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Abstract

Important features of certain economic models may be revealed by studying positive eigenfunc-

tions of appropriately chosen linear operators. Examples include long-run risk-return relation-

ships in dynamic asset pricing models and components of marginal utility in external habit

formation models. This paper provides identification conditions for positive eigenfunctions in

nonparametric models. Identification is achieved if the operator satisfies two mild positivity

conditions and a power compactness condition. Both existence and identification are achieved

under a further non-degeneracy condition. The general results are applied to obtain new identi-

fication conditions for external habit formation models and for positive eigenfunctions of pricing

operators in dynamic asset pricing models.
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1 Introduction

Recent work in economics has shown that important features of certain economic models may

be may be revealed by studying positive eigenfunctions of appropriately chosen linear operators.

For example, Hansen and Scheinkman (2009) use a positive eigenfunction of pricing operators to

decompose stochastic discount factors into permanent and transitory components. This decompo-

sition presents a convenient device for studying long-run risk-return relationships (see also Alvarez

and Jermann (2005); Hansen (2012); Backus, Chernov, and Zin (2014)). Moreover, Hansen and

Scheinkman (2012) provide existence and identification conditions for the value function in models

with recursive preferences by studying a related positive eigenfunction. Chen, Chernozhukov, Lee,

and Newey (2014) show that an external habit formation function in a semiparametric consumption

capital asset pricing model (C-CAPM) may be expressed as a positive eigenfunction of an operator

related to the Euler equation. Further, Ross (2013) recovers a probability distribution over future

states implicit in option prices using a positive eigenfunction and its eigenvalue.

The purpose of this paper is to provide a set of tractable conditions for nonparametric identifica-

tion of positive eigenfunctions in economic models.1 Previously, Chen et al. (2014) and Christensen

(2013) have provided identification conditions in the context of a semiparametric C-CAPM and a

discrete-time implementation of the long-run analysis of Hansen and Scheinkman (2009), respec-

tively. Independently, Lewbel, Linton, and Srisuma (2011) and Escanciano and Hoderlein (2012)

have studied identification of marginal utility of consumption in nonparametric Euler equations.

Each of these papers derives identification conditions by first restricting the parameter space to con-

sist of positive functions belonging to a Lp space and then applying results from integral operator

theory. In contrast, Hansen and Scheinkman (2009) do not restrict the parameter space ex ante and

instead apply Markov process theory to derive identification conditions for positive eigenfunctions

of pricing operators in continuous-time models.

Identification of positive eigenfunctions has been long studied in abstract functional analysis in the

mathematics literature (see, e.g., Krĕın and Rutman (1950); Schaefer (1960)). The function-analytic

identification conditions usually relate to properties of the resolvent of the operator. As such, these

conditions are generally difficult to motivate and interpret in an economic context.

This paper aims to help bridge the gap between the high-level conditions in functional analysis and

the primitive conditions for integral operators previously studied by providing a reasonably tractable

set of identification conditions for the positive eigenfunction of a positive operator on a Banach

lattice. When applied to the special case of operators on L2 spaces, the identification conditions

herein are weaker than those previously provided by Chen et al. (2014) and Christensen (2013).2

1The conditions identify the positive eigenfunction up to scale (any positive multiple of a positive eigenfunction
is a positive eigenfunction). If the positive eigenfunction is normalized to have unit norm, then the conditions are
sufficient for the point identification of the normalized positive eigenfunction.

2It should be noted, however, that the identification conditions in Christensen (2013) are a simple set of conditions
that are also used to study estimation and long-run approximation. Similarly, Chen et al. (2014) sought to provide

2



In particular, the identification conditions in this paper require a weaker form of compactness

and are not cast in terms of restrictions on conditional probability densities. This generalization is

important because compactness may fail and/or certain conditional densities may not exist in some

applications. The general results presented in this paper are applied to derive new identification

conditions for two models for which the previous identification conditions may be violated.

Additional properties of the positive eigenfunction and its eigenvalue are established under the

identification conditions. These properties are useful for nonparametric estimation of the positive

eigenfunction and its eigenvalue. In particular, if the identification conditions hold then the eigen-

value corresponding to the positive eigenfunction is the largest eigenvalue of the operator, and it

is an isolated, simple eigenvalue. This final property may be used to establish continuity of the

eigenvalue and eigenfunction with respect to perturbations of the operator (see, e.g., Chapter IV

of Kato (1980)). If an estimator of the operator is near the true operator in an appropriate sense

then the maximum eigenvalue of the estimator, and its eigenfunction, should (under regularity)

also be near the true eigenvalue/eigenfunction. Christensen (2013) uses these properties to derive

large-sample theory for nonparametric estimators of the positive eigenfunction and its eigenvalue.

The general conditions are applied to obtain new identification conditions for positive eigenfunctions

of pricing operators in dynamic asset pricing models. Identification conditions are presented for

stationary discrete- and continuous-time environments. Identification is shown to hold under a no-

arbitrage condition, a weak dependence condition on the state process, and a power compactness

condition. Existence and identification is established under an additional condition on the yield on

zero-coupon bonds. These identification conditions complement those that Hansen and Scheinkman

(2009) provide for possibly nonstationary, continuous-time environments. Identification conditions

for a C-CAPM with external habit formation are also presented as an application.

In the applications dealt with in this paper, the eigenfunction equation can be interpreted as

a conditional moment restriction. Identification of conditional moment restriction models has re-

ceived much attention of late, particularly in the context of nonparametric models with endogeneity

(see, e.g., Severini and Tripathi (2006); D’Haultfoeuille (2011); Chen et al. (2014) and references

therein). A conditional moment restriction model is identified when there is a unique solution to

the conditional moment equation. In contrast, in this paper there are a continuum of solutions to

the conditional moment equation when the positive eigenfunction is identified.3 Further, here the

identification results involve a crucial shape restriction, namely positivity, which is not typically

imposed in the literature on identification of conditional moment restriction models.

The paper is organized as follows. Section 2 reviews relevant concepts from spectral theory. Section

3 provides identification conditions for positive operators on Lp spaces. Section 4 applies the con-

ditions to pricing operators, and Section 5 to external habit formation models. Section 6 presents

identification conditions for operators on Banach lattices. An appendix contains additional back-

sufficient conditions that were similar to conditions imposed in the literature on estimation.
3This is because an eigenfunction is only identified up to scale.
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ground material on Banach lattices and all proofs.

2 Review of some relevant definitions

Let E be a Banach space and T : E → E be a bounded linear operator.4 The resolvent set ρ(T ) ⊆ C
of T is the set of all z ∈ C for which the resolvent operator R(T, z) := (T−zI)−1 exists as a bounded

linear operator on E (where I : E → E is the identity operator, i.e., Ix = x for all x ∈ E). The

spectrum σ(T ) is defined as the complement of ρ(T ) in C, i.e. σ(T ) := (C \ ρ(T )). The point

spectrum π(T ) ⊆ σ(T ) of T is the set of all z ∈ C for which the nullspace of (T − zI) is nontrivial.

Each λ ∈ π(T ) is an eigenvalue of T and any nonzero ψ in the nullspace of (T−λI) is an eigenvector

of T corresponding to λ. The geometric multiplicity of λ ∈ π(T ) is the dimension of the nullspace

of (T − λI). The algebraic multiplicity of λ ∈ σ(T ) is the order of the pole of R(T, z) at z = λ. If

λ ∈ π(T ) has algebraic and geometric multiplicity equal to 1 then λ is said to be simple. Further,

λ ∈ π(T ) is said to be isolated if infz∈σ(T ):z 6=λ |z − λ| > 0. The spectral radius r(T ) of T is defined

as r(T ) := sup{|λ| : λ ∈ σ(T )}.

3 Identification in Lp spaces

This section provides identification conditions for positive eigenfunctions when the parameter space

consists of positive functions in a Lp space. The first set of identification conditions presented are

for Lp spaces with 1 ≤ p <∞. Identification conditions are also presented for the space of bounded

functions, which may be of interest in certain applications.

Let (X ,X , µ) be a σ-finite measure space. To simplify notation, in what follows let Lp denote the

space Lp(X ,X , µ).5 Let T : Lp → Lp be a linear operator. T is said to be positive if Tf ≥ 0 a.e.-[µ]

whenever f ≥ 0 a.e.-[µ].

The cases 1 ≤ p < ∞ and p = ∞ are dealt with separately because of the different properties of

the Lp (1 ≤ p <∞) and L∞ spaces.

3.1 Case 1: 1 ≤ p <∞

The following conditions are sufficient for both existence and nonparametric identification of the

positive eigenfunction of T when the parameter space consists of positive functions in a Lp space

4The definitions are from Schaefer (1999) and assume E is a Banach space over C. When E is a Banach space
over R, the complex extension T (x+ iy) = T (x) + iT (y) for x, y ∈ E of T is defined on the complexification E + iE
of E. The spectrum and associated quantities of T when E is a Banach space over R are obtained by applying the
complex Banach space definitions to the complex extension of T .

5The space Lp(X ,X , µ) with 1 ≤ p < ∞ consists of all (equivalence classes of) measurable functions f : X → R
such that

∫
|f |p dµ < ∞. The space L∞(X ,X , µ) consists of all (equivalence classes of) measurable functions f :

X → R such that ess sup |f | <∞.
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with 1 ≤ p <∞.

Assumption 3.1 T : Lp → Lp is a bounded linear operator such that:

(i) T is positive,

(ii) for each f ∈ Lp with f ≥ 0 a.e.-[µ] and f 6= 0 there exists n ≥ 1 such that Tnf > 0 a.e.-[µ],

(iii) Tn is compact for some n ≥ 1, and

(iv) r(T ) > 0.

These conditions will be referred to as positivity, eventual strong positivity, power compactness,

and non-degeneracy. The two positivity conditions are typically straightforward to motivate, either

from the economic context of the problem or the structure of the operator. The power compactness

condition is trivially satisfied if T is compact, though this more general condition suffices. The

non-degeneracy condition is satisfied if T has a nonzero eigenvalue. Non-degeneracy is also satisfied

if there exists a function f ∈ Lp with f ≥ 0 a.e.-[µ] and f 6= 0 such that Tnf ≥ δf a.e.-[µ] for some

n ≥ 1 and δ > 0 (Schaefer, 1960, Proposition 3). Both the non-degeneracy and eventual strong

positivity conditions have an economic interpretation in the asset pricing application below.

The following Theorem also shows that Assumption 3.1 is sufficient for identification of the positive

eigenfunctions of both T and its adjoint T ∗. To introduce the adjoint, let q =∞ if p = 1, otherwise

let q be such that q−1 + p−1 = 1. The space Lq can be identified as the dual space of Lp. The

adjoint T ∗ : Lq → Lq of T is a bounded linear operator defined by the equality∫
g(Tf) dµ =

∫
(T ∗g)f dµ (1)

for all f ∈ Lp and g ∈ Lq.

Theorem 3.1 Let Assumption 3.1 hold. Then:

(i) there exist f̄ ∈ Lp with f̄ > 0 a.e.-[µ] and f̄∗ ∈ Lq with f̄∗ > 0 a.e.-[µ] such that T f̄ = r(T )f̄

and T ∗f̄∗ = r(T )f̄∗

(ii) f̄ and f̄∗ are the unique eigenfunctions of T and T ∗ in Lp and Lq, respectively, that are

non-negative a.e.-[µ]

(iii) r(T ) is simple and isolated.

Theorem 3.1 is both an identification and existence result. Assumptions 3.1(i)(ii)(iii) are enough

to establish identification, as made clear in the following Corollary.

Corollary 3.1 Let Assumptions 3.1(i)(ii)(iii) hold and let f̄ be a positive eigenfunction of T . Then

Assumption 3.1(iv) is satisfied and the conclusions of Theorem 3.1 hold.
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3.2 Case 2: p =∞

Identification conditions are now presented for the case in which the parameter space is the space

L∞ of (essentially) bounded functions. There are two important differences from the 1 ≤ p < ∞
case. First, the eventual strong positivity condition needs to be strengthened. Second, identification

of the adjoint eigenfunction is not considered because the dual of L∞ is typically identified with a

space of signed measures.

Assumption 3.2 T : L∞(µ)→ L∞(µ) is a bounded linear operator such that:

(i) T is positive,

(ii) for each f ∈ L∞ with f ≥ 0 a.e.-[µ] and f 6= 0 there exists n ≥ 1 such that ess inf Tnf > 0,

(iii) Tn is compact for some n ≥ 1, and

(iv) r(T ) > 0.

As with the preceding case, positivity and non-degeneracy may be motivated by the economic

context of the problem or the structure of the operator.

Theorem 3.2 Let Assumption 3.2 hold. Then:

(i) there exists f̄ ∈ L∞ with ess inf f̄ > 0 such that T f̄ = r(T )f̄

(ii) f̄ is the unique eigenfunction of T in L∞ that is non-negative a.e.-[µ]

(iii) r(T ) is simple and isolated.

Theorem 3.2 establishes both existence and identification of the positive eigenfunction. As with the

1 ≤ p <∞ case, Assumption 3.2(i)(ii)(iii) are sufficient to establish identification.

Corollary 3.2 Let Assumptions 3.2(i)(ii)(iii) hold and let f̄ be a positive eigenfunction of T . Then

Assumption 3.2(iv) is satisfied and the conclusions of Theorem 3.2 hold.

3.3 Discussion of closely related results

Chen et al. (2014) and Christensen (2013) provide identification conditions for L2 spaces in which

the linear operator is of the form

Tf(x) =

∫
k(x, y)f(y) dµ(y) . (2)

For identification, they assume that the integral kernel k : X × X → R satisfies:

(a) k(x, y) > 0 a.e.-[µ⊗ µ], and

(b)
∫ ∫

k(x, y)2 dµ(x) dµ(y) <∞.
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Condition (a) guarantees positivity and eventual strong positivity (Assumption 3.1(i)(ii)). Con-

dition (b) implies T is compact and therefore power compact (Assumption 3.1(iii)).6 Conditions

(a) and (b) also imply r(T ) > 0 (Assumption 3.1(iv); see Theorem V.6.6 of Schaefer (1974)).

Therefore, conditions (a) and (b) are sufficient for both existence and identification of the positive

eigenfunction in the space L2.

Identification using conditions (a) and (b) may be problematic for certain models including asset

pricing models in higher-order Markov environments (Section 4.2) and external habit formation

models where the habit component is a function of consumption growth over two or more periods

(Section 5). First, certain conditional densities may fail to exist, making conditions (a) and (b)

less interpretable as restrictions on probability densities. Second, the operator may not be com-

pact, thereby violating condition (b) (see Lemma 4.3). Theorem 3.1 is applied to provide new

identification conditions in these applications (see Sections 4.2 and 5).

4 Application: dynamic asset pricing models and the long run

Hansen and Scheinkman (2009) (HS hereafter) present a framework for decomposing stochastic

discount factors (SDFs) in dynamic asset pricing models into permanent and transitory components

(see also Alvarez and Jermann (2005); Hansen (2012); Backus et al. (2014)). This decomposition

presents a convenient device for extracting information about long-run risk-return relationships,

even in complicated nonlinear environments where extrapolation to the long run might otherwise

be difficult. The key tools for performing their analysis are a positive eigenfunction and eigenvalue

of a collection of pricing operators.

HS derive identification conditions for the positive eigenfunction in general continuous-time envi-

ronments using stochastic stability results for continuous-time Markov processes. They show that

the positive eigenfunction compatible with their stochastic stability conditions must be unique, but

they do not rule out the existence of other positive eigenfunctions.

Theorem 3.1 is now applied to derive new identification conditions for the positive eigenfunction in

discrete- and continuous-time environments. Some of the identification conditions are stronger than

those in HS. For instance, here a power compactness condition is imposed and the environment

is assumed to be stationary, though stationarity is not necessarily restrictive in an asset pricing

context.7 Under stationarity, the parameter space may be restricted ex ante to consist of posi-

tive functions belonging to an appropriately chosen Lp space. This restriction, together with the

identification conditions presented below, both guarantees uniqueness of the positive eigenfunction

6Christensen (2013) also establishes identification and existence of positive eigenfunctions of integral operators on
Lp spaces under a weaker power compactness condition than (b).

7Stationarity may sometimes be achieved by a change of variables. For example, consumption-based asset pricing
models are often written in terms of consumption growth to avoid potential nonstationarity in aggregate consumption
(Hansen and Singleton, 1982; Gallant and Tauchen, 1989)).
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and shows how its eigenvalue is related to the spectrum of the pricing operators. Conditions for

existence of the positive eigenfunction in discrete-time environments are also presented.

4.1 Identification in discrete-time environments

The discrete-time environment is first described, following Hansen and Scheinkman (2012, 2013).

Let {(Xt, Yt)}∞t=−∞ denote a strictly stationary, discrete-time, first-order Markov process with sup-

port X ×Y ⊆ Rdx ×Rdy . Assume further that the joint distribution of (Xt+1, Yt+1) conditioned on

(Xt, Yt) depends only on Xt. The vector Xt will summarize all the relevant information for pricing

at date t, and will be referred to as the state vector.

To describe the pricing operators, let ψ : X → R be a measurable function. Assume that the date-t

price of a claim to ψ(Xt+1) payable at time t+ 1 is given by the Euler or no-arbitrage equation

Tψ(x) = E [m(Xt, Xt+1, Yt+1)ψ(Xt+1)|Xt = x] (3)

where m : X × X × Y → R is a measurable function, the random variable m(Xt, Xt+1, Yt+1) is

the SDF for pricing single-period claims at date t and m(Xt, Xt+1, Yt+1) ≥ 0 a.e.-[Q] where Q is

the unconditional distribution of (Xt, Xt+1, Yt+1).8 Equation (3) shows that the pricing operator T

is a linear operator on the space of payoff functions ψ. The n period pricing operator Tn may be

similarly defined for n ≥ 1 as the operator that assigns date-t prices to claims to ψ(Xt+n) payable

at time t + n. For instance, the date t price of a zero-coupon bond which matures in n periods is

given by Tnψ(x) when ψ(x) = 1 for all x ∈ X . Assuming trading at intermediate dates and time

homogeneity of m, it follows that Tn takes the form

Tnψ(x) = E

[(
n−1∏
s=0

m(Xt+s, Xt+s+1, Yt+s+1)

)
ψ(Xt+n)

∣∣∣∣∣Xt = x

]
. (4)

The structure placed on the SDF and the state process implies that each Tn factorizes as Tn = Tn,

i.e., Tnψ is obtained by iteratively applying T to ψ for n times.

An example of this setup is the representative-agent C-CAPM, in which

m(Xt, Xt+1, Yt+1) = β(Ct+1/Ct)
−γ (5)

where Ct is aggregate consumption at time t and Ct+1/Ct = g(Xt, Xt+1, Yt+1) for some measurable

function g. This specification offers a good deal of flexibility for modeling consumption growth,

including Xt = (Gt, Zt) where Zt is a vector of variables such that (Gt, Z
′
t)
′ characterizes all the

relevant information for the evolution of the state from t to t + 1. For example, if Gt evolves as a

`th order Markov process then Zt = (Gt−1, . . . , Gt−`+1)′.

8The joint process (Xt, Yt) is used following Hansen and Scheinkman (2012, 2013). This general framework clearly
nests environments in which the state process is {Xt} and the SDF is m(Xt, Xt+1).
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As the state process is assumed stationary, the following identification conditions are presented for

the space Lp(X ,X , Q) for some 1 ≤ p < ∞, where X is the Borel σ-algebra on X and Q is the

stationary distribution of X. To simplify notation, let Lp denote the space Lp(X ,X , Q).

Definition 1 φ ∈ Lp is a principal eigenfunction of the collection of pricing operators {Tn : n ≥ 1}
with eigenvalue ρ if φ > 0 a.e.-[Q] and Tnφ = ρnφ for each n ≥ 1.

Remark 4.1 Let Tφ = ρφ. The factorization Tn = Tn implies that Tnφ = ρnφ. Therefore, φ is a

principal eigenfunction of {Tn : n ≥ 1} if and only if φ is a positive eigenfunction of T .

HS show that ρ and φ characterize the pricing of long-horizon assets. For example, under stochastic

stability conditions, HS obtain the limiting result

lim
n→∞

ρ−nTnψ(x) = Ẽ[ψ(X)/φ(X)]φ(x) (6)

where Ẽ[·] is an expectation under a change of measure induced by the permanent component of

the SDF. Therefore, ρ encodes the yield on long-term claims to state-contingent payoffs and φ

captures state-dependence of prices of such claims. Christensen (2013) shows that, in stationary

environments, the expectation Ẽ[·] may be expressed in terms of Q, φ, and the positive eigenfunction

φ∗ of the adjoint of T . The pair ρ and φ may also be used to decompose the SDF into the product

of its permanent and transitory components, and to place bounds on the size of the permanent and

transitory components (see Alvarez and Jermann (2005); HS; Hansen (2012); Backus et al. (2014)).

Uniqueness of the positive eigenfunction is clearly essential to the analysis of HS and others.

Identification conditions for discrete-time environments are now derived using Theorem 3.1.

Assumption 4.1 {Tn : n ≥ 1} satisfies the following:

(i) T : Lp → Lp is a bounded linear operator

(ii) Tn is compact for some n ≥ 1.

It remains to verify the remaining conditions of Theorem 3.1. Clearly T : Lp → Lp is positive, as

it is the composition of two positive operators, namely the multiplication operator Mm given by

Mmψ = mψ where m ≥ 0 a.e.-[Q] and the conditional expectation operator E[·|Xt = x].

The following weak dependence and no-arbitrage conditions are sufficient for eventual strong posi-

tivity.

Assumption 4.2 For any S ∈ X with Q(S) > 0 there exists an integer n = n(S) ≥ 1 such that

Pr(Xt+n ∈ S|Xt = x) > 0 a.e.-[Q].

Assumption 4.2 is similar to the irreducibility condition in HS, though they require irreducibility

under a change of measure induced by the permanent component. If both the stationary density
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of Xt and the conditional density of Xt+1 given Xt exist and are strictly positive then Assumption

4.2 is trivially satisfied with n = 1. However, the conditional density will fail to exist if the state

process Xt is formed by stacking a higher-order Markov process as a first-order Markov process, in

which case the extra generality of Assumption 4.2 is useful (see Section 4.2).

The principle of no-arbitrage asserts that any claim to a non-negative payoff which is positive with

positive conditional probability must command a positive price (see, e.g., Hansen and Renault

(2010) and references therein). It is helpful to think of the collection

Ψ = {ψ ∈ Lp : ψ ≥ 0 a.e.-[Q], ψ 6= 0} (7)

as a menu of claims to future state-contingent payoffs. That is, at date t each pair (ψ, n) ∈ Ψ× N
represents a claim to ψ(Xt+n) payable at time t + n. The following no-arbitrage type condition is

imposed on (4).

Assumption 4.3 For each (ψ, n) ∈ Ψ × N, E[ψ(Xt+n)|Xt = x] > 0 a.e.-[Q] implies Tnψ(x) > 0

a.e.-[Q].

Lemma 4.1 If Assumptions 4.2 and 4.3 hold then T satisfies eventual strong positivity.

HS assume that their (continuous-time) SDF process is positive almost surely. The following remark

shows that a discrete-time version of their condition implies Assumption 4.3.

Remark 4.2 Let Qn denote the joint distribution of (Xt, Xt+1, Yt+1, . . . , Xt+n, Yt+n). Suppose that∏n−1
i=0 m(Xt+i, Xt+1+i, Yt+1+i) > 0 a.e.-[Qn] for each n ≥ 1. Then Assumption 4.3 is satisfied.

An identification result is presented first, for which some extra notation is required. Let q = ∞ if

p = 1, otherwise let q be such that q−1 + p−1 = 1, and let Lq denote the space Lq(X ,X , Q). Let

T ∗ : Lq → Lq denote the adjoint of T defined in (1), and note that T ∗n = (T ∗)n as a consequence of

the factorization Tn = Tn.

Theorem 4.1 Let Assumptions 4.1, 4.2 and 4.3 hold and let φ ∈ Lp be a principal eigenfunction

of {Tn : n ≥ 1} with eigenvalue ρ. Then:

(i) φ is the unique eigenfunction of {Tn : n ≥ 1} in Lp that is non-negative a.e.-[Q]

(ii) ρ is positive, simple, isolated, and ρ = r(T )

(iii) there exists φ∗ ∈ Lq with φ∗ > 0 a.e.-[Q] such that T ∗nφ
∗ = ρnφ∗ for each n ≥ 1

(iv) φ∗ is the unique eigenfunction of T ∗ in Lq that is non-negative a.e.-[Q].

Theorem 4.1 shows that if one can be guaranteed of the existence of a principal eigenfunction of the

collection of operators {Tn : n ≥ 1} then this principal eigenfunction must be unique. Moreover, it

shows that the eigenvalue ρ is the largest eigenvalue of T .
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As in Section 3, an extra non-degeneracy condition is ensures existence and uniqueness of the

principal eigenfunction. Here the non-degeneracy condition may be formulated in terms of the

yield on zero-coupon bonds. Let 1(·) : X → R denote the constant function, i.e. 1(x) = 1 for all

x ∈ X . The price of a zero-coupon bond maturing in n periods is Tn1(x), and its yield-to-maturity

yn(x) is defined by the relation

Tn1(x) = (1 + yn(x))−n . (8)

or, equivalently, yn(x) = [Tn1(x)]−1/n − 1.

Assumption 4.4 There exists n ≥ 1 and C <∞ such that yn(x) ≤ C a.e.-[Q].

Lemma 4.2 r(T ) > 0 under Assumption 4.4.

Assumption 4.4 is satisfied with n = 1 for the C-CAPM in (5) if expected consumption growth

E[g(Xt, Xt+1, Yt+1)|Xt = x] is uniformly bounded away from infinity a.e.-[Q]. Assumption 4.4 is

also trivially satisfied in models with a constant risk free rate. Assumption 4.4 can be weakened to

require only that there exists ψ ∈ Ψ and n ∈ N such that Tnψ(x) ≥ δψ(x) a.e.-[Q] for some δ > 0.

Theorem 4.2 Let Assumptions 4.1, 4.2, 4.3, and 4.4 hold. Then:

(i) there exists a principal eigenfunction φ ∈ Lp of {Tn : n ≥ 1}
(ii) the conclusions of Theorem 4.1 hold.

Similar results to Theorems 4.1 and 4.2 are presented in Christensen (2013). However, there the pos-

itivity, eventual strong positivity, and non-degeneracy conditions are satisfied by imposing primitive

restrictions on the kernel representing the operator T .

4.2 Identification with higher-order Markov processes

Higher-order Markov processes are popular modeling devices as they maintain the tractability of

Markov processes while allowing for richer dynamics than first-order processes. Examples include

higher-order vector autoregressive processes (VARs), higher-order nonlinear VARs (Härdle, Tsy-

bakov, and Yang (1998) and references therein), autoregressive Gamma processes (Gourieroux and

Jasiak, 2006), and compound autoregressive processes (Darolles, Gourieroux, and Jasiak, 2006). See,

e.g., Monfort and Pegoraro (2007), Bertholon, Monfort, and Pegoraro (2008) and Eraker (2008) for

applications of these processes to term structure models.

To fix ideas, in what follows let {Wt}∞t=−∞ be a strictly stationary Markov process of finite order ` >

1 where each Wt has full support R (the following analysis extends directly to the multivariate case,

except the notation is more complicated). Setting Xt = (Wt,Wt−1, . . . ,Wt−`+1)′ makes {Xt}∞t=−∞
a strictly stationary first-order Markov process, where each Xt has support R`. Let Q denote the

unconditional distribution of Xt on R`.
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The identification conditions presented in Section 3.3 run into difficulty in such environments

for two reasons. First, the conditional density of Xt+1 given Xt does not exist: the elements

(Wt, . . . ,Wt−`+2) of Xt+1 are known when Xt is known. Second, and more critically, the opera-

tor T may fail to be compact, thereby violating the integrability condition (b) in Section 3.3. The

following Lemma describes one situation in which compactness of T may fail.

Lemma 4.3 Let Xt = (Wt,Wt−1, . . . ,Wt−`+1)′ and let {Wt}∞t=−∞ be as described above. If there

exists c > 0 such that E[m(Xt, Xt+1, Yt+1)|Xt = x] ≥ c a.e.-[Q] then T : L2 → L2 is not compact.

Theorem 4.1 is now applied to derive identification conditions in higher-order environments. Of

course, Assumptions 4.1, 4.2, and 4.3 may be assumed directly in which case identification is

immediate by Theorem 4.1. To illustrate the power of the new identification results, further primitive

conditions on the process {Wt}∞t=−∞ and the SDF m are now derived. These are but one example

of sufficient conditions for Assumptions 4.1 and 4.2 in higher-order Markov environments and are

in no way exhaustive.

Assumption 4.5 {Wt}∞t=−∞ is a strictly stationary nonlinear AR(`) process of the form

Wt+1 = h(Wt, . . . ,Wt−`+1) + ut+1 (9)

where h : R` → R is a measurable function and the innovations ut are i.i.d. with E[ut] = 0 and

density fU such that fU (u) > 0 for all u ∈ R.

Lemma 4.4 Let Assumption 4.5 hold. Then Assumption 4.2 is satisfied.

The state process in Assumption 4.5 is similar to that recently studied in Backus et al. (2014),

except here {Wt}∞t=−∞ evolves as a nonlinear AR(`) process rather than a linear MA(∞) process.

See Fan and Yao (2003) and references therein for further regularity conditions on h which ensure

stationarity and ergodicity of {Wt}∞t=−∞.

Although the conditional density of Xt+l given Xt does not exist for l = 1, . . . , `−1, the conditional

density of Xt+` given Xt may exist under Assumption 4.5. For example, when ` = 2(
Wt+2

Wt+1

)
=

(
h(h(Wt,Wt−1) + ut+1,Wt) + ut+2

h(Wt,Wt−1) + ut+1

)
(10)

thus Xt+2 = (Wt+2,Wt+1)′ is a measurable function of Xt = (Wt,Wt−1)′ and the innovations ut+1

and ut+2. Analogous results clearly hold for Xt+` when ` > 2.

The following conditions on the SDF and {Xt}∞t=−∞ are sufficient for T to be bounded and power

compact. To simplify notation, in what follows it is assumed that m(Xt, Xt+1, Yt+1) = m(Xt,Wt+1).
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Assumption 4.6 There exists a finite constant C such that E[m(Xt,Wt+1)2|Xt = x] ≤ C a.e.-[Q].

Assumption 4.7 Q has density q, the conditional density f(Xt+`|Xt) of Xt+` given Xt exists, and∫ ∫ (
(m(Xt,Wt+1) · · ·m(Xt+`−1,Wt+`))

f(Xt+`|Xt)

q(Xt+`)

)2

dQ(Xt) dQ(Xt+`) <∞ .

Assumption 4.6 implies that T : L2 → L2 is bounded. Assumption 4.7 implies that T` : L2 → L2

is compact, and is analogous to the integrability condition in Chen et al. (2014) and Christensen

(2013) but applied to the operator T` rather than T . The following identification result is a direct

consequence of Theorem 4.1.

Theorem 4.3 Let Assumptions 4.3, 4.5, 4.6 and 4.7 hold and let φ ∈ L2 be a positive eigenfunc-

tion of T with eigenvalue ρ. Then:

(i) φ is the unique eigenfunction of {Tn : n ≥ 1} in L2 that is non-negative a.e.-[Q]

(ii) ρ is positive, simple, isolated, and ρ = r(T ).

4.3 Identification in continuous-time environments

Identification conditions for continuous-time models to are now derived using Theorem 3.1. To

describe the environment, let {Zt}t∈R be a continuous-time Markov process with support Z ⊂ Rdz

and whose sample paths are right continuous with left limits. Following HS, consider a class of

model in which the date-t price of a claim to ψ(Zt+τ ) payable at t+ τ is given by

Tτψ(Zt) = E [Mτ (Zt)ψ(Zt+τ )|Zt] (11)

for each τ ∈ [0,∞), where the SDF process Mτ (Zt) is a multiplicative functional of the sample

path {Zs : t ≤ s ≤ s+ τ}, i.e., M0(Zt) = 1 and Mτ+υ(Zt) = Mτ (Zt+υ)Mυ(Zt) for each τ, υ ∈ [0,∞)

(see HS for examples and further details). This restriction on the SDF means that the collection

of pricing operators {Tτ : τ ∈ [0,∞)} factorizes as Tτ+υ = TτTυ for τ, υ ≥ 0 and that T0 = I, the

identity operator. In particular, Tnτ = (Tτ )n holds for any τ ∈ [0,∞) and n ∈ N.

For identification in possibly nonstationary continuous-time environments, HS assume that the

SDF process is strictly positive, and that the state process when discretely-sampled is irreducible,

Harris recurrent under a change of measure induced by the permanent component of the SDF, and

that there exists a stationary distribution for the conditional expectations induced by the change

of measure.

Now consider the special case in which {Zt}t∈R is a stationary process. Let Q denote the stationary

distribution of Z on Z, let Z denote the Borel σ-algebra on Z, and let Lp denote the space

Lp(Z,Z , Q).
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Definition 2 φ ∈ Lp is a principal eigenfunction of {Tτ : τ ∈ [0,∞)} with eigenvalue ρ if φ > 0

a.e.-[Q] and Tτφ = ρτφ for each τ ∈ [0,∞).

Remark 4.3 By Definition 2, if φ is a principal eigenfunction of {Tτ : τ ∈ [0,∞)} then φ is a

positive eigenfunction of Tτ̄ for each τ̄ > 0.

Alternative identification conditions are now derived by applying the results for discrete-time envi-

ronments to the “skeleton” of operators {Tnτ̄ : n ≥ 1} for some fixed τ̄ > 0. Analysis of continuous-

time Markov processes by means of their discretely-sampled skeleton is common practice. For in-

stance, HS express some of their continuous-time identification conditions in terms of the skeleton

of Zt under a change of measure induced by the permanent component.

Assumption 4.8 There exists τ̄ > 0 such that Assumptions 4.1, 4.2 and 4.3 hold with Tτ̄ in place

of T , Tnτ̄ in place of Tn, and {Znτ̄}∞n=−∞ in place of {Xt}∞t=−∞ .

Theorem 4.4 Let Assumption 4.8 hold and let φ ∈ Lp be a principal eigenfunction of {Tτ : τ ∈
[0,∞)} with eigenvalue ρ. Then:

(i) φ is the unique eigenfunction of {Tτ : τ ∈ [0,∞)} in Lp that is non-negative a.e.-[Q]

(ii) ρτ̄ is a positive, simple, isolated eigenvalue of Tτ̄ and ρτ̄ = r(Tτ̄ )

(iii) there exists φ∗ ∈ Lq with φ∗ > 0 a.e.-[Q] such that T ∗nτ̄φ
∗ = ρnτ̄φ∗ for each n ≥ 1

(iv) φ∗ is the unique eigenfunction of Tτ̄ in Lq that is non-negative a.e.-[Q].

Assumptions 4.2 and 4.3 applied to the skeleton {Tnτ̄ : n ≥ 1} are analogous to HS’s assumptions of

irreducibility of the discretely-sampled state process (albeit HS impose irreducibility under a change

of measure) and strict positivity of the SDF process. HS do not impose stationarity or any form

of compactness. HS show that a unique principal eigenfunction satisfies their stochastic stability

conditions, but cannot rule out the existence of multiple principal eigenfunctions. In contrast,

Theorem 4.4 shows that uniqueness of the principal eigenfunction can be achieved in stationary

environments by restricting the parameter space to consist of positive functions in Lp. Theorem 4.4

also shows how the eigenvalue ρ is related to the spectrum of the pricing operators.

Unlike the discrete-time case, proving existence of a positive eigenfunction of Tτ̄ is not enough to

show existence of an eigenfunction of the collection {Tτ : τ ∈ [0,∞)} because this collection is not

characterized fully by Tτ̄ . See HS for existence conditions for continuous-time environments.

5 Application: external habit formation

Euler equations have been used extensively for semi/nonparametric estimation of consumption-

based asset pricing models following Gallant and Tauchen (1989). The results presented in Section

3 are now used to derive new identification conditions for a C-CAPM with external habit formation.
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As in Chen and Ludvigson (2009), assume that a representative agent’s marginal utility of con-

sumption at time t is given by

MUt = C−γt (1−H(Ct−1/Ct, . . . , Ct−`/Ct))
−γ (12)

where Ct denotes consumption of the agent at time t and ` ≥ 1. The intertemporal marginal rate

of substitution at time t is

β
MUt+1

MUt
= β exp(−γgt+1)

h(gt+1, . . . , gt−`+2)

h(gt, . . . , gt−`+1)
(13)

where β is a time preference parameter, h(gt, . . . , gt−L+1) = (1−H(Ct−1/Ct, . . . , Ct−L/Ct))
−γ , and

gt = log(Ct/Ct−1). When current and lagged consumption belong to the agent’s date-t information

set Ft, the Euler equation for the (gross) return Ri,t,t+1 on asset i from time t to time t+1, namely

1 = E
[
β exp(−γgt+1)

h(gt+1, . . . , gt−`+2)

h(gt, . . . , gt−`+1)
Ri,t,t+1

∣∣∣∣Ft] , (14)

can be re-expressed as

β−1h(Xt) = Th(Xt) (15)

where Xt = (gt, . . . , gt−`+1)′ and the operator T is given by

Tψ(x) = E[exp(−γgt+1)Ri(Xt, gt+1)ψ(Xt+1)|Xt = x] (16)

and Ri(Xt, gt+1) = E[Ri,t,t+1|Xt, gt+1]. Note h must be positive so that MU is positive. Therefore,

the habit function h is a positive eigenfunction of the operator T and β−1 is its eigenvalue.

Chen et al. (2014) use this positive eigenfunction representation of h to study nonparametric iden-

tification of h (given γ) when ` = 1. As discussed in Section 3.3, the identification conditions in

Chen et al. (2014) do not necessarily carry over to the case ` > 1.

Theorem 3.1 is now used to derive identification conditions when ` > 1. Of course, Assumption 3.1

could be assumed directly in which case identification would be immediate. However, to illustrate the

power of the new identification results some further low-level sufficient conditions are now derived.

For illustrative purposes it is again assumed that {gt}∞t=−∞ is a nonlinear AR(`) process. With this

specification of the consumption growth process, the operator T in (5.1) is of the same form as

the pricing operator analyzed in Theorem 4.3 with the substitutions Wt = gt and m(Xt,Wt+1) =

exp(−γgt+1)Ri(Xt, gt+1).

To introduce the result, let {(gt, Ri,t,t+1)}∞t=−∞ be strictly stationary, let Q denote the stationary

distribution of Xt where Xt = (gt, . . . , gt−`+1)′, let Q` denote the joint distribution of (X ′t, X
′
t+`)

′,

and let L2 denote the space L2(X ,X , Q) where X = R` is the support of each Xt and X is the

Borel σ-algebra on X .
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Assumption 5.1 {(gt, Ri,t,t+1)}∞t=−∞ is strictly stationary and satisfies the following:

(i) {gt}∞t=−∞ is a nonlinear AR(`) process satisfying Assumption 4.5

(ii) there exists a finite positive C such that E[{exp(−γgt+1)Ri(Xt, gt+1)}2|Xt = x] ≤ C a.e.-[Q]

(iii) Q has density q, the conditional density f(Xt+`|Xt) of Xt+` given Xt exists, and∫ ∫ ((
e−γgt+1Ri(Xt, gt+1) · · · e−γgt+`Ri(Xt+`−1, gt+`)

) f(Xt+`|Xt)

q(Xt+`)

)2

dQ(Xt) dQ(Xt+`) <∞

(iv) e−γgt+1Ri(Xt, gt+1) · · · e−γgt+`Ri(Xt+`−1, gt+`) > 0 a.e.-[Q`].

Theorem 5.1 Let Assumption 5.1 hold and let h ∈ L2 be a solution to (15) with h > 0 a.e.-[Q].

Then h is the unique solution in L2 to (15) with h ≥ 0 a.e.-[Q] and h 6= 0.

6 Identification in Banach lattices

Identification of positive eigenfunctions has been well studied in abstract functional analysis follow-

ing Krĕın and Rutman (1950). However, the identification conditions in the mathematics literature

are typically formulated in terms of properties of the resolvent of the operator, and are therefore

difficult to motivate or interpret directly in an economic context. This section presents slightly

stronger versions of these identification conditions which are arguably more applicable in economic

contexts, and from which the identification theorems in the preceding sections are obtained. The

results presented in this section are based on a version of the Krĕın-Rutman theorem for Banach

lattices due to Schaefer (1960).

Let E be a Banach lattice and T : E → E be a bounded linear operator. Examples of Banach

lattices of functions include the Lp spaces studied in Section 3, the Banach spaces Cb(X ) of bounded

continuous functions f : X → R on a (completely regular) Hausdorff space X , and, if X is also

compact, the space C(X ) of continuous functions f : X → R.9 Let E+ and E++ denote the positive

cone in E and its quasi-interior (see Appendix A). Let T ∗ denote the adjoint of T , E∗ denote

the dual space of E, and E∗+ and E∗++ denote the positive cone in E∗ and its quasi-interior. The

operator T is said to be positive if TE+ ⊆ E+ and irreducible if
∑∞

n=1 λ
−nTnf ∈ E++ for some

λ > r(T ) and each f ∈ (E+ \ {0}).

Assumption 6.1 T : E → E is a bounded linear operator such that:

(i) T is positive,

(ii) r(T ) is a pole of the resolvent of T , and

(iii) T is irreducible.

9The terminology of a function space is used because the related identification problems in economics are typically
in the context of operators on function spaces. More generally, there exist other Banach lattices that are not function
spaces. The subsequent results apply equally to such spaces.
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Theorem 6.1 (Schaefer (1960), Theorem 2) Let Assumption 6.1 hold. Then:

(i) there exist f̄ ∈ E++ and f̄∗ ∈ E∗++ such that T f̄ = r(T )f̄ and T ∗f̄∗ = r(T )f̄∗

(ii) r(T ) is positive and simple.

Corollary 6.1 Let Assumption 6.1 hold. Then f̄ and f̄∗ are the unique eigenfunctions of T and

T ∗ belonging to E+ and E∗+.

Assumptions 6.1(ii) and 6.1(iii) are very high-level and may be difficult to motivate in an economic

context. However it is possible to provide more tractable sufficient conditions for these assumptions.

These sufficient conditions also yield a stronger result than Theorem 6.1 and Corollary 6.1 with

regards to the separation of r(T ) in the spectrum of T , which is useful for nonparametric estimation

of the eigenfunction and its eigenvalue.

Assumption 6.2 T : E → E is a bounded linear operator such that:

(i) T is positive

(ii) for each f ∈ (E+ \ {0}) there exists n = n(f) ≥ 1 such that Tnf ∈ E++

(iii) Tn is compact for some n ≥ 1, and

(iv) r(T ) > 0.

Theorem 6.2 Let Assumption 6.2 hold. Then:

(i) there exist f̄ ∈ E++ and f̄∗ ∈ E∗++ such that T f̄ = r(T )f̄ and T ∗f̄∗ = r(T )f̄∗

(ii) f̄ and f̄∗ are the unique eigenfunctions of T and T ∗ belonging to E+ and E∗+

(iii) r(T ) is simple, isolated, and is the unique eigenvalue of T on the circle {z ∈ C : |z| = r(T )}.

7 Conclusion

This paper provided conditions for nonparametric identification of positive eigenfunctions of op-

erators in economics. The general theorems were applied to provide new identification conditions

for external habit formation models and for positive eigenfunctions of pricing operators in dynamic

asset pricing models.

The identification conditions presented in this paper impose no smoothness or other shape restric-

tions on the eigenfunction beyond positivity. It remains to be seen to what extent the conditions

may be relaxed when smoothness or additional shape restrictions are imposed. Further, the methods

used in this paper might be extended to study nonparametric identification in other convex cones

of functions, such as monotone, concave, or convex functions, which are of interest in economics.

17



A Banach lattices and positive cones

The following definitions are from Schaefer (1999). A vector space E over the real field R endowed

with an order relation ≤ is an ordered vector space if f ≤ g implies f +h ≤ g+h for all f, g, h ∈ E
and f ≤ g implies λf ≤ λg for all f, g ∈ E and λ ≥ 0. If, in addition, sup{f, g} ∈ E and

inf{f, g} ∈ E for all f, g ∈ E then E is a vector lattice. If there exists a norm ‖ · ‖ on an ordered

vector lattice E under which E is complete and ‖ · ‖ satisfies the lattice norm property, namely

f, g ∈ E and |f | ≤ |g| implies ‖f‖ ≤ ‖g‖, then E is a Banach lattice.

Let E+ denote the positive cone of E defined with respect to the order relation on E. If E =

Lp(X ,X , µ) with 1 ≤ p ≤ ∞ then E+ = {f ∈ E : f ≥ 0 a.e.-[µ]}. If E = Cb(X ) or C(X ) then

E+ = {f ∈ E : f(x) ≥ 0 for all x ∈ X}. An element f ∈ E+ belongs to the quasi-interior E++ of E+

if {g ∈ E : 0 ≤ g ≤ f} is a total subset of E. For example, if E = Lp(X ,X , µ) with 1 ≤ p <∞ and

f > 0 a.e.-[µ] then f ∈ E++. If E = L∞(X ,X , µ) and ess inf f > 0 then f ∈ E++. If E = Cb(X )

or C(X ) and infx∈X f(x) > 0 then f ∈ E++.

Let E∗ denote the dual space of E (the set of all bounded linear functionals on E). Given f ∈ E
and f∗ ∈ E∗, let 〈f, f∗〉 denote the evaluation f∗(f). The dual cone E∗+ := {f∗ ∈ E∗ : 〈f, f∗〉 ≥ 0

whenever f ∈ E+} is the set of positive linear functionals on E. An element f∗ ∈ E∗+ is strictly

positive if f ∈ E+ and f 6= 0 implies 〈f, f∗〉 > 0. The set of all strictly positive elements of E∗+ is

denoted E∗++.

B Proofs

Proof of Theorem 3.1. Immediate by application of Theorem 6.2.

Proof of Corollary 3.1. Let λ ∈ C denote the eigenvalue associated with f̄ . Assumption 3.1(ii)

implies that Tnf̄ = λnf̄ > 0 a.e.-[µ] for some n ≥ 1. Therefore, |λ| > 0 and so r(T ) > 0, verifying

Assumption 3.1(iv). The result follows by Theorem 3.1.

Proof of Theorem 3.2. Immediate by application of Theorem 6.2.

Proof of Corollary 3.2. Analogous to the proof of Corollary 3.1.

Proof of Lemma 4.1. Take any ψ ∈ Ψ. Let Nψ = {x ∈ X : ψ(x) > 0} denote the support

of ψ. Assumption 4.2 shows that Pr(Xt+n ∈ Nψ|Xt = x) > 0 a.e.-[Q] for some n ≥ 1, and so

E[ψ(Xt+n)|Xt = x] > 0 a.e.-[Q]. Assumption 4.3 then implies that Tnψ(x) > 0 a.e.-[Q].

Proof of Remark 4.2. To simplify notation, let mn =
∏n−1
i=0 m(Xt+i, Xt+1+i, Yt+1+i). Suppose

the assertion is false. Then there exists (ψ, n) ∈ Ψ × N such that E[ψ(Xt+n)|Xt = x] > 0 a.e.-[Q]

but for which E[mnψ(Xt+n)|Xt = x] ≤ 0 for all x ∈ N where N ∈X and Q(N ) > 0. Let 1N (x) be
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the indicator function of the set N . Then, by definition of N and the law of iterated expectations:

0 ≥ E[1N (Xt)E[mnψ(Xt+n)|Xt]] = E[mn1N (Xt)ψ(Xt+n)] . (B.1)

But mn > 0 a.e.-[Qn] by hypothesis. Moreover, and 1N (Xt)ψ(Xt+n) is non-negative a.e.-[Qn]

and is positive on a set of positive Qn measure (because E[ψ(Xt+n)|Xt = x] > 0 a.e.-[Q] and

ψ ∈ Ψ). Therefore, mn1N (Xt)ψ(Xt+n) is non-negative a.e.-[Qn] and is positive on a set of pos-

itive Qn measure. This implies E[mn1N (Xt)ψ(Xt+n)] > 0, which contradicts (B.1). Therefore,

E[mnψ(Xt+n)|Xt = x] > 0 a.e.-[Q], as required.

Proof of Theorem 4.1. The result is proved by applying of Theorem 3.1 to T . Assumptions

4.1, 4.2 and 4.3 satisfy Assumptions 3.1(i)(ii)(iii). Moreover, Assumption 3.1(iv) is satisfied because

r(T ) ≥ ρ (by definition of r(T )) and ρ > 0 because Tnφ = ρnφ > 0 a.e.-[Q] for some n ∈ N by

Lemma 4.1.

Proof of Lemma 4.2. Let 1(·) : X → R denote the constant function, i.e. 1(x) = 1 for all x ∈ X .

Under Assumption 4.4,

Tn1(x) = Tn1(x) = (1 + yn(x))−n ≥ (1 + C)−n × 1(x) (B.2)

a.e.-[Q]. The result follows by applying Proposition 3 of Schaefer (1960).

Proof of Theorem 4.2. Immediate by application of Theorem 3.1.

Proof of Lemma 4.3. Let ‖ · ‖ denote the L2(X ,X , Q) norm and let {ψi}i∈N be a sequence of

functions belonging to the ball {ψ ∈ L2(X ,X , Q) : ψ(xt) = ψ(wt−1, . . . , wt−`+1), ‖ψ‖ = 1} such

that {ψi}i∈N has no convergent subsequence (we can always choose such a sequence because this ball

is not compact). Observe that Tψi(xt) = ψ(wt, . . . , wt−`+2)E[m(Xt, Xt+1, Yt+1)|Xt = xt] for each

ψi. The proof proceeds by contradiction: assume T is compact. Then {Tψi}i∈N has a convergent

subsequence, say {Tψik}k∈N. Moreover,

‖Tψik − Tψij‖
2

= E
{[

(ψik(Wt, . . . ,Wt−`+2)− ψij (Wt, . . . ,Wt−`+2))E[m(Xt, Xt+1, Yt+1)|Xt]
]2}

(B.3)

≥ c2‖ψik − ψij‖
2. (B.4)

The subsequence {Tψik}k∈N is convergent and therefore Cauchy, and so the subsequence {ψik}k∈N
is Cauchy by the above inequality. Therefore, {ψik}k∈N must be convergent (by completeness of

L2(X ,X , Q)). This contradicts the fact that {ψi}i∈N has no convergent subsequence.

Proof of Lemma 4.4. Let X = R`, X be the Borel σ-algebra on R`, and Q be the stationary

distribution of {Xt}∞t=−∞ on R` (which exists by stationarity of {Wt}∞t=−∞). Let S ∈ X have

positive Lebesgue measure (and therefore non-negative Q-measure). Chan and Tong (1985) show

that positivity of the density fU of u implies P(Xt+` ∈ S|Xt = x) > 0 for all x ∈ R`. Therefore,
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Assumption 4.2 is satisfied with n = `.

Proof of Theorem 4.4. Apply Theorem 4.1 with Tτ̄ in place of T .

Proof of Theorem 5.1. Immediate by application of Theorem 4.3 and Remark 4.2.

Proof of Corollary 6.1. The eigenvalue r(T ) is simple by Theorem 6.1. Therefore any linearly

independent eigenfunction must correspond to an eigenvalue different from r(T ). Suppose ḡ ∈
(E+ \ {0}) is an eigenfunction of T with eigenvalue λ 6= r(T ). Then, for f∗ ∈ E∗, f ∈ E,

λ〈ḡ, f̄∗〉 = 〈T ḡ, f̄∗〉 = (f̄∗ ◦ T )(ḡ) = T ∗(f̄∗)(ḡ) = r(T )f̄∗(ḡ) = r(T )〈ḡ, f̄∗〉 (B.5)

which is a contradiction, since f̄∗ ∈ E∗++ and g ∈ (E+ \ {0}) implies 〈ḡ, f̄∗〉 > 0.

As the multiplicities of eigenvalues of finite multiplicity of T are preserved under adjoints (Dunford

and Schwartz, 1958, Exercise VII.5.35), r(T ) is also a simple eigenvalue of T ∗. That f̄∗ ∈ E∗++ is

the unique eigenfunction of T ∗ in E∗+ follows by a similar argument.

Proof of Theorem 6.2. Theorem 6.1 and Corollary 6.1 will be used to prove parts (i) and (ii). It

is enough to show that T satisfies the Assumptions of Theorem 6.1 and Corollary 6.1. Assumption

6.1(ii) is satisfied under Assumptions 6.2(i)(ii)(iv) because r(T ) ∈ σ(T ) since T is positive (Schaefer,

1999, p. 312) and σ(T ) 3 r(T ) > 0 and Tn compact together imply r(T ) is a pole of the resolvent

of T (Dunford and Schwartz, 1958, Theorem 6, p. 579). Assumption 6.2(ii) implies that for each

f ∈ (E+\{0}) and f∗ ∈ E∗+ there exists n ≥ 1 such that 〈Tnf, f∗〉 > 0, so T is irreducible (Schaefer,

1974, Proposition III.8.3). This proves parts (i) and (ii).

For part (iii), compactness of Tn and the fact that σ(T )n = σ(Tn) implies that the only possible

limit point of elements of σ(T ) is zero (Dunford and Schwartz, 1958, p. 579). Therefore r(T )

is an isolated point of σ(T ), and theorem 6.1 implies r(T ) is simple. Finally, that r(T ) is the

unique eigenvalue belonging to the circle {z ∈ C : |z| = r(T )} follows under Assumption 6.2(ii) by

Proposition V.5.6 of Schaefer (1974).
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