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1 Introduction

A nudge (Thaler and Sunstein, 2008) is a regulatory intervention that is characterized

by two properties. First, it is paternalistic in nature, because “it is selected with the

goal of influencing the choices of affected parties in a way that will make those parties

better off” (Thaler and Sunstein, 2003, p. 175). Second, it is not coercive but instead

manipulates the framing of a decision problem, which makes it more easily acceptable than

conventional paternalistic measures. Among the best-known examples already dicussed

in Thaler and Sunstein (2003) is retirement saving in 401(k) savings plans, which can be

encouraged tremendously by setting the default to enrollment. Under the premise that

some employees make the mistake of saving too little, such automatic enrollment with

the option to opt out is welfare improving. Another example is the order in which food is

presented in a cafeteria, which can be used to promote a more healthy diet. The intriguing

idea that choices can be improved by mere framing, without imposing any constraints,

has made the concept of nudging also politically attractive. In the UK, for instance, the

Behavioural Insights Team (or “Nudge Unit”) was established in 2010 as a policy unit

with the goal to develop nudge-based policies.1

Occasionally different people might agree what it means to make the parties in ques-

tion better off. In general, however, nudging shares with any paternalism the difficulty of

determining the appropriate welfare criterion (see e.g. Grüne-Yanoff, 2012). What does

it mean that a frame improves choice? Is it truly in the employee’s own best interest to

save more or to eat more healthily? Typically, the existing literature takes criteria such as

increased savings or improved health for granted, or it entirely dismisses the idea of nudg-

ing based on the welfare problem (see Goldin, 2015, for a careful and critical discussion

of previous approaches). In this paper, we study a model where the welfare preference

of an agent first has to be inferred from her possibly distorted choices under different

frames, before the success of a nudge can be evaluated. We thus attempt to develop a

welfare-theoretic foundation for nudging similar in spirit to the classic revealed preference

approach. The twist is that, once we accept that “in certain contexts, people are prone

to error” (Sunstein, 2014, p. 4), we should be able to learn about these errors, because

choices can reveal both preferences and mistakes.2 Our basic model is a variant of Rubin-

stein and Salant (2012) (henceforth RS). They formulate a general framework for eliciting

an agent’s welfare preference from choices that are generated by a decision making process

1See http://www.behaviouralinsights.co.uk. The Behavioural Insights Team was privatized in 2014.
2Kőszegi and Rabin (2008b) first emphasized the possibility of recovering both welfare preferences

and implementation mistakes from choice data, for a given behavioral theory. Several contributions have
studied this problem for specific models. Recent examples include Masatlioglu et al. (2012) for a model
of limited attention and Kőszegi and Szeidl (2013) for a model of focusing. Caplin and Martin (2012)
provide conditions under which welfare preferences can be recovered from choice data in a setting where
frames contain payoff-relevant information, such that framing effects are fully rational.
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with mistakes, which can be affected by frames. RS investigate the problem of learning

about the welfare preference from a data set that contains observations of behavior and,

possibly, frames. We follow their approach in a first step, and then proceed to evaluating

the frames based on the acquired knowledge about the agent’s welfare preference.

In the model there is an agent with an unobservable (strict) welfare preference ≽ that

represents the normatively relevant well-being of the agent. The decision making process,

or behavioral model, is summarized by a distortion function d, which yields a behavioral

preference d(≽, f) for each possible combination of a welfare preference ≽ and a frame

f . The interpretation is that the agent acts as if maximizing d(≽, f) instead of ≽ if the

decision situation is framed by f . To illustrate, consider an agent with welfare preference

c ≻ a ≻ b ≻ d over the set of alternatives X = {a, b, c, d}. Let the agent behave according
to the model of perfect recall satisficing as in RS. She is satisfied with any of the k = 2 top

ranked alternatives; in this case, c and a are satisfactory. The frame f describes the order

in which the alternatives are presented. When choosing from a non-empty subset S ⊆ X

(e.g. the budget set), the agent considers the alternatives in S sequentially and picks

whichever satisfactory alternative is presented first. If S turns out not to contain any

satisfactory alternative, the agent reconsiders all alternatives in S and chooses according

to her welfare preference. Suppose presentation is in alphabetical order. Because a is

presented before c, the agent will choose a whenever a ∈ S, even if c ∈ S, in which

case this is a mistake. She will choose c when c ∈ S but a /∈ S, and otherwise she will

choose b over d. Taken together, these choices look as if the agent was maximizing the

preference a ≻ c ≻ b ≻ d. Suppose this behavioral preference is observed in the standard

revealed preference sense, by observing the agent’s choices from different subsets S ⊆ X

under the fixed frame of alphabetical presentation. Reversing the distortion process then

allows us to conclude that the agent’s welfare preference must be either a ≻ c ≻ b ≻ d or

c ≻ a ≻ b ≻ d; these two but no other welfare preferences generate the observed behavior

for the given decision making process.

Based on this knowledge let us turn to the problem of nudging, which here amounts to

determining the optimal order of presentation. Any order that presents a before c would

be optimal if the agent’s welfare preference was a ≻ c ≻ b ≻ d, but induces the above

described decision mistake between a and c if the welfare preference is c ≻ a ≻ b ≻ d.

The exact opposite is true for any order that presents c before a. Hence our knowledge is

not yet enough to favor any one frame over another. Unfortunately, the problem cannot

be solved by observing the agent under additional frames. The order of presentation fully

determines the agent’s choices among the alternatives a and c, so we can never learn about

the welfare preference between the two. Since precisely this knowledge would be necessary

to determine the optimal frame, nudging runs into irresolvable information problems.

But now consider an alternative decision making process, a model of limited search.
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When the agent looks for a product online, all alternatives X = {a, b, c, d} are displayed

by a search engine, two of them on the first result page and the other two on the second

page. The frame f here is the set of alternatives presented on the first page. As before, let

S ⊆ X denote the subset from which the agent can actually choose, e.g. those alternatives

among X that are affordable or in stock. Whenever the first result page contains at least

one of these available alternatives, then the agent does not even look at the second page

but chooses from S ∩ f according to her welfare preference. Only if none of the elements

of S are displayed on the first page, the agent moves on to the second page and chooses

according to her welfare preference there. Suppose the welfare preference is c ≻ a ≻ b ≻ d

as in the previous example, and let the first page be given by f = {a, b}. Then this agent

will choose a whenever a ∈ S even if c ∈ S, because c is displayed only on the second page.

She will choose b when b ∈ S but a /∈ S, and otherwise she will choose c over d. Taken

together, these choices look as if the agent was maximizing the preference a ≻ b ≻ c ≻ d.

Suppose again that this behavioral preference is revealed (by observation of the agent’s

choices from different subsets S ⊆ X, given the fixed frame). Reversing the distortion

process now unveils that the agent must truly prefer a over b and c over d, which leaves

us with the six possible welfare preferences marked in the first column of Table 1.

{a, b}: a ≻ b ≻ c ≻ d {a, d}: a ≻ d ≻ c ≻ b
a ≻ b ≻ c ≻ d X
a ≻ c ≻ b ≻ d X X
a ≻ c ≻ d ≻ b X X
c ≻ a ≻ b ≻ d X X
c ≻ a ≻ d ≻ b X X
c ≻ d ≻ a ≻ b X
a ≻ d ≻ c ≻ b X
c ≻ b ≻ a ≻ d X

Table 1: Reversing Limited Search

A nudge should place the two welfare-best alternatives on the first page, thus helping

the agent avoid decision mistakes like the ones between a or b and c above. Unfortunately,

each of the four alternatives belongs to the top two for at least one possible welfare pref-

erence, but none of them for all possible welfare preferences. Hence no frame guarantees

fewer mistakes than any other. In contrast to the satisficing example, however, gath-

ering more information helps. Observing the agent’s choices under frame {a, d} reveals

the behavioral preference a ≻ d ≻ c ≻ b, from which the six welfare candidates marked

in the second column of Table 1 can be deduced. The four welfare preferences that are

consistent with the observations from both frames now all agree that a and c are the two

best alternatives. Hence we know that {a, c} is the optimal nudge. The actual welfare

preference is still not known, so the example also shows that identifying a nudge is not

the same problem as identifying the welfare preference.
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The two examples illustrate that the scope of nudging depends on the behavioral

model d, which we proceed to examine in our general framework (Section 2). Given a

behavioral model and a data set containing observations of frames and revealed behavioral

preferences, we first perform the reverse learning procedure to narrow down the set of

possible welfare preferences. We then compare frames pairwise, saying that f is a (weakly)

successful nudge over f ′ if all choices under f are at least as good as under f ′, for all of the

remaining possible welfare preferences. A frame is optimal if it is a (weakly) successful

nudge over all the other frames. As a first result, we show in Section 3 that the ability

to identify an optimal frame coincides with the ability to identify the welfare preference:

an optimal frame is revealed by some sufficiently rich data set if and only if the welfare

preference is revealed by some sufficiently rich data set. This result does not say that

the welfare preference actually has to be learned for successful nudging, as the previous

example has shown, but it allows us to consider two polar cases: models where the welfare

preference can never be identified, as in the satisficing example, and models where the

welfare preference can be identified, as in the limited search example.

If the welfare preference cannot be identified, then finding an optimal frame is out

of reach. In Section 4 we pursue the more modest goal of identifying frames which are

dominated by others. Such dominated frames can exist, as we will show by example.

However, if the behavioral model satisfies a property that we term the frame cancellation

property, then all frames are always undominated, irrespective of the data set’s richness.

With the frame cancellation property, we can never learn from observing framed choices

what we would need to know to improve these choices. Several important models have

the frame cancellation property. A first example is perfect recall satisficing in its general

formulation. A second example is the much-discussed case where the agent chooses the

one alternative out of two that is marked as a default, as for the 401(k) savings plans.

We also discuss models of choice from lists (Rubinstein and Salant, 2006) that have the

frame cancellation property. Finally, we present a decision making procedure with limited

sensitivity that nests all these behavioral models.

If, by contrast, the welfare preference can ultimately be learned, then questions of

complexity arise. How many, and which, observations are necessary to determine the

optimal frame? In Section 5 we define an elicitation procedure as a rule that specifies the

next frame under which we want to observe the agent, for each history of observations.

Holding fixed the welfare preference of the agent, an elicitation procedure generates a

sequence of expanding data sets that eventually identifies the optimal frame. We define

the complexity n of the nudging problem as the minimum over all elicitation procedures

of the number of observations after which the optimal frame is guaranteed to be known.

As a first application, we construct an optimal elicitation procedure for the limited search

model in its general formulation. We show that n = 2 or n = 3, depending on the
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number of alternatives and the capacity of the search engine’s result pages. Thus learning

and nudging are relatively simple in this specific model. As a general result, we then

establish a bound on n for arbitrary behavioral models. The bound, which is reached

by some models, corresponds to the number of possible welfare preferences and thus

grows more than exponentially in the number of alternatives. This implies that the

informational requirements of nudging can easily become prohibitive even with identifiable

welfare preferences.

Several of our results reveal informational limitations for anyone attempting to base

the selection of nudges on a solid welfare-theoretic foundation. The identification of

an optimal nudge is often impossible, and it is an observationally heavy task in other

cases. This is even more so the case, as some aspects of our model work in favor of

nudging. For instance, the assumption that the behavioral model is known to the regulator

makes it particularly easy to learn about welfare (see Section 6 for an extension to model

uncertainty and for a theory-free approach). The same applies to the assumption that each

combination of a welfare preference and a frame generates a unique behavioral preference,

and that this preference together with the frame is perfectly observable (see Section 6 for

an extension to imperfectly observable frames). At the same time, our analysis reveals

that seemingly minor differences between behavioral models – such as whether an agent’s

failure to optimize is due to a low aspiration level or due to a restricted number of

considered alternatives – can have profoundly different consequences for the ability to

improve well-being by framing. This points at important questions for future research on

decision procedures.

Goldin and Reck (2015) also study the problem of identifying welfare preferences when

choices are distorted by frames. They focus mostly on binary choice problems with two

frames (e.g. defaults) and aim at estimating the population shares of consistent and

inconsistent agents and the two preference types. The share of consistent agents who

prefer a given alternative is equal to the share of agents who choose this alternative

“against the frame” (p. 12) in a representative sample. The preference shares among the

inconsistent agents can then be deduced from this information under certain identifying

assumptions, for instance when they are identical to the consistent agents (after controlling

for observable differences) or when there is additional information about the preferences

of the entire population. If these assumptions are valid, it is possible to identify the frame

that induces the best choice for a majority of the population (see also Goldin, 2015). Such

informational requirements are not the only obstacle that a libertarian paternalist has to

overcome. Spiegler (2015), for instance, emphasizes that equilibrium reactions by firms

must be taken into account when assessing the consequences of a nudge-based policy.

Even abstracting from informational problems, these reactions can wipe out the intended

benefits of a policy (e.g. the definition of a default product).
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2 Model

The framework is a variant of RS. Let X be a finite set of welfare-relevant alternatives,

with mX = |X|. Denote by P the set of linear orders (reflexive, complete, transitive,

antisymmetric) on X. A strict preference is a linear order ≽ ∈ P . Let F be a finite set of

frames, with mF = |F |. By definition, frames capture all dimensions of the environment

that can affect decisions but are considered welfare-irrelevant.3 The agent’s behavior is

summarized by a distortion function d : P × F → P , which assigns a distorted order

d(≽, f) ∈ P to each combination of ≽ ∈ P and f ∈ F . The interpretation is that

an agent with true welfare preference ≽ acts as if maximizing the preference d(≽, f) if

the decision situation is framed by f .4 The distortion function represents a conjecture

about the relation between welfare, frames and choice. Such a conjecture typically relies

on insights about the decision-making process and thus originates from non-choice data,

which is becoming increasingly more available (e.g. also from neuroscience or psychology).

For instance, eye-tracking or monitoring of browsing behaviors can provide the type of

information necessary to substantiate models like our limited search example. Arguably,

non-choice-based conjectures about the relation between choice and welfare always have to

be invoked, even in standard welfare economics.5 Before we proceed, we formally present

the two behavioral models that were used in the introductory examples.

Model 1 (Perfect Recall Satisficing) Alternatives are presented sequentially and the

frame f ∈ F = P determines their order. From any non-empty subset S ⊆ X the agent

chooses the first alternative that exceeds her aspiration level k ∈ {2, . . . ,mX}, i.e., that
is among the top k alternatives according to her welfare preference. If no element of S

turns out to exceed this threshold, then the agent chooses the welfare-optimal one. Choices

between satisfactory alternatives will thus always be in line with the order of presentation,

and all other choices are in line with the welfare preference. Hence we can obtain d(≽, f)

directly from ≽ by rearranging the top k elements according to their order in f . In contrast

to RS, we explicitly treat the order of presentation as a (variable) frame. We also assume

that the aspiration level k is fixed, which implies that the distortion function is single-

valued.
3For specific applications, the modeller has to judge which dimensions are welfare-relevant and which

are not. For instance, it appears uncontroversial that an agent’s well-being with some level of old age
savings is independent of whether this level was chosen by default or by opt-in, but analogous statements
would not be true if a default entails substantial switching costs, or if a “frame” actually provides novel
information about the decision problem.

4This assumes that, given any frame, choices are consistent and can be represented by a preference.
Salant and Rubinstein (2008) refer to extended choice functions with this property as “salient considera-
tion functions” (p. 1291). The assumption rules out behavioral models in which choices violate standard
axioms already when a frame is fixed. De Clippel and Rozen (2014) investigate the problem of learning
from incomplete data sets without such an assumption.

5See Kőszegi and Rabin (2007, 2008a) and Rubinstein and Salant (2008). For an opposing perspective
and a critical discussion of the ability to identify the decision process, see Bernheim (2009).
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Model 2 (Limited Search) All alternatives in X are displayed by a search engine, on

either the first or the second result page. The frame f is the set of k ∈ {1, . . . ,mX − 1}
alternatives on the first page, such that F is the set of all size k subsets of X. When the

agent chooses from a non-empty subset S ⊆ X (not all displayed alternatives might be in

stock or affordable), she remains on the first page whenever S∩f is non-empty, i.e., when

the first page contains at least one available alternative, and she chooses according to her

welfare preference. If none of the first page alternatives belongs to S, she moves to the

second page and chooses optimally there. Choices between alternatives on the same page

will thus always be in line with the welfare preference, but any alternative on the first page

is revealed preferred over any alternative on the second page. Hence d(≽, f) preserves ≽
among all first and among all second page alternatives, but takes the first page to the top.

This model is similar to the gradual accessibility model in Salant and Rubinstein (2008),

but the eventual choice rule is different.

The only assumption that we impose on the behavioral model in general is that for

each ≽ ∈ P there exists f ∈ F such that d(≽, f) = ≽. This rules out that some

preferences are distorted by all possible frames and allows us to focus on the informational

requirements of nudging, without having to deal with exogenously unavoidable distortions.

The assumption does not imply the existence of a neutral frame that is non-distorting

for all preferences.6 In the satisficing model, all frames which present the k satisfying

alternatives in their actual welfare order are non-distorting for that welfare preference. In

the limited search model, the non-distorting frame places the k welfare-best alternatives

on the first page.

A behavioral data set is a subset Λ ⊆ P × F . The interpretation is that we observe

behavioral preferences in the usual revealed preference sense (as a result of observing

choices from sufficiently many different subsets S ⊆ X to recover the preference), and

possibly we do this for several frames.7 Further following RS, we say that ≽ is consistent

with Λ if for each (≽′, f ′) ∈ Λ it holds that ≽′ = d(≽, f ′). In that case, ≽ is a possible

welfare preference, because the data set might have been generated by an agent with that

6Sometimes a neutral or “revelatory” frame (Goldin, 2015, p. 9) may indeed exist, for example when
the default can be removed from a choice problem. The existence of such a frame makes the welfare
elicitation problem and also the nudging problem straightforward. Often, however, this solution is not
available, e.g. defaults are unavoidable for organ donations, and alternatives must always be presented
in some order or arrangement.

7Formally, this framework corresponds to the extension in RS where behavioral data sets contain
information about frames. It simplifies their setup by assuming that any pair of a welfare preference
and a frame generates a unique distorted behavioral preference. This is not overly restrictive, as the
different contingencies that generate a multiplicity of distorted preferences can always be written as
different frames. It is restrictive in the sense that observability and controllability of these frames might
not always be given. See Section 6 for the respective generalization.
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preference. Let

Λ̄(≽) = {(d(≽, f), f) | f ∈ F}

be the maximal data set that can be observed if the welfare preference is ≽. Then the set

of all welfare preferences that are consistent with Λ is given by

P (Λ) = {≽ | Λ ⊆ Λ̄(≽)}.

Without further mention, we consider only data sets Λ for which P (Λ) is non-empty, i.e.,

for which there exists ≽ such that Λ ⊆ Λ̄(≽). Otherwise, the behavioral model would be

falsified by the data.8 Observe that a frame f cannot appear more than once in such data

sets. Observe also that P (∅) = P holds, and that P (Λ) ⊆ P (Λ′) whenever Λ′ ⊆ Λ.

We are interested in evaluating the frames after having observed some data set Λ.

Once the set of possible welfare preferences is narrowed down to P (Λ), previously different

frames might have become behaviorally equivalent. Thus, for any f let

[f ]Λ = {f ′ | d(≽, f ′) = d(≽, f), ∀ ≽ ∈ P (Λ)}

be the equivalence class of frames for f , i.e., the elements of [f ]Λ induce the same behavior

as f for all of the remaining possible welfare preferences. We denote by

F (Λ) = {[f ]Λ | f ∈ F}

the quotient set of all equivalence classes. We now compare the elements of F (Λ) from

the perspective of the possible welfare preferences, based on the choices that they induce.

For any ≽ and any non-empty S ⊆ X, let c(≽, S) be the element of S that is chosen by

an agent who maximizes ≽.

Definition 1 For any f, f ′ and Λ, [f ]Λ is a weakly successful nudge over [f ′]Λ, written

[f ]Λ N(Λ) [f ′]Λ,

if for each ≽ ∈ P (Λ) it holds that c(d(≽, f), S) ≽ c(d(≽, f ′), S), for all non-empty S ⊆ X.

The statement [f ]ΛN(Λ)[f ′]Λ means that the agent’s choice under frame f (and all

equivalent ones) is at least as good as under f ′ (and all equivalent ones) no matter which of

the remaining welfare preferences is the true one. The binary nudging relationN(Λ) shares

8RS derive conditions under which data sets do or do not falsify a model conjecture. A falsified model
is of no use for the purpose of nudging and would have to be replaced by a conjecture for which P (Λ) is
non-empty.
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with other approaches in behavioral welfare economics the property of requiring agreement

among multiple preferences (see, for instance, the multiself Pareto interpretation of the

unambiguous choice relation by Bernheim and Rangel, 2009). A major difference is that

the multiplicity of preferences here reflects a lack of information, not multiple selves.

Thus, adding observations to a data set can only make the partition F (Λ) coarser and

the nudging relation more complete, because it can only reduce the set of possible welfare

preferences. In fact, the only way in which the data set Λ matters for the nudging relation

is via the set P (Λ).

The following Lemma 1 summarizes additional properties of N(Λ) that will be useful.

It relies on the sets of ordered pairs B(≽, f) = d(≽, f)\ ≽ which record all binary com-

parisons that are reversed from ≽ by f .9 For instance, in the satisficing example from the

introduction, where the welfare preference was given by c ≻ a ≻ b ≻ d and alphabetical

order of presentation resulted in the behavioral preference a ≻ c ≻ b ≻ d, we would obtain

B(≽, f) = {(a, c)}. For the limited search example where frame {a, b} distorted the same

welfare preference to a ≻ b ≻ c ≻ d, we would obtain B(≽, f) = {(a, c), (b, c)}.

Lemma 1 (i) [f ]ΛN(Λ)[f ′]Λ if and only if B(≽, f) ⊆ B(≽, f ′) for each ≽ ∈ P (Λ).

(ii) N(Λ) is a partial order (reflexive, transitive, antisymmetric) on F (Λ).

Proof. (i) Suppose that B(≽, f) ⊆ B(≽, f ′) holds for each ≽ ∈ P (Λ). To show that

[f ]ΛN(Λ)[f ′]Λ, we proceed by contradiction and assume that there exist ≽ ∈ P (Λ) and

S ⊆ X for which c(d(≽, f), S) = x and c(d(≽, f ′), S) = y with x ̸= y and y ≽ x. The

definition of c implies (x, y) ∈ d(≽, f) and (x, y) /∈ d(≽, f ′). Together with (x, y) /∈ ≽ this

implies (x, y) ∈ B(≽, f) but (x, y) /∈ B(≽, f ′), a contradiction. For the converse, suppose

that there exist ≽ ∈ P (Λ) and x, y ∈ X with (x, y) ∈ B(≽, f) but (x, y) /∈ B(≽, f ′), which

requires x ̸= y. This implies (x, y) ∈ d(≽, f) and (x, y) /∈ ≽, hence (x, y) /∈ d(≽, f ′). Then

c(d(≽, f ′), {x, y}) = y ≽ x = c(d(≽, f), {x, y}), which implies that [f ]ΛN(Λ)[f ′]Λ does not

hold, by Definition 1.

(ii) Reflexivity and transitivity of N(Λ) follow from the set inclusion characterization

in statement (i). To show antisymmetry, consider any f, f ′ ∈ F with [f ]ΛN(Λ)[f ′]Λ and

[f ′]ΛN(Λ)[f ]Λ. By (i) this is equivalent to B(≽, f) = B(≽, f ′) and thus d(≽, f) = d(≽, f ′)

for each ≽ ∈ P (Λ), hence [f ]Λ = [f ′]Λ.

Since B(≽, f) describes all the mistakes in binary choice that frame f causes for welfare

preference ≽, statement (i) of the lemma formalizes the intuition that a successful nudge

is a frame that induces fewer mistakes. Statement (ii) implies that the binary relation is

sufficiently well-behaved to consider different notions of optimality.

9Even though we often represent preferences as rankings like c ≻ a ≻ b ≻ d, we remind ourselves that
technically both d(≽, f) and ≽ are subsets of the set of ordered pairs X ×X.
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3 Nudgeability

An optimal nudge is a frame that guarantees (weakly) better choices than all the other

frames. Let

G(Λ) = {f | [f ]ΛN(Λ)[f ′]Λ, ∀f
′ ∈ F}

be the set of frames which have been identified as optimal by the data set Λ. Formally,

G(Λ) coincides with the greatest element of the partially ordered set F (Λ), and it might

be empty. Since the nudging relation becomes more complete as we collect additional

observations, it follows that optimal frames are more likely to exist for larger data sets.

Therefore, the following result provides a necessary and sufficient condition for the ex-

istence of an optimal frame based on the maximal data set. The result is relatively

straightforward, but important as it will allow us to classify behavioral models according

to whether the search for an optimal frame is promising or hopeless.

Definition 2 Preference ≽ is identifiable if for each ≽′ ∈ P with ≽′ ̸=≽, there exists

f ∈ F such that d(≽, f) ̸= d(≽′, f).

Proposition 1 G(Λ̄(≽)) is non-empty if and only if ≽ is identifiable.

Proof. Suppose ≽ is identifiable, which implies that Λ̄(≽) is not identical to Λ̄(≽′)

for any other ≽′. Then P (Λ̄(≽)) = {≽}. Consider any f with d(≽, f) = ≽, which

exists by assumption. For any f ′ ∈ F , we then have B(≽, f) = ∅ ⊆ B(≽, f ′) and

hence [f ]Λ̄(≽)N(Λ̄(≽))[f ′]Λ̄(≽) by Lemma 1, which implies f ∈ G(Λ̄(≽)). For the converse,

suppose that ≽ is not identifiable, i.e., there exists ≽′ ̸=≽ with Λ̄(≽′) = Λ̄(≽). Then

{≽,≽′} ⊆ P (Λ̄(≽)). Consider any f1 with d(≽, f1) = ≽ and any f2 with d(≽′, f2) = ≽′,

so that B(≽, f1) = ∅ and B(≽′, f2) = ∅. Assume by contradiction that there exists

f ∈ G(Λ̄(≽)). Then [f ]Λ̄(≽)N(Λ̄(≽))[f1]Λ̄(≽) must hold, which implies B(≽, f) = ∅ by

Lemma 1, and hence d(≽, f) = ≽. The analogous argument for f2 implies d(≽′, f) = ≽′,

which contradicts that Λ̄(≽′) = Λ̄(≽), i.e., that ≽ is not identifiable.

The if-statement is immediate: an identifiable welfare preference is known for sure once

the maximal data set has been collected, and all the non-distorting frames are optimal with

that knowledge. It is worth emphasizing again, however, that the result does not imply

that the welfare preference actually has to be learned perfectly for successful nudging.

It only tells us that, if ≽ is the true and identifiable welfare preference, then for some

sufficiently large data set Λ we will be able to identify an optimal nudge; the set P (Λ)

of consistent welfare preferences might still contain more than one element at that point.

The only-if-statement tells us that there is no hope to ever identify an optimal frame if

the welfare preference cannot be identified, i.e., if there exists another welfare preference
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≽′ that is behaviorally equivalent to ≽ under all frames. In this case we say that ≽ and

≽′ are indistinguishable. A frame could then only be optimal if it does not distort any of

the two, but this is impossible as such a frame would generate different observations for

≽ and ≽′ and hence would empirically discriminate between them.

In the following, we consider the two polar cases of behavioral models where all welfare

preferences are identifiable or non-identifiable, respectively. Our prime example for non-

identifiable preferences is the perfect recall satisficing model. Any two preferences that are

identical except that they rank the same best k alternatives differently, are mapped into

the same distorted preference by any frame, and hence are indistinguishable. We know

that the nudging relation will never admit an optimal frame in that case, but we might

still be able to exclude some frames that are dominated by others. Our prime example

for identifiable preferences is the limited search model (if mX ≥ 3). There, we learn

the welfare preference among all alternatives on the same page, and thus we can identify

the complete welfare preference by observing behavior under sufficiently many different

frames. In that case, we will be interested in the required quantity of information and

the properties of optimal learning procedures.

4 Non-Identifiable Preferences

Our previous notion of optimality is strong, as it requires an optimal frame to outperform

all others. If such a frame does not exist, we can weaken optimality to the requirement

that a reasonable frame should not be dominated by another one. Let

M(Λ) = {f | [f ′]ΛN(Λ)[f ]Λ only if f ′ ∈ [f ]Λ}

be the (always non-empty) set of frames which are undominated, based on our knowledge

of the data set Λ. Formally, M(Λ) is the union of all elements that are maximal in the

partially ordered set F (Λ). A frame which is not in M(Λ) can be safely excluded, as there

exists a nudge that guarantees an improvement over it.

Dominated frames can exist already ex ante with no knowledge of the agent’s welfare

preference. For instance, certain informational arrangements could be interpreted as

being dominant over others because they objectively clarify the available information and

improve the decision quality (e.g. Camerer et al., 2003). In the following example we

show that ex ante undominated frames can become dominated for richer knowledge, too.

Assume that X = {a, b, c, d} and consider the distortion function for the four preferences

and three frames depicted in Figure 1.10 The two welfare preferences ≽1 and ≽2 are

10The example focusses on only four welfare preferences, but it can be expanded to encompass the set
of all possible preferences. We can also add additional frames without changing its insight.
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indistinguishable, as each frame maps them into the same distorted preference, and the

same holds for ≽3 and ≽4. Note also that none of the frames is dominated before any data

has been collected, M(∅) = {f1, f2, f3}, because each one is the unique non-distorting

frame for one possible welfare preference. Now suppose we observe Λ = {(≽2, f2)}, so
that P (Λ) = {≽1,≽2}. It follows immediately that none of the potentially non-distorting

frames f1 and f2 is dominated. The frame f3, however, is now dominated by f1. If the

welfare preference is ≽2, then f1 induces a mistake between a and b, but so does f3, which

induces an additional mistake between c and d. Hence we obtain M(Λ) = {f1, f2}. We

have learned enough to identify a nudge over f3, but no additional observation will ever

allow us to compare f1 and f2.

Figure 1: Dominated Frame f3

Frame f3 is particular, as it maps the indistinguishable set {≽1,≽2} outside of itself. If

a maximal set of preferences that are indistinguishable from the actual welfare preference is

closed under the distortion function for some frame, then that frame cannot be dominated.

This follows because the behavioral preference observed under the frame must itself be

considered as a possible welfare preference, and the frame is non-distorting for it. This

observation provides the basis for the following definition and result.

Definition 3 A distortion function d has the frame-cancellation property if

d(d(≽, f1), f2) = d(≽, f2)

holds for all ≽ ∈ P and all f1, f2 ∈ F .

With the frame-cancellation property, the impact of any frame f1 disappears once a

new frame f2 is applied. It follows that preference d(≽, f) is observationally equivalent to

≽, for any ≽ ∈ P and f ∈ F , and hence all maximal indistinguishable sets of preferences

are closed under the distortion function for any given frame.
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Proposition 2 If d has the frame-cancellation property, then M(Λ) = F for all Λ.

Proof. Consider any d with the frame-cancellation property and any data set Λ. Fix

any frame f1 ∈ F , and let f2 ∈ F be an arbitrary frame with f2 /∈ [f1]Λ. Then, by

definition of [f1]Λ, there exists ≽ ∈ P (Λ) such that d(≽, f1) =≽1 ̸=≽2= d(≽, f2). By the

frame-cancellation property, we have d(≽1, f) = d(d(≽, f1), f) = d(≽, f) for all f ∈ F ,

which implies that ≽1 ∈ P (Λ). We also obtain d(≽1, f1) = d(≽, f1) =≽1, which implies

B(≽1, f1) = ∅. From ≽1 ̸=≽2 and the frame-cancellation property, it follows that

B(≽1, f2) = d(≽1, f2)\ ≽1 = d(d(≽, f1), f2)\ ≽1 = d(≽, f2)\ ≽1 =≽2 \ ≽1 ̸= ∅.

Hence B(≽1, f1) ⊂ B(≽1, f2), and Lemma 1 implies that [f2]ΛN(Λ)[f1]Λ does not hold.

Since f2 was arbitrary we conclude that f1 ∈ M(Λ), and, since f1 was arbitrary, that

M(Λ) = F .

If the frame-cancellation property holds, then irrespective of how many data points

we have collected, we will never know enough to exclude even a single dominated frame.11

To provide an analogy, we can think of M(Λ) as the set of Pareto efficient policies,

because moving away from any f ∈ M(Λ) may make the agent better off with respect

to some ≽ ∈ P (Λ) only at the cost of making her worse off with respect to some other

≽′ ∈ P (Λ). Proposition 2 therefore states that all frames are Pareto efficient. If we want

to select between them, we may need to resort to approaches that can be used to compare

Pareto efficient allocations, involving stronger assumptions such as probabilistic priors

and comparable cardinal utilities. We will return to this idea in the conclusion.

Is frame-cancellation a plausible condition? Notice first that Proposition 2 does not

require preferences to be non-identifiable. However, identifiability of ≽ is consistent with

the frame-cancellation property only if d(≽, f) =≽ for all f ∈ F , i.e., all frames must

be equally non-distorting for ≽. This corresponds to the standard rational choice model.

Another extreme case of frame-cancellation arises when d(≽, f) is independent of ≽, so

that frames override the preference entirely. This is true, for instance, when there are only

two alternatives and the agent always chooses the one that is marked as the default. The

perfect recall satisficing model has the frame-cancellation property, too, even though the

welfare preference retains a substantial impact on behavior. In this model, the effect of the

order of presentation is to overwrite the welfare preference among the top k alternatives.

This leaves no trace of previous frames when done successively. We can also establish a

connection to the analysis of choice from lists by Rubinstein and Salant (2006). They

allow for the possibility that agents choose from lists instead of sets, i.e., the choice from

a given set of alternatives can be different when the alternatives are listed differently.

11Formally, the binary relation N(Λ) is always diagonal, i.e., empty except for its reflexive component.
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Their results imply that we can capture choice from list behavior in reduced form of a

distortion function whenever the axiom of “partition independence” is satisfied by the

agent’s choices for all possible welfare preferences.12 An example in which this holds is

satisficing without recall (see also RS). In contrast to the perfect recall version, the agent

here chooses the last alternative on a list when no alternative on the list exceeds her

aspiration level. Formally, d(≽, f) is obtained from ≽ by rearranging the top k elements

in the order of f and the bottom mX − k elements in the opposite order of f . It is easy

to verify that this model has the frame-cancellation property.

We conclude the section by presenting a class of decision processes with limited sen-

sitivity that nests all these examples of models with the frame-cancellation property.

Model 3 (Limited Sensitivity) The agent displays limited sensitivity in the sense that

she can sometimes not tell whether an alternative is actually better than another. Degree

and allocation of sensitivity are described by a vector (k1, k2, . . . , ks) of positive integers

with
∑s

i=1 ki = mX . A welfare preference ≽ induces a partition of X, where block X1

contains the k1 welfare-best alternatives, X2 contains the k2 next best alternatives, and so

on. The agent can distinguish alternatives across but not within blocks. When choosing

from S ⊆ X, she therefore only identifies the smallest i for which S∩Xi is non-empty, and

the frame then fully determines the choice from this set. Thus d(≽, f) is obtained from ≽
by rearranging the alternatives within each block of the partition in a way that does not

depend on their actual welfare ranking. Formally, let P≽ be the set of welfare preferences

that induce the same partition of X as ≽, for any ≽ ∈ P . Then d(≽′, f) = d(≽′′, f) ∈ P≽

must hold whenever ≽′,≽′′ ∈ P≽, for all f ∈ F . Any such function satisfies the frame-

cancellation property.13 When f is an order of presentation and the alternatives within

each block of the partition are rearranged in or against this order – because the agent

chooses the first or the last among seemingly equivalent alternatives – then the process is

a successive choice from list model (see Rubinstein and Salant, 2006, for a definition).

Special cases include rational choice for the vector (k1, k2, . . . , ks) = (1, 1, . . . , 1), perfect

recall satisficing for (k, 1, . . . , 1), no recall satisficing for (k,mX−k), and situations where

the welfare preference has no impact on behavior for k1 = mX .

12Partition independence requires that the choice from two concatenated sublists is the same as the
choice from the list that concatenates the two elements chosen from the sublists (Rubinstein and Salant,
2006, p. 7). Such behavior can be modelled as the maximization of some non-strict preference that is
turned strict by ordering its indifference sets in or against the list order (Proposition 2, p. 8).

13For any ≽ ∈ P , since ≽ ∈ P≽ holds we have d(≽, f1) ∈ P≽ for any f1 ∈ F . Then we also obtain
d(d(≽, f1), f2) = d(≽, f2) for any f2 ∈ F , which is the frame-cancellation property. We note that there
are models with the frame-cancellation property that do not belong to the class of limited sensitivity
models. Any model with frame-cancellation allows us to partition P into maximal indistinguishable sets
of preferences, very similar to the sets P≽ in the limited sensitivity model, but these sets will not in
general be generated by some vector (k1, k2, . . . , ks) as required by the limited sensitivity model.
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5 Identifiable Preferences

We now turn to the case of identifiable welfare preferences, which guarantees knowledge of

an optimal nudge once a maximal data set has been observed. Collecting a maximal data

set requires observing the agent under all mF frames, however, which might be beyond

our means. We are thus interested in optimal data gathering procedures. The idea is that

a regulator, who ultimately seeks to impose the optimal nudge, is also able to impose a

specific sequence of frames with the goal of eliciting the agent’s welfare preference.

For each s ∈ {0, 1, . . . ,mF}, let

Ls = {Λ|P (Λ) ̸= ∅ and |Λ| = s}

be the collection of all data sets that do not falsify the behavioral model and contain

exactly s observations, i.e., observations for s different frames. In particular, L0 = {∅},
and LmF

consists of all maximal data sets. Then L = L0∪L1∪. . .∪LmF−1 is the collection

of all possible data sets except the maximal ones. An elicitation procedure dictates for

each of these data sets a yet unobserved frame, under which the agent is to be observed

next.

Definition 4 An elicitation procedure is a mapping e : L → F with the property that, for

each Λ ∈ L, there does not exist (≽, f) ∈ Λ such that e(Λ) = f .

A procedure e starts with the frame e(∅) and, if the welfare preference is ≽, generates

the first data set Λ1(e,≽) = {(d(≽, e(∅)), e(∅))}. It then dictates the different frame

e(Λ1(e,≽)) and generates a larger data set Λ2(e,≽) by adding the resulting observation.

This yields a sequence of expanding data sets described recursively by Λ0(e,≽) = ∅ and

Λs+1(e,≽) = Λs(e,≽) ∪ {(d(≽, e(Λs(e,≽))), e(Λs(e,≽)))},

until the maximal data set ΛmF
(e,≽) = Λ̄(≽) is reached. Hence all elicitation procedures

deliver the same outcome aftermF steps, but typically differ at earlier stages. A procedure

does not use any exogenous information about the welfare preference, but the frame to

be dictated next can depend on the information generated endogenously by the growing

data set. Notice that an elicitation procedure dictates frames also for pre-collected data

sets that it never generates. We tolerate this redundancy because otherwise definitions

and proofs would become substantially more complicated, at no gain. Now define

n(e,≽) = min{s | G(Λs(e,≽)) ̸= ∅}

as the first step at which e identifies an optimal nudge if the welfare preference is ≽. Since

this preference is unknown, e guarantees a result only after max≽∈P n(e,≽) steps. With
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E denoting the set of all elicitation procedures, we thus have to be prepared to gather

n = min
e∈E

max
≽∈P

n(e,≽)

data points before we can nudge successfully.

To illustrate the concepts, we first consider the limited search model, assumingmX ≥ 3

to make all preferences identifiable. The following result shows that learning and nudging

are relatively simple in this model.

Proposition 3 For any mX ≥ 3, the limited search model satisfies

n =

{
3 if k = mX/2 and k is odd,

2 otherwise.

Proof. See Appendix.

To understand our construction of an optimal elicitation procedure for the limited

search model, consider again the simple example from the Introduction. The procedure

starts with an arbitrary frame, f1 = {a, b}, and generates a first behavioral preference,

a ≻1 b ≻1 c ≻1 d. We now know that the welfare preference satisfies a ≻ b and c ≻ d.

The second frame is constructed by taking the top element from f1 and the bottom

element from X\f1, which yields f2 = {a, d}. From the induced behavioral preference

a ≻2 d ≻2 c ≻2 b we can learn that a ≻ d and c ≻ b. This information is enough to

deduce that a and c are the two welfare-optimal alternatives, because both b and d are

worse than each of them. If instead we had learned that a ≻ d and b ≻ c at the second

step, we could have concluded that a and b are optimal. If we had learned that d ≻ a, we

could similarly have concluded that c and d are optimal.

This argument can be generalized. Starting with an arbitrary frame f1, we learn the

welfare preference within the sets f1 and X\f1. Denote the elements of f1 in descend-

ing welfare order by a1, a2, . . . , ak and the elements of X\f1 in descending welfare order

by b1, b2, . . . , bmX−k. When k = mX/2 and k is even, for instance, the second frame is

constructed to contain the k/2 best alternatives from f1 and the k/2 worst alternatives

from X\f1, which yields f2 = {a1, . . . , ak/2, bk/2+1, . . . , bk} (this construction has to be

adjusted slightly for different values of k and mX). After having learned the welfare

preference within the sets f2 and X\f2, we can deduce the k welfare-best alternatives

and thus the optimal nudge as follows. We consider the just learned welfare preference

among al and bk−l+1 successively for l = 1, . . . , k/2. Whenever al ≽ bk−l+1, we can

conclude that bk−l+1 does not belong to the optimal nudge (because the k alternatives

a1, . . . , al, b1, . . . , bk−l are welfare better) while al does belong to it (because the k al-

ternatives al+1, . . . , ak, bk−l+1, . . . , bk are welfare worse). On the first instance of l with
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bk−l+1 ≽ al we thus know that the optimal nudge is {a1, . . . , al−1, b1, . . . , bk−l+1}. If this

does not occur up to and including l = k/2, we know that the optimal nudge consists of

a1, . . . , ak/2 and the k/2 best alternatives from X\f2.
For more general behavioral models, it obviously holds that n ≤ mF if all welfare

preferences are identifiable, but the number of frames mF can be arbitrarily large. We

therefore derive a bound on n next. The following result rests on the insight that there is

always an elicitation procedure that guarantees a reduction of the set of possible welfare

preferences at each step, while there are models for which a reduction can be guaranteed

by only one preference at each step.

Proposition 4 Any behavioral model with identifiable preferences satisfies n ≤ mX !− 1,

and there exist models with n = mX !− 1.

Proof. The result follows immediately if mX = 2. Hence we fix a set X with mX ≥ 3

throughout the proof. We denote m = mX ! for convenience.

Step 1. To establish the inequality, consider an arbitrary behavioral model, given by

F and d, with mF ≥ m and identifiable preferences. Define

n̂(e,≽) = min{s | P (Λs(e,≽)) = {≽}}

as the first step at which procedure e identifies ≽, and let

n̂ = min
e∈E

max
≽∈P

n̂(e,≽).

It follows immediately that n ≤ n̂, because P (Λs(e,≽)) = {≽} implies G(Λs(e,≽)) ̸= ∅.

We will establish the inequality n̂ < m.

Consider any e and suppose n̂(e,≽) ≥ m for some ≽ ∈ P . Since |P | = m, there must

exist k ∈ {0, 1, . . . ,m− 2} such that

P (Λk(e,≽)) = P (Λk+1(e,≽)).

Denoting e(Λk(e,≽)) = f̃ and d(≽, f̃) = ≽̃, we thus have Λk+1(e,≽) = Λk(e,≽)∪{(≽̃, f̃)}
and d(≽′, f̃) = ≽̃ for all ≽′ ∈ P (Λk(e,≽)). We now define elicitation procedure e′ by

letting e′(Λ) = e(Λ), except for data sets Λ ∈ L that satisfy both Λk(e,≽) ⊆ Λ and f ̸= f̃

for all (≽, f) ∈ Λ, which includes Λ = Λk(e,≽). For those data sets, we define

e′(Λ) =

{
e(Λ ∪ {(≽̃, f̃)}) if |Λ| ≤ mF − 2,

f̃ if |Λ| = mF − 1.

Note that e′ is a well-defined elicitation procedure. First, Λ∪{(≽̃, f̃)} ∈ L holds whenever

the first case applies, because ∅ ̸= P (Λ) ⊆ P (Λk(e,≽)) and Λ does not yet contain an
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observation of f̃ . Second, the first case then applies repeatedly because e(Λ∪{(≽̃, f̃)}) ̸=
f̃ , so that e′ only dictates yet unobserved frames.

Consider any ≽′ /∈ P (Λk(e,≽)), so that (≽1, f) ∈ Λk(e,≽′) and (≽2, f) ∈ Λk(e,≽)

with ≽1 ̸=≽2 for some f . From Λk(e,≽′) ⊆ Λs(e,≽′) and thus Λk(e,≽) * Λs(e,≽′) for

all s ≥ k, it follows that preference ≽′ is unaffected by the modification of the procedure,

i.e., Λs(e
′,≽′) = Λs(e,≽′) for all s ∈ {0, 1, . . . ,mF}, so that n̂(e′,≽′) = n̂(e,≽′). Now

consider any ≽′ ∈ P (Λk(e,≽)), including ≽′=≽. Then Λs(e,≽) = Λs(e,≽′) = Λs(e
′,≽′)

holds for all s ≤ k. For k < s ≤ mF − 1, the definition of e′ implies that Λs(e
′,≽′) does

not contain an observation of f̃ , and that

Λs(e
′,≽′) ∪ {(≽̃, f̃)} = Λs+1(e,≽′).

Thus

P (Λs(e
′,≽′)) = P (Λs(e

′,≽′) ∪ {(≽̃, f̃)}) = P (Λs+1(e,≽′)),

so that n̂(e′,≽′) = n̂(e,≽′) − 1. Repeated application of this construction allows us to

arrive at an elicitation procedure e∗ for which n̂(e∗,≽) < m for all ≽ ∈ P , which implies

that n̂ < m.

Step 2. To establish the equality, we construct a model with identifiable preferences

and n = m − 1. Write P = {≽0,≽1, . . . ,≽m−1}, where the numbering of preferences is

arbitrary but fixed. Let F = {fi | i = 0, 1, . . . ,m− 1}, so that mF = m, and define d by

d(≽, fi) =

{
≽[i+1] if ≽=≽i,

≽[i+2] otherwise,

where [j] stands short for j mod m. Hence each frame fi is non-distorting only for the

single preference ≽[i+2], which implies n = n̂. We will establish the equality n̂ = m− 1.

Consider any e. Define i0 such that e(∅) = fi0 , and define is for s = 1, . . . ,m − 1

recursively such that e(Λs) = fis for the data set

Λs =
s−1∪
j=0

{(≽[ij+2], fij)}.

It follows from the definition of d that P (Λs) = {≽is ,≽is+1 , . . . ,≽im−1} holds for each

s ∈ {0, 1, . . . ,m − 1}, where Λ0 = ∅. Also, for ≽im−1 it holds that Λs(e,≽im−1) = Λs for

all s ∈ {0, 1, . . . ,m−1}, which implies n̂(e,≽im−1) = m−1. Thus max≽∈P n̂(e,≽) ≥ m−1.

Since e was arbitrary, it follows that n̂ ≥ m−1. Together with the result n̂ < m established

in step 1, this implies n̂ = m− 1.
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Since there are mX ! different welfare preferences that the agent might have ex ante,

an elicitation procedure that strictly reduces the set of possible preferences at each step

guarantees identification of the preference and the optimal nudge after at most mX ! − 1

steps. In the proof, we construct a behavioral model where identification of the optimal

nudge actually requires identification of the preference, and this takes all mX !− 1 steps.

In the model, each observation of behavior under a frame either reveals a specific welfare

preference to be the true one, or it excludes it from the set of possible welfare preferences.

No matter in which order frames are dictated by the elicitation procedure, it is always

possible that the agent’s welfare preference is the one not revealed until the end. Propo-

sition 4 is again bad news for nudging. The bound is growing more than exponentially

in the number of alternatives, which may quickly make nudging infeasible despite the

general identifiability of preferences.

6 Discussion and Extensions

We have made several assumptions that work in favor of nudgeability and may seem

overly restrictive. Since our analysis at least sometimes reveals a simple solution to the

information problem (see e.g. Proposition 3), we now relax some of these assumptions.

We discuss model uncertainty (Section 6.1), a theory-free approach (Section 6.2), and

imperfectly observable frames (Section 6.3).

6.1 Model Uncertainty

We have previously assumed that there is a unique conjecture about the behavioral model,

while it may be more appropriate to assume that a regulator considers a number of

different models possible. We therefore replace the assumption of a unique behavioral

model by the assumption that the regulator considers any distortion function d ∈ D

possible, where D is a given set of conjectures. For instance, there might be uncertainty

about the aspiration level of a satisficer, and one of the models in D could also be the

rational agent.14 As a consequence, we no longer have to learn about the welfare preference

only, but about the pair (d,≽) ∈ D × P of the distortion function and the welfare

preference. We continue to assume that there is a non-distorting frame for each pair

(d,≽), which will typically depend both on the model and on the welfare preference.

Let Λ̄(d,≽) = {(d(≽, f), f) | f ∈ F} denote the maximal data set generated by the

pair (d,≽). Then the set of pairs (d,≽) that are consistent with an observed data set

is DP(Λ) = {(d,≽) | Λ ⊆ Λ̄(d,≽)}. We again assume that DP(Λ) is non-empty, i.e.,

14It is central to the idea of asymmetric paternalism (Camerer et al., 2003) that there are different
types of agents, some of which are rational and should not be restricted by regulation.
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there is at least one conjecture that is not falsified by the data (see RS p. 377 for a

discussion of multiple conjectures and their rejection). Once we have narrowed down the

set of model-preference pairs to DP(Λ), we obtain the equivalence class of frame f by

[f ]Λ = {f ′ | d(≽, f) = d(≽, f ′), ∀(d,≽) ∈ DP(Λ)}. We can then modify our definition

of the binary nudging relation in a natural way to take into account that both model

and welfare preference are unknown. In particular, we define [f ]Λ N(Λ) [f ′]Λ if for each

(d,≽) ∈ DP(Λ) it holds that c(d(≽, f), S) ≽ c(d(≽, f ′), S) for all non-empty S ⊆ X, so

that for each remaining behavioral model the agent’s choice under frame f is at least as

good as under f ′, no matter which of the welfare preferences that are consistent with the

behavioral model and the data set is the true one.

We are again interested in the existence of an optimal nudge. By the same reasoning

as in the main analysis, we consider maximal data sets only and look for conditions under

which G(Λ̄(d,≽)) is non-empty for a true but unobservable pair (d,≽). An immediate

extension of Definition 2 could require identifiability of ≽ in d. This property is in fact

necessary but no longer sufficient for the existence of an optimal nudge. It rules out that

the maximal data set Λ̄(d,≽) could have been generated by a different welfare preference

≽′ and the same model d, but it does not rule out that it could have been generated by a

different welfare preference ≽′ and a different model d′. Since two behaviorally equivalent

model-preference pairs (d,≽) and (d′,≽′) can have very different normative implications

(see e.g. Kőszegi and Rabin, 2008b; Bernheim, 2009), identifiability in the extended setting

must aim at all aspects of the pair (d,≽) that are normatively relevant.

Definition 5 Pair (d,≽) is virtually identifiable if for each (d′,≽′) ∈ D×P with ≽′ ̸=≽,

there exists f ∈ F such that d(≽, f) ̸= d′(≽′, f).

Proposition 5 G(Λ̄(d,≽)) is non-empty if and only if (d,≽) is virtually identifiable.

The proof is similar to the proof of Proposition 1 and therefore omitted. Virtual

identifiability implies that the welfare preference ≽ is known for sure once the maximal

data set has been collected. It still allows for some uncertainty about the behavioral

model, but only to the extent that we might not be able to predict the behavior of an

agent with a different welfare preference ≽′ ̸=≽. The property of virtual identifiability of

(d,≽) is clearly stronger than identifiability of ≽ in d. For instance, we can have multiple

models with identifiable preferences each, that, if considered jointly, do not have virtually

identifiable model-preference pairs.15 On the other hand, adding a rational agent to any

15As an example, let mX = 2 so that P = {≽1,≽2}, and let F = {f1, f2}. Consider model d1 given by
d1(≽1, f1) =≽1, d1(≽2, f1) =≽2, d1(≽1, f2) =≽2, and d1(≽2, f2) =≽1, so that frame f1 is non-distorting
for both preferences while frame f2 maps each preference into the other. Both preferences are identifiable.
Now consider d2 given by d2(≽1, f1) =≽2, d2(≽2, f1) =≽1, d2(≽1, f2) =≽1, and d2(≽2, f2) =≽2, so that
the roles of f1 and f2 are reversed and both preferences are again identifiable. If D = {d1, d2}, no model-
preference pair is virtually identifiable, because data sets can always be explained by the two different
models with opposing welfare preferences.
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given behavioral model with identifiable preferences preserves the property of virtually

identifiable model-preference pairs.16 Thus the possibility of agents being rational has no

substantial impact on our previous analysis.

The analysis in Sections 4 and 5 can also be adapted to the case of model uncertainty.

For instance, if each distortion function d ∈ D satisfies the frame-cancellation property,

then it follows immediately that no data set allows us to exclude any dominated frame.

Applications include the uncertainty about a satisficer’s (fixed) aspiration level. With

virtually identifiable model-preference pairs, on the other hand, elicitation procedures

now generate sequences of expanding data sets with the goal of learning about both

preferences and models.

6.2 A Theory-Free Approach

We can go one step further and try to dispense with any conjecture about the behavioral

model. Instead of following our theory-based approach to behavioral welfare economics,

we could work with the purely choice-based approach by Bernheim and Rangel (2009).

In fact, we can easily adapt our definition of the binary nudging relation and evaluate the

frame-induced choices based on the weak unambiguous choice relation R′ (Bernheim and

Rangel, 2009, p. 60) rather than on a set of welfare preferences. Formally, a generalized

choice situation (GCS) consists of a set of alternatives S ⊆ X and a frame f ∈ F , and

a choice correspondence describes the chosen alternatives for each GCS that we have

observed. For better comparability, let us assume that the observed choice has always

been a unique alternative C(S, f) ∈ S. To eliminate all traces of non-choice-based theories

about mistakes, let us also assume that all the observed GCSs are welfare-relevant. Now

consider two frames f and f ′ of which we know that they have a differential impact on

behavior, i.e., we have observed two GCSs (S̄, f) and (S̄, f ′) with C(S̄, f) = x ̸= y =

C(S̄, f ′). In line with our previous analysis, we could say that f is a weak unambiguous

nudge over f ′ if C(S, f)R′ C(S, f ′) holds for all matching pairs (S, f) and (S, f ′) that we

have observed. It follows immediately from the definition of R′ that such a ranking is

impossible. The mere fact that C(S̄, f) = x ̸= y = C(S̄, f ′) implies that neither xR′y

nor yR′x holds, and hence neither of the two frames can be a weak unambiguous nudge

over the other. If we worked with R∗ (Bernheim and Rangel, 2009, p. 60) instead of

R′, we would obtain the statement that each frame is always a weak unambiguous nudge

over every other frame. It follows that nudging is impossible without non-choice-based

assumptions about decision mistakes, as already pointed out by Bernheim and Rangel

(2009, p. 62).

16Let D = {d, dR}, where d is the given model and dR is the rational agent. Since each preference
is identifiable in each model separately, we only need to check across models. Consider any (d,≽) and
(dR,≽′) with ≽′ ̸=≽. Let f be the non-distorting frame from ≽ in d. Then d(≽, f) =≽ ≠≽′= dR(≽′, f).
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6.3 Imperfectly Observable Frames

Finally, we have previously assumed that frames are perfectly observable and controllable

by the regulator. Since a frame can be very complex in many contexts, this assumption is

restrictive and deserves to be relaxed. For instance, consider a modified satisficing model

in which the aspiration level k fluctuates in a non-systematic and unobservable way, as

in the original RS model. We can capture this by including the aspiration level into the

description of the frame (k affects choice but not welfare), but the extended frame cannot

be fully observable and controllable for an outsider.

Imperfect observability can be modelled as a structure Φ ⊆ 2F with the property

that for each f ∈ F there exists ϕ ∈ Φ with f ∈ ϕ. The interpretation is that the

regulator observes only sets of frames ϕ ∈ Φ and does not know under which of the

frames f ∈ ϕ the agent was acting. Perfect observation is captured by the finest partition

Φ = {{f} | f ∈ F}. The example with a fluctuating aspiration level can be modelled

as F = P × {2, . . . ,mX} and Φ = {ϕp | p ∈ P} for ϕp = {(p, k) | k ∈ {2, . . . ,mX}}.
A behavioral data set is a subset Λ ⊆ P × Φ, where (≽′, ϕ′) ∈ Λ means that the agent

has been observed behaving according to ≽′ when the frame must have been one of the

elements of ϕ′. Thus a welfare preference ≽ is consistent with Λ if for each (≽′, ϕ′) ∈ Λ

we have ≽′ = d(≽, f ′) for some f ′ ∈ ϕ′, so that ≽ might have generated the data set from

the regulator’s perspective. The set of welfare preferences that are consistent with Λ is

P (Λ) = {≽ | Λ ⊆ Λ̄(≽)}, where Λ̄(≽) = {(d(≽, f), ϕ) | f ∈ ϕ ∈ Φ} is again the maximal

data set for ≽. Note that a non-singleton set of frames ϕ can appear more than once

in a maximal data set, combined with different behavioral preferences. This also implies

that the cardinality of Λ̄(≽) is no longer the same for all ≽ ∈ P , because two different

frames f, f ′ ∈ ϕ might generate two different observations for some preference but only

one observation for another preference.

In many applications, such as a satisficing model with fluctuating aspiration level, it

is reasonable to assume that the same Φ applies to observing and nudging, i.e., the frame

dimensions that the regulator can observe are identical to those that he can control.

We allow for the more general case where a set of frames can be chosen as a nudge

from a potentially different structure ΦN . In continuation of our previous assumption,

we suppose that for each ≽ ∈ P there exists ϕ ∈ ΦN such that d(≽, f) = ≽ for all

f ∈ ϕ. This implies that nudging is not per se impeded by the lack of control over

frames. The assumption is clearly much stronger here than before. For instance, it holds

in the described satisficing application when there is perfect recall (because the order of

presentation that coincides with the welfare preference is non-distorting for all possible

aspiration levels) but would not hold with no recall (because the non-distorting order

of presentation then depends on the aspiration level). When comparing two elements

ϕ, ϕ′ ∈ ΦN , we will not necessarily want to compare the agents’ choices under each
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f ∈ ϕ with her choices under each f ′ ∈ ϕ′. For instance, we want to compare orders

of presentation for each aspiration level separately, not across aspiration levels. To this

end, we introduce a set H of selection functions, which are functions h : ΦN → F with the

property that h(ϕ) ∈ ϕ. The elements ofH capture the comparisons that we need to make:

when comparing ϕ with ϕ′ we compare only the choices under the frames h(ϕ) and h(ϕ′),

for each h ∈ H. In the satisficing model we would have one hk ∈ H for each aspiration

level k ∈ {2, . . . ,mX}, defined by hk(ϕp) = (p, k). The only assumption that we impose

on H is that for each f ∈ ϕ ∈ ΦN there exist h ∈ H such that h(ϕ) = f . We can then

define the equivalence class [ϕ]Λ = {ϕ′ | d(≽, h(ϕ′)) = d(≽, h(ϕ)), ∀(h,≽) ∈ H × P (Λ)}
for any Λ and ϕ. As before, let [ϕ]ΛN(Λ)[ϕ′]Λ if for each (h,≽) ∈ H × P (Λ) it holds that

c(d(≽, h(ϕ)), S) ≽ c(d(≽, h(ϕ′)), S), for all non-empty S ⊆ X.

As in the main analysis we let G(Λ) = {ϕ | [ϕ]ΛN(Λ)[ϕ′]Λ, ∀ϕ′ ∈ ΦN} and consider

only maximal data sets to investigate the existence of an optimal nudge. An immediate

extension of identifiability of ≽ (Definition 2) could require that for each ≽′ ̸=≽ there

exists f ∈ ϕ ∈ Φ such that d(≽, f) ̸= d(≽′, f). This property turns out to be necessary

but not sufficient for G(Λ̄(≽)) to be non-empty. It implies that the maximal data set for

≽ is different from the maximal data set for every other preference, so that ≽ is identified

once Λ̄(≽) has been collected and once it is known that this set is indeed maximal.

Unfortunately, the cardinality of Λ̄(≽) no longer carries that kind of information, as we

could have Λ̄(≽) ⊂ Λ̄(≽′) for some ≽′ ̸=≽. Upon observing Λ̄(≽) we then never know if we

have already arrived at the maximal data set for ≽ or if there is an additional observation

yet to be made. This implies {≽,≽′} ⊆ P (Λ̄(≽)) and makes it impossible to find an

optimal nudge.17 Our notion of identifiability in the setting with imperfectly observable

frames must therefore ensure that the maximal data set reveals itself as maximal.

Definition 6 Preference ≽ is potentially identifiable if for each ≽′ ∈ P with ≽′ ̸=≽,

there exist f ∈ ϕ ∈ Φ such that d(≽, f) ̸= d(≽′, f ′) for all f ′ ∈ ϕ.

Proposition 6 G(Λ̄(≽)) is non-empty if and only if ≽ is potentially identifiable.

The proof is again omitted. When frames are not directly observed, identifiability

requires more than the existence of a frame f ∈ ϕ ∈ Φ that distinguishes between ≽ and

≽′. We can exclude welfare preference ≽′ as a candidate only if the observed distorted

preference d(≽, f) could not as well have been generated by ≽′ for any other f ′ ∈ ϕ.

We use the term potential identifiability here, because, while observation of Λ̄(≽) now

allows us to conclude that this data set is maximal and ≽ is the true welfare preference,

17As an example, let mX = 2 so that P = {≽1,≽2}. Let F = {f1, f2, f3} and Φ = {ϕ1, ϕ2} with
ϕ1 = {f1, f2} and ϕ2 = {f3}. Suppose d(≽1, f1) =≽1, d(≽1, f2) =≽2, d(≽1, f3) =≽1, d(≽2, f1) =≽2,
d(≽2, f2) =≽2, and d(≽2, f3) =≽1. The maximal data sets are Λ̄(≽1) = {(≽1, ϕ1), (≽2, ϕ1), (≽1, ϕ2)}
and Λ̄(≽2) = {(≽2, ϕ1), (≽1, ϕ2)}, such that Λ̄(≽2) ⊂ Λ̄(≽1) and P (Λ̄(≽2)) = {≽1,≽2}.
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there is still no guarantee that we will ever arrive at Λ̄(≽). An appropriately redefined

elicitation procedure might impose a set of frames ϕ multiple times on the agent, but a

specific element f ∈ ϕ still does not realize. This is in contrast to the case of observable

frames, where a maximal data set can always be collected in exactly mF steps.

7 Conclusions

Throughout the paper, we have taken the usual revealed-preference perspective for a

single agent, which, aside from its methodological justification, is also directly relevant

for nudging, where “personalization does appear to be the wave of the future” (Sunstein,

2014, p. 100). In the digital age, individual-specific learning and nudging is achievable,

for instance by relying on cookies. However, our results also speak to the problem of

learning and nudging for a population of agents. On the elicitation stage, an assumption

that different agents have identical preferences, possibly after controlling for observables,

or are drawn representatively from a distribution, would allow us to combine observations

of different agents into a single data set, with the goal of learning about their welfare

preferences (see Goldin and Reck, 2015). On the nudging stage, finding one optimal

frame will be even more difficult for heterogeneous agents than for a single agent, and

may require suitably adjusted criteria of optimality.

In fact, the analysis in this paper uses no prior information about the agent’s welfare

preference. If such information was available, the set of possible welfare preferences P

might be smaller from the outset. More sophisticated information could be captured by a

probability distribution on P . Our questions could then be asked in a probabilistic sense.

What is the regulator’s updated belief about the agent’s welfare preference after having

observed a behavioral data set? How likely is frame f a successful nudge over frame

f ′? It would also become possible to compare elicitation procedures by their expected

running times. The next logical step would be to introduce cardinal utilities, which

allows measuring and aggregating the severity of mistakes that frames induce. All these

extensions come at the cost of substantially stronger assumptions, but make it possible to

evaluate a nudge based on criteria such as the probability of optimality or the expected

welfare. We leave these approaches to future research.
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A Proof of Proposition 3

We assume k ≤ mX/2 throughout the proof, as cases where k > mX/2 can be dealt with

equivalently by reversing the role of the first page f and the second page X\f of the

search engine.

Case 1: k even. We first construct an elicitation procedure e and then show that it is

optimal. Let e(∅) = f1 be an arbitrary subset f1 ⊆ X with |f1| = k. Now fix any welfare

preference ≽. The procedure then generates a data set Λ1 = {(≽1, f1)} ∈ L1, where

≽1 agrees with ≽ within the sets f1 and X\f1. Let ai denote the alternative ranked at

position i within the set f1 by ≽1, for each i = 1, . . . , k. Let bi denote the alternative

ranked at position i within the set X\f1 by ≽1, for each i = 1, . . . , k, . . . ,mX − k. Then

construct the frame e(Λ1) = f2 as f2 = {a1, . . . , ak/2, bk/2+1, . . . , bk}. The procedure then

generates a data set Λ2 = {(≽1, f1), (≽2, f2)} ∈ L2, where ≽2 agrees with ≽ within the

sets f2 and X\f2. This construction is applied to all the data sets Λ1 that are generated

by the elicitation procedure for some welfare preference. The elicitation procedure can be

continued arbitrarily for all other data sets.

Let ≽ be an arbitrary true welfare preference. We claim that the set Tk(≽) of top k

alternatives according to ≽ can be deduced from the generated Λ2, so that the optimal
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nudge is identified and n(e,≽) ≤ 2 follows. Observe first that none of the alternatives

bk+1, . . . , bmX−k (if they exist) can belong to Tk(≽), because Λ1 has already revealed that

each b1, . . . , bk is preferred by ≽. Now suppose that bk ≽2 a1 holds. We then know that

bk ≽ a1 and thus Tk(≽) = {b1, . . . , bk}. Otherwise, if a1 ≽2 bk holds, we know that a1 ≽ bk

and thus bk /∈ Tk(≽) but a1 ∈ Tk(≽). In this case we can repeat the argument for a2 and

bk−1: if bk−1 ≽2 a2 we know that bk−1 ≽ a2 and thus Tk(≽) = {b1, . . . , bk−1, a1}; otherwise,
if a2 ≽2 bk−1 holds, we know that a2 ≽ bk−1 and thus bk−1 /∈ Tk(≽) but a2 ∈ Tk(≽).

Iteration either reveals Tk(≽) or arrives at ak/2 ≽2 bk/2+1, which implies ak/2 ≽ bk/2+1. In

this case, we know that Tk(≽) consists of a1, . . . , ak/2 and those k/2 alternatives that ≽2

and hence ≽ ranks top within X\f2.
Since ≽ was arbitrary, we know that max≽∈P n(e,≽) ≤ 2. Obviously, no single ob-

servation ever suffices to deduce Tk(≽), neither in the constructed procedure nor in any

other one, hence we can conclude that n = 2.

Case 2: k odd and k < mX/2. The construction is the same as for case 1, except that

f2 = {a1, . . . , a(k−1)/2, b(k+1)/2+1, . . . , bk, bk+1}, where bk+1 exists because k < mX/2. The

arguments about deducing Tk(≽) are also the same, starting with a comparison of a1 and

bk, except that the iteration might arrive at a(k−1)/2 ≽2 b(k+1)/2+1, in which case Tk(≽)

consists of a1, . . . , a(k−1)/2 and those (k+1)/2 alternatives that ≽2 ranks top within X\f2.
Case 3: k odd and k = mX/2. The construction is the same as for case 1, except that

f2 = {a1, . . . , a(k+1)/2, b(k+1)/2+1, . . . , bk}. The arguments about deducing Tk(≽) are also

the same, starting with a comparison of a1 and bk, except that the iteration might arrive at

a(k−1)/2 ≽2 b(k+1)/2+1. In this case, we can conclude that Tk(≽) consists of a1, . . . , a(k−1)/2,

plus either a(k+1)/2 or b(k+1)/2 but never both, and those (k − 1)/2 alternatives that ≽2

ranks top among the remaining ones in X\f2. Hence there exist welfare preferences ≽
for which e does not identify Tk(≽) after two steps. Since the missing preference between

a(k+1)/2 and b(k+1)/2 can be learned by having e(Λ2) = f3 satisfy {a(k+1)/2, b(k+1)/2} ⊆ f3,

we know that n ≤ 3.

It remains to be shown that n > 2. Fix an arbitrary elicitation procedure e and

denote e(∅) = f1 = {a1, . . . , ak} and X\f1 = {b1, . . . , bk}, where the numbering of the

alternatives is arbitrary but fixed (remember that k = mX/2). Let ≽1 be the preference

given (in ranking notation) by a1 . . . ak b1 . . . bk, and consider the data set Λ1 = {(≽1, f1)}
and the subsequent frame e(Λ1) = f2. Since k is odd, it follows that at least one of the

pairs {a1, bk}, {a2, bk−1}, . . . , {ak, b1} must be separated on different pages by f2, i.e., there

exists l = 1, . . . , k such that al ∈ f2 and bk−l+1 ∈ X\f2 or vice versa. Depending on the

value of l, we now construct two welfare preferences ≽′ and ≽′′. If l = 1, let

≽′: b1 . . . bk−1 bk a1 a2 . . . ak,

≽′′: b1 . . . bk−1 a1 bk a2 . . . ak.
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If l = 2, . . . , k − 1, let

≽′: a1 . . . al−1 b1 . . . bk−l bk−l+1 al al+1 . . . ak bk−l+2 . . . bk,

≽′′: a1 . . . al−1 b1 . . . bk−l al bk−l+1 al+1 . . . ak bk−l+2 . . . bk.

If l = k, let

≽′: a1 . . . ak−1 b1 ak b2 . . . bk,

≽′′: a1 . . . ak−1 ak b1 b2 . . . bk.

For the two constructed welfare preferences ≽′ and ≽′′, the elicitation procedure first

generates the above described data set Λ1. Subsequently, it generates the same data set

Λ2 = {(≽1, f1), (≽2, f2)}, because ≽′ and ≽′′ differ only with respect to al and bk−l+1,

which is not revealed by frame f2. Since Tk(≽′) ̸= Tk(≽′′), it follows that n(e,≽′) > 2,

which implies max≽∈P n(e,≽) > 2. Since e was arbitrary, it follows that n > 2.
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