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Abstract

In this paper we study the least squares (LS) estimator in a linear panel regression
model with unknown number of factors appearing as interactive fixed effects. As-
suming that the number of factors used in estimation is larger than the true number
of factors in the data we establish the limiting distribution of the LS estimator for
the regression coefficients, as the number of time periods and the number of cross-
sectional units jointly go to infinity. The main result of the paper is that under
certain assumptions the limiting distribution of the LS estimator is independent of
the number of factors used in the estimation, as long as this number is not underes-
timated. The important practical implication of this result is that for inference on
the regression coefficients one does not necessarily need to estimate the number of
interactive fixed effects consistently.
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linear operators, random matrix theory.

JEL-Classification: C23, C33

∗We thank the participants of the 2009 Cowles Summer Conference “Handling Dependence: Temporal, Cross-
sectional, and Spatial” at Yale University, of the 2012 North American Summer Meeting of the Econometric
Society at Northwestern University, of the 18th International Conference on Panel Data at the Banque de
France, of the 2013 North American Winter Meeting of the Econometric Society in San Diego, of the 2014 Asia
Meeting of Econometric Society in Taipei, of the 2014 Econometric Study Group Conference in Bristol, and of
the econometrics seminars in USC and Toulouse for many interesting comments, and we thank Dukpa Kim,
Tatsushi Oka, and Alexei Onatski for helpful discussions. We are also grateful for the comments and suggestions
of James Stock, Elie Tamer, and anonymous referees. Moon acknowledges financial supports of the NSF via
SES 0920903 and the faculty grant award of USC. Weidner acknowledges support from the Economic and Social
Research Council through the ESRC Centre for Microdata Methods and Practice grant RES-589-28-0002.
‡Department of Economics, University of Southern California, Los Angeles, CA 90089-0253. Email:

moonr@usc.edu. Department of Economics, Yonsei University, Seoul, Korea.
§Corresponding author. Department of Economics, University College London, Gower Street, London

WC1E 6BT, U.K., and CeMMaP. Email: m.weidner@ucl.ac.uk.

1



1 Introduction

Panel data models typically incorporate individual and time effects to control for hetero-
geneity in cross-section and over time. While often these individual and time effects enter
the model additively, they can also be interacted multiplicatively, thus giving rise to so
called interactive effects, which we also refer to as a factor structure. The multiplicative
form captures the heterogeneity in the data more flexibly, since it allows for common
time-varying shocks (factors) to affect the cross-sectional units with individual specific
sensitivities (factor loadings).1 It is this flexibility that motivated the discussion of inter-
active effects in the econometrics literature, e.g. Holtz-Eakin, Newey and Rosen (1988),
Ahn, Lee and Schmidt (2001; 2013), Pesaran (2006), Bai (2009a; 2013), Zaffaroni (2009),
Moon and Weidner (2013), and Lu and Su (2013).

Let N be the number of cross-sectional units, T be the number of time periods, K be the
number of regressors, and R0 be the true number of interactive fixed effects. We consider
a linear regression model with observed outcomes Y , regressors Xk, and unobserved error
structure ε, namely

Y =

K∑
k=1

β0
k Xk + ε , ε = λ0 f0 ′ + e , (1.1)

where Y , Xk, ε and e are N × T matrices, λ0 is an N × R0 matrix, f0 is a T × R0

matrix, and the regression parameters β0
k are scalars — the superscript zero indicates the

true value of the parameters. We write β for the K-vector of regression parameters, and
we denote the components of the different matrices by Yit, Xk,it, eit, λ

0
ir and f0

tr, where
i = 1, . . . , N , t = 1, . . . , T , and r = 1, . . . , R0. It is convenient to introduce the notation
β ·X :=

∑K
k=1 βkXk. All matrices, vectors and scalars in this paper are real valued.

We consider the interactive fixed effect specification, i.e. we treat λ0 and f0 as nuisance
parameters, which are estimated jointly with the parameters of interest β.2 The advantages
of the fixed effects approach are for instance that it is semi-parametric, since no assumption
on the distribution of the interactive effects needs to be made, and that the regressors can
be arbitrarily correlated with the interactive effect parameters.

We study the least squares (LS) estimator of model (1.1), which minimizes the sum of
squared residuals to estimate the unknown parameters β, λ and f .3 To our knowledge,
this estimator was first discussed in Kiefer (1980). Under an asymptotic where N and T
grow to infinity, the asymptotic properties of the LS estimator were derived in Bai (2009a)
for strictly exogeneous regressors, and extended in Moon and Weidner (2013) to the case
of pre-determined regressors.

An important restriction of these papers is that the number of factors R0 is assumed

1The conventional additive model can be interpreted as a two factor interactive fixed effects model.
2When we refer to interactive fixed effects we mean that both factors and factor loadings are treated as

non-random parameters. Ahn, Lee and Schmidt (2001) take a hybrid approach in that they treat the factors
as non-random, but the factor loadings as random. The common correlated effects estimator of Pesaran (2006)
was introduced in a context, where both the factor loadings and the factors follow certain probability laws, but
it exhibits many properties of a fixed effects estimator.

3The LS estimator is sometimes called “concentrated” least squares estimator in the literature, and in an
earlier version of the paper we referred to it as the “Gaussian Quasi Maximum Likelihood Estimator”, since LS
estimation is equivalent to maximizing a conditional Gaussian likelihood function. Note also that for fixed β the
LS estimator for λ and f is simply the principal components estimator.
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to be known. However, in many empirical applications there is no consensus about the
exact number of factors in the data or in the relevant economic model. If R0 is not known
beforehand, then it may be estimated consistently,4 but difficulties in obtaining reliable
estimates for the number of factors are well-documented in the literature (see, e.g., the
simulation results in Onatski (2010), and also our empirical illustration in Section 5).
Furthermore, in order to use the existing inference results on R0 one still needs a good
preliminary estimator for β, so that working out the asymptotic properties of the LS-
estimator for R ≥ R0 is still useful when taking that route.

We investigate the asymptotic properties of the LS estimator when the true number of
factors R0 is unknown and R (≥ R0) number of factors are used in the estimation.5 We
denote this estimator by β̂R.

The main result of the paper, presented in Section 3, is that under certain assumptions
the LS estimator β̂R has the same limiting distribution as β̂R0 for any R ≥ R0 under an
asymptotic where both N and T become large, while R0 and R are constant. This implies
that the LS estimator β̂R is asymptotically robust towards inclusion of extra interactive
effects in the model, and within the LS estimation framework there is no asymptotic
efficiency loss from choosing R larger than R0. The important empirical implication of
our result is that the number of factors R0 need not be known or estimated accurately to
apply the LS estimator.

To derive this robustness result, we impose more restrictive conditions than those
typically assumed with known R0. These include that the errors eit are independent and
identically (iid) normally distributed and that the regressors are composed of a “low-
rank” strictly stationary component, a “high-rank” strictly stationary component, and a
“high-rank” pre-determined component.6 Notice that while some of these restrictions are
necessary for our robustness result, some of them (e.g. iid normality of eit) are imposed for
technical reasons, because in the proof we use certain results from the theory of random
matrices that are currently only available in that case (see the discussion in Section 4.3).
In the Monte Carlo simulations in Section 6, we consider DGPs that violate some technical
conditions to demonstrate robustness of the result.

Under less restrictive assumptions we provide intermediate results that sequentially
lead to the main result in Section 4 and Appendix A.3 and A.4. In Section 4.1 we show√

min(N,T )-consistency of the LS estimator β̂R as N,T →∞ under very mild regularity
condition on Xit and eit, and without imposing any assumptions on λ0 and f0 apart from
R ≥ R0. We thus obtain consistency of the LS estimator not only for unknown number of
factors, but also for weak factors,7 which is an important robustness result.

In Section 4.2 we derive an asymptotic expansion of the LS profile objective function
that concentrates out f and λ, for the case R = R0. Given that the profile objective
function is a sum of eigenvalues of a covariance matrix, its quadratic approximation is
challenging because the derivatives of the eigenvalues with respect to β are not gener-
ally known. We thus cannot use a conventional Taylor expansion, but instead apply the

4See the discussion in Bai (2009b), supplemental material, regarding estimation of R0.
5For R < R0 the LS estimator can be inconsistent, since then there are interactive fixed effects in the model

which can be correlated with the regressors but are not controlled for in the estimation. We therefore restrict
attention to the case R ≥ R0.

6The pre-determined component of the regressors allows for linear feedback of eit into future realizations of
Xk,it.

7See Onatski (2010; 2012) and Chudik, Pesaran and Tosetti (2011) for a discussion of “strong” vs. “weak”
factors in factor models.
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perturbation theory of linear operators to derive the approximation.
In Section 4.3 we provide an example that satisfies the typical assumptions imposed

with known R0, so that β̂R0 is
√
NT consistent, but we show that β̂R with R > R0 is only√

min(N,T ) consistent in that example. This shows that stronger conditions are required
to derive our main result.

In Appendix A.3 we show faster than
√

min(N,T )-convergence of β̂R under assump-
tions that are less restrictive than those employed for the main result, in particular allowing
for either cross-sectional or time-serial correlation of the errors eit. In Appendix A.4 we
provide an alternative version of our main result of asymptotic equivalence of β̂R0 and β̂R,
R ≥ R0, which is derived under high-level assumptions.

In Section 5 we follow Kim and Oka (2014) in employing the interactive fixed effects
specification to study the effect of US divorce law reforms on divorce rates. This empirical
example illustrates that the estimates for the coefficient β indeed become insensitive to the
choice of R, once R is chosen sufficiently large, as expected from our theoretical results.

Section 6 contains Monte Carlo simulation results for a static panel model. For the
simulations we consider a DGP that violates the iid normality restriction of the error term.
The simulation results confirm our main result of the paper even with a relatively small
sample size (e.g. N = 100, T = 10) and non-iid-normal errors. In the supplementary
appendix, we report the Monte Carlo simulation results of an AR(1) panel model. It also
confirms the robustness result in large samples, but in finite samples it shows more ineffi-
ciency than the static case. In general, one should expect some finite sample inefficiency
from overestimating the number of factors when the sample size is small or the number of
overfitted factors is large.

A few words on notation. The transpose of a matrix A is denoted by A′. For a
column vectors v its Euclidean norm is defined by ‖v‖ =

√
v′v . For an m × n matrix

A the Frobenius or Hilbert Schmidt norm is ‖A‖HS =
√

Tr(AA′), and the operator or

spectral norm is ‖A‖ = max06=v∈Rn
‖Av‖
‖v‖ . Furthermore, we use PA = A(A′A)†A′ and

MA = 1 − A(A′A)†A′, where 1 is the m ×m identity matrix, and (A′A)† denotes some
generalized inverse, in case A is not of full column rank. For square matrices B, C, we use
B > C (or B ≥ C) to indicate that B − C is positive (semi) definite. We use “wpa1” for
“with probability approaching one”.

2 Identification of β0, λ0f 0′, and R0

In this section we provide a set of conditions under which the regression coefficient β0,
the interactive fixed effects λ0f0′, and the number of factors R0 are determined uniquely
by the data. Here, and throughout the whole paper, we treat λ and f as non-random
parameters, i.e. all stochastics in the following are implicitly conditional on λ and f . Let
xk = vec(Xk), the NT -vectorization of Xk, and let x = (x1, . . . , xK), which is an NT ×K
matrix.

Assumption ID (Assumptions for Identification).

(i) The second moments of Xit and eit exist for all i, t.

(ii) E(eit) = 0, E(Xiteit) = 0, for all i, t.

(iii) E[x′(MF ⊗Mλ0)x] > 0, for all F ∈ RT×R.
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(iv) R0 := rank(λ0f0′) ≤ R.

Theorem 2.1 (Identification). Suppose that the Assumptions ID are satisfied. Then,

β0, λ0f0′, and R0 are identified.8

Assumption ID(i) imposes existence of second moments. Assumption ID(ii) is an
exogeneity condition, which demands that xit and eit are not correlated contemporane-
ously, but allows for pre-determined regressors like lagged dependent variables. Assump-
tion ID(iv) imposes that the true number of factors R0 := rank(λ0f0′) is bounded by
a positive integer R, which cannot be too large (e.g. the trivial bound R = N is not
possible), since otherwise Assumption ID(iii) cannot be satisfied.

Assumption ID(iii) is a non-collinearity condition, which demands that the regressors
have significant variation across i and over t after projecting out all variation that can
be explained by the factor loadings λ0 and by arbitrary factors F ∈ RT×R. This gen-
eralizes the within variation assumption in the conventional panel regression with time
invariant individual fixed effects, which in our notation reads E[x′(M1T ⊗ 1N )x] > 0.9

This conventional fixed effect assumption rules out time-invariant regressors. Similarly,
Assumption ID(iii) rules out more general “low-rank regressors”,10 see our discussion of
Assumption NC below.

3 Main Result

The estimator we investigate in this paper is the least squares (LS) estimator, which for a
given choice of R reads11

(
β̂R, Λ̂R, F̂R

)
∈ argmin
{β∈RK , Λ∈RN×R, F∈RT×R}

∥∥Y − β ·X − ΛF ′
∥∥2

HS
, (3.1)

where ‖.‖HS refers to the Hilbert Schmidt norm, also called Frobenius norm. The objective
function ‖Y − β ·X − ΛF ′‖2HS is simply the sum of squared residuals. The estimator
for β0 can equivalently be defined by minimizing the profile objective function that con-
centrates out the R factors and the R factor loadings, namely

β̂R = argmin
β∈RK

LRNT (β) , (3.2)

8Here, identification means that β0 and λ0f0′ can be uniquely recovered from the distribution of (Y,X)
conditional on those parameters. Identification of the number of factors follows since R0 = rank(λ0f0′). The
factor loadings and factors λ0 and f0 are not separately identified without further normalization restrictions,
but the product λ0f0′ is identified.

9The conventional panel regression with additive individual fixed effects and time effects requires a non-
collinearity condition of the form E[x′(M1T ⊗M1N )x] > 0.

10We do not consider such “low-rank regressors” in this paper. Note also that Assumption A in Bai (2009a)
is the sample version of our Assumption ID(iii).

11The optimal Λ̂R and F̂R in (3.1) are not unique, since the objective function is invariant under right-
multiplication of Λ with a non-degenerate R × R matrix S, and simultaneous right-multiplication of F with
(S−1)′. However, the column spaces of Λ̂R and F̂R are uniquely determined.
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with12

LRNT (β) = min
{Λ∈RN×R, F∈RT×R}

1

NT

∥∥Y − β ·X − ΛF ′
∥∥2

HS

= min
F∈RT×R

1

NT
Tr
[
(Y − β ·X)MF (Y − β ·X)′

]
=

1

NT

T∑
r=R+1

µr
[
(Y − β ·X)′ (Y − β ·X)

]
, (3.3)

where, µr(.) is the r’th largest eigenvalue of the matrix argument. Here, we first concen-
trated out Λ by use of its own first order condition. The resulting optimization problem
for F is a principal components problem, so that the the optimal F is given by the R
largest principal components of the T × T matrix (Y − β ·X)′ (Y − β ·X). At the op-
timum the projector MF therefore exactly projects out the R largest eigenvalues of this
matrix, which gives rise to the final formulation of the profile objective function as the sum
over its T −R smallest eigenvalues.13 We write L0

NT (β) for LR0

NT (β), the profile objective
function obtained for the true number of factors. Notice that we do not impose a compact
parameter set for β.

Assumption SF (Strong Factor Assumption).

(i) 0 < plimN,T→∞
1
N λ0′λ0 <∞.

(ii) 0 < plimN,T→∞
1
T f

0′f0 <∞.

Assumption NC (Non-Collinearity of Xk). Consider linear combinations α ·X =∑K
k=1 αkXk of the regressors Xk with K-vector α such that ‖α‖ = 1. We assume that

there exists a constant b > 0 such that

min
{α∈RK , ‖α‖=1}

T∑
r=R+R0+1

µr

[
(α ·X)′(α ·X)

NT

]
≥ b , wpa1.

Assumption LL (Low Level Conditions for Main Result).

(i) Decomposition of Regressors: Xk = Xk + X̃str
k + X̃weak

k , for k = 1, . . . ,K, where

Xk, X̃str
k and X̃weak

k are N × T matrices, and

(i.a) Low-Rank (strictly exogenous) Part of Regressors: rank(Xk) is bounded

as N,T →∞, and 1
NT

∑N
i=1

∑T
t=1X

2
k,it = OP (1).

12The profile objective function LRNT (β) need not be convex in β and can have multiple local minima. Depend-
ing on the dimension of β one should either perform an initial grid search or try multiple starting values for the
optimization when calculating the global minimum β̂R numerically. See also Section S.8 of the supplementary
material.

13This last formulation of LRNT (β) is very convenient since it does not involve any explicit optimization over
nuisance parameters. Numerical calculation of eigenvalues is very fast, so that the numerical evaluation of
LRNT (β) is unproblematic for moderately large values of T . Since the model is symmetric under N ↔ T , Λ↔ F ,
Y ↔ Y ′, Xk ↔ X ′k there also exists a dual formulation of LRNT (β) that involves solving an eigenvalue problem
for an N ×N matrix.
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(i.b) High-Rank (strictly exogenous) Part of Regressors: ‖X̃str
k ‖ = OP (N3/4),

as can be justified e.g. by Lemma A.1 in the appendix.

(i.c) Weakly Exogenous Part of Regressors: X̃weak
k,it =

∑t−1
τ=1 γτei,t−τ , where the

real valued coefficients γτ satisfy
∑∞

τ=1 |γτ | <∞.

(i.d) Bounded Moments: We assume that E |Xk,it|2, E
∣∣(Mλ0XkMf0)it

∣∣26
, E |(Mλ0Xk)it|8

and E
∣∣(XkMf0)it

∣∣8 are bounded uniformly over k, i, j, N and T .

(ii) Errors are iid Normal: The error matrix e is independent of λ0, f0, Xk, and

X̃str
k , k = 1, . . . ,K, and its elements eit are independent and identically distributed

as N (0, σ2) across i and over t.

(iii) Number of Factors not Underestimated: R ≥ R0 := rank(λ0f0′).

Remarks

(i) Assumption SF assumes that the factor f0 and the factor loading λ0 are strong. The
strong factor assumption is regularly imposed in the literature on largeN and T factor
models, including Bai and Ng (2002), Stock and Watson (2002) and Bai (2009a).

(ii) Assumption NC assumes that there exists significant sampling variation in the re-
gressors after concentrating out R + R0 factors (or factor loadings). It is a sample
version of the identification Assumption ID(iii), and it is essentially equivalent to
Assumption A of Bai (2009a), but avoids mentioning the unobserved loadings λ0.14

(iii) Assumption NC is violated if there exists a linear combination α ·X of the regressors
with α 6= 0 and rank(α ·X) ≤ R+R0, i.e. the assumption rules out “low-rank regres-
sors” like time invariant regressors or cross-sectionally invariant regressors. These
low-rank regressors require a special treatment in the interactive fixed effect model,
see Bai (2009a) and Moon and Weidner (2013), and we do not consider them in the
present paper. If one is not interested explicitly in their regression coefficients, then
one can always eliminate the low-rank regressors by an appropriate projection of the
data, e.g. subtraction of the time (or cross-sectional) means from the data eliminates
all time-invariant (or cross-sectionally invariant) regressors.

(iv) The norm restriction in Assumption LL(i.b) is a high level assumption. It is satisfied
as long as X̃str

k,it is mean zero and weakly correlated across i and over t, for details
see Appendix A.1 and Lemma A.1 there.

(v) Assumption LL(i) imposes that each regressor consists of three parts: (a) a strictly
exogenous low rank component , (b) a strictly exogenous component satisfying a norm
restriction, and (c) a weakly exogenous component that follows a linear process with
innovation given by the lagged error term eit. For example, if Xk,it ∼ iidN (µk, σ

2
k),

independent of e, then we have Xk,it = µk, X̃
str
k,it ∼ iidN (0, σ2

k) and X̃weak
k = 0.

14By dropping the expected value from Assumption ID(iii) and replacing the zero lower bound by a
positive constant one obtains infF [x′(MF ⊗Mλ0)x/NT ] ≥ b > 0, wpa1, which is equivalent to Assump-
tion A of Bai (2009a), and can also be rewritten as min‖α‖=1 infF Tr [Mλ0(α ·X)′MF (α ·X)/NT ] ≥ b. A
slightly stronger version of the Assumption, which avoids mentioning the unobserved factor loading λ0, reads
min‖α‖=1 infF infλ Tr [Mλ(α ·X)′MF (α ·X)/NT ] ≥ b, where F ∈ RT×R and λ ∈ RN×R0

, and this slightly
stronger version is equivalent to Assumption NC.
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Assumption LL(i) is also satisfied for a stationary panel VAR with interactive fixed
effects as in Holtz-Eakin, Newey and Rosen (1988). A special case of this is a dynamic
panel regression with fixed effects, where Yit = βYi,t−1 +λ0′

i f
0
t + eit, with |β| < 1 and

“infinite history”. In this case, we have Xit = Yi,t−1 = Xit + X̃str
it + X̃weak

it , where

Xit = λ0′
i

∑∞
τ=1 β

τ−1f0
t−τ , X̃str

it =
∑∞

τ=t β
τ−1ei,t−τ , and X̃weak

it =
∑t−1

τ=0 β
τ−1ei,t−τ .

(vi) Assumption LL(i) is more restrictive than Assumption 5 in Moon and Weidner (2013),
where R0 is assumed to be known. However, it is more general than the restriction
on the regressors in Pesaran (2006), where – in our notation – the decomposition
Xk = Xk + X̃str

k is imposed, but the lower rank component Xk needs to satisfy

further assumptions, and the weakly exogenous component X̃weak
k is not considered.

Bai (2009a) requires no such decomposition, but imposes strict exogeneity of the
regressors.

(vii) Among the conditions in Assumption LL, the iid normality condition in Assump-
tion LL(ii) may be the most restrictive. In Appendix A.4 we provide an alternative
version of Theorem 3.1 that imposes more general high-level conditions. Verifying
those high-level conditions requires results on the eigenvalues and eigenvectors of
random covariance matrices, which can be verified for iid normal errors by using
known results from the random matrix theory literature, see Section 4.3 for more
details. We believe, however, that those high-level conditions and thus our main
result hold more generally, and we explore non-normal and serially correlated errors
in our Monte Carlo simulations below.

Theorem 3.1 (Main Result). Let Assumption SF, NC and LL hold and consider a limit

N,T →∞ with N/T → κ2, 0 < κ <∞. Then we have

√
NT

(
β̂R − β0

)
=
√
NT

(
β̂R0 − β0

)
+ oP (1).

Theorem 3.1 follows from Theorem A.3 and Lemma A.4 in the appendix, whose prove
is given in the supplementary material. The theorem guarantees that the asymptotic
distribution of β̂R, R ≥ R0, is identical to that of β̂R0 in (3.4) below.

The limiting distribution of
√
NT

(
β̂R0−β0

)
with known R0 is available in the existing

literature. According to Bai (2009a) and Moon and Weidner (2013),

√
NT

(
β̂R0 − β0

)
⇒ N

(
−κ plimW−1B, σ2 plimW−1

)
, (3.4)

where W is the K ×K matrix with elements Wk1k2 = 1
NT Tr(Mλ0Xk1Mf0X

′
k2

), B is the

K-vector with elements Bk = 1
NTr[Pf0E(e′Xk)].

15

The result (3.4) holds under the assumptions of Theorem 3.1 and also assuming that
plimW−1B and plimW−1 exist, where plim refers to the probability limit as N,T →∞.
Note that Assumption NC guarantees that W is invertible asymptotically. The asymptotic

15The asymptotic distribution in (3.4) can also be derived from Corollary 4.3 below under more general condi-
tions than in Assumption LL (see Moon and Weidner (2013) for details). Here we have used the homoscedasticity
of eit to simplify the structure of the asymptotic variance and bias. Bai (2009a) finds further asymptotic bias

in β̂R0 due to heteroscedasticity and correlation in eit, which in our asymptotic result is ruled out by Assump-
tion LL(ii), but is studies in our Monte Carlo simulations below. Moon and Weidner (2013) work out the

additional asymptotic bias in β̂R0 due to pre-determined regressors, which is allowed for in Theorem 3.1.
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bias in (3.4) is an incidental parameter bias due to pre-determined regressors and is equal
to zero for strictly exogenous regressors (for which E(e′Xk) = 0); it generalizes the well-
known Nickell (1981) bias of the within-group estimator for dynamic panel models.

Estimators for σ2, W and B are given by16

σ̂2
R =

1

(N −R)(T −R)−K

N∑
i=1

T∑
t=1

(êR,it)
2 , ŴR,k1k2 =

1

NT
Tr
(
M

Λ̂R
Xk1MF̂R

X ′k2

)
,

B̂R,k =
T∑
t=1

t+M∑
τ=t+1

P
F̂R,tτ

[
1

N

N∑
i=1

êR,itXk,iτ

]
,

where êR,it denotes the (i, t)th element of êR = Y − β̂R ·X− Λ̂RF̂
′
R, and P

F̂R,tτ
denotes the

(t, τ)th element of P
F̂R

= 1T−MF̂R
= F̂R(F̂ ′RF̂R)†F̂ ′R, and M ∈ {1, 2, 3, . . .} is a bandwidth

parameter that also depends on the sample size N,T . Let ŴR and B̂R be the matrix and
vector with elements ŴR,k1k2 and B̂R,k, respectively.

The next theorem establishes the consistency of these estimators. Let λred ∈ RN×(R−R0)

and f red ∈ RT×(R−R0) be the leading R−R0 principal components obtained from the N×T
matrixMλ0eMf0 , i.e. λred and f red minimize the objective function

∥∥Mλ0eMf0 − λred f red′∥∥2

HS
,

analogous to Λ̂R and F̂R defined in (3.1).17

Theorem 3.2 (Consistency of Bias and Variance Estimators).

(i) Let the conditions of Theorem 3.1 hold. Then we have
∥∥∥PF̂R

− P[f0,f red]

∥∥∥ = op(1),∥∥∥PΛ̂R
− P[λ0,λred]

∥∥∥ = op(1), σ̂2
R = σ2 + oP (1), and ŴR = W + oP (1).

(ii) In addition, let Xk,·t = (Xk,1t, ..., Xk,Nt)
′, and assume that (1) γτ in Assumption LL(i.c)

satisfies |γτ | < cτ−d for some c > 0 and d > 1, (2) ‖λ0
i ‖ and ‖f0

t ‖ are uniformly

bounded over i, t and N,T , (3) maxt ‖Xk,·t‖ = OP (
√
N logN),18 and (4) the band-

width M →∞ such that M(log T )2/T 1/6 → 0. Then, we have B̂R = B + oP (1).

Combining Theorems 3.1 and 3.2 and the asymptotic distribution in (3.4) allows infer-

ence on β, for R ≥ R0. In particular, the bias corrected estimator β̂BC
R = β̂R + 1

T Ŵ
−1
R B̂R

satisfies19
√
NT

(
β̂BC
R − β0

)
⇒ N (0, σ2W−1).

16The first factor in σ̂2 reflects the degree of freedom correction from estimating Λ, F and β, but could simply
be chosen as 1/NT for the purpose of consistency. Note also that PF̂R,tτ

= OP (1/T ), which explains why no

1/T factor is required in the definition of B̂R,k.
17The superscript “red” stands for redundant, because it turns out that λred and f red are asymptotically close

to the R−R0 redundant principal components that are estimated in (3.1).
18The high-level assumption maxt ‖Xk,·t‖ = OP (

√
N logN) can be shown to be satisfied for the regressor

component X̃weak
k,it above, and can be justified for the other regressor components e.g. by assuming that Xk and

X̃str
k are uniformly bounded.
19Instead of estimating the bias analytically one can use the result that the bias is of order T−1 and perform

split panel bias correction as in Dhaene and Jochmans (2010), which instead of the conditions of Theorem 3.2(ii)
only requires some stationary condition over time.
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Heuristic Discussion of the Main Result
Intuitively, the inclusion of unnecessary factors in the LS estimation is similar to the
inclusion of irrelevant regressors in an OLS regression. In the OLS case it is well known
that if those irrelevant extra regressors are uncorrelated with the regressors of interest,
then they have no effect on the asymptotic distribution of the regression coefficients of
interest. It is therefore natural to expect that if the extra estimated factors in F̂R are
asymptotically uncorrelated with the regressors, then the result of Theorem 3.1 should
hold. To explore this, remember that F̂R is given by the first R principal components of
the matrix (Y − β̂R ·X)′(Y − β̂R ·X), and write

Y − β̂R ·X = λ0f0′ + e− (β̂R − β0) ·X.

The strong factor assumption and the consistency of β̂R guarantee that the first R0 prin-
cipal components of (Y − β̂R · X)′(Y − β̂R · X) are close to f0 asymptotically, i.e. the
true factors are correctly picked up by the principal component estimator. The additional
R−R0 principal components that are estimated for R > R0 cannot pick up anymore true
factors and are thus mostly determined by the remaining term e − (β̂R − β0) · X. The
key question for the properties of the extra estimated factors, and thus of β̂R, is therefore
whether the principal components obtained from e− (β̂R − β0) ·X are dominated by e or
by (β̂R − β0) ·X. Only if they are dominated by e can we expect the extra factors in F̂R
to be uncorrelated with X and thus the result in Theorem 3.1 to hold. The result on P

F̂R

in Theorem 3.2 shows that the additional estimated factors are indeed close to f red, i.e.
are mostly determined by e, but this result is far from obvious a priori, as the following
discussion shows.

Under our assumptions we have ‖e‖ = OP (
√
N) and ‖Xk‖ = OP (

√
NT ) as N and T

grow at the same rate. Thus, if the convergence rate of β̂R is faster than
√
N , i.e. ‖β̂R −

β0‖ = oP (
√
N), then we have ‖e‖ �

∥∥∥(β̂R − β0) ·X
∥∥∥ asymptotically, and we expect the

extra F̂R to be dominated by e. A crucial step in the derivation of Theorem 3.1 is therefore
to show faster than

√
N convergence of β̂R. Conversely, we expect counter examples to the

main result to be such that the convergence rate of the estimator β̂R is not faster than
√
N ,

and we provide such a counter example – which, however, violates Assumptions LL – in
Section 4.3 below. Whether the intuition about “inclusion of irrelevant regressors” carries
over to the “inclusion of irrelevant factors” thus crucially depends on the convergence rate
of β̂R.

4 Asymptotic Theory and Discussion

Here we introduce key intermediate results on the way to deriving the main Theorem 3.1
stated above. These intermediate results may be useful independently of the main result,
e.g. Moon and Weidner (2013) and Moon, Shum, and Weidner (2014) crucially use the re-
sults established in Section 4.2 for the case of known R = R0. The assumptions introduced
below are all implied by the low-level Assumptions LL above, according to Lemma A.4 in
the appendix.
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4.1 Consistency of β̂R

Here we present a consistency result for β̂R under an arbitrary asymptotic N,T → ∞,
i.e. without the assumption that N and T grow at the same rate, which is imposed
everywhere else in the paper. In addition to Assumption NC we require the following high
level assumptions to obtain the result.

Assumption SN (Spectral Norm of Xk and e).

(i) ‖Xk‖ = OP (
√
NT ), k = 1, . . . ,K.

(ii) ‖e‖ = OP (
√

max(N,T )).

Assumption EX (Weak Exogeneity of Xk).
1√
NT

Tr(Xke
′) = OP (1), k = 1, . . . ,K.

Theorem 4.1. Let Assumptions SN, EX and NC be satisfied and let R ≥ R0. For

N,T →∞ we then have
√

min(N,T )
(
β̂R − β0

)
= OP (1).

Remarks

(i) One can justify Assumption SN(i) by use of the norm inequality ‖Xk‖ ≤ ‖Xk‖HS
and the fact that ‖Xk‖2HS =

∑
i,tX

2
k,it = OP (NT ), where the last step follows e.g. if

Xk,it has a uniformly bounded second moment.

(ii) Assumption SN(ii) is a condition on the largest eigenvalue of the random covariance
matrix e′e, which is often studied in the literature on random matrix theory, e.g.
Geman (1980), Bai, Silverstein, Yin (1988), Yin, Bai, and Krishnaiah (1988), Silver-
stein (1989). The results in Latala (2005) show that ‖e‖ = OP (

√
max(N,T )) if e has

independent entries with mean zero and uniformly bounded fourth moment. Weak
dependence of the entries eit across i and over t is also permissible, see Appendix A.1

(iii) Assumption EX requires exogeneity of the regressors Xk, allowing for pre-determined
regressors, and some weak dependence of Xk,iteit across i and over t.20

(iv) The theorem imposes no restriction at all on f0 and λ0, apart from the condition
R ≥ rank(λ0f0′).21 In particular, the strong factor Assumption SF is not imposed
here, i.e. consistency of β̂R holds independently of whether the factors are strong,
weak, or not present at all. This is an important robustness result, which is new in
the literature.

(v) Under an asymptotic where N and T grow at the same rate, which is imposed every-
where else in the paper, Theorem 4.1 shows

√
N (or equivalently

√
T ) consistency of

the estimator β̂R.

(vi)
√
N consistency of β̂R implies that the residuals Y − β̂R ·X will be asymptotically

close to λ0f0′ + e.22 This allows consistent estimation of R0 under a strong factor
Assumption SF by employing the known techniques on factor models without re-
gressors (by applying, e.g. , Bai and Ng (2002) to Y − β̂R ·X), as also discussed in
Bai (2009b).23

20Note that 1√
NT

Tr(Xke
′) = 1√

NT

∑
i

∑
tXk,iteit.

21This is the main reason why we use a slightly different non-collinearity Assumption NC, which avoids
mentioning λ0, compared to Bai (2009a).

22In the sense that ‖(Y − β̂R ·X)− (λ0f0′ + e)‖ = ‖(β̂R − β) ·X‖ = OP (
√
N).

23Bai (2009b) does not prove the required consistency and convergence rate of β̂R, for R ≥ R0.
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(vii) Having a consistent estimator for R0, say R̂, one can calculate β̂
R̂

, which will be

asymptotically equal to β̂R0 . In practice, however, the finite sample properties of
the estimator β̂

R̂
crucially depend on the finite sample properties of R̂. Many re-

cent papers have documented difficulties in obtaining reliable estimates for R0 at
finite sample (see, e.g., the simulation results of Onatski (2010) and Ahn and Horen-
stein (2013)), and those difficulties are also illustrated by our empirical example in
Section 5.

4.2 Quadratic Approximation of L0
NT (β)(:= LR

0

NT (β))

To derive the limiting distribution of β̂R, we study the asymptotic properties of the profile
objective function LRNT (β) around β0. The expression in (3.3) cannot easily be discussed
by analytic means, since no explicit formula for the eigenvalues of a matrix is available.
In particular, a standard Taylor expansion of LRNT (β) around β0 cannot easily be derived.
Here, we consider the case of known R = R0 and we perform a joint expansion of the
corresponding profile objective function L0

NT (β) in the regression parameters β and in the
idiosyncratic error terms e. To perform this joint expansion we apply the perturbation
theory of linear operators (e.g., Kato (1980)). We thereby obtain an approximate quadratic
expansion of L0

NT (β) in β, which can be used to derive the first order asymptotic theory

of the LS estimator β̂R0 , see Appendix A.2 for details. In addition to the K ×K matrix
W already defined in Section 3 we now also define

C
(1)
k =

1√
NT

Tr(Mλ0 XkMf0 e
′) ,

C
(2)
k = − 1√

NT

[
Tr
(
eMf0 e

′Mλ0 Xk f
0 (f0′f0)−1 (λ0′λ0)−1 λ0′)

+ Tr
(
e′Mλ0 eMf0 X

′
k λ

0 (λ0′λ0)−1 (f0′f0)−1 f0′)
+ Tr

(
e′Mλ0 XkMf0 e

′ λ0 (λ0′λ0)−1 (f0′f0)−1 f0′) ] . (4.1)

Let C(1) and C(2) be the K-vectors with elements C
(1)
k and C

(2)
k , respectively.

Theorem 4.2. Let Assumptions SF and SN be satisfied. Suppose that N,T → ∞ with

N/T → κ2, 0 < κ <∞. Then we have

L0
NT (β) = L0

NT (β0)− 2√
NT

(
β − β0

)′ (
C(1) + C(2)

)
+
(
β − β0

)′
W
(
β − β0

)
+ L0,rem

NT (β),

where the remainder term L0,rem
NT (β) satisfies for any sequence cNT → 0

sup
{β:‖β−β0‖≤cNT }

∣∣∣L0,rem
NT (β)

∣∣∣(
1 +
√
NT ‖β − β0‖

)2 = op

(
1

NT

)
.

The bound on remainder24 in Theorem 4.2 is such that it has no effect on the first order

24The expansion in Theorem 4.2 contains a term that is linear in β and linear in e (C(1) term), a term that is

12



asymptotic theory of β̂R0 , as stated in the following corollary (see also Andrews (1999)).

Corollary 4.3. Let Assumptions SF, SN, EX and NC be satisfied. In the limit N,T →∞
with N/T → κ2, 0 < κ < ∞, we then have

√
NT

(
β̂R0 − β0

)
= W−1

(
C(1) + C(2)

)
+

oP
(
1 + ‖C(1)‖

)
. If we furthermore assume that C(1) = OP (1), then we obtain

√
NT

(
β̂R0 − β0

)
= W−1

(
C(1) + C(2)

)
+ oP (1) = OP (1).

Note that our assumptions already guarantee C(2) = OP (1) and that W is invertible
with W−1 = OP (1), so this need not be explicitly assumed in Corollary 4.3.

Remarks

(i) More details on the expansion of L0
NT (β) are provided in Appendix A.2 and the

formal proofs can be found in in Section S.2 of the supplementary appendix.

(ii) Corollary 4.3 allows to replicate the results in Bai (2009a) and Moon and Weid-
ner (2013) on the asymptotic distribution of β̂R0 , including the result in formula (3.4)
above.25 The assumptions of the corollary do not restrict the regressor to be strictly
exogenous and do not impose Assumption LL.

(iii) If one weakens Assumption SN(ii) to ‖e‖ = oP (N2/3), then Theorem 4.2 still con-
tinues to hold. If we assume that C(2) = OP (1), then Corollary 4.3 also holds under
this weaker condition on ‖e‖.

4.3 Remarks on Deriving the Convergence Rate and Asymp-

totic Distribution of β̂R for R > R0.

An example that motivates stronger restrictions

The results in Bai (2009a) and Corollary 4.3 above show that under appropriate assump-
tions the estimator β̂R is

√
NT -consistent for R = R0. For R > R0 we know from

Theorem 4.1 that β̂R is
√
N consistent as N and T grow at the same rate, but we have not

shown faster than
√
N converge of β̂R for R > R0, yet, which according to the heuristic

discussion at the end of Section 3 is a very important intermediate step to obtain our
main result.26 However, one might not obtain a faster than

√
N convergence rate of β̂R

for R > R0 without imposing further restrictions, as the following example shows.

linear in β and quadratic in e (C(2) term), and a term that is quadratic in β (W term). All higher order terms
of the expansion are contained in the remainder term L0,rem

NT (β).
25Let ρ, D(.), D0, DZ , B0 and C0 be the notation used in Assumption A and Theorem 3 of Bai (2009a), and

let Bai’s assumptions be satisfied. Then, our κ, W , C(1) and C(2) satisfy κ = ρ−1/2, W = D(f0) →p D > 0,
C(1) →d N (0, DZ) and W−1C(2) →p ρ1/2B0 + ρ−1/2C0. Corollary 4.3 can therefore be used to replicate
Theorem 3 in Bai (2009a). For more details and extensions of this we refer to Moon and Weidner (2013).

26One reason why β̂R might only converge at
√
N rate, but not faster, are weak factors (both for R > R0 and

for R = R0). A weak factor (see e.g. Onatski (2010; 2012) and Chudik, Pesaran and Tosetti (2011)) might not

be picked up at all or might only be estimated very inaccurately by the principal components estimator F̂R, in
which case that factor is not properly accounted for in the LS estimation procedure. If this happens and the
weak factor is correlated with the regressors, then there is some uncorrected weak endogeneity problem, and β̂R
will only converge at

√
N rate. We do not consider the issue of weak factors any further in this paper.
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Example. Let R0 = 0 (no true factors) and K = 1 (one regressor). The true model reads

Yit = β0Xit + eit, and we consider the following data generating process (DGP)

Xit = aX̃it + λx,ifx,t, e =

(
1N + c

λxλ
′
x

N

)
u

(
1T + c

fxf
′
x

T

)
,

where e and u are N × T matrices with entries eit and uit, respectively, and λx is an N -

vector with entries λx,i, and fx is a T -vector with entries fx,t. Let X̃it and uit be mutually

independent iid standard normally distributed random variables. Let λx,i ∈ B and fx,t ∈ B
be non-random sequences with bounded range B ⊂ R such that 1

N

∑N
i=1 λ

2
x,i → 1 and

1
T

∑T
t=1 f

2
x,t → 1 asymptotically.27 Consider N,T →∞ such that N/T → κ2, 0 < κ <∞,

and let 0 < a < (1/2)2/3 min(κ2, κ−2) and c ≥ (2+
√

2)(1+κ)(1+
√

3a−1/4)

min(1,κ)[1/2−a3/2 max(κ,κ−1)]
.28 For this DGP

one can show that β̂1, the LS-estimator with R = 1 > R0, only converges at a rate of
√
N

to β0, but not faster.

The proof of the last statement is provided in the supplementary material. The DGP
in this example satisfies all the assumptions imposed in Corollary 4.3 to derive the limiting
distribution of the LS-estimator for R = R0, including

√
NT -consistency of β̂R for R = R0

(=0 in this example). It also satisfies all the regularity conditions imposed in Bai (2009a).29

The aspect that is special about this DGP is that λx and fx feature both in Xit and in the
second moment structure of eit. The heuristic discussion at the end of Section 3 provides
some intuition why this can be problematic, because the leading principal components
obtained from only the error matrix e will have a strong sample correlation with Xit for
this DGP.

Faster than
√
N convergence of β̂R

In Appendix A.3, we summarize our results on faster than
√
N convergence of β̂R for

R ≥ R0. The above example shows that this requires more restrictive assumptions than
those imposed for the analysis of the case R = R0 above, but the assumption that we
impose for this intermediate results are still significantly weaker than the Assumptions LL
required for our main result above, in particular either cross-sectional correlation or time-
serial correlation of eit are still allowed.

In that appendix we also provide one set of assumptions (Assumption DX-2) for faster
than

√
N convergence such that no additional conditions on e are required, but where the

regressors are restricted to essentially be lagged dependent variables in an AR(p) model
with factors.

27We could also allow λx and fx to be random (but independent of e and X̃) and we could let the range of B
be unbounded. We only assume non-random λx and fx to guarantee that the DGP satisfies Assumption D of
Bai (2009a), namely that X and e are independent (otherwise we only have mean-independence, i.e. E(e|X) = 0).
Similarly, we only assume bounded B to satisfy the restrictions on eit imposed in Assumption C of Bai (2009a).

28The bounds on the constants a and c imposed here are sufficient, but not necessary for the result of no faster
than

√
N convergence of β̂1. Simulation evidence suggests that this result holds for a much larger range of a, c

values.
29See Section S.9 in the supplementary material for details.
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On the role of the iid normality of eit

We establish the asymptotic equivalence of β̂R and β̂R0 in Theorem 3.1 by showing that
the LS objective function LRNT (β) can, up to a constant, be uniformly well approximated
by L0

NT (β) in shrinking neighborhoods around the true parameter. For this, we need not

only the faster than
√
N convergence rate of β̂R, but also require the Assumption EV

in Appendix A.4. This is a high-level assumption on the eigenvalues and eigenvectors of
the random covariance matrices EE′ and E′E, where E = Mλ0eMf0 . The assumption
essentially requires the eigenvalues of those matrices to be sufficiently separated from each
other, as well as the eigenvectors of those matrices to be sufficiently uncorrelated with the
regressors Xk, and with ePf0 and Pλ0e.

We use the iid normality of eit to verify those high-level conditions in Section S.4.2 of
the supplementary appendix. There are three reasons why we can currently only verify
those conditions for iid normal errors:

(i) The random matrix theory literature studies the eigenvalues and eigenvectors of ran-
dom covariance matrices of the form ee′ and e′e, while we have to deal with the
additional projectors Mλ0 and Mf0 in the random covariance matrices. These addi-
tional projections stem from integrating out the true factors and factor loadings of the
model. If the error distribution is iid normal, and independent from λ0 and f0, then
these projections are unproblematic, since the distribution of e is rotationally invari-
ant from the left and right in that case, so that the projections are mathematically
equivalent to a reduction of the sample size by R0 in both panel dimensions.

(ii) In the iid normal case one can furthermore use the invariance of the distribution of
e under orthonormal rotations from the left and from the right to also fully charac-
terize the distribution of the eigenvectors of EE′ and EE′.30 The conjecture in the
random matrix theory literature is that the limiting distribution of the eigenvectors
of a random covariance matrix is “distribution free”, i.e. is independent of the par-
ticular distribution of eit, see, e.g., Silverstein (1990) and Bai (1999). However, we
are not currently aware of a formulation and corresponding proof of this conjecture
that is sufficient for our purposes, i.e. that would allow us to verify our high-level
Assumption EV more generally.

(iii) We also require certain properties of the eigenvalues of EE′ and EE′. Eigenvalues
are studied more intensely than eigenvectors in the random matrix theory litera-
ture, and it is well-known that the properly normalized empirical distribution of the
eigenvalues (the so called empirical spectral distribution) of an iid sample covari-
ance matrix converges to the Marčenko-Pastur-law (Marčenko and Pastur (1967))
for asymptotics where N and T grow at the same rate. This result does not require
normality, and results on the limiting spectral distribution are also known for non-iid
matrices. However, to check our high-level Assumption EV we also need results on
the convergence rate of the empirical spectral distribution to its limit law, which is
an ongoing research subject in the literature, e.g. Bai (1993), Bai, Miao and Yao
(2004), Götze and Tikhomirov (2010), and we are currently only aware of results
on this convergence rate for the case of either iid or iid normal errors. To verify
the high-level assumption we furthermore use a result from Johnstone (2001) and
Soshnikov (2002) that shows that the properly normalized few largest eigenvalues of

30Rotational invariance implies that the distribution of the normalized eigenvectors is given by the Haar
measure of a rotation group manifold.
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EE′ and EE′ converge to the Tracy-Widom law, and to our knowledge this result is
not established for error distributions that are not iid normal.

In spite of these severe mathematical challenges, we believe that in principle our high-
level Assumption EV could be verified for more general error distributions, implying that
our main result of asymptotic equivalence of β̂R and β̂R0 holds more generally. This is
also supported by our Monte Carlo simulations, where we explore non-independent and
non-normal error distributions.

5 Empirical Illustration

As an illustrative empirical example, we estimate the dynamic effects of unilateral divorce
law reforms on the state-wise divorce rates in the US. The impact of the divorce law reform
has been studied by many researches (e.g., Allen (1992), Peters (1986; 1992), Gray (1998),
Friedberg (1998), Wolfers (2006), and Kim and Oka (2014)). In this section we revisit this
topic, extending Wolfers (2006) and Kim and Oka (2014) by controlling for interactive
fixed effects and also a lagged dependent variable.

Let Yit denote the number of divorces per 1000 people in state i at time t, and let Di

denote the year in which state i introduced the unilateral divorce law, i.e. before year Di

state i had a consent divorce law, while from Di onwards state i had a unilateral “no-fault”
divorce law, which loweres the barrier for divorce. The goal is to estimate the dynamic
effects of this law change on the divorce rate. The empirical model we estimate is

Yit = β0 Yi,t−1 +

8∑
k=1

βkXk,it + αi + γi t+ δi t
2 + µt + λ′ift + eit, (5.1)

where we follow Wolfers (2006) in defining the regressors as bi-annual dummies:

Xk,it = 1{Di + 2(k − 1) ≤ t ≤ Di + 2k − 1}, for k = 1, ..., 7,

X8,it = 1{Di + 2(k − 1) ≤ t}.

The dummy variable and quadratic trend specification αi + γi t + δi t
2 + µt is also used

in Friedberg (1998) and Wolfers (2006). The additional interactive fixed effects λ′ift were
added in Kim and Oka (2014) to control for additional unobserved heterogeneity in the
divorce rate, e.g. due to social, cultural or demographic factors. We extend the specifica-
tion further by adding a lagged dependent variable Yi,t−1 to control for state dependence
of the divorce rate, but we also report results without Yi,t−1 below. We use the dataset
of Kim and Oka (2014),31 which is a balanced panel of N = 48 states over T = 33 years,
leaving T = 32 time periods if the lagged dependent variable is included.

For estimation we first eliminate αi, γi, δi and µt from the model by projecting the
outcome variable and all regressors accordingly, e.g. Ỹ = M1NYM(1T ,t,t2), where 1N
and 1T are N - and T -vectors, respectively, with all entries equal to one, and t and t2

are T -vectors with entries t and t2, respectively. The model after projection reads Ỹit =
β0 Ỹi,t−1 +

∑8
k=1 βkX̃k,it + λ̃′if̃t + ẽit, which is exactly the model we have studied so far in

31The data is available from http://qed.econ.queensu.ca/jae/2014-v29.2/kim-oka/
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this paper.32 We will use the LS estimator described above to estimate this model. The
projection reduces the effective sample size to N = 48 − 1 = 47 and T = 32 − 3 = 29,
which should be accounted for when calculating standard errors, e.g. in the formula for
σ̂2
R above (degree of freedom correction). Our theoretical results are still applicable.33

We need to decide on a number of factors R when implementing the LS estima-
tor. As already mentioned in the last remark in Section 4.1 above, we can can ap-
ply known techniques from the literature on factor models without regressors to ob-
tain a consistent estimator of R0. To do so we choose a maximum number of factors
of Rmax = 9 to obtain the preliminary estimate β̂Rmax and then calculate the residuals
ûit = Ỹit− β̂Rmax,0 Ỹi,t−1−

∑8
k=1 βRmax,kX̃k,it. We then apply the IC, PC and BIC3 criteria

of Bai and Ng (2002),34 the criterion described in Onatski (2010), and the ER and GR
criteria of Ahn and Horenstein (2013) to û.35 Most of these criteria also require specifica-
tion of Rmax, and we continue to use Rmax = 9. The corresponding estimation results for
R are presented in Table 1. In addition, we also report the log scree plot, i.e. the sorted
eigenvalues of û′û in Figure 1.

The log scree plot already shows that it is not obvious how to decompose the eigenvalue
spectrum into a few larger eigenvalues stemming from factors and the remaining smaller
eigenvalues stemming from the idiosyncratic error term.36 This problem is also reflected
in the very different estimates for R that one obtains from the various criteria. It might
appear that IC1, IC3, PC1, PC2 and PC3 all agree on R̂ = 9, but this is simply R̂ = Rmax,
and if we choose Rmax = 10, then all these criteria deliver R̂ = 10, so this should not be
considered a reliable estimate.

On the other hand, our asymptotic theory suggests, that the exact choice of R in the
estimation of β̂R should not matter too much, as long as R is chosen large enough to
cover all relevant factors. Table 2 contains the estimation results for the bias corrected
β̂R for R ∈ {0, 1, . . . , 9}. Table 3 contains estimates if the lagged dependent variable is
not included into the model.37 For all reported estimates we perform bias correction and
standard error estimation as described in Bai (2009a) and Moon and Weidner (2013).38

32To construct Ỹi,t−1 we first apply the lag-operator and then apply the projections M1N and M(1T ,t,t2).
33If eit is iid normal, then ẽit is not, but one can apply appropriate orthogonal rotations in N - and T -space

such that ẽit becomes iid normal again, although with sample size reduced to N = 47 and T = 29. The rotation
has no effect on the LS estimator, i.e. it does not matter whether we work in the original or the rotated frame.

34Following Onatski (2010) and Ahn and Horenstein (2013) we report only BIC3 among the AIC and BIC
criteria of Bai and Ng (2002).

35To include R = 0 as a possible outcome for the Ahn and Horenstein (2013) criterion, we use the mock
eigenvalue used in their simulations.

36The first largest eigenvalue is 2.2 times larger than the second eigenvalue, the second is 1.6 times larger than
the third, the third is 1.9 times larger than fourth. So the largest view eigenvalues are larger than the remaining
ones, and the strong factor assumption might not be completely inappropriate here. However, deciding on a
cutoff between factor and non-factor eigenvalues is difficult.

37The result for R = 7 in Table 3 should be equal to column (6) in Table III of Kim and Oka (2014). The
discrepancy is explained by a coding error in their bias computation. Note also that the result for R = 0 in
Table 3 does not match the one in Wolfers (2006), because he uses WLS with state population weights, while we
use OLS for simplicity. Kim and Oka (2014) estimate both WLS and OLS and find that the difference between
the resulting estimates becomes insignificant, once a sufficient number of interactive fixed effects is controlled
for.

38We correct for the biases due to heterscedasticity in both panel dimensions worked out in Bai (2009a), as

well as for the dynamic bias worked out in Moon and Weidner (2013). For the latter we use the formula for B̂R,k
above, with bandwidth M = 2. For the standard error estimation we allow for heterscedasticity in both panel
dimensions, also following Bai (2009a) and Moon and Weidner (2013). The bias and standard error formulas in
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Criterion: R̂ Criterion: R̂ Criterion: R̂

IC1: 9 PC1: 9 Onatski: 1
IC2: 7 PC2: 9 ER: 1
IC3: 9 PC3: 9 GR: 3
BIC3: 6

Table 1: Estimated number of factors in the resid-
uals û, using different criteria for estimation and
Rmax = 9. The IC, PC and BIC criteria are de-
scribed in Bai and Ng (2002), the ER and GR crite-
ria are from Ahn and Horenstein (2013), and we also
use the criterion of Onatski (2010).
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Figure 1: Log scree plot. The natural logarithm of

the sorted eigenvalues (corresponding to the principal

components, or factors) of û′û are plotted.

	 	R	=	0 	R	=	1 	R	=	2 	R	=	3 	R	=	4 	R	=	5 	R	=	6 	R	=	7 	R	=	8 	R	=	9

lagged	Y			 	0.432**	 0.623**	 0.573**	 0.411**	 0.369**	 0.191**	 0.137**	 0.154**	 0.063 -0.026

	 (4.84) (15.38) (13.81) (8.69) (8.19) (4.21) (2.93) (3.24) (1.31) (-0.53)

years	1-2		 0.043 0.089 0.098 0.105 0.112 0.043 0.087 0.064 0.089 0.039

	 (0.48) (1.79) (1.93) (1.80) (1.90) (0.70) (1.45) (1.08) (1.50) (0.68)

years	3-4		 0.016 0.116*		 0.147**	 0.214**	 0.242**	 0.170*		 0.206*		 0.162*		 0.204*		 0.149

	 (0.18) (2.15) (2.83) (3.31) (3.47) (2.21) (2.53) (1.98) (2.41) (1.61)

years	5-6		 -0.040 0.058 0.102 0.165*		 0.183*		 0.115 0.179 0.125 0.148 0.221*		

	 (-0.41) (0.82) (1.53) (2.01) (1.99) (1.19) (1.84) (1.30) (1.49) (2.00)

years	7-8		 -0.010 0.072 0.114 0.190 0.177 0.140 0.163 0.082 0.093 0.153

	 (-0.08) (0.80) (1.19) (1.64) (1.46) (1.16) (1.34) (0.67) (0.73) (1.15)

years	9-10	 -0.126 0.043 0.041 0.112 0.119 0.013 0.048 -0.032 0.011 0.054

	 (-0.84) (0.40) (0.37) (0.86) (0.87) (0.09) (0.34) (-0.23) (0.08) (0.36)

years	11-12 -0.122 0.088 0.062 0.122 0.109 0.000 0.042 -0.018 -0.015 0.025

	 (-0.71) (0.70) (0.48) (0.81) (0.69) (0.00) (0.25) (-0.11) (-0.09) (0.14)

years	12-14 -0.122 0.163 0.097 0.143 0.109 -0.029 0.017 -0.032 -0.045 -0.040

	 (-0.59) (1.09) (0.64) (0.83) (0.61) (-0.15) (0.08) (-0.17) (-0.24) (-0.21)

years	15+		 -0.004 0.301 0.216 0.272 0.232 0.102 0.130 0.081 0.042 0.028

	 (-0.02) (1.59) (1.15) (1.33) (1.09) (0.46) (0.56) (0.37) (0.19) (0.13)

Table 2: Dynamic effects of divorce law reform. We report bias corrected LS-estimates for the regression
coefficients in model (5.1). Each column corresponds to a different number of factors R ∈ {0, 1, . . . , 9} used in
the estimation. t-values are reported in parenthesis.

When ignoring the lagged dependent variable coefficient, one finds that in both Table 2
and Table 3 the estimation results for β̂R and the corresponding t-values are quite sensitive
to changes in R for very small values of R, but become much more stable as R increases,
and actually do not change too much anymore from roughly R = 2 onwards. These
findings are very well in line with our asymptotic theory, and the dynamic effect of divorce
law reform that we find are also similar to the findings in Wolfers (2006) and Kim and
Oka (2014). The effect of the law reform on the divorce rates initially increases over time,
is certainly significant in year 3-4 after the reform, and declines and becomes insignificant

those paper assume R = R0 known, but we strongly expect that those formulas are robust towards R > R0, as
partly justified by Theorem 3.2 above. For the model without lagged dependent variable we also allow for serial
correlation in eit when estimating the bias and standard deviation of β̂R.
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	 	R	=	0 	R	=	1 	R	=	2 	R	=	3 	R	=	4 	R	=	5 	R	=	6 	R	=	7 	R	=	8 	R	=	9

years	1-2		 0.023 0.034 0.048 0.102 0.053 0.042 0.088 0.095 0.071 0.107

	 (0.27) (0.54) (0.70) (1.63) (0.86) (0.66) (1.48) (1.57) (1.21) (1.70)

years	3-4		 0.049 0.146*		 0.155*		 0.265**	 0.221**	 0.186*		 0.223**	 0.251**	 0.210*		 0.228**	

	 (0.58) (2.12) (2.05) (3.51) (2.95) (2.37) (2.81) (3.09) (2.57) (2.70)

years	5-6		 -0.055 0.058 0.045 0.201*		 0.154 0.106 0.207*		 0.215*		 0.175 0.204*		

	 (-0.51) (0.67) (0.46) (1.97) (1.59) (1.08) (2.22) (2.23) (1.84) (2.13)

years	7-8		 -0.024 0.044 -0.011 0.192 0.136 0.113 0.190 0.212 0.149 0.159

	 (-0.18) (0.39) (-0.09) (1.37) (1.03) (0.92) (1.59) (1.78) (1.25) (1.30)

years	9-10	 -0.148 -0.041 -0.151 0.044 -0.023 -0.050 0.070 0.093 0.018 0.056

	 (-0.93) (-0.31) (-0.99) (0.27) (-0.15) (-0.35) (0.49) (0.64) (0.13) (0.40)

years	11-12 -0.195 -0.029 -0.195 -0.011 -0.079 -0.109 0.045 0.071 0.020 0.030

	 (-1.10) (-0.19) (-1.13) (-0.06) (-0.46) (-0.66) (0.27) (0.42) (0.12) (0.19)

years	12-14 -0.191 0.043 -0.183 -0.043 -0.135 -0.159 0.012 0.032 -0.004 -0.001

	 (-0.91) (0.23) (-0.92) (-0.21) (-0.70) (-0.85) (0.06) (0.16) (-0.02) (-0.01)

years	15+		 -0.007 0.284 -0.004 0.094 -0.005 -0.019 0.125 0.152 0.112 0.065

	 (-0.03) (1.23) (-0.02) (0.41) (-0.02) (-0.09) (0.54) (0.65) (0.50) (0.29)

Table 3: Same as Table 2, but without including the lagged dependent variable into the model.

afterwards.39

In contrast, the estimated coefficient on the lagged dependent variable in Table 2 is
quite large and highly significant for small values of R, but decreases steadily with R, until
it gets close to zero and insignificant for R ≥ 8. A plausible interpretation of this finding
is that the model that includes the lagged dependent variable is misspecified, and that the
estimated value of β0 for small values of R does not correspond to a true state dependence
of Yit, but simply reflects the time-serial correlation of the error process being picked up by
the autoregressive model. This interpretation also matches the fact that once we include
more and more factors into the model we control for more and more serial dependence of
the unobserved error term, thus uncovering the true insignificance of β0 in the estimates
for R ≥ 8.

This empirical example shows that instead of relying on a single estimate R̂ for the
number of factors and reporting the corresponding β̂

R̂
it can be very informative to cal-

culate β̂R for multiple values of R. Whether the estimated coefficients become stable for
sufficiently large R values, as our asymptotic theory suggests, is a useful robustness check
for the model. When reporting the final results, then, it is better, within a reasonable
range, to choose an R that is too large than one that is too small.

6 Monte Carlo Simulations

In this section we investigate the finite sample properties of β̂R through a small scale
Monte Carlo simulation. The model is a static panel model with one regressor (K = 1),

39The magnitude of estimates is smaller than those estimated by Wolfers (2006), i.e. controlling for unobserved
factors reduced the effect size, as already pointed out by Kim and Oka (2014).
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R Bias SD Bias SD Bias SD Bias SD

0 0.2286 0.0321 0.2301 0.0167 0.2305 0.0117 0.2305 0.0103

1 0.1061 0.0552 0.1155 0.0296 0.1191 0.0195 0.1200 0.0160

2 -0.0385 0.0342 -0.0166 0.0142 -0.0053 0.0071 -0.0019 0.0040

3 -0.0427 0.0342 -0.0170 0.0142 -0.0053 0.0072 -0.0019 0.0040

4 -0.0450 0.0356 -0.0172 0.0144 -0.0053 0.0072 -0.0019 0.0040

5 -0.0461 0.0370 -0.0175 0.0146 -0.0053 0.0073 -0.0019 0.0041

R Bias SD Bias SD Bias SD Bias SD

0 0.2291 0.0298 0.2299 0.0136 0.2306 0.0082 0.2307 0.0065

1 0.1054 0.0500 0.1159 0.0263 0.1193 0.0148 0.1203 0.0105

2 -0.0408 0.0237 -0.0172 0.0085 -0.0054 0.0041 -0.0018 0.0023

3 -0.0442 0.0244 -0.0175 0.0086 -0.0054 0.0041 -0.0018 0.0023

4 -0.0462 0.0258 -0.0179 0.0087 -0.0055 0.0041 -0.0018 0.0023

5 -0.0468 0.0275 -0.0182 0.0088 -0.0055 0.0041 -0.0018 0.0023

T=10 T=30 T=100 T=300

N=100

T=10 T=30 T=100 T=300

N=300

Table 4: For different combinations of sample sizes N and T we report the bias and standard deviation of the
estimator β̂R, for R = 0, 1, . . . , 5, based on simulations with 10, 000 repetition of design (6.1), where the true
number of factors is R0 = 2.

two factors (R0 = 2), and the following data generating process (DGP):

Yit = β0Xit +
2∑
r=1

λirftr + eit,

Xit = 1 + X̃it +
2∑
r=1

(λir + χir)(ftr + ft−1,r),

eit =
1√
2

(vit + vi,t−1). (6.1)

The random variables X̃it, λir, ftr, χir and vit are mutually independent; with X̃it and
ftr ∼ iidN (0, 1); λir and χir ∼ iidN (1, 1); and vit ∼ iid t(5), i.e. vit has a Student’s
t-distribution with 5 degrees of freedom.

Note that this model satisfies Assumptions SF, NC, and LL(i), but not LL(ii). The
error term eit is not distributed as iid normal. The time series of eit follows an MA(1)
process with innovations distributed as t(5). The purpose of this design is to demonstrate
that the iid normality restriction on eit in Assumption LL(ii) is a technical assumption as
mentioned in Section 2 and may be relaxed.

We choose β0 = 1, and use 10, 000 repetitions in our simulation. The true number of
factors is chosen to be R0 = 2. For each draw of Y and X we compute the LS estimator
β̂R according to equation (3.1) for different values of R, namely R ∈ {0, 1, 2, 3, 4, 5}.

Table 4 reports bias and standard deviation of the estimator β̂R for different combi-
nations of R, N and T . For R < R0 = 2 the model is misspecified and β̂R turns out to
be severely biased. There is also bias in β̂R for R ≥ R0, due to time-serial correlation of
eit. This bias was worked out in Bai (2009a), and bias correction is also discussed there.
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N=100 T=100

R 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

2 -1.95 -1.70 -1.44 -1.01 -0.52 -0.05 0.36 0.61 0.86

3 -1.94 -1.73 -1.47 -1.01 -0.52 -0.05 0.38 0.64 0.87

4 -1.97 -1.73 -1.47 -1.01 -0.52 -0.04 0.39 0.64 0.85

5 -1.97 -1.74 -1.48 -1.02 -0.52 -0.04 0.39 0.64 0.88

N=300 T=300

R 2.5% 5% 10% 25% 50% 75% 90% 95% 97.5%

2 -1.91 -1.68 -1.43 -1.00 -0.54 -0.07 0.33 0.57 0.78

3 -1.91 -1.68 -1.44 -1.00 -0.55 -0.08 0.32 0.57 0.78

4 -1.92 -1.68 -1.44 -1.00 -0.55 -0.08 0.33 0.57 0.78

5 -1.91 -1.68 -1.44 -1.00 -0.54 -0.07 0.34 0.58 0.79

Table 5: Quantiles of the distribution of
√
NT (β̂R−β0) are reported for N = T = 100 and N = T = 300, with

R = 2, 3, 4, 5, based on simulations with 10, 000 repetition of design (6.1), where the true number of factors is
R0 = 2.

R T=10 T=30 T=100 T=300 T=10 T=30 T=100 T=300

2 0.252 0.084 0.057 0.051 0.535 0.146 0.055 0.051

3 0.327 0.111 0.062 0.050 0.643 0.209 0.062 0.056

4 0.358 0.141 0.067 0.054 0.672 0.280 0.070 0.057

5 0.349 0.170 0.074 0.056 0.664 0.348 0.078 0.058

N=100 N=300

Table 6: The empirical size of a t-test with 5% nominal size is reported for different combinations of N , T
and R, based on 10, 000 repetition of design (6.1). A bias corrected estimator for β is used to calculate the
test statistics, and we allow for heteroscedasticity and time-serial correlation when estimating bias and standard
deviation. Results for R = 0, 1 are not reported since those have size=1 due to misspecification.

We have purposefully chosen a DGP where β̂R exhibits such a bias to illustrate that all
features of the asymptotic distribution of β̂R0 are replicated by β̂R, R > R0, including the
bias.

Table 5 reports various quantiles of the distribution of
√
NT (β̂R−β0) for N = T = 100

and N = T = 300, and different values of R ≥ R0. From these tables, we see that as N,T
increases the distribution of β̂R gets closer to that of β̂R0 .

Table 6 reports the size of a t-test with nominal size equal to 5% for R ≥ R0. We
use the results in Bai (2009a) to correct for the leading 1/N (not actually present in our
DGP) and 1/T (present in our DGP) biases in β̂R before calculating the t-test statistics,
allowing for heteroscedsticity in both panel dimensions and for time-serial correlation when
estimating the bias and standard deviation of β̂R. The finite sample size distortions are
mostly due to residual bias after bias correction, but also partly due to some finite sample
downward bias in the standard error estimates. The size distortions increase with R, but
for all values of R ≥ R0 in Table 6 the size distortions decrease rapidly as T increases.

Monte Carlo Simulation results for an AR(1) model with factors can be found in Sec-
tion S.7 of the supplementary material. Those additional simulations show that the finite
sample properties (e.g. for T = 30) of β̂R0 and β̂R, R > R0, can be quite different, but
those differences vanish as T becomes large, as predicted by our asymptotic theory. In
general, we always expect some finite sample inefficiency from overestimating the number
of factors.
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7 Conclusions

We show that under certain assumptions the limiting distribution of the LS estimator of
a linear panel regression with interactive fixed effects does not change when we include
redundant factors in the estimation. The implication of this is that one can use an upper
bound of the number of factors R in the estimation without asymptotic efficiency loss.
However, some finite sample efficiency loss from overestimating R is likely, so that R
should not be chosen too large in actual applications. We impose iid normality of the
regression errors to derive the asymptotic result, because we require certain results on the
eigenvalues and eigenvectors of random covariance matrices that are only known in that
case. We expect that progress in the literature on large dimensional random covariance
matrices will allow verification of our high-level assumptions under more general error
distributions, and our simulation results suggest that the result also holds for non-normal
and correlated errors. We also provide multiple intermediate asymptotic results under
more general conditions.
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A Appendix

A.1 Spectral Norm of Random Matrices

Consider an N × T matrix u whose entries uit have uniformly bounded second moments. Then

we have ‖u‖ ≤ ‖u‖HS =
√∑

i,t u
2
it = OP (

√
NT ). However, in Assumption LL(i.b) and Assump-

tion DX-1(i) and Assumption DX-2(i) we impose ‖X̃str
k ‖ = OP (N3/4) and ‖X̃k‖ = OP (N3/4),

respectively, as N and T grow at the same rate, and in Assumption SN(ii) we impose ‖e‖ =

OP (
√

max(N,T )) under an arbitrary asymptotic N,T → ∞. Those smaller asymptotic rates

for the spectral norms of X̃str
k , X̃k and e can be justified by firstly assuming that the entries of

these matrices are mean zero and have certain bounded moments, and secondly imposing weak

cross-sectional and time-serial correlation. The purpose of this appendix section is to provide some

examples of matrix distributions that make the last statement more precise. We consider the N×T
matrix u, which can represent either e, X̃str

k or X̃k.

Example 1: If we assume that Euit = 0, that Eu4it is uniformly bounded, and that the uit

are independently distributed across i and over t, then the results in Latala (2005) show that

‖u‖ = OP (
√

max(N,T )).

Example 2: Onatski (2013) provides the following example, which allows for both cross-

sectional and time-serial dependence: Let ε be an N × T matrix with mean zero, independent

entries that have uniformly bounded fourth moment, let εt denote the columns of ε, and also define

past εt, t ≤ 0, satisfying the same distributional assumptions. Let ut =
∑m
j=0 ΨN,jεt−j , where m is

a fixed integer, and ΨN,j are N ×N matrices such that maxj ‖ΨN,j‖ is uniformly bounded. Then,

the N × T matrix u with columns ut satisfies ‖u‖ = OP (
√

max(N,T )).

More examples of matrix distributions that satisfy ‖u‖ = OP (
√

max(N,T )) are discussed in

24



Onatski (2013) and Moon and Weidner (2013). Theorem 5.48 and Remark 5.49 in Vershynin (2010)

can also be used to obtain a slightly weaker bound on ‖u‖ under very general correlation of u in

one of its dimensions.

Note that the random matrix theory literature often only discusses asymptotics where N and

T grow at the same rate and shows ‖u‖ = OP (
√
N) under that asymptotic. Those results can

easily be extended to more general asymptotics with N,T → ∞ by considering u as a submatrix

of a max(N,T )×max(N,T ) matrix ubig, and using that ‖u‖ ≤ ‖ubig‖.
Example 3: The following Lemma provides a justification for the bounds on ‖X̃str

k ‖ and ‖X̃k‖,
allowing for a quite general type of correlation in both panel dimensions.

Lemma A.1. Let u be an N × T matrix with entries uit. Let Σij = 1
T

∑T
t=1E(uitujt), and

let Σ be the N × N matrix with entries Σij. Let ηij = 1√
T

∑T
t=1 [uitujt −E(uitujt)], Ψij =

1
N

∑N
k=1E(ηikηjk), and χij = 1√

N

∑N
k=1 [ηikηjk −E(ηikηjk)]. Consider an asymptotic where N,T →

∞ such that N/T converges to a finite positive constant, and assume that

(i) ‖Σ‖ = O(1).

(ii) 1
N2

∑N
i,j=1E(η2ij) = O(1).

(iii) 1
N

∑N
i,j=1 Ψ2

ij = O(1).

(iv) 1
N2

∑N
i,j=1E(χ2

ij) = O(1).

Then we have ‖u‖ = OP (N5/8).

The Lemma does not impose Euit = 0 explicitly, but justification of assumption (i) in the

lemma usually requires Euit = 0. The assumptions (ii), (iii) and (iv) in the lemma can e.g. be

justified by assuming appropriate mixing conditions in both panel dimensions, see e.g. Cox and

Kim (1995) for the time-series case.

As pointed out above, our results in Section 4.2 can be obtained under the weaker condition

‖e‖ = oP (N2/3), and Lemma A.1 can also be applied with u = e then. In that case, the assumptions

in Lemma A.1 are not the same, but are similar to those imposed in Bai (2009a).

A.2 Expansion of Objective Function when R = R0

Here we provide a heuristic derivation of the expansion of L0
NT (β) in Theorem 4.2. We expand

the profile objective function L0
NT (β) simultaneously in β and in the spectral norm of e. Let the

K + 1 expansion parameters be defined by ε0 = ‖e‖/
√
NT and εk = β0

k − βk, k = 1, . . . ,K, and

define the N × T matrix X0 = (
√
NT/‖e‖)e. With these definitions we obtain

1√
NT

(Y − β ·X) =
1√
NT

[
λ0f0′ + (β0 − β) ·X + e

]
=

λ0f0′√
NT

+

K∑
k=0

εk
Xk√
NT

. (A.1)

According to equation (3.3) the profile objective function L0
NT (β) can be written as the sum

over the T − R0 smallest eigenvalues of the matrix in (A.1) multiplied by its transposed. We

consider
∑K
k=0 εkXk/

√
NT as a small perturbation of the unperturbed matrix λ0f0′/

√
NT , and
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thus expand L0
NT (β) in the perturbation parameters ε = (ε0, . . . , εK) around ε = 0, namely

L0
NT (β) =

1

NT

∞∑
g=0

K∑
k1,...,kg=0

εk1 εk2 . . . εkg L
(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
, (A.2)

where L(g) = L(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)
are the expansion coefficients.

The unperturbed matrix λ0f0′/
√
NT has rank R0, so that the T −R0 smallest eigenvalues of

the unperturbed T × T matrix f0λ0′λ0f0′/NT are all zero, i.e. L0
NT (β) = 0 for ε = 0 and thus

L(0)
(
λ0, f0

)
= 0. Due to Assumption SF the R0 non-zero eigenvalues of the unperturbed T × T

matrix f0λ0′λ0f0′/NT converge to positive constants as N,T → ∞. This means that the “sepa-

rating distance” of the T − R0 zero-eigenvalues of the unperturbed T × T matrix f0λ0′λ0f0′/NT

converges to a positive constant, i.e. the next largest eigenvalue is well separated. This is exactly

the technical condition under which the perturbation theory of linear operators guarantees that the

above expansion of L0
NT in ε exists and is convergent as long as the spectral norm of the perturba-

tion
∑K
k=0 εkXk/

√
NT is smaller than a particular convergence radius r0(λ0, f0), which is closely

related to the separating distance of the zero-eigenvalues. For details on that see Kato (1980) and

Section S.2 of the supplementary appendix, where we define r0(λ0, f0) and show that it converges

to a positive constant as N,T → ∞. Note that for the expansion (A.2) it is crucial that we

have R = R0, since the perturbation theory of linear operators describes the perturbation of the

sum of all zero-eigenvalues of the unperturbed matrix f0λ0′λ0f0′/NT . For R > R0 the sum in

LRNT (β) leaves out the R−R0 largest of these perturbed zero-eigenvalues, which results in a much

more complicated mathematical problem, since the structure and ranking among these perturbed

zero-eigenvalues needs to be discussed.

The above expansion of L0
NT (β) is applicable whenever the operator norm of the pertur-

bation matrix
∑K
k=0 εkXk/

√
NT is smaller than r0(λ0, f0). Since our assumptions guarantee

that ‖Xk/
√
NT‖ = OP (1), for k = 0, . . . ,K, and ε0 = OP (min(N,T )−1/2) = oP (1), we have∥∥∥∑K

k=0 εkXk/
√
NT

∥∥∥ = OP (‖β − β0‖) + oP (1), i.e. the above expansion is always applicable

asymptotically within a shrinking neighborhood of β0 — which is sufficient since we already know

that β̂R is consistent for R ≥ R0.

In addition, to guaranteeing converge of the series expansion, the perturbation theory of linear

operators also provides explicit formulas for the expansion coefficients L(g), namely for g = 1, 2, 3 we

have L(1)
(
λ0, f0, Xk

)
= 0, L(2)

(
λ0, f0, Xk1 , Xk2

)
= Tr(Mλ0Xk1Mf0X ′k2), L(3)

(
λ0, f0, Xk1 , Xk2 , Xk3

)
=

− 1
3 [Tr

(
Mλ0Xk1MfX

′
k2
λ0(λ0′λ0)−1(f0′f0)−1f0′X ′k3

)
+ . . .], where the dots refer to 5 additional

terms obtained from the first one by permutation of k1, k2 and k3, so that the expression becomes

totally symmetric in these indices. A general expression for the coefficients for all orders in g is

given in Lemma S.1 in the appendix. One can show that for g ≥ 3 the coefficients L(g) are bounded

as follows

1

NT

∣∣∣L(g)
(
λ0, f0, Xk1 , Xk2 , . . . , Xkg

)∣∣∣ ≤ aNT (bNT )g
‖Xk1‖√
NT

‖Xk2‖√
NT

. . .
‖Xkg‖√
NT

, (A.3)

where aNT and bNT are functions of λ0 and f0 that converge to finite positive constants in proba-

bility. This bound on the coefficients L(g) allows us to derive a bound on the remainder term, when
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the profile objective expansion is truncated at a particular order. The expansion can be applied

under more general asymptotics, but here we only consider the limit N,T → ∞ with N/T → κ2,

0 < κ <∞, i.e. N and T grow at the same rate. Then, apart from the constant L0
NT (β0), the rele-

vant coefficients of the expansion, which are not treated as part of the remainder term turn out to be

Wk1k2 = 1
NT L

(2)
(
λ0, f0, Xk1 , Xk2

)
, C

(1)
k = 1√

NT
L(2)

(
λ0, f0, Xk, e

)
= 1√

NT
Tr(Mλ0 XkMf0 e′),

and C
(2)
k = 3

2
√
NT

L(3)
(
λ0, f0, Xk, e, e

)
, which corresponds exactly to the definitions in the main

text. From the expansion (A.2) and the bound (A.3) we obtain Theorem 4.2. For a more rigorous

derivation we refer to Section S.2 in the supplementary appendix.

A.3 N 3/4-Convergence Rate of β̂R for R > R0

The discussion at the end of Section 3 reveals that showing faster than
√
N convergence of β̂R

is a very important step on the way to the main result. For purely technical reasons we show

N3/4-convergence first, but it will usually be the case that if β̂R is N3/4-consistent, then it is also
√
NT -consistent as N and T grow at the same rate. We require one of the following two alternative

assumptions.

Assumption DX-1 (Decomposition of Xk and Distribution of eit, Version 1).

(i) For k = 1, . . . ,K we have Xk = Xk + X̃k, where rank(Xk) is bounded as N,T → ∞, and

‖Xk‖ = OP (
√
NT ), and ‖X̃k‖ = OP (N3/4).

(ii) Let u be an N × T matrix whose elements are distributed as i.i.d. N (0, 1), independent of

λ0, f0 and Xk, k = 1, . . . ,K, and let one of the following hold

(a) either: e = Σ1/2 u, where Σ is an N × N covariance matrix, independent of u, which

satisfies ‖Σ‖ = OP (1). In that case, define g to be an N ×Q matrix, independent of u,

for some Q ≤
∑K
k=1 rank(Xk), such that g′g = 1Q and span(Mλ0Xk) ⊂ span(g) for all

k = 1, . . . ,K.40

(b) or: e = uΣ1/2, where Σ is a T × T covariance matrix, independent of u, which satisfies

‖Σ‖ = OP (1). In that case, define g to be a T × Q matrix, independent of u, for

some Q ≤
∑K
k=1 rank(Xk), such that g′g = 1Q and span(Mf0X

′
k) ⊂ span(g) for all

k = 1, . . . ,K.

In addition, we assume that there exist a (potentially random) integer sequence n = nNT > 0

with 1/n = OP (1/N) such that µn(Σ) ≥ ‖g′Σg‖. Finally, assume that either R ≥ Q or that

g′Σg = ‖g′Σg‖1Q +OP (N−1/2).

Assumption DX-2 (Decomposition of Xk and Distribution of eit, Version 2).

(i) For k = 1, . . . ,K we have Xk = Xk+X̃k, such that Mλ0XkMf0 = 0, and ‖Xk‖ = OP (
√
NT ),

and ‖X̃k‖ = OP (N3/4).

(ii) ‖e‖ = OP (
√

max(N,T )). (same as Assumption SN(ii))

40The column space of g thus contains the column space of all Mλ0Xk. g′g = 1Q is just a normalization.
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Theorem A.2. Let R > R0. Let Assumptions SF, NC and EX hold, and let either Assump-

tion DX-1 or DX-2 be satisfied. Consider N,T →∞ with N/T → κ2, 0 < κ < ∞. Then we have

N3/4
(
β̂R − β0

)
= OP (1).

Remarks

(i) Assumption SN is not explicitly imposed in Theorem A.2, because it is already implied by

both Assumption DX-1 and DX-2, see also Lemma A.4 below.

(ii) The restrictions that Assumption DX-1 imposes on Xk are weaker than those imposed in

Assumption LL above. The regressors are decomposed into a low-rank strictly exogenous

part Xk and a term X̃k, which can be both strictly or weakly exogenous. The spectral norm

bound ‖X̃k‖ = OP (N3/4) is satisfied as long as X̃k,it is mean zero and weakly correlated

across i and over t, see Appendix A.1. We can always write Xk = `h′ for some appropriate

` ∈ RN×rank(Xk) and h ∈ RT×rank(Xk). Thus, the decomposition Xk = Xk + X̃k = `h′ +

X̃k essentially imposes an approximate factor structure on Xk, with factor part Xk and

idiosyncratic part X̃k. In addition to those conditions we need sufficient variation in Xk, as

formalized by the non-collinarity Assumption NC.

(iii) The restrictions that Assumption DX-1 imposes on e are also weaker than those imposed

in Assumption LL above. Normality is imposed, but either cross-sectional correlation and

heteroscedasticity (case (a)) or time-serial correlation and heteroscedasticity (case (b)), de-

scribed by Σ, are still allowed. The condition ‖Σ‖ = OP (1) requires the correlation of eit to

be weak.41

(iv) The additional restrictions on Σ in Assumption DX-1 rule out the type of correlation of

the low-rank regressor part Xk with the second moment structure of eit that was the key

feature of the counter example in Section 4.3 above.42 Firstly, the condition µn(Σ) ≥ ‖g′Σg‖
guarantees that the eigenvectors corresponding to the largest few eigenvectors of Σ (the

eigenvectors νr of Σ when normalized satisfy µr(Σ) = ν′rΣνr) are not strongly correlated with

g (and thus with Xk). Secondly, the condition g′Σg = ‖g′Σg‖1Q + OP (N−1/2) guarantees

that Σ behaves almost as an identity matrix when projected with g, thus not possessing

special structure in the “direction of Xk”. Both of these assumption are obviously satisfied

when Σ is proportional to the identity matrix.

(v) Instead of Assumption DX-1 we can also impose Assumption DX-2 to obtainN3/4-consistency

in Theorem A.2. The Assumption on e imposed in Assumption DX-2 is the same as in

Assumption SN, and as already discussed above, this assumption is quite weak (see also

Appendix A.1). However, Assumption DX-2 imposes a much stronger assumption on the

regressors by requiring that Mλ0XkMf0 = 0. This condition implies that Xk = λ0h′ + `f0′

for some ` ∈ RN×R0

and h ∈ RT×R0

, i.e. the factor structure of the regressors is severely

restricted. The AR(1) model discussed in Remark (v) of Section 3 does satisfy Mλ0Xk = 0,

41A sufficient condition for ‖Σ‖ = OP (1) is, for example, maxi
∑
j |Σij | = OP (1), formulated here for case (a).

Note that Σ is symmetric.
42However, in the example in Section 4.3 we have both time-serial and cross-sectional correlation in eit, one

of which is already ruled out by Assumption DX-1.
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and the same is true for a stationary AR(p) model without additional regressors, i.e. for

such AR(p) models with factors we obtain N3/4-consistency of β̂R without imposing strong

assumptions (like normality) of eit. Assumption DX-2(i) is furthermore satisfied if Xk = 0,

i.e. if the regressors Xk = X̃k satisfy ‖Xk‖ = OP (N3/4), which is true for zero mean weakly

correlated processes (see Appendix A.1).

(vi) Theorem S.5 in the supplementary material provides an alternative N3/4-consistency result,

in which Assumptions DX-1 and DX-2 are replaced by a high-level condition, which is more

general, but not easy to verify in terms of low-level assumptions.

A.4 Asymptotic Equivalence of β̂R0 and β̂R for R > R0

Here, we provide high level conditions on the singular values and singular vectors of the error

matrix (or equivalently on the eigenvalues and eigenvectors of the corresponding random covariance

matrix). Under those assumptions we then establish the main result of the paper that β̂R0 and β̂R

with R > R0 are asymptotically equivalent, that is,
√
NT (β̂R − β̂R0) = oP (1).

Assumption EV. (Eigenvalues and Eigenvectors of Random Cov. Matrix) Let the sin-

gular value decomposition of Mλ0eMf0 be given by Mλ0eMf0 =
∑Q
r=1

√
ρr vr w

′
r, where Q =

min(N,T )−R0, and
√
ρr are the singular values, and vr and wr are normalized N - and T -vectors,

respectively.43 Let ρ1 ≥ ρ2 ≥ . . . ≥ ρQ ≥ 0. We assume that there exists a constant c > 0 and a

series of integers qNT > R−R0 with qNT = o(N1/4) such that as N,T →∞ we have

(i)
ρR−R0

N
> c, wpa1.

(ii)
1

qNT

Q∑
r=qNT

1

ρR−R0 − ρr
= OP (1).

(iii) max
r
‖v′rePf0‖ = oP

(
N1/4 q−1NT

)
, max

r
‖w′re′Pλ0‖ = oP

(
N1/4 q−1NT

)
,

max
r
‖v′rXkPf0‖ = oP

(
N q−1NT

)
, max

r
‖w′rX ′kPλ0‖ = oP

(
N q−1NT

)
,

max
r,s,k
|v′rXkws| = oP

(
N1/4 q−1NT

)
, where r, s = 1, . . . , Q, and k = 1, . . . ,K.

Theorem A.3. Let R > R0. Let Assumptions SF, NC, EX, and EV hold, and let either Assump-

tion DX-1 or DX-2 hold, and assume that C(1) = OP (1). In the limit N,T →∞ with N/T → κ2,

0 < κ <∞, we then have

√
NT

(
β̂R − β0

)
=
√
NT

(
β̂R0 − β0

)
+ oP (1) = OP (1).

Remarks

(i) Theorem A.3 also holds if we replace the Assumptions EX, DX-1, DX-2 by any other condition

that guarantees that Assumption SN holds and that N3/4
(
β̂R − β0

)
= OP (1).

43Thus, wr is the normalized eigenvector corresponding to the eigenvalue ρr of Mf0e′Mλ0eMf0 , while vr is
the normalized eigenvector corresponding to the eigenvalue ρr of Mλ0eMf0e′Mλ0 . We use a convention were
eigenvalues with non-trivial multiplicity appear multiple times in the list of eigenvalues ρr, but under standard
distributional assumptions on e all eigenvalues are simple with probability one anyways.
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(ii) Consider Assumption EV(iii). Since vr and wr are the normalized singular vectors of

Mλ0eMf0 we expect them to be essentially uncorrelated with Xk and ePf0 , and therefore

we expect v′rXkws = OP (1), ‖v′rePf0‖ = OP (1), ‖w′re′Pλ0‖ = OP (1). We also expect

‖v′rXkPf0‖ = OP (
√
T ) and ‖w′rX ′kPλ0‖ = OP (

√
N), which is different to the analogous ex-

pressions with e, since Xk can be correlated with f0 and λ0. The key to making this discussion

rigorous is a good knowledge of the properties of the eigenvectors vr and wr. If the entries eit

are iid normal, then the distribution of vr and wr can be characterized as follows: Let ṽ be

an N -vector with iidN (0, 1) entries and let w̃ be an T -vector with iidN (0, 1) entries. Then

we have vr =d ‖Mλ0 ṽ‖−1Mλ0 ṽ and wr =d ‖Mf0w̃‖−1Mf0w̃, see also Lemma S.13 in the sup-

plementary material. Here, =d refers to “equal in distribution”. Thus, if R0 = 0, then vr and

wr are distributed as iidN (0, 1) vectors, normalized to satisfy ‖vr‖ = ‖wr‖ = 1. This follows

from the rotational invariance of the distribution of e when eit is iid normally distributed.

Using this characterization of vr and wr one can formally show that Assumption EV(iii)

holds, see Lemma A.4 below. The conjecture in the random matrix theory literature is that

the limiting distribution of the eigenvectors of a random covariance matrix is “distribution

free”, i.e. is independent of the particular distribution of eit (see, e.g., Silverstein (1990),

Bai (1999)). However, we are not aware of a formulation and corresponding proof of this

conjecture that is sufficient for our purposes, which is one reason why we have to impose iid

normality of eit.

(iii) Assumption EV(ii) imposes a condition on the eigenvalues ρr of the random covariance

matrix Mf0e′Mλ0eMf0 . Eigenvalues are studied more intensely than eigenvectors in the

random matrix theory literature, and it is well-known that the properly normalized empirical

distribution of the eigenvalues (the so called empirical spectral distribution) of an iid sample

covariance matrix converges to the Marčenko-Pastur-law (Marčenko and Pastur (1967)) for

asymptotics where N and T grow at the same rate. This means that the sum over the

function of the eigenvalues ρs in Assumption EV(ii) can be approximated by an integral over

the Marčenko-Pastur limiting spectral distribution. To bound the asymptotic error of this

approximation one needs to know the convergence rate of the empirical spectral distribution

to its limit law, which is an ongoing research subject in the literature, e.g. Bai (1993), Bai,

Miao and Yao (2004), Götze and Tikhomirov (2010). This literature usually considers either

iid or iid normal distributions of eit.

(iv) For random covariance matrices from iid normal errors, it is known from Johnstone (2001)

and Soshnikov (2002) that the properly normalized few largest eigenvalues converge to the

Tracy-Widom law.44 This result can be used to verify Assumption EV(i) in the case of iid

normal eit.

(v) Details on how to derive Theorem A.3 are given in Section S.4 of the supplementary material.

The following Lemma provides the connection between Theorem A.3 and our main result The-

orem 3.1. The proof is given in the supplementary material.

44To our knowledge this result is not established for error distributions that are not normal. Soshnikov (2002)
has a result under non-normality but only for asymptotics with N/T → 1.
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Lemma A.4. Let Assumption LL hold, let R0 = rank(λ0) = rank(f0), and consider a limit

N,T → ∞ with N/T → κ2, 0 < κ < ∞. Then Assumptions SN, EX, DX-1 and EV are satisfied,

and we have C(1) = OP (1).
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