial identification, infinite dimensional constraints, adaptive moment
selection.
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1. Introduction

In this paper we present the clrbound, clr2bound, clr3bound, and clrtest com-
mands for estimation and inference on intersection bounds as developed by Cher-
nozhukov et al. (2013). These commands, summarized in Table 1, enable one to
perform hypothesis tests and construct set estimates and asymptotically valid confi-
dence sets for parameters restricted by intersection bounds. The procedures employ
parametric, series, and local linear estimators, and can be used to conduct inference
on parameters restricted by conditional moment inequalities. The inference method
developed by Chernozhukov et al. (2013) is based on sup-norm test statistics. There
are a number of related papers in the literature that develop alternative methods
for inference with conditional moment inequalities, such as Andrews and Shi (2013,
2014), Armstrong (2011a,b), Armstrong and Chan (2013), Chetverikov (2011), Lee
et al. (2013a,b) and others.

Command Description
clrtest Test the hypothesis that the maximum of lower intersection

bounds is nonpositive.
clrbound Compute a one-sided bound estimate.
clr2bound Compute two-sided bound estimates using Bonferroni’s inequality.
clr3bound Compute two-sided bound estimates by inverting clrtest.

Table 1. Intersection Bound Commands. Bound estimates can be
used to construct asymptotically valid confidence intervals for parame-
ters and identified sets restricted by intersection bounds.

Our software adds to a small but growing set of publicly available software for
bound estimation and inference, including Beresteanu and Manski (2000a,b), and
Beresteanu et al. (2010). Beresteanu and Manski (2000a,b) implement bound esti-
mation by way of kernel regression for bounds derived in the analysis of treatment
response as considered by Manski (1990), Manski (1997), and Manski and Pepper
(2000), among others. Our software applies to a broader set of intersection bound
problems, and in cases where both apply our software complements theirs by addition-
ally providing parametric and series estimators, as well as methods for bias-correction
and asymptotically valid inference. Beresteanu et al. (2010) can be used to replicate
the results in Beresteanu and Molinari (2008), and more generally to compute consis-
tent set estimates for best linear prediction (BLP) coefficients with interval-censored
outcomes, as well as perform inference on any pair of elements of the BLP coefficient
vector.

In Section 2 we recall the underlying framework of the intersection bounds setup
from Chernozhukov et al. (2013). In Section 3 we describe the details of how our
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STATA program conducts hypothesis tests and constructs bound estimates. In Sec-
tion 4, we explain how to install our STATA module. In Sections 5, 6, 7, and 8 we
describe the clr2bound, clrbound, clrtest and clr3bound commands, respectively.
We explain how each command is used, what each command does, the available com-
mand options, and saved results. In Section 9 we illustrate the use of all four of
these commands using data from the National Longitudinal Survey of Youth of 1979
(NLSY79), as in Carneiro and Lee (2009). Specifically, we use these commands to
estimate and perform inference on returns to education using monotone treatment re-
sponse and monotone instrumental variable bounds developed by Manski and Pepper
(2000).

2. Framework

We begin by considering a parameter of interest θ∗ which is bounded above and
below by intersection bounds of the form:

max
j∈Jl

sup
xlj∈X l

j

θlj(x
l
j) ≤ θ∗ ≤ min

j∈Ju
inf

xuj ∈Xu
j

θuj (xuj ),(1)

where {θlj(·) : j ∈ Jl} and {θuj (·) : j ∈ Ju} are consistently estimable lower and upper

bounding functions. X l
j and X u

j are known sets of values for the arguments of these
functions, and Jl and Ju are index sets with a finite number of positive integers. The
interval of all values that lie within the bounds in (1) is the identified set, denoted:

ΘI ≡
[
θl0, θ

u
0

]
,(2)

where

θl0 ≡ max
j∈Jl

sup
xlj∈X l

j

θlj(x
l
j), θu0 ≡ min

j∈Ju
inf

xuj ∈Xu
j

θuj (xuj ).

We focus on the commonly encountered case where the bounding functions θlj(·) and
θuj (·) are conditional expectation functions such that

θkj (·) ≡ E[Y k
j |Xk

j = ·], k = l, u,

where Y k
j and Xk

j are the dependent variable and explanatory variables of a condi-
tional mean regression for each j and k, respectively. We allow for the possibility
that the explanatory variables Xk

j are different or the same across j and k.
Many papers in the recent literature on partial identification feature bounds of the

form given in (1) and (2) on a parameter of interest, or on a function of a parameter
of interest. Characterization of the asymptotic distribution of plug-in estimators for
these bounds is complicated by the fact that they are the infimum and supremum
of an estimated function. Moreover, the use of sample analogs for bound estimates
is well-known to produce substantial finite sample bias. The inferential methods
of Chernozhukov et al. (2013) overcome these problems to produce asymptotically
valid confidence sets for θ∗ and for ΘI , and bias-corrected estimates for the upper
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and lower bounds of ΘI . The main idea of our approach is to first form precision-
corrected estimators for the bounding functions θkj (·) for each j and k, and then apply
the max, sup, min, and inf operators to these precision-corrected estimators. The
degree of the precision-correction is chosen in order to obtain bias-corrected bound
estimates, or bound estimates that achieve asymptotically valid inference at a desired
level. Chernozhukov et al. (2013) provide asymptotic theory for formal justification
and algorithms for implementation of these methods. The software described in this
paper implements these algorithms in STATA.1

Chernozhukov et al. (2013) provide numerous examples of bound characterizations
to which these methods apply. A leading example is given by the nonparametric
bounds of Manski (1989, 1990) on mean treatment response and average treatment
effects with instrumental variable restrictions. So called “worst-case” bounds on mean
treatment response θ∗ = θ∗(x) ≡ E[Y (t)|X = x] from treatment t ∈ {0, 1} conditional
on vector X = x are given by

θl(x) ≤ θ∗(x) ≤ θu(x),(3)

where

θl(x) ≡ E
[
Y · 1{Z = t}|X = x

]
, θu(x) ≡ E

[
Y · 1{Z = t}+ 1{Z 6= t}|X = x

]
.

Here Z ∈ {0, 1} denotes the observed treatment and Y (·) maps potential treatments
to outcomes, which are normalized to lie on the unit interval, Y (·) : {0, 1} → [0, 1].
The lack of point identification of E

[
Y (t)|X = x

]
is a consequence of the fact that the

observed outcome is Y = Y (Z), and the potential outcome from the counterfactual
treatment, Y (1 − Z), is not observed. The width of the bounds is P

[
Z 6= t

]
, the

probability that observed treatment Z differs from t.
Researchers are often willing to invoke instrumental variable restrictions, or level-

set restrictions as in Manski (1990), that limit the degree to which the conditional
expectation E[Y (t)|X = x] varies with x. For instance, x may be comprised of two
components x = (w, v) with component v excluded from affecting the conditional
mean function, so that

∀v ∈ V , E[Y (t)|X = (w, v)] = E[Y (t)|W = w],(4)

where V denotes the support of V . Then, letting θ∗(w) := E[Y (t)|W = w], by virtue
of (3) holding for x = (w, v) for any fixed w and all v ∈ V , it follows that

sup
v∈V

θl((w, v)) ≤ θ∗(w) ≤ inf
v∈V

θu((w, v)),(5)

1The software is “CLRBOUND: STATA module to perform estimation and inference on intersection
bounds” by Victor Chernozhukov, Wooyoung Kim, Sokbae Lee, and Adam M. Rosen, 2013, and is
available at http://econpapers.repec.org/software/bocbocode/s457674.htm. All of our com-
mands require the package moremata (Jann (2005)), available at http://econpapers.repec.org/

software/bocbocode/s455001.htm.

http://econpapers.repec.org/software/bocbocode/s457674.htm
http://econpapers.repec.org/software/bocbocode/s455001.htm
http://econpapers.repec.org/software/bocbocode/s455001.htm
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which is precisely the form of (1) with singleton (and thus omitted) sets Jl and Ju,
X l = X u = V , and θ∗ = θ∗(w). This reasoning can be applied to obtain upper and
lower bounds on θ∗(w) for all values of w. In Section 9 we illustrate the use of our
STATA commands with bounds on a conditional expectation similar to those in (5)
applied to data from the 1979 National Longitudinal Survey of Youth, but where
a monotone instrumental variable restriction first considered by Manski and Pepper
(2000) is employed instead of the instrumental variable restriction used above.

The estimation problem of Chernozhukov et al. (2013) is to obtain estimators θ̂ln0(p)

and θ̂un0(p) that provide bias-corrected estimates or the endpoints of confidence inter-
vals depending on the chosen value of p, e.g. p = 1/2 for half-median-unbiased bound
estimates or p = 1 − α for confidence intervals. By construction, these estimators
satisfy

Pn
{
θl0 ≥ θ̂ln0(p)

}
≥ p− o(1), and Pn

{
θu0 ≤ θ̂un0(p)

}
≥ p− o(1).(6)

Implementation details can be found in Chernozhukov et al. (2013), who focus on
the upper bound for θ∗. As explained there, the estimation procedure can be easily
adapted for the lower bound for θ∗. The command clrbound presented below gives
estimators for these one-sided intersection bounds.

If one wishes to perform inference on the identified set, then one can use the
intersection of upper and lower one-sided intervals each based on p̃ = (1 + p)/2 as an

asymptotic level-p confidence set [θ̂ln0(p̃), θ̂un0(p̃)] for ΘI satisfying

lim inf
n→∞

Pn{ΘI ∈ [θ̂ln0(p̃), θ̂un0(p̃)]} ≥ p,(7)

by (6) and Bonferroni’s inequality. For example, to obtain a 95% confidence set for
ΘI , one can use upper and lower one-sided intervals each with 97.5% nominal coverage
probability. The command clr2bound described in Section 5 provides this type of
confidence interval.

Because θ∗ ∈ ΘI , such confidence intervals are also asymptotically valid but gen-
erally conservative for θ∗.2 As an alternative, one may consider inference on θ∗ by
first transforming the collection of lower and upper bounds in (1) into a collection
of only one-sided bounds on a function of θ∗. Specifically, the inequalities in (1) are
equivalent to

T0(θ∗) ≡ max
k∈{l,u}

max
j∈Jk

sup
xkj∈Xk

j

Tjk
(
xkj , θ

∗) ≤ 0,(8)

where

Tju
(
xkj , θ

∗) ≡ θ∗ − θuj
(
xkj
)

, Tjl
(
xkj , θ

∗) ≡ θlj
(
xkj
)
− θ∗.(9)

2Differences between confidence regions for an identified set ΘI and a single point θ∗ within that
set have been well-studied in the prior literature. See for instance Imbens and Manski (2004),
Chernozhukov et al. (2007), Stoye (2009), and Romano and Shaikh (2010).
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For any conjectured value of θ∗, say θnull, one can apply estimation methods from
Chernozhukov et al. (2013) to perform the hypothesis test

H0 : T0(θnull) ≤ 0 vs. H1 : T0(θnull) > 0,(10)

This is carried out by placing T0(θnull) in the role of the bounding function θl0 (·) in

(1) to produce an estimator T̂n0 (θnull, p) such that

Pn

{
T0 (θnull) ≥ T̂n0 (θnull, p)

}
≥ p− o (1) ,(11)

analogously to the construction of θ̂ln0(p) in (6). The null hypothesis H0 is then

rejected in favor of H1 at the 1−p significance level if T̂n0 (θnull, p) > 0. The command
clrtest described in Section 7 performs such a test. By inverting this test, the set
of θnull such that T̂n0 (θnull, p) ≤ 0 is an asymptotically valid level p confidence set for
θ∗ since

lim inf
n→∞

Pn

{
θ∗ ∈ {θnull : T̂n0 (θnull, p) ≤ 0}

}
≥ p,(12)

by construction. The command clr3bound described in Section 8 produces precisely
this confidence set.

3. Implementation

In this section, we describe the details of our implementation for estimation of one-
sided bounds. We focus on the lower intersection bounds and drop the l superscript
to simplify notation.

Let J denote the number of inequalities concerned. Suppose that we have obser-
vations {(Yji, Xji) : i = 1, . . . , n, j = 1, . . . , J}, where n is the sample size. For each
j = 1, . . . , J , let yj denote the n×1 vector whose ith element is Yji and Xj the n×dj
matrix whose ith row is X ′ji, where dj is the dimension of Xji. We allow multidimen-
sional Xj only for parametric estimation. We set dj = 1 for series and local linear
estimation.

To evaluate the supremum in (1) numerically, we set a dense set of grid points for
each j = 1, . . . , J , say {x1, . . . ,xJ}, where xj = (x′j1, . . . , x

′
jMj

)′ for some sufficiently
large numbers Mj, j = 1, . . . , J , where each xjm is a dj×1 vector. Also, let Ψj denote
the Mj × dj matrix whose mth row is x′jm, where m = 1, . . . ,Mj and j = 1, . . . , J .
Note that the number of grid points can be different for different inequalities.

3.1. Parametric Estimation. Define

X :=

 X1 · · · 0
...

0 · · · XJ

 , y :=

 y1
...

yJ

 , and Ψ :=

 Ψ1 · · · 0
...

0 · · · ΨJ

 .
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Let θj(xj) ≡ (θj(xj1), · · · , θj(xjMj
))′ and θ ≡ (θ1(x1)′, . . . ,θJ(xJ)′)′. Then the esti-

mator of θ is θ̂ ≡ Ψβ̂, where β̂ = (X′X)−1X′y. Also, the heteroskedasticity-robust

standard error of θ̂, say ŝ, can be computed as

ŝ ≡
√

diagvec(V),

where

Ω = [diag(y −Xβ̂)]2, V = Ψ(X′X)−1X′ΩX(X′X)−1Ψ′,

diag(a) is the diagonal matrix whose diagonal terms are elements of the vector a, and
diagvec(A) is the vector whose elements are diagonal elements of the matrix A.

A precision-corrected estimate is obtained by maximizing the precision-corrected
curve, which is given by the function estimate minus critical value times the standard
error. To compute the critical value, say k(p), define

Σ̂ := [diag(̂s)]−1V[diag(̂s)]−1.

Let chol(A) denote the Cholesky decomposition of the matrix A such that

A = chol(A)chol(A)′.

We simulate pseudo random numbers from the N(0, 1) distribution and construct a

dim(Σ̂)×R-dimensional matrix, say ZR. Then the critical value is selected as

k(p) = the pth quantile of maxcol.[chol(Σ̂)ZR],(13)

where maxcol.(B) is a set of maximum values in each column of the matrix B. Then

our bias-corrected estimator θ̂n0(p) for maxj∈Jl supxlj∈X l
j
θlj(x

l
j) is

θ̂n0(p) = maxcol.[Ψβ̂ − k(p)ŝ].(14)

The critical value in (14) is obtained under the least favorable case. To improve the
estimator, we carry out the following adaptive inequality selection (AIS) procedure:

(Step 1) Set γ̃n ≡ 1−.1/ log n. Let ψ′k denote the kth row of Ψ, where k = 1, . . . ,
∑J

j=1Mj.
Keep each row ψ′k of Ψ if and only if

ψ′kβ̂ ≥ θ̂n0(γ̃n)− 2k(γ̃n)ŝk,

where ŝk is the kth element of ŝ.
(Step 2) Replace Ψ with the kept rows of Ψ in Step 1. Then recompute V and Σ̂ to

update the critical value in (13), and obtain the final estimate θ̂n0(p) in (14)
with the updated critical value.
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3.2. Series Estimation. The implementation of series estimation is similar to para-
metric estimation. For each j = 1, . . . , J , let pnj(x) ≡ (pn,1(x), . . . , pn,κj(x))′ denote
the κj-dimensional vector of approximating functions by cubic B-splines. Here, the

number of series terms κj can be different from one inequality to another. Let X̃j

denote the n×κj matrix whose ith row is pnj(Xji)
′ and Ψ̃j the Mj×κj matrix whose

mth row is pnj(xjm)′. Then the same procedure as described in Section 3.1 can be

carried out, substituting X̃j and Ψ̃j for Xj and Ψj, respectively.
In this implementation, the dimension dj of Xji is one and the approximating func-

tions are cubic B-splines. However, it is possible to implement high dimensional Xji

and other possible basis functions by programming a suitable design matrix manu-
ally and running our commands with an option of parametric estimation. This is

basically equivalent to modifying X̃j and Ψ̃j in series estimation. See Section 4.2 of
Chernozhukov et al. (2013) for details.

3.3. Local Linear Estimation. For any vector v, let ρ̂j(v) denote the vector whose
kth element is the local linear regression estimate of yj on Xj at the kth element of
v. In detail, the kth element of ρ̂j(v), say ρ̂j(vk), is defined as follows:

ρ̂j(vk) ≡ e′1(X ′vkWjXvk)−1X ′vkWjyj,

where e1 ≡ (1, 0)′,

Xvk ≡

 1 (Xj1 − vk)
...

...
1 (Xjn − vk)

 , Wj ≡ diag

(
K

(
Xj1 − vk

hj

)
, · · · , K

(
Xjn − vk

hj

))
,

K(·) is a kernel function, and hj is the bandwidth for inequality j. Recall that the
dimension dj of Xji is one in local linear estimation. In our implementation, we used
the following kernel function:

K(s) =
15

16
(1− s2)21(| s |≤ 1).

Then the estimator of θ ≡ (θ1(x1)′, . . . ,θJ(xJ)′)′ is θ̂ ≡ (ρ̂1(ψ1)′, . . . , ρ̂J(ψJ)′)′,
where ψj denotes the Mj × 1 vector whose mth element is xjm.

Now let ŝj denote the Mj × 1 vector whose mth element is
√
g2
jm(yj,Xj)/nhj,

where

g2
jm(yj,Xj) = n−1

n∑
i=1

ĝji(Yji, Xji, xjm)2,

ĝji(Yji, Xji, xjm) =
Yji − ρ̂j(Xji)√
hj f̂j(xjm)

K

(
xjm −Xji

hj

)
,
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f̂j(xjm) is the kernel estimate of the density of the covariate for the jth inequality,
evaluated at xjm. Then, ŝ can be computed as ŝ = (ŝ′1, . . . , ŝ

′
J)′ .

To compute the critical value, k(p), let Φj denote the Mj × n matrix whose mth

row is (ĝj1(Yj1, Xj1, xjm), . . . , ĝjn(Yjn, Xjn, xjm))/
√
nhjg2

jm(yj,Xj). Define

Φ ≡

 Φ1
...

ΦJ

 .

We simulate pseudo random numbers from the N(0, 1) distribution and construct a
n×R matrix, ZR. Then, the critical value is selected as

k(p) = the pth quantile of maxcol.[ΦZR].(15)

The calculation of the bias-corrected estimator θ̂n0(p) is almost the same as that of
parametric estimation. That is,

θ̂n0(p) = maxcol.[θ̂ − k(p)ŝ].(16)

However, the AIS procedure is slightly different since we do not use Ψ in local linear
estimation.

(Step 1) Set γ̃n ≡ 1− .1/ log n. Keep the mth row of each Φj, j = 1, . . . , J , if and only
if

ρ̂j(xjm) ≥ θ̂n0(γ̃n)− 2k(γ̃n)ŝjm,

where ŝjm is the mth element of ŝj.
(Step 2) For j = 1, . . . , J , replace Φj with the kept rows of Φj in Step 1. Then

recompute the critical value in (15), and obtain the final estimate θ̂n0(p) with
the updated critical value.

4. Installation of the clrbound package

All STATA commands below are available at the Statistical Software Components
(SSC) archive. Our STATA module called clrbound can be installed from within
STATA by typing “ssc install clrbound”.3 All of our commands require the pack-
age moremata (Jann (2005))4 , which can also be installed by typing “ssc install

moremata, replace” in the STATA command window.

3http://econpapers.repec.org/software/bocbocode/s457674.htm.
4http://econpapers.repec.org/software/bocbocode/s455001.htm.

http://econpapers.repec.org/software/bocbocode/s457674.htm
http://econpapers.repec.org/software/bocbocode/s455001.htm
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5. The clr2bound command

5.1. Syntax. The syntax of clr2bound is as follows:

clr2bound (( lowerdepvar1 indepvars1 range1) ( lowerdepvar2 indepvars2 range2) ... (

lowerdepvarN indepvarsN rangeN)) (( upperdepvarN+1 indepvarsN+1 rangeN+1) (

upperdepvarN+2 indepvarsN+2 rangeN+2) ... ( upperdepvarN+M indepvarsN+M

rangeN+M))
[
if
] [

in
] [

, method("series"|"local") notest null(real ) level(numlist

) noais minsmooth(#) maxsmooth(#) noundersmooth bandwidth(numlist ) rnd(#)

norseed seed(#)
]

5.2. Description. clr2bound estimates a two-sided confidence interval [θ̂ln0(p̃), θ̂un0(p̃)]
where p̃ = level+1

2
. By (6) and Bonferroni’s inequality this interval contains the identi-

fied set ΘI with probability at least level asymptotically, i.e. such that (7) holds with
p = level. The variables lowerdepvar1∼lowerdepvarN are the dependent variables
(Y l

j ’s) for the lower bounding functions and the upperdepvarN+1∼upperdepvarN+M
are the dependent variables (Y u

j ’s) for the upper bounding functions, respectively. The
variables indepvars1∼indepvarN+M are explanatory variables for the corresponding
dependent variables. Recall that clr2bound allows for multidimensional indepvars
for parametric estimation, but only for a one dimensional independent variable for
series and local linear estimation.

The variables range1∼rangeN+M are sets of grid points over which the bounding
function is estimated, corresponding to the sets X l

j and X u
j in (1). The number of

observations for the range is not necessarily the same as the number of observations
for the depvar and indepvars. The latter is the sample size, whereas the former is the
number of grid points to evaluate the maximum or minimum values of the bounding
functions.

It should be noted that the parentheses must be used properly. Variables for lower
bounds and upper bounds must be put in additional parentheses separately. For
example, if there are two variable sets, (ldepvar1 indepvars1 range1 ) and (ldepvar2
indepvars2 range2 ), for the lower bounds estimation and one variable set, (udepvar1
indepvars3 range3 ), for the upper bounds estimation, the right syntax for two-sided
intersection bounds estimation is ((ldepvar1 indepvars1 range1 )(ldepvar2 indepvars2
range2 ))((udepvar1 indepvars3 range3 )).

In addition, clr2bound provides a test result for the null hypothesis that the spec-
ified value is in the intersection bounds for each confidence level. If the value is left
unspecified, the null hypothesis is that the parameter of interest is 0. This test uses
(11) which is a more stringent requirement than simply checking whether the value
lies within the confidence set reported by clr2bound, which is based on Bonferroni’s
inequality. Therefore, this test may reject some values in the reported confidence set
at the same confidence level.
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5.3. Options. method(string) specifies the method of estimation. By default, clr2bound
will conduct parametric estimation. Specifying method("series") or method("local"),
it will conduct series estimation with cubic B-splines or local linear estimation, re-
spectively.

notest determines whether clr2bound conducts a test or not. clr2bound provides a
test for the null hypothesis that the specified value is in the intersection bounds at
the confidence levels specified in the level option below. By default, clr2bound
conducts the test. Specifying this option causes clr2bound to output Bonferroni
bounds only.

null(real) specifies the value for θ∗ under the null hypothesis of the test we described
above. The default value is null(0).

level(numlist) specifies confidence levels. numlist has to be filled with real numbers
between 0 and 1. In particular, if this option is specified as level(0.5), the result
is the half-median-unbiased estimator of the parameter of interest. The default is
level(0.5 0.9 0.95 0.99).

noais determines whether adaptive inequality selection is used. Adaptive inequality
selection (AIS) helps to get sharper bounds by using a problem-dependent cutoff
to drop irrelevant grid points of the range. The default is to use AIS.

minsmooth(#) and maxsmooth(#) specify the minimum and maximum possible
numbers of approximating functions considered in the cross validation procedure
for B-splines. Specifically, the number of approximating functions K̂cv is set to
the minimizer of the leave-one-out least squares cross validation score within this
range. For example, if a user inputs minsmooth(5) and maxsmooth(9), K̂cv is
chosen from the set {5,6,7,8,9}. The procedure calculates this number separately
for each inequality. The default is minsmooth(5) and maxsmooth(20). If under-
smoothing is performed, the number of approximating functions K ultimately used
will be given by the largest integer smaller than K̂cv times the under-smoothing
factor n−1/5×n2/7, see option noundersmooth below. This option is only available
for series estimation.

bandwidth(#) specifies the value of the bandwidth used in local linear estimation.
By default, clr2bound calculates a bandwidth for each inequality. With under-
smoothing, we use the rule of thumb bandwidth h = ĥROT × ŝv × n1/5 × n−2/7

where ŝv is the square root of the sample variance of V , and ĥROT is the rule-of-
thumb bandwidth for estimation of θ(v) with studentized V . See Chernozhukov

et al. (2013) for the exact form of ĥROT . When the bandwidth(#) is specified,
clr2bound uses the given bandwidth as the global bandwidth for every inequality.
This option is only available for local linear estimation.

noundersmooth determines whether under-smoothing is carried out, with the default
being to under-smooth. In series estimation, under-smoothing is implemented by
first computing K̂cv as the minimizer of the leave-one-out least squares cross val-
idation score. We then set the number of approximating functions to K, given
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by the largest integer which is smaller than or equal to K̂ := K̂cv × n−1/5 × n2/7.
The noundersmooth option simply uses K̂cv. For local linear estimation under-
smoothing is done by setting the bandwidth to h = ĥROT × ŝv×n1/5×n−2/7, where
ĥROT , is the rule-of-thumb bandwidth used in Chernozhukov et al. (2013). The

noundersmooth option instead uses ĥROT × ŝv. This option is only available for
series and local linear estimation.

rnd(#) specifies the number of columns of the random matrix generated from the
standard normal distribution. This matrix is used for computation of critical values.
For example, if the number is 10000 and the level is 0.95, we choose the 0.95 quantile
from 10000 randomly generated elements. The default is rnd(10000).

norseed determines whether the seed number for the simulation used in the calcula-
tion will be reset. For example, if a user wants to use this command for simulations
carried out as part of a Monte Carlo study, this command can be used to prevent
resetting the seed number in each Monte Carlo iteration. The default is to reset
the seed number.

seed(#) specifies the seed number for the random number generation described
above. To prevent the estimation result from changing one particular value to
another randomly, clr2bound always conducts set seed # initially. The default
is seed(0).

5.4. Saved results. In the following, “l.b.e.” stands for lower bound estimation,
“u.b.e.” for upper bound estimation, and “ineq” means an inequality. (i) denotes the
i-th inequality. (lev) means the confidence level’s decimal part. For example, when
the confidence level is 97.5% or 0.975, (lev) is 975. The number of elements in (lev) is
equal to the number of confidence levels specified by the level option. Some results
are only available for series or local linear estimation.
clr2bound saves the following in e(). Note that for this and all other commands,

in the saved AIS results 1 is used to denote values that were kept in the index set,
and 0 values that were dropped.



INTERSECTION BOUNDS IN STATA 13

Scalars
e(N) #of observations e(null) The null hypothesis
e(l ineq) #of ineq’s in l.b.e. e(u ineq) #of ineq’s in r.b.e.
e(l grid(i)) #of grid points in (i) of l.b.e. e(u grid(i)) #of grid points in (i) of r.b.e.
e(l nf x(i)) #of approx. functions for l.b.e.

at x(i)
e(u nf x(i)) #of approx. functions for

u.b.e. at x(i)
e(l bdwh(i)) bandwidth for (i) of l.b.e e(l bdwh(i)) bandwidth for (i) of u.b.e.
e(lbd(lev)) est. results of l.b.e. e(ubd(lev)) est. results of u.b.e.
e(lcl(lev)) critical value of l.b.e. e(ucl(lev)) critical value of l.b.e.
e(t det(lev)) 1 : in the bound 0 : not e(t cvl(lev)) critical value of test
e(t bd(lev)) est. results of test e(t nf x(i)) #of approx. functions in test

Macros
e(cmd) ”clr2bound” e(title) ”CLR Intersection Bounds

(method)”
e(ldepvar) dep. var. in l.b.e. e(udepvar) dep. var. in r.b.e.
e(level) confidence levels e(smoothing) ”(NOT) Undersmoothed”
e(l indep(i)) indep. var. in (i) of l.b.e. e(u indep(i)) indep. var. in (i) of u.b.e.
e(l range(i)) range in (i) of l.b.e. e(u range(i)) range in (i) of u.b.e.

Matrices

e(l omega) Ω̂n for l.b.e. e(u omega) Ω̂n for u.b.e.

e(l theta(i)) θ̂n(v) for each v in l.b.e. e(u theta(i)) θ̂n(v) for each v in u.b.e.
e(l se(i)) sn(v) for each v in l.b.e. e(u se(i)) sn(v) for each v in u.b.e.
e(l ais(i)) AIS result for each v in l.b.e. e(u ais(i)) AIS result for each v in u.b.e.

e(t omega) Ω̂n for test e(t theta(i)) θ̂n(v) for each v in test
e(t se(i)) sn(v) for each v in test e(t ais(i)) AIS result for each v in test

See Chernozhukov et al. (2013) for details on θ̂n(v), sn(v), and Ω̂n.

6. The clrbound command

6.1. Syntax. The syntax of clrbound is as follows:

clrbound ( depvar1 indepvars1 range1 ) ( depvar2 indepvars2 range2 ) ... ( depvarN

indepvarsN rangeN )
[
if
] [

in
] [

, lower | upper method("series"|"local")

level(numlist ) noais minsmooth(#) maxsmooth(#) noundersmooth bandwidth(numlist )

rnd(#) norseed seed(#)
]

6.2. Description. clrbound estimates one-sided lower or upper intersection bounds

on parameter θ∗, as specified by the user. Lower bound estimates θ̂ln0(p) and upper

bound estimates θ̂un0(p) are constructed to satisfy (6) for p set equal to level. The
variables are defined similarly as for clr2bound.

6.3. Options. lower specifies whether the estimation is for the lower bound or the
upper bound. By default, it will return the upper intersection bound. Specifying
lower, clrbound will return the lower intersection bound.
Other options of the clrbound are the same as those of the clr2bound. However,

the clrbound command does not have the notest and null options because it does
not explicitly conduct a test.

6.4. Saved results. In the following, we use the same abbreviations as in Section
5.4. The clrbound saves the following in e():
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Scalars
e(N) #of observations e(n ineq) #of inequality
e(grid(i)) #of grids points (i) e(nf x(i)) #of approx. functions in (i)
e(bd(lev)) results of estimation e(cl(lev)) critical value
e(bdwh(i)) bandwidth for (i)

Macros
e(cmd) ”clrbound” e(title) ”CLR Intersection (up-

per/lower) Bounds (method)”
e(depvar) dependent variables e(level) confidence levels
e(smoothing) ”(NOT) Undersmoothed” e(indep(i)) indep. variables in (i)
e(range(i)) range in (i)

Matrices

e(omega) Ω̂n e(theta(i)) θ̂n(v) for each v
e(se(i)) sn(v) for each v e(ais(i)) AIS result for each v

7. The clrtest command

7.1. Syntax. The syntax of clrtest is as follows:

clrtest ( depvar1 indepvars1 range1 ) ( depvar2 indepvars2 range2 ) ... ( depvarN

indepvarsN rangeN )
[
if
] [

in
] [

, method("series"|"local") level(numlist ) noais

minsmooth(#) maxsmooth(#) noundersmooth bandwidth(numlist ) rnd(#) norseed

seed(#)
]

7.2. Description. Variables are defined similarly as for the clr2bound command,
but clrtest offers a more refined testing procedure. It performs the lower intersection
bound test described in (10) using the given depvars and indepvars as dependent
and independent variables, respectively. For example, suppose that one wants to
test the null hypothesis that 0.59 is in the interval [θl0, θ

u
0 ] at the 5% level, where

θl0 ≡ supxl∈X l E[Y l|X l = x] and θu0 ≡ infxu∈Xu E[Y u|Xu = x].
Suppose the variables Y l, Y u, X l, Xu are coded as yl, yu, xl, and xu, respec-

tively. To test this hypothesis one first creates the variables yl test = yl− 0.59 and
yu test = 0.59− yu, and then executes the command

clrtest (yl test xl) (yu test xu), level(0.95).

The level 0.95 corresponds to the value of p used for the intersection bound estimate
described in (11) required to perform the test (10) at the 1− p significance level. We
illustrate the use of this command in Section 9.3.

7.3. Options. Since the options for clrtest are the same as those for clrbound,
the explanation of options is omitted.

7.4. Saved results. Other saved results are the same as those of clrbound except
the following:
Scalars

e(det(lev)) rejected : 0, not rejected : 1
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8. The clr3bound command

8.1. Syntax. The syntax of clr3bound is as follows:

clr3bound ((lowerdepvar1 indepvars1 range1) (lowerdepvar2 indepvars2 range2) ...

(lowerdepvarN indepvarsN rangeN)) ((upperdepvarN+1 indepvarsN+1 rangeN+1)

(upperdepvarN+2 indepvarsN+2 rangeN+2) ...(upperdepvarN+M indepvarsN+M

rangeN+M))
[
if
] [

in
] [

, start(#) end(#) grid(#) method("series"|"local")

level(#) noais minsmooth(#) maxsmooth(#) noundersmooth bandwidth(#) rnd(#)

norseed seed(#)
]

8.2. Description. clr3bound estimates a two-sided confidence interval for the pa-
rameter θ∗ by inverting the test (10) performed by the clrtest command. The
end result is a collection of values of θnull that estimate a confidence set for θ∗ with
asymptotic coverage level as described by (12). Note that when only one-sided in-
tersection bounds are used, there is no need to implement the pointwise test carried
out by clr3bound.

Since this command is only relevant for two-sided intersection bounds, users should
input variables for both lower and upper bounds to calculate the bound. The variables
are defined similarly as for clr2bound. This command generally provides tighter
bounds than those provided by clr2bound, which employs Bonferroni’s inequality to
produce confidence sets for ΘI . Unlike the previous commands, clr3bound can only
deal with one confidence level at a time. It takes longer to compute bounds using the
clr3bound command than the clr2bound command since clr3bound is implemented
by repeating the clrtest command on a grid. In practice, we recommend using
clr2bound to obtain initial bound estimates and confidence sets, and then using
clr3bound to produce tighter bound estimates for the desired confidence level.

8.3. Options. stepsize(#) specifies the distance between two consecutive grid
points. The procedure divides the Bonferroni-based confidence set produced by
clr2bound into an equi-spaced grid and implements the clrtest command for
each grid point to determine a possible tighter bound. The default is 0.01.

level(#) specifies the confidence level of the estimation. In contrast to previous
commands, clr3bound can only deal with one confidence level at a time. The
default is 0.95.
Other options are exactly the same as those of clr2bound.

8.4. Saved results. clr3bound saves the following in e():
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Scalars
e(N) #of observations e(step) step size
e(level) confidence level
e(l ineq) #of ineq’s in l.b.e. e(u ineq) #of ineq’s in r.b.e.
e(l grid(i)) #of grids points for l.b.e. at

observation (i)
e(u grid(i)) #of grids points for r.b.e. at

observation (i)
e(l nf x(i)) #of approx. functions in (i) of

l.b.e.
e(u nf x(i)) #of approx. functions in (i) of

u.b.e.
e(l bdwh(i)) bandwidth for (i) of l.b.e e(l bdwh(i)) bandwidth for (i) of u.b.e.
e(lbd) est. results of l.b.e. e(ubd) est. results of u.b.e.
e(lbd(lev)) Bonferroni results of l.b.e. e(ubd(lev)) Bonferroni results of u.b.e.
e(lcl(lev)) critical value of l.b.e. e(ucl(lev)) critical value of l.b.e.

Macros
e(cmd) ”clr3bound” e(title) ”CLR Intersection Bounds: in-

verting test bounds”
e(ldepvar) dep. var. in l.b.e. e(udepvar) dep. var. in r.b.e.
e(method) Estimation method e(smoothing) ”(NOT) Undersmoothed”
e(l indep(i)) indep. var. in (i) of l.b.e. e(u indep(i)) indep. var. in (i) of u.b.e.
e(l range(i)) range in (i) of l.b.e. e(u range(i)) range in (i) of u.b.e.

Matrices

e(l omega) Ω̂n for l.b.e. e(u omega) Ω̂n for u.b.e.

e(l theta(i)) θ̂n(v) for each v in l.b.e. e(u theta(i)) θ̂n(v) for each v in u.b.e.
e(l se(i)) sn(v) for each v in l.b.e. e(u se(i)) sn(v) for each v in u.b.e.
e(l ais(i)) AIS result for each v in l.b.e. e(u ais(i)) AIS result for each v in u.b.e.

9. Examples

To illustrate the use of clrbound, clr2bound, clr3bound, and clrtest, we con-
sider some examples based on joint monotone instrumental variable and monotone
treatment response (MIV-MTR) bounds of Manski and Pepper (2000, Proposition 2),
as in Chernozhukov et al. (2013) to study log wages as a function of years of school-
ing. We use the same data extract as Carneiro and Lee (2009) from the National
Longitudinal Survey of Youth of 1979 (NLSY79).5 See also Carneiro et al. (2011) for
the dataset and recent advances in estimating returns to schooling.

The data constitute a random sample of observations of white males born between
1957 and 1964. For each individual i we observe hourly wages in U.S. dollars in 1994,
years of schooling (eduyr), and Armed Forces Qualifying Test score (afqt).6 We focus
attention on potential outcome Yi(t), which denotes the logarithm of hourly wages
(lnwage) in U.S. dollars in 1994 as a function of years of schooling t for individual
i. Vi is the AFQT score, a measure of cognitive ability, studentized to have mean
zero and variance one in the NLSY population. Let Zi denote the realized treatment,
here realized years of schooling, possibly self-selected by individuals. The source of
the identification problem is the same as that of the example considered in Section
2, namely that for each individual i, we only observe Yi ≡ Yi(Zi) along with (Zi, Vi),
but not Yi(t) with t 6= Zi.

5Accompanying STATA .dta, .do, and .log files for these examples are available at http://

www.homepages.ucl.ac.uk/$\sim$uctparo/IboundsFiles/NLSY.dta, http://www.homepages.

ucl.ac.uk/$\sim$uctparo/IboundsFiles/example.do, and http://www.homepages.ucl.ac.uk/

$\sim$uctparo/IboundsFiles/example.log, respectively.
6See Carneiro and Lee (2009) for further details about the data.

http://www.homepages.ucl.ac.uk/$\sim $uctparo/IboundsFiles/NLSY.dta
http://www.homepages.ucl.ac.uk/$\sim $uctparo/IboundsFiles/NLSY.dta
http://www.homepages.ucl.ac.uk/$\sim $uctparo/IboundsFiles/example.do
http://www.homepages.ucl.ac.uk/$\sim $uctparo/IboundsFiles/example.do
http://www.homepages.ucl.ac.uk/$\sim $uctparo/IboundsFiles/example.log
http://www.homepages.ucl.ac.uk/$\sim $uctparo/IboundsFiles/example.log
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The monotone instrumental variable (MIV) assumption introduced by Manski and
Pepper (2000), asserts that for all treatment levels t, the conditional expectation
E[Yi(t)|Vi = v] is weakly increasing in v. Thus, expected wages conditional on AFQT
score are assumed to be increasing in the score, a reasonable assumption given the
interpretation of the AFQT score as a measure of cognitive ability. The monotone
treatment response (MTR) assumption asserts that each individual’s log wage func-
tion Yi(t) is increasing in the level of schooling t. Without further restrictions, such as
a parametric functional form for log wages Yi(t), or instrumental variable restrictions
(stronger than the MIV restriction), expected returns to schooling are in general not
point-identified, but can be bounded. For the purpose of illustration we condition on
the average AFQT score Vi = 0, but identical analysis can be carried out conditioning
on other values.

From Manski and Pepper (2000) Proposition 2, the MIV-MTR assumptions im-
ply the following bounds on expected log wage at a given level of schooling t and
conditional on AFQT score v:

sup
u≤v

E
[
Y l
i |Vi = u

]
≤ E[Yi(t)|Vi = v] ≤ inf

u≥v
E [Y u

i |Vi = u] ,(17)

where

Y l
i ≡ Yi · 1 {t ≥ Zi}+ y0 · 1 {t < Zi} , Y u

i ≡ Yi · 1 {t ≤ Zi}+ y1 · 1 {t > Zi} ,(18)

and where [y0, y1] is the support of Yi. Thus we have the bounds of (1) with bound-
generating functions θl(v) = E

[
Y l
i |Vi = v

]
and θu(v) = E [Y u

i |Vi = v] with intersec-

tion sets V l = (−∞, v] for the lower bound and Vu = [v,∞) for the upper bound.
The MIV-MTR bounds are uninformative if the support of Y is unbounded. To

avoid this issue, for the sake of illustration we take the parameter of interest to be

θ∗ = P[Yi(t) > y|Vi = v],

at y = log(16), where $16 is approximately the 70th percentile of hourly wages in the
data, v = 0 and t = 13 (college attendees with one more year of schooling than high
school graduates). Thus our goal will be to perform inference on θ∗, the probability
that the hourly wage obtained by a college attendee (t = 13) is greater than 16 dollars
conditional on having an AFQT score at the average level in the NLSY population.

Under the MIV restriction that P[{Yi(t) > y}|Vi = v] is weakly increasing in v and
the same MTR assumption as above, the MIV-MTR upper bound is

θ∗ ≤ inf
u≥v

E[1{Yi > y] · 1{t ≤ Zi}+ 1{t > Zi}|Vi = u],(19)

and the lower bound is

θ∗ ≥ sup
u≤v

E[1{Yi > y] · 1{t ≥ Zi}|Vi = u].(20)

Indeed, the derivation of these bounds is identical to that of the conditional expec-
tation bound (17) with the indicator function 1{Yi(t) > y} in place of Yi(t) in the
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conditional expectation E[Yi(t)|Vi = v]. We focus on the threshold y = log(16) for
the sake of illustration, but such bounds can be studied for any level of log wages y
of interest, or indeed conditional on any value of v and any desired level of schooling
t.7

Note that for the study of the joint MIV-MTR bounds, care must be exercised
when setting the range variable, which was described in Section 5.2. This variable
provides grids of values representing the sets X u and X l appearing in (1).8 In this
example these sets differ from one another, as it follows from (19) and (20) above
that X u are all possible values of Vi of at least v and X l are all possible values of
Vi no more than v. Since we focus on the value of θ∗ = E[Yi(t)|Vi = v] at v = 0,
a new variable which contains grid points larger (smaller) than 0 should be used
for upper (lower) bound estimation. To obtain bounds conditional on other values
of v, the range would need to be changed accordingly. As range variables for our
NLSY79 dataset, we used vl afqt for the lower bound, and vu afqt for the upper
bound, which each contain 101 grid points from -2 to 0 and 0 to 2, respectively. The
commands we used for making the range variables were:

. egen vl_afqt = fill("-2 -1.98")

. replace vl_afqt = . if vl_afqt > 0
(1943 real changes made, 1943 to missing)

. egen vu_afqt = fill("0 0.02")

. replace vu_afqt = . if vu_afqt > 2
(1943 real changes made, 1943 to missing)

9.1. clr2bound. The first step is to create the dependent variables. For example,
when calculating the MIV-MTR upper bound, we need to define the dependent vari-
able as Y u

i = 1{Yi > y] · 1{t ≤ Zi} + 1{t > Zi}. In our example, we let yl denote
the dependent variable for lower bound estimation and yu for the upper bound. The
commands for constructing these variables were:

. gen yl = (lnwage > log(16)) * (eduyr <= 13)

. gen yu = (lnwage > log(16)) * (eduyr >= 13) + (eduyr < 13)

Here we show how to use the three estimation methods (parametric, local linear,
and series estimation). For the sake of illustration we also include the test result for
whether or not 0.1 is in the two-sided intersection bounds using series estimation.
The results were:

7Under the stronger assumption that the distribution of Yi(t)|Vi = v is stochastically increasing in
v so that P[{Yi(t) > y}|Vi = v] is weakly increasing in v for all y, the MIV-MTR bounds can be
applied at every y to bound the entire conditional distribution of Yi(t) given Vi = v.
8Note that in this example the sets Ju and Jl appearing in (1) are both singletons. The subscript
j on these sets is thus superfluous and has been dropped.
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. use NLSY, clear

. clr2bound ((yl afqt vl_afqt))((yu afqt vu_afqt)), notest

CLR Intersection Bounds (Parametric) Number of obs : 2044

< Lower Side >
Inequality #1 : yl (# of Grid Points : 101, Independent Variables : afqt )
< Upper Side >
Inequality #1 : yu (# of Grid Points : 101, Independent Variables : afqt )

AIS(adaptive inequality selection) is applied

Bonferroni Bounds | Value
-------------------------------------+---------------------------------------------
50% two-sided confidence interval | [ 0.1282908, 0.5663461 ]
90% two-sided confidence interval | [ 0.1142149, 0.5879820 ]
95% two-sided confidence interval | [ 0.1099835, 0.5947234 ]
99% two-sided confidence interval | [ 0.1008918, 0.6064604 ]
-----------------------------------------------------------------------------------

. clr2bound ((yl afqt vl_afqt))((yu afqt vu_afqt)), notest met("local")

CLR Intersection Bounds (Local Linear) Number of obs : 2044

< Lower Side >
Inequality #1 : yl (# of Grid Points : 101, Independent Variables : afqt )
< Upper Side >
Inequality #1 : yu (# of Grid Points : 101, Independent Variables : afqt )

AIS(adaptive inequality selection) is applied
Bandwidths are undersmoothed

Bonferroni Bounds | Value
-------------------------------------+---------------------------------------------
50% two-sided confidence interval | [ 0.1324061, 0.6406517 ]
90% two-sided confidence interval | [ 0.1182558, 0.6593739 ]
95% two-sided confidence interval | [ 0.1135008, 0.6656595 ]
99% two-sided confidence interval | [ 0.1043056, 0.6782933 ]
-----------------------------------------------------------------------------------

. clr2bound ((yl afqt vl_afqt))((yu afqt vu_afqt)), notest met("series")

CLR Intersection Bounds (Series) Number of obs : 2044
Estimation Method : Cubic B-Spline (Undersmoothed)

< Lower Side >
---------------------------------------------------------------------------------
Inequality #1 : yl (# of Grid Points : 101, Independent Variables : afqt )
Numbers of Approximating Functions : 21
< Upper Side >
---------------------------------------------------------------------------------
Inequality #1 : yu (# of Grid Points : 101, Independent Variables : afqt )
Numbers of Approximating Functions : 9

AIS(adaptive inequality selection) is applied

Bonferroni bounds | Value
-------------------------------------+---------------------------------------------
50% two-sided confidence interval | [ 0.1267539, 0.6261939 ]
90% two-sided confidence interval | [ 0.1041585, 0.6455886 ]
95% two-sided confidence interval | [ 0.0965073, 0.6515738 ]
99% two-sided confidence interval | [ 0.0811739, 0.6647557 ]
-----------------------------------------------------------------------------------
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The results show that the parametric bound is the narrowest. The parametric 95%
confidence interval for the counterfactual probability that a college attendee with the
average level of the AFQT score earns more than $16 per hour is from roughly 0.11
to 0.59. We can interpret results from series and local linear estimation similarly.
Notice that, using local linear and series estimation, the output also contains infor-
mation about bandwidths and the number of approximating functions, respectively.
Also, if one does not specify level, the procedure automatically provides four dif-
ferent confidence levels: 50%, 90%, 95%, and 99%, by default. As indicated in (7),
these confidence intervals are constructed with the use of Bonferroni’s inequality, such
that they contain the entire identified set ΘI with at least the given nominal level
asymptotically. The label “Bonferroni Bounds” underscores this point.

9.2. clrbound. In this section, we show how estimation of one-sided intersection
bounds works. The result for parametric estimation of the lower bound was:

. clrbound (yl afqt vl_afqt), lower

CLR Intersection Lower Bounds (Parametric) Number of obs : 2044
Inequality #1 : yl (# of Grid Points : 101, Independent Variables : afqt )

AIS(adaptive inequality selection) is applied

| Value
-------------------------------------+---------------------------------------------
half-median-unbiased est. | 0.1380992
90% one-sided confidence interval | [ 0.1191487, inf)
95% one-sided confidence interval | [ 0.1142149, inf)
99% one-sided confidence interval | [ 0.1047138, inf)
-----------------------------------------------------------------------------------

Unlike the two-sided bounds provided by clr2bound, this procedure does not ex-
plicitly report a 50% confidence interval but effectively conveys the same information
by providing the half-median-unbiased estimator for the bound. The half-median-

unbiased estimator is precisely θ̂ln0(p) appearing in (6) with p = 1
2

so that

Pn
{
θl0 ≥ θ̂ln0(p)

}
≥ 1

2
− o(1).

It follows that the interval [θ̂ln0(1
2
),∞) is a 50% confidence interval.

The one-sided confidence intervals are all of the form [θ̂ln0(p),∞), for p = 0.9, 0.95, 0.99,

respectively, with θ̂ln0(p) constructed in order to satisfy (6). This guarantees that

lim inf
n→∞

Pn{θ∗ ∈ [θ̂ln0(p),∞)} ≥ p.(21)

9.3. clrtest. We now test the null hypothesis that 0.59 is in the identified set using
a parametric estimator. We use the construction described in (8) and (9) to test
whether both the lower bound minus 0.59, and 0.59 minus the upper bound are less
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than or equal to zero. Thus, we are carrying out a test of the form (10). To implement
this we must first construct new dependent variables before implementing the test.
The commands and results were:

. gen yl_test = yl - 0.59

. gen yu_test = 0.59 - yu

. clrtest (yl_test afqt vl_afqt)(yu_test afqt vu_afqt), level(0.95)

CLR Intersection Bounds (Test) Number of obs : 2044
Inequality #1 : yl_test (# of Grid Points : 101, Independent Variables : afqt )
Inequality #2 : yu_test (# of Grid Points : 101, Independent Variables : afqt )

AIS(adaptive inequality selection) is applied

< Testing Result >
The testing value is NOT in the 95% confidence interval.
In other words, the null hypothesis is rejected at the 5% level.

It can be seen that 0.59 is not in the 95% confidence interval. This means that
we reject the hypothesis H0 in (10) in favor of the alternative H1. That is, we reject
the null hypothesis that the counterfactual probability of earning more than $16 per
hour at schooling level t = 13 conditional on having the mean AFQT score is equal
to 0.59 at the 5% level.

9.4. clr3bound. This command can obtain a tighter confidence interval than the
one given by clr2bound, which uses Bonferroni’s inequality. Instead of using Bonfer-
roni’s inequality, clr3bound inverts the test carried out by clrtest to construct a
confidence interval for θ∗ of the form given in (12). The confidence interval given by
clr2bound is valid for both the point θ∗ and the set ΘI , but the tighter confidence
interval provided by clr3bound only provides asymptotically valid coverage of the
point θ∗. The confidence interval obtained from clr3bound was obtained as follows:

. clr3bound ((yl afqt vl_afqt)) ((yu afqt vu_afqt))

CLR Intersection Bounds: Test inversion bounds Number of obs : 2044
Method : Parametric estimation Step size : .01
AIS(adaptive inequality selection) is applied

95% Bonferroni bounds: (0.1097781 , 0.5945532)
95% Test inversion bounds: (0.1299823 , 0.5747234)

The last two lines of the results show the Bonferroni bounds delivered by clr2bound,
as well as the test inversion bounds computed by clr3bound. Indeed, we see that
the confidence interval obtained by using clr3bound is tighter than the one obtained
by clr2bound. However, since this command uses a grid search to invert clrtest to
construct the reported confidence interval, it takes longer than clr2bound.
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