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Abstract

SBTC is a powerful mechanism in explaining the increasing gap between educated

and uneducated wages. However, SBTC cannot mimic the US within-group wage

inequality. This paper provides an explanation for the observed intra-college group

inequality by showing that the top decile earners’ significant wage growth is under-

pinned by the link between ex ante ability, math-heavy college majors and highly

quantitative occupations. We develop a general equilibrium model with multiple edu-

cation outcomes, where wages are driven by individuals’ ex ante abilities and acquired

math skills. A large portion of within-group and general wage inequality is explained

by math-biased technical change (MBTC).
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1 Introduction

Math is a language of logic. It is a disciplined, organized way of thinking.

There is a right answer; there are rules that must be followed. More than any

other subject, math is rigor distilled. Mastering the language of logic helps to

embed higher-order habits in kids’ minds: the ability to reason, for example,

to detect patterns and to make informed guesses. Those kinds of skills [have]

rising value in a world in which information [is] cheap and messy.1

The US has seen a large rise in wage inequality since the mid-1970s (see Figure 1). While

skill-biased technical change (SBTC) can match the average wage trend as measured by

the college wage premium (i.e., college/non-college), the large and increasing within-group

wage inequality is ignored. This paper documents the increasing importance of math skills

in the labor market, where labor augmenting technical change biased toward math skills

can account for a large part of the observed within-group inequality.

Determining which individuals are driving wage inequality and what makes them special

yields three facts that support math as a driver of wage inequality:

1. Highly quantitative occupations have exhibited increasing relative wages since the

mid-1970s.

2. Highly quantitative occupations and the math content of college majors are highly

correlated.

3. Students attempt to study majors with the highest math content, but are constrained

by their initial abilities.2

Two distinct trends emerge when measuring the importance of general ability and
1Amanda Ripley, The Smartest Kids in the World: And How They Got That Way
2Note, we use the terms “initial-” and “ex ante” ability interchangeably. Initial or ex ante ability refers

to the ability an individual has upon completing high school.
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Source: IPUMS-CPS (see King et al., 2010). Log wages are residual wages from a regression of hourly log
wages of full-time (at least 35 hours of work and 40 weeks per year) male workers aged 25 to 59 on age,
age squared, dummies for education, race, state, and marital status.

Figure 1: US Wage Inequality

math skills.3 The increasing importance of math skills for college educated individuals

is shown in panel (a) of Figure 2, where increasing wage returns to math skills are set

against the stagnant returns of general ability. In contrast, the non-college group has

experienced the opposite, with decreasing wage returns to math skills set against increasing

returns to general ability. This evidence, combined with the three facts above, suggests

that the US economy has not only experienced SBTC, but also math-biased technical

change (MBTC), where MBTC cannot be exploited through college attendance alone.

More precisely, students who study math-related topics in college will enjoy the largest

wage benefits. Thus, the trends presented in Figure 2 emphasize MBTC as a mechanism
3General- and math ability are measured by the Armed Forces Qualification Test (AFQT) from the

National Longitudinal Survey of Youth 1979 (NLSY79). General ability is a combination of math- and
verbal abilities for the 1979 cohort (see, Altonji et al., 2012, for details on the construction of standardized
AFQT scores).
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(b) Less than College

Source: NLSY79 (males aged 14-22 in 1979). Wage returns are computed from yearly regressions of
hourly log wages of full-time workers (at least 35 hours in main job) on standardized AFQT test score,
standardized AFQT math scores, age, age squared, dummies for race, region, marital status, and whether
the individuals lives in a MSA or not.

Figure 2: Wage Returns

underpinning income inequality between college graduates. MBTC is unlikely to be the

main driver of income inequality within the bottom half of the US wage distribution.

The facts and trends discussed above complement the research by Kambourov &

Manovskii (2009), who explain a large part of within-group wage inequality by focusing on

occupational mobility and the cost of switching occupations. They find that occupational

mobility accounts for a significant portion of wage inequality. Similarly, Huggett et al.

(2011) study lifetime inequality by decomposing the contribution between initial human

capital endowment and “luck,” finding that 61.5 percent of the variation in lifetime earnings

are due to initial endowments. However, the authors are silent on the decisions (forces)

that lead to the differences in human capital at age 23. Thus, we expand on this body of

research by modeling the initial conditions that proceed labor force choices. Our approach

differs from Kambourov & Manovskii (2009) and Huggett et al. (2011) by explaining what

shapes the individual heterogeneity at the time of occupational choice (i.e., they do not

model the formal college human capital accumulation process). We believe the formation

4



of initial conditions (by age 23 when entering the labor market) to be important, as edu-

cation choices matter for occupation decisions later in life. We show that intra-education

group variance is missed when separating the population strictly by educational attainment

(college, non-college) alone.

Intra-education group income inequality motivate Altonji et al. (2012), who find that

male electrical engineers earn 51.6 percent more than male education majors, which is

comparable to the college wage premium of 57.7 percent. However, due to the empirical

focus of their research, they only estimate disaggregated cross-sectional returns to college

majors with associated math and verbal SAT scores. The authors note that this area

of research is relatively unexplored, but is important for understanding the structural

mechanisms underpinning the ex post outcomes of higher education. A comprehensive

review of the existing empirical studies on the returns to college major can be found in

Table 2 of Altonji et al. (2012). Specifically, the authors note that there is lack of research

explaining why individuals choose different education types, and how this translates into

occupational choices. A crucial difference between our research and Altonji et al. (2012)

is, by using the information on mathematic skill requirements within occupations from the

Dictionary of Occupational Titles4 (DOT), we show that mathematics-focused majors are

highly correlated with ex post wage outcomes through the occupational choices available

to these majors. We hypothesize that wage inequality is driven, to a large extent, by

individuals’ initial abilities, which limit education options and, consequently, occupational

choices.

Addressing similar wage discrepancies as Altonji et al. (2012), Silos & Smith (2012) look

at the trade-off between acquiring specific and targeted human capital. They concentrate

on individuals’ choices between education paths leading to specific occupations versus

education paths that have broader applicability, and thus more occupational choice. The

authors show that policies directed at occupation-specific human capital accumulation lead
4Dictionary of Occupational Titles, 1977 and 1991
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to lower income growth and lower inequality. MBTC sits within the broader educational

transition described above. We emphasize the importance of the skill types accumulated,

with particular attention given to mathematics as either a specific necessary ability or as a

strong indicator of associated abilities. Those who have major in math-intensive areas may

initially sort into high-wage occupations, with little incentive of switching (to alternative)

occupations.

Carneiro et al. (2011) and Eisenhauer et al. (2013) explore another dimension of intra-

education group income inequality and find that the returns to college enrollment are

approximately zero for low ability individuals, and possibly negative. MBTC is a potential

mechanism that explains this observation, as math-light college majors, without excep-

tion, occupy the bottom of the college group wage distribution. Furthermore, there is a

significant mass of college graduates with zero and three college math credits.

The idea of SBTC found in Acemoglu (2002), which builds upon the empirical work

of Bartel & Lichtenberg (1987) and Autor et al. (1998), formalizes a model in which the

labor augmenting technical change is divided along the education dimension (college/non-

college). This model has become a workhorse for analyzing and explaining the persistent

increase in the relative wages of college graduates. Our work builds on this existing frame-

work by focusing on the distributional wage changes between college graduates. We add

a separate mechanism that approximates the specific skills driving wage inequality intra-

college graduates.

The college attendance mechanism in this paper is loosely based on Hendricks & Schoell-

man (2014). In that paper the authors look at the discrete education choices of individuals

(i.e., high school, some college, and college), focusing on ex ante abilities as measured by

IQ scores. Their results show that one-third of the college wage premium and one-fourth

of its growth is driven by ability (“ability premium”). While looking at ability as a driver

of wage outcomes, Hendricks & Schoellman (2014) define broad education categories that

mask the sub-group mainly driving wage inequality: the top earning college graduates,

6



who exhibit strong mathematical abilities.

This paper is unique in linking ability, acquired math skills, occupations and rising

wage inequality. We aim to explain the evolution of the college graduate wage distribution

using a model that emphasizes MBTC combined with the three facts previously discussed.

The model revolves around the education choice. Individuals make a choice to attempt

college or directly enter the labor market. As we are interested in the outcome of the college

education process, we directly assign individuals math credits subject to ability constraints,

with some individuals dropping out of college. Math credits characterize each college major

in our model. Individuals supply both their ex post ability and any acquired math skills

to the labor market. Only college graduates can supply the math skills associated with

college majors. Firms hire college and non-college labor. Wage inequality is driven by both

generic SBTC and specific MBTC.

Our results highlight the strength of MBTC as a determinant of intra-college graduate

income inequality. With SBTC alone, the college wage premium is matched through all

college graduate wages growing over time, which ignores the observed intra-group trends.

In contrast, a combination of SBTC and MBTC matches both the aggregate and intra-

group trends observed in the data: the stagnation of wages at the bottom of the college

graduate group and the substantial increase in wages for the top college graduates.

Wage inequality across different education groups, mathematic requirements of college

majors and quantitative occupation requirements form the basis of our model. Thus,

Section 2 provides a summary of the data facts related to wage inequality, occupations and

college majors over time and across cohorts. The general equilibrium model is outlined in

Section 3, Section 4 explains the calibration procedure, and Section 5 provides analytical

results. Section 6 concludes.
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2 Data

This research relies on three facts listed in the introduction and expanded upon in this

section. Together, these three points present a coherent story of ex ante mathematical

ability dictating college major options, from which occupations and, ultimately, wages

are determined. Those with higher mathematics abilities pursue math-heavy majors and

occupations. These particular occupations also enjoy the highest wages. Furthermore, the

math intensive majors that lead to higher wage occupations are increasingly shunned by

each subsequent generation of college degree holders. This shift away from math-heavy

majors further exacerbates wage inequality.

2.1 Who is Driving Wage Inequality?

To illustrate which education-group subsets are driving wage inequality, we use data

from the Current Population Survey (CPS), from which the residual of a Mincer wage

regression is derived from log hourly wages of full-time, full-year males aged 25-59. The

regression controls for age, age-squared, race, marital status, and state of residence (using

CPS weights). The unexplained residual for various education-wage groups are compared

in Figure 3. We use the notationally convenient abbreviations for wage percentiles: “C”

for college, “NC” for non-college, and the “A” for the total population (all).

The cross-education wage-group comparisons highlight the importance of high-earning

college graduates in driving wage inequality, especially since the mid-1980s. Figure 3a

compares the residual wages of the C10 and C20 with the NC80 and NC90 wage groups,

normalized against the A50 (50th percentile in the total sample). The bottom earning

college graduates have significantly lower wages than the upper non-college wage groups

and the average wage. All comparisons show a flat or mild divergence. The final comparison

within Figure 3a shows the bottom college-wage decile has lost ground against the average

individual. To put the average into perspective, college-graduates account for about 30

percent of the sample. That is, the average individual (A50) is a non-college graduate, just

8
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(b) Top
Source: CPS. See Figure 1 for the computation of log hourly wages.

Figure 3: Wage Performance

above the average non-college (NC50) individual (see Figure 3b bottom line).

In contrast to Figure 3a, Figure 3b compares the residual wages of the middle and top

college, and the middle non-college wage groups with the average individual. The C90

wage group has outpaced the C50 wage group by 20 percent since the mid-1970s. This is

a remarkable performance considering the C50 wage group increased their wage premium

against the median individual by approximately 12 percent. For reference, the college

wage premium grew by 22 percent. The implications of this figure are summarized in two

points: (1) the average college graduate is outpacing all other groups, but (2) the top

college graduates are sprinting ahead of everyone. Thus, a large part of wage inequality

growth is driven by the top college-wage groups, while the bottom college-graduates are

left behind compared to a large share of non-college graduates.

2.2 Fact 1: MBTC

As within-group wage inequality is driven by the top earners, it is important to pin

down the characteristics that defines this group. The idea of MBTC is compelling when

considering the relative returns to math and general ability previously presented in Figure

2 for the National Longitudinal Survey of Youth 1979 (NLSY79) cohort. For college grad-
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Source: CPS. See Appendix B on the detailed computation of log wage rates.

Figure 4: Relative Log Hourly Wages of High- to Low-Math Occupations

uates, labor market returns to math have increased over time, with the evidence pointing

to MBTC as the driver. However, estimating MBTC together with SBTC requires a time

series dataset of the US economy. As the American Community Survey (ACS) only has

cross sections for 2009 and 2010, we use the DOT numerical requirements to exploit the

time series dimension of the CPS to further understand the importance of MBTC.5 Figure

4 shows relative log wage rates of college graduates split equally between high- and low-

math occupations6 relative to non-college wage rates. The wage rates are computed using

efficiency units of labor, with more detail on the precise computation found in appendix B.

The relative wages of high-math occupations began to diverge in the mid-1980s, which is

consistent with the beginning of large-scale personal computer adoption, a main driver of

SBTC (Autor et al., 1998). Results suggest that, for college graduates, labor augmenting
5Appendix A provides additional detail about the DOT aptitude measures used in this paper.
6The 50% split means that the cutoff between low- and high-math occupations is such that 50% of

college graduates in 1974 work in high-math occupations. However, the results are not sensitive to this
cutoff, e.g., using a top-third versus bottom two-thirds split yields similar quantitative results.
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Figure 5: Occupation Math Requirements and College-Level Math Credits by Major

technical change on high-math occupations has grown about 16 percent per annum faster

than on low-math occupations. Appendix B provides details on the estimation method for

both SBTC and MBTC over time using the CPS.

2.3 Fact 2: College and Work

Figure 5 depicts the relationship between college majors’ math credits and the numer-

ical skill requirements of occupations in 2010 for individuals aged 23 and 62. The figure

uses the individual-level observations with college major and occupation information from

the ACS, combined with the DOT numerical job requirements.7 All individuals are first

grouped by their college major and the average occupation math requirement is computed,

as there are multiple occupation outcomes within each college major. This figure shows

that occupation-specific math skills are highly correlated with college-level math credits
7The ACS 2010 is used throughout. The ACS 2009 is the first year in which college major is included.

Note that the trends observed in the ACS 2010 are virtually identical to the ACS 2009.
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Figure 6: SAT Math Scores and College-Level Math Credits by Major

by college major, with a 0.65 correlation coefficient.

2.4 Fact 3: College Math and Ability

Looking at the initial characteristics that lead to college major sorting, Figure 6 merges

college-level math credits and mean SAT Math scores by college major from the National

Center for Education Statistics (NCES) to individuals in the ACS. The results illustrate

that ex ante abilities are correlated with college-level math credits with a correlation co-

efficient of 0.77. Thus, those with high-math abilities prior to college, as measured by the

average SAT Math scores of those graduating within a specific college major, are more

likely to graduate from math intensive college majors, as measured by college-level math

credits.
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Figure 7: College Major Graduation Share by Cohorts

2.5 Other Measures

The ACS offers a cross-sectional snapshot of college majors in 2010, from which we

construct a measure of how individuals’ college major choice has evolved. This assumes

that most individuals do not go back to school beyond the age of 30, and that the ACS

sample is representative of the population at every age group. Figure 7 illustrates the

changes in degrees obtained, as measured by the share of graduates at each math credit

level of three sample cohorts between the 1960s and 1980s. The figure shows a general

and persistent pattern of college graduates shifting away from relative high-math majors

to low-math majors since the 1960s. Given the general trend toward MBTC in the labor

market, this pattern may seem puzzling. However, the leftward shift in the quality of

college students, suggested by Hendricks & Schoellman (2014) and Heckman & Mosso

(2014), can also explain a shift towards the left in Figure 7. The hypothesis to be tested

in this paper is to precisely determine the importance of MBTC combined with this shift
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Table 1: Ability Measures and Wages

log(w) AbilityG AbilityV AbilityN SATM
AbilityG 0.601*** 1
AbilityV 0.563*** 0.966*** 1
AbilityN 0.846*** 0.766*** 0.719*** 1
SATM 0.609*** 0.598*** 0.571*** 0.725*** 1
SATV 0.387*** 0.565*** 0.551*** 0.502*** 0.796***
* p < 0.05, ** p < 0.01, *** p < 0.001

towards low-math majors in generating the observed increase in wage inequality within

college graduates.

Table 1 shows how other measures of ability are correlated with log wages, college

math credits and the usual SAT measures of ex ante math and verbal ability. AbilityG,

AbilityV and AbilityN are the DOT measures for general, verbal and numerical aptitudes,

respectively.8 The results presented here are for all individuals, with similar results across

cohorts. However, the correlation between log wages, general- and verbal ability are smaller

for younger cohorts. For example, individuals aged 28 to 32 in 2010 (the 1980 cohort) have

a correlation between wages and general ability of 0.46, verbal ability of 0.43 and math

ability of 0.78. The population correlations for these same measures is 0.60, 0.56, and

0.85, respectively (see Table 1). This difference may be due to an age-effect when first

entering the labor market, i.e., individuals learn about different occupations and their skill

requirements through experience.

The correlation for math measures (SATM, AbilityN) are 40-60 percent greater than

non-math measures. While this is possibly due to noise within the non-math measures,

the correlation between SATM and SATV is 0.80. This high correlation between math

and verbal scores, despite the much higher correlation between log wages and math scores,

further highlights the special significance of math as either a direct or indirect measure of

high-return skills in the labor market. Note that, with respect to the timing of college-

level education, the DOT ability measures are ex post assessments, whereas the SAT ability
8The DOT measures of ability are detailed in Appendix A.
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measures are ex ante assessments.

3 Model

As this research is focused on the evolution of wage inequality over time, a general equi-

librium model is required to provide the time dynamics that would invariably be ignored

by estimating a regression model on the cross sections of available data. The overlap-

ping generations model used here features a unit mass of finitely lived agents and a single

representative firm.

3.1 Individuals

The model is loosely based on Hendricks & Schoellman (2014). However, the schooling

decision is modified to incorporate a choice between “college majors” and the fact that

individuals face constraints based on their ability. Figure 8 provides the basic model time-

line for individuals. For each generation, there are two primary periods with all decisions

taking place in period 0 and the realization of the decisions occurring in period 1. During

period 0, individuals choose to either enter or forgo college (college or non-college). At the

beginning of period 1, individuals are about 18 years old. If they attempt college there

15



are two outcomes: (1) drop out/fail or (2) graduate with a specific degree characterized

by specific acquired math skills, mi. Both college graduates and dropouts enter the labor

force in period 2, with individuals who drop out/fail losing one period of income as an

opportunity cost of attempting college. Each subsequent period, individuals supply their

general ability and acquired math skills to firms in exchange for wages.

Individuals’ decisions within the model are straightforward. Individuals decide to pur-

sue college education or enter the labor market in period 0. This is the only choice available

to individuals in this model. Dropping out is determined by a single ability cutoff. The

college major “choice” is simplified to a direct mapping from human capital, hm, to ac-

quired math skills, m, without an explicit choice. Arcidiacono et al. (2012) and Zafar

(2013) find strong evidence that men optimize their education choices in order to earn the

highest wage return. Also exploring men’s education choices, Paglin & Rufolo (1990) find

empirical evidence that men choose college majors based on their math ability. This result

is similar to that of Stinebrickner & Stinebrickner (2014), who show that many people

attempt math-heavy college majors, but learn about their abilities through failure. These

people move into college majors with lighter math loads, with the failure and “drop” process

repeating until the student’s ability is matched to the math content of the college major

or they drop out. Thus, for men, combining these results points to a direct mapping from

initial ability to the highest possible college math outcome.

The education choice is determined by weighing the financial benefits against the utility

and opportunity costs (lost wages) of studying. Markets are complete, such that income

maximization and consumption maximization yield the same results, with discounting of

β = 1
1+r . Thus, the individuals’ objective function is:

max
si

{
N∑
t=2

(
1

1 + r

)t
E
[
p(θ)ωet(θ, θm) + (1− p(θ))ωut(θ)

]
− ζi,

N∑
t=1

(
1

1 + r

)t
E(ωut(θ))

}
.

(1)
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Individuals make a schooling choice, si ∈ {e, u}, between attending college or not.

Individual wages are given by ωijt, with j = {e, u} denoting the college graduate (educated)

or non-college (uneducated) outcomes. Wages are a function of individuals’ initial general

ability, θi. College-graduate wages are, in addition, also a function of individuals’ initial

math ability, θim. The probability of graduating from college is represented by p and

depends on an individuals’ initial general ability, θi. Individuals are heterogeneous across

initial general ability (θi), initial math ability (θim) and taste for college (ζi).

While initial ability is defined in terms of θi and θim, agents are aware that ability

translates into human capital (hi), through a noisy process, that affects their performance

both at school and at work. This process is defined as hi = exp(θi+εi) and him = exp(θim+

εi) for general and math human capital, respectively. Individuals’ ex ante estimate of their

general and math human capital is given by ĥ and ĥm. Students generally overestimate

their human capital when making schooling choices, which we call overconfidence (for an

empirical motivation see Bordalo et al., 2014, and references therein). This overconfidence

is seen in individuals’ ex ante general and math human capital estimates: ĥ = exp(θ + ε̂)

and ĥm = exp(θm + ε̂), where E(ε̂) > E(ε).

College is not reversible and dropping out occurs only if an individual does not meet

the minimum graduation requirement set by h. I.e., p(θi) = 1 if hi(θ) > h otherwise p = 0

and the individual drops out of college.

Math human capital has no value in the labor market unless an individual studies

math in college. We will approximate this college major matching process by allocating

math credits directly to individuals based on their ability. Acquired math skill in college,

mi(hm), is an increasing function of math human capital, ∂m
i(hm)
∂hm

> 0.

The wages for college educated individuals are determined by,

ωiet = wet
(
wheth

i + wmetm
i(hm)

)
exp(ηit), (2)
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where wet are general wage returns to a college degree for general human capital (indexed

h) and acquired math skill (indexed m). A transitory luck component, η, is drawn each

period.

The wages for uneducated individuals are,

ωiut = whuth
i exp(ηit), (3)

as math human capital has no value unless refined in college. Uneducated individuals face

the same transitory luck component, η, as educated individuals.

3.2 Firms

A representative firm hires college and non-college labor to produce a final good (Yt).

The production function is a CES between non-college and college labor. College labor is

a nested-CES between general human capital and math. Non-college labor, by definition,

only supplies general human capital.

Yt =
[
αLνhut + (1− α)

[
λ (AtLhet)

ρ + (1− λ) (AtMtLmet)
ρ ]ν/ρ]1/ν (4)

The elasticity of substitution between education types is 1
1−ν . The elasticity of substi-

tution between general human capital and acquired math skills is 1
1−ρ . Labor shares are

comprised of two components for educated individuals, general human capital and acquired

math skills, and general human capital alone for uneducated individuals. Formally, labor

shares are defined as,

Lhjt =

∫
i
(1(si=j)h

i)di, ∀j = e, u and Lmet =

∫
i
(1(si=e)m

i)di.

At is skill-biased technical change (SBTC) and Mt is math-biased technical change

(MBTC) over time, with growth rates γat and γmt for SBTC and MBTC, respectively.
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Thus, SBTC is At = (1 + γat)At−1 and MBTC is Mt = (1 + γmt)Mt−1.

The model solutions follow from the firm’s cost minimization problem. If we define

college labor output as,

Yet =
[
λ (Lhet)

ρ + (1− λ) (MtLmet)
ρ ]1/ρ,

with a price of pet = wet, given perfect competition, then the relative demand for college

labor output from the firm’s minimization is,

(
Yet
Lhut

)
demand

=

(
Aνt (1− α)

α

whut
wet

) 1
1−ν

. (5)

Firms demand relatively more college labor when the wage rate decreases or college labor

productivity (At) increases. The relative demand for acquired math skills (“college math”)

from the firm’s solution is,

(
Lmet
Lhet

)
demand

=

(
Mρ
t (1− λ)
λ

whet
wmet

) 1
1−ρ

. (6)

Firms demand relatively more college math when the wage rate decreases or the produc-

tivity of acquired math skills (Mt) increases.

3.3 Equilibrium

The general equilibrium conditions are dependent on the individuals’ and the firm’s

optimization problems.

An equilibrium, given wage rates {whut, wet, whet, wmet}, is defined by:

1. The education choice, si = {e, u}, that maximizes the individual problem, subject to

the graduation constraint hi ≥ h;

2. The demand for labor {Lhut, Lhet, Lmet}, that minimizes the firm’s production cost;

and
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3. Labor markets clear, both for general human capital, (Lhjt)demand = (Lhjt)supply for

j = {e, u}, and for college math, (Lmet)demand = (Lmet)supply.

3.4 Dynamics

To compute actual wage rates, the final good price is normalized to one, pt = 1. Using

the unit cost of producing one unit of output, it is straight forward to derive all wages

from Equations (4)-(6). The wage rates of college labor input are,

whet = wetλ
1/ρ

(
1 +

Mρ
t (1− λ)
λ

(
Lmet
Lhet

)ρ)(1−ρ)/ρ
(7)

and

wmet = whet
Mρ
t (1− λ)
λ

(
Lhet
Lmet

)1−ρ
, (8)

where

wet = At(1− α)1/ν
(
1 +

α

Aνt (1− α)

(
Lhut
Yet

)ν)(1−ν)/ν
. (9)

SBTC (At) increases the returns to all college labor. There are two channels that increase

the returns to math college, (1) a direct technical change effect, and (2) an indirect supply

effect. First, MBTC (Mt) increases the returns to college math directly. Second, a relatively

faster increase in general human capital compared to the supply of college math, Lhet
Lmet

,

given an elasticity parameter of ν < 1, also increases the wage rate on college math, wmet.

Therefore, consistent with our main hypothesis, if individuals are constrained in learning

math, or new college entrants are unable to learn/study math, it is possible that the returns

to math increase faster than the returns to college, leading to a larger spread between the

top and bottom percentile wages within the college educated group. As a consequence, the

larger the absolute number of college entrants, given that every new marginal entrant will

have a lower ability level, the larger the post-education wage inequality. For completeness
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the wage rate of uneducated workers is determined by,

whut = wet
α

Aνt (1− α)

(
Yet
Lhut

)1−ν
, (10)

where the non-college relative wage decreases with SBTC, which is consistent with the

SBTC literature.

4 Calibration

The model parameters can be grouped into four categories: (1) standard parameter val-

ues, {β,N}; (2) individual-specific parameters, {µθ, σθ, σζ , µ̂ε, σε, ση}; (3) college-specific

parameters, {δ0, δ1, h,m}; and (4) firm-specific parameters {γjt, α, λ, ν, ρ}. Each category

of parameters is discussed in separate subsections below. The calibration procedure esti-

mates all parameter values jointly.

4.1 General Parameters

The model has five-year time periods and is simulated for seven periods, from 1980

to 2010. We start the model economy at 1980 for two reasons: (1) the 1960 cohort of

the NLSY79 is the first reasonable target available, i.e., individuals making their college

decisions in 1980; and (2) the Vietnam War distorted the college decision of cohorts born

before 1960, as the draft could be avoided by college enrollment (see Lemieux & Card,

2001). In addition, the decompositions in Section 2 show that income divergence began

around 1980, with a relatively flat trend between 1975 and 1980. The model uses a standard

discount factor of β = 0.9 per period, which implies a discount rate of approximately two

percent per year.

We set N = 9, meaning that individuals live for nine periods after the college/no-college

decision. Thus, each period contains nine generations and the modeled working life-time

of an individual covers the equivalent of 45-years. As the period 0 decision is assumed to

21



take place around the age of 18, the model covers the age range of 18 to 63. The simulation

accounts for the baby boom/bust that generates different cohort sizes. However, the results

are not sensitive to these cohort size differences.

4.2 Individual and Education Specific Parameters

The individual and education parameters interact directly. Therefore, this subsection

discusses these two parameter groups together. Given that the NLSY79 was administered

to individuals aged 14 to 22 in 1979, and model simulations start in 1980, we drop the

youngest individuals for NLSY targets described below. That is, we match the 1960 cohort

definition, only including individuals born before 1963.

Initial ability and human capital. The two types of initial ability, general (θ) and

math (θm), are distributed normally. Formally, θ ∼ N(0, σ2θ) and θm ∼ N(0, σ2θ). The

correlation (ρ) between initial general ability and initial math ability is set to φ = 0.9367,

matching the correlation between SAT I and SAT I Math scores in the ACS, E(θm) = φθ.

To generate the mapping between initial ability measures (θ and θm) and human capital

(h and hm), the noisy process ε is assumed N(0, σ2ε ). The ex ante process ε̂ is also assumed

N(µ̂ε, σ
2
ε ).

Schooling choice. Preferences for studying impact the initial college/no college school-

ing choice. Study preferences are defined by ζ, which can be considered an individual’s

taste for college. While individuals sort into college based on their initial ability, Figure

9 shows that this sorting is not perfect. Thus, ζ ∼ N(0, σ2ζ ), where a negative ζ is a cost

and a positive ζ is “love” for studying.

Schooling outcome. There are two outcomes for those who attempt college education:

(1) dropout/failure or (2) graduate in a college major characterized by math credits. In

the model, the dropout rate is governed by a minimum human capital standard, h, which
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Source: NLSY79. Males born before 1963 (1960 cohort). Standardized test scores as computed by the
method of Altonji et al. (2012).

Figure 9: Ability Distribution by Education Type

is assumed constant over time. Those who do not drop out of college accumulate a repre-

sentative measure of acquired math skill in college (mi), with functional form,

mi = min {m,max (0, δ0 + δ1 exp(hm))} . (11)

Math acquired in college is subject to a cap, m, which is set to match the share of

individuals with 21 or more math credits in the 1960 cohort. The choice of 21 math credits

is driven by returns to math credits in the ACS sample. A regression of math credits and

math credits squared on wages, controlling for a number of characteristics, for full-time

full-year male employees, suggests an increasing and concave relationship for the returns

up-to 21 college math credits (see Figure 10). The returns to additional credits above 21

flattens and then drops sharply at 40 credits. These 40-credit college majors are primarily
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Figure 10: ACS Returns to College Math Credits

math majors. We argue that numerical skills and the tools learned in mathematics are

valuable on the job market, but we do not, per se, think that esoteric math courses (e.g.,

chaos and dynamical systems) are the main driving force. However, the US share of college

graduates with 40 credits is small.9

The number of college graduates studying zero math credits can be seen in Figure 7.

These individuals will benefit from SBTC, but not from MBTC. We define δ0 such that

the share of college graduates from the 1960 cohort with zero math credits is matched.

Given the mapping function for mi, δ0 will be a negative value.
9Only 1.6 percent of college graduates within the entire 2009/2010 sample obtain 40 math credits.
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Additional wage component. The model features a standard luck component (e.g.,

Storesletten et al., 2001) in wages over the life-cycle. For the precise process used in this

paper, see Guvenen & Kuruscu (2010). This luck component is i.i.d. with mean zero and

standard deviation ση.

Remaining moment conditions. The six structural parameters that do not have a one-

to-one mapping to empirical moments are estimated by matching seven US data targets

simultaneously. The seven moments that govern individual actions pertain to the 1960

cohort (i.e., individuals making education choices in 1980) or the year 1980. We group the

moments that we believe to be particularly informative of a given parameters.

• h is governed by the college dropout rate in 1980. Although there is a wide range

of estimates for the dropout rate, we use estimates by Bound et al. (2010) for two

reasons: (1) the authors provide estimates disaggregated by gender; and (2) their

definition aligns with our interpretation of college dropouts. That is, the college

dropout rate defined as the share of all individuals age 25 in 1980, who have some

college but lack a four-year college degree. More importantly for our research, the

results presented below are not sensitive to the precise value of the dropout rate.

Note that the model generates an increasing college dropout rate over time, which is

a characteristic that the literature agrees on (for example, Bound et al., 2010; Bailey

& Dynarski, 2011, both show a rise in college dropout rates).

• µ̂ε, σε, σζ are determined by the average general ability of college graduates (NLSY79,

Armed Forces Qualification Test (AFQT)), the correlation of high school GPA and

freshman college GPA of 0.4 (Rothstein, 2004), and the average ability of non-college

workers (NLSY79, AFQT). That is, h provides a clear dropout cutoff, with over-

confidence, µ̂ε, contributing to the dropout rate, i.e., people attempt college who

cannot graduate. Uncertainty over actual abilities is generated by σε, with a large

literature suggesting that SAT scores and high school performance are an imperfect
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measure of college performance, and significant information about own ability being

revealed through studying at a college level.10 Lastly, σζ generates imperfect sorting,

since individuals have idiosyncratic preferences for school, which translates into a

larger variance in the ability of college graduates. This variance is used to explain

differences in the average ability between college and non-college individuals.

• σθ and δ1 are determined through three 1980 relative log wage targets: NC90-NC10,

C90-C50, and C90-C10. These second moments cover the main intra-group inequal-

ity measures that we believe are important. Note that the model has an extra wage

target. This additional second moment will provide information on the relevant

parameters determining variance: σθ, σε and σζ . Thus, this extra wage target is im-

portant in matching both first and second moments when analyzing wage inequality

in the model.

4.3 Firm-Specific Parameters

There are four parameters associated with the firm that must be pinned down in 1980,

along with two time trends.

Time invariant firm parameters. Two parameters are set outside the estimation pro-

cedure. More precisely, the parameter ν is set within the range of standard estimate

for college to non-college labor elasticities (see Autor et al., 1998, 2008), and the share

parameter on human capital is normalized, λ = 0.5.

The parameters α and ρ are pinned down by matching the share of college graduates

(age 25 to 30) in 1980 and the college wage premium in 1980. The resulting elasticity

parameter is in line with estimates in Appendix B, ρ = 0.707.11

10Stinebrickner & Stinebrickner (2013) find that 45 percent of the college dropout rate at Berea College
(a small liberal arts college in Kentucky) can be explained by students learning their academic performance
in the first two years of college.

11Alternatively, using the ACS data, but instead computing elasticities across occupations rather than
time, as in Appendix B, yields similar results as the calibration, with the interval of plus/minus one
standard suggesting ρ ∈ [0.33, 0.72]. However, since this method is subject to various assumptions related
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Time trends. Given the definition of SBTC and MBTC, we normalize A and M to one

in 1980. By definition, a rise in At will affect both the returns to college ability and math

equally, but a rise inMt will only increase the returns to math. We restrict the growth rate

of SBTC such that γa,t ∈ [0.018, 0.028], which follows from the range of estimates found

in Table 2 of Autor et al. (2008). The two growth rates are then calibrated to match the

rise in the share of college graduates from 1980 to 2010, along with the rise in the college

wage premium. This process yields a SBTC growth rate of γa = 0.027 per annum, which

lies at the upper range of possible estimates. As relatively high SBTC decreases the effect

of MBTC (Section 3.4), the SBTC growth rate estimate is conservative. The calibration

suggests that MBTC is substantial during this time period, with γm = 0.043. We present

a counterfactual is Section 5.1 to understand how important this precise value of γm is for

the model.

4.4 Calibration Summary

Table 2 summarizes the estimated and calibrated parameters, with estimated parame-

ters above the center line and calibrated parameters at the bottom.

The 1980 data targets used in pinning down the calibrated parameters are summarized

in Table 3. The model does well in matching all targets. It only slightly overpredicts the

average ability of college graduates and the C90-C50 wage differential of college graduates.

For the time trends, the model is unable to match the full rise in the share of college

graduates by 2010. However, the model is able to match the share of new college graduates

in 2010. This discrepancy can be explained by the draft during the VietnamWar generating

above average college graduation rates (Lemieux & Card, 2001).

to the computation of relative wage returns, efficiency units and grouping of occupations, our preferred
estimate is using the calibrated elasticity.
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Table 2: Calibration Summary

Parameter Value Source / Type
β 0.9 standard discounting
N 9 retirement at 63 (5 year periods)
ση 0.367 transitory wage luck (Guvenen & Kuruscu, 2010)
θi ∼ N(0, σ2θ) initial ability NLSY79
ν 0.597 elasticity parameter: college to non-college (Autor et al., 2008)
λ 0.5 ability share parameter - normalized
A0t 1.0 SBTC 1980 - normalized
M0t 1.0 MBTC 1980 - normalized
σθ 0.142 initial ability
µ̂ε 0.229 overconfidence
σε 0.205 unknown ability component
σζ 0.042 utility of studying
δ0 -2.953 zero math outcome
δ1 2.769 math skill slope
h 0.109 minimum college requirement
m 0.625 maximum math credits
α 0.411 college share parameter
ρ 0.707 elasticity parameter: ability to math
γa 0.027 SBTC growth rate
γm 0.043 MBTC growth rate

Table 3: Targets Summary

Target Data (1980) Model
Fraction 0 Math Credits 0.113 0.113
Fraction 21 Math Credits 0.118 0.118
College Dropout Rate 0.550 0.548
corr(θ, h) 0.400 0.401
θcollege graduate 0.805 0.821
θnon−college worker -0.282 -0.275
C90-C50 0.568 0.579
C90-C10 1.174 1.154
NC90-NC10 1.104 1.072
College Wage Premium 0.247 0.247
Young College Graduates 0.241 0.247
2010 College Graduates 0.301 0.281
2010 College Wage Premium 0.493 0.495
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Table 4: US Wage Inequality & Model Results

Relative Log Wages
Year 90-10 90-50 50-10

All
Data 1980 116 55 62

2010 150 77 73
Model 1980 112 55 57

2010 126 67 59
% Explained 42 52 23
College

Data 1980 117* 57* 61
2010 145 74 72

Model 1980 118* 59* 58
2010 144 71 73

% Explained 92 68 131
* Moment targeted in the calibration

5 Results

The model accurately captures a variety of inequality dynamics, including part of the

general wage trends and all of the intra-college group wage decomposition between 1980

and 2010. These results are driven by the introduction of MBTC into a standard SBTC

framework. The counterfactual presented in Section 5.1 confirms that MBTC must be

present in order to match the wage trends of college graduates at both the top and bottom

deciles.

The rise in the fraction of college graduates and the college wage premium are matched

by construction. Table 4 compares the total US inequality trends and the modeled results.

The base model explains close to half of the rise in inequality of the aggregate US male

population.

The model’s strength lies in explaining intra-college income inequality, given that

MBTC only impacts educated individuals. The model explains almost all the trends for

college graduates, both at the top and bottom. At the other end of the income distribution,

none of the aggregate non-college trends, NC90-NC10, NC-90-NC50 and NC50-NC10, are
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Figure 11: Model Wage Trend Decomposition

well explained.

The detailed decompositions in Figures 11 provide the answer to why the increase in

wage inequality within the non-college group is not generated by the model. The model

matches the NC80-A50 and NC50-A50 wage evolution, but it predicts a slight fall in both

the NC90-A50 and a large fall in the NC10-A50 percentile (not pictured). In contrast, the

data shows a mild increase in the NC90-A50 relative wage and a decrease in the NC10-A50

relative wage. That is, the model is able to replicate the average uneducated worker’s wage,

but not the extremes. These unmatched trends are unsurprising, as the model ignores the

human capital accumulation of uneducated individuals (e.g., dropping out of high school

or completing vocational 2-year college programs) and MBTC only affects college labor

directly. Therefore, the model is more suited to predict income trends within the top half

of the distribution, which includes all college graduates. Both Figures 11a and 11b show an

almost perfect matching of the the college distribution across the top (C90-A50, C80-A50),

average (C50-A50), and the bottom (C20-A50, C10-A50) deciles.

Initial ability. The NLSY79 and NLSY97 show that ex ante ability, as measured by the

AFQT of college graduates, has fallen from 0.805 to 0.775. Since individuals were aged

12 to 16 in the NLSY97 sample, the natural comparison of college cohorts in the model is
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2000-2005. The model slightly overpredicts the average initial ability in 1980 and predicts

a fall to 0.769 by 2000 and 0.754 by 2005. While the fall is slightly larger than observed

from the NLSY79 to NLSY97, the estimates are close to suggest that the model is not

generating the above wage trends through an incorrect composition of college graduates.

Dropout rate. The model generates a rise in the college dropout rate from the matched

target of 55 percent in 1980 to 59 percent by 2010. Bound et al. (2010) show that the

non-completion rate for males aged 25 went from about 55 percent in 1980 to about 60

percent in 2000. By the year 2000 the model generates a dropout rate of 58 percent, just

shy of the data estimates.

College math credits (0 and 21). The model shifts each subsequent cohort towards

lower college math levels. In the 1960 cohort 11.3 percent of college graduates (in both the

data and model) had zero math credits. By the 1980 cohort this number had risen to 14.9

percent in the data and 14.8 percent in the model. Looking at the fraction of individuals

with 21 credits or more, the data falls from 11.8 percent for the 1960 cohort to 10.0 percent

for the 1980 cohort. The model replicates just over one-third of this drop, generating a fall

from 11.8 to 11.1 percent from 1980 to 2010 for new college graduates.

College majors. Figures 7 and 12 compare the share of college graduates over all math

outcomes (“college majors”). As math is a continuous variable within the model, the figure

is computed by scaling all math outcomes such that the maximum possible credits is 21,

and then rounded up to the nearest three credit equivalent. The model, using a simple

math technology, does well in matching the overall shape and evolution of college graduates

over math outcomes. However, the continuous math outcome variable in the model leads

to a smaller mass around three credits compared to the data. It should be noted that a

large share of college majors might only require three math credits to graduate, suggesting

a kink in the college math “production function.” Since the model studies aggregates at
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Figure 12: College Major Graduation Share by Cohorts

the top and bottom of the wage distribution, this is not of first order importance for the

results.

5.1 Counterfactual

We assess the importance of the returns to math by setting γm,t = 0. The removal

of the MBTC mechanism clearly reveals the contribution of the returns to acquired math

skill. The counterfactual model predicts more individuals attempting college, with a college

dropout rate of 60.4 percent in 2010, but also more individuals graduating from college,

with the share of college graduates increasing to 28.6 percent in 2010 from 28.1 percent in

the benchmark model. The share of zero-math credit graduates increases to 15.9 percent

and the share of individuals with 21 credits decreases to 10.8 percent by 2010. Simultane-

ously, the average quality of a college graduate drops from 0.744 to 0.712 in terms of initial

ability.

Table 5 compares the 2010 wage inequality levels between the data, the benchmark
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Table 5: US Wage Inequality & Counterfactual Results

Relative Log Wages
Year 90-10 90-50 50-10

All
Data 2010 150 77 73
SBTC + MBTC 2010 126 67 59
SBTC 2010 129 68 62

% SBTC Explained 51 55 42
College

Data 2010 145 74 72
SBTC + MBTC 2010 144 71 73
SBTC 2010 118 60 58

% SBTC Explained 3 4 1

model and the counterfactual model results, omitting the 1980 values, as they are identical

to Table 4 by construction. At an aggregate level, the counterfactual model is marginally

better than the benchmark model in matching broad income inequality trends, particularly

at the bottom of the wage distribution. However, these broad measurements hide the intra-

college inequality trends that are ignored by the counterfactual model. The second part

of Table 5 shows that the counterfactual model is unable to match any of the trends in

wage inequality between college graduates, explaining only one to four percent of the rise

in inequality from 1980 to 2010.

Figure 13 further highlights how the counterfactual model matches the aggregated in-

come inequality trends for the wrong reasons. The counterfactual predicts a sharp increase

in wages for the bottom college deciles and a sharp fall for wages of the top non-college

deciles. This first point is driven by higher returns to the general human capital of college

graduates (relative to math). The non-college results are driven by composition. That is,

more low ability students enter and graduate from college, effectively decreasing the ability

of the top non-college deciles.

The mechanisms of SBTC and MBTC work in opposite directions for the bottom of

the college distribution. SBTC alone benefits all college graduates in wage terms. The

bottom deciles, in particular, gain compared with the average individual in the economy.
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Figure 13: US Wage Inequality & Counterfactual Results

Further highlighting the broad power of the SBTC mechanism, the counterfactual pushes

the income of the C20 group above the A50 wage, while the C10 wage approaches parity

with the A50 wage. In contrast, MBTC is effective at only increase the top income deciles,

leaving the bottom deciles with decreasing or stagnant wages. Thus, only the combination

of these two different technical change concepts can generate the observed wage inequality

trends of the US male college graduate population, along with part of the divergence in

wages across the entire US male population.

6 Conclusion

This paper studies the role of math in determining both inter- and intra-education

group wage inequality. The connection between ex ante math abilities, college math, and

the labor demand for math skills provides a simple and powerful mechanism, explaining

a large component of male wage inequality in the US. The estimated structural model
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highlights the importance of MBTC in explaining both aggregate wage inequality and the

wage trends at the extremes of the college distribution. The model is also able to generate

average trends for both college and non-college groups, closely matching the general trends

achieved by SBTC alone.

Given the results, there a number of interesting research extensions. As we extend the

research on the determinants of wage inequality from a post-education perspective (Kam-

bourov & Manovskii, 2009; Huggett et al., 2011) to a pre-college education perspective, we

assume initial math ability is determined prior to college. Given the central role of math,

studying the origins of initial math skills is of primary importance in determining college

math outcomes and is a natural first extension of the MBTC mechanism presented here. A

second research extension focuses on the gender dimension of education choices to investi-

gate the characteristics of the college majors favored by women. While men optimize their

education choices to maximize pecuniary outcomes and choose high-math college majors

given initial ability constraints, women exhibit more complex preferences with respect to

non-pecuniary outcomes that seem to distort the education decision. In ongoing work, we

study women’s college decisions in a life-cycle model that accounts for atrophy and repair

of skills due to career breaks.
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A Data Appendix: Aptitude Measures

This appendix lists the definition of the three DOT variables referenced in the paper.

The three aptitude variables used are from the DOT 1977 and 1991 editions. We are

unable to use the DOT successor, the Occupational Information Network (O*net), due to

a measurement discontinuity in the recorded aptitudes.

In general, aptitudes measure the ability an individual must possess in order to perform

a job successfully. More precisely, the measure is a function of the share in the population

that meets this ability level. That is, there are five categories: (1) the bottom 10 percent

of the population, (2) the bottom third excluding the bottom 10 percent , (3) the middle

third, (4) the top third excluding the top 10 percent, and (5) the top 10 percent. We

translate these measures to a scale ranging from zero to one, e.g., an aptitude above 0.66

would correspond to an individual in the top-third of the population.

Out of the 11 measures reported in the DOT 1977 and 1991, we use the three measures:

general, numerical and verbal ability.

• General ability is the ability to understand instructions, understand principles and

to make judgments. It encompasses a number of skills, e.g., using logic and scientific

thinking, understanding procedures, establishing facts and drawing conclusions, etc.

This measure is highly correlated with the ability to perform well in school.

• Numerical aptitude is the ability to perform arithmetic. The complexity and speed

of operations is taken into account when assigning the category.

• Verbal aptitude is the ability to understand and use language effectively. Both oral

and written skills, including the use of technical terminology, are taken into account

when assigning categories for each occupation.
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B Empirical Appendix: Estimating MBTC Over Time

Figure 4 graphs the relative wage rates between high-math college and non-college occu-

pations, and low-math college and non-college occupations. Relative wages are normalized

to zero in 1974 for easy comparison of the two MBTC and SBTC trends.

Relative labor supplies and, consequently, relative wages rates, are computed following

Hansen (1993) in estimating labor efficiency units at time t as,

LEjt =
∑
k

ψkLjt,k, (B.1)

where Ljt,k is the total labor supply of group k of labor type j = {u, e,me} (non-college

(u), low-math college labor (e) and high-math labor (me)), and ψk is the group’s weight.

Weights are determined by,

ψk =
ωk
ω
, (B.2)

the average log weekly wage of group k over the average wage of the entire population

(across individuals over the entire time period). Groups are made up of a given five-year

birth cohort, sex and education group (high school dropout, high school graduate, some

college, college graduate, and post-graduate).

Using this definition of efficiency units of labor, log relative wage rates are,

ln(wjt)− ln(wut) =
∑
k

fjt,k
ωjt,k

LEjt
−
∑
k

fut,k
ωut,k

LEut
for j = e,me, (B.3)

where fjt,k is the fraction of group k of labor type j individuals in the economy each period.

B.1 Quantifying MBTC versus SBTC

Given wage rates and relative labor supplies, we can quantify the difference between

SBTC and MBTC as captured in Figure 4.

Analogous to the firms problem in Section 3, we define a nested-CES between the three
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types of labor j = {u, e,me},

Yt =
[
αLνut + (1− α)

[
λ (AtLet)

ρ + (1− λ) (AtMtLmet)
ρ ] νρ ] 1

ν
, (B.4)

with SBTC (labor augmenting technology for all college graduates equally) as, At = (1 +

γat)At−1 and MBTC (labor augmenting technology for high-math labor only) as, Mt =

(1 + γmt)Mt−1.

From the firm’s cost minimization problem, we obtain two relative wage equations,

ln

(
wet
wut

)
≈ (B.5)

C + (ν − 1) ln

(
Let
Lut

)
+ ν ln (At) +

1− λ
λ

Mρ
t

(
ν − ρ
ρ

)(
Lmet
Let

)ρ

and

ln

(
wmet
wut

)
≈ (B.6)

C + (ν − 1) ln

(
Lmet
Lut

)
+ ν ln (At) + ν ln (Mt) +

λ

1− λ

(
1

Mt

)ρ(ν − ρ
ρ

)(
Let
Lmet

)ρ
.

Equation (B.5) shows the college premium of low-math college graduates relative to non-

college labor, and Equation (B.6) shows the relationship between high-math college grad-

uate wages and non-college wage returns. As in Krusell et al. (2000), we can analyze the

growth in relative wages using these two equations, assuming λ = 1− λ,

gwet − gwut = (ρ− 1)gLet − (ν − 1)gLut + νgAt + (ν − ρ) (gLmet + gMt) (B.7)

and

gwmet − gwut = (ρ− 1)gLmet − (ν − 1)gLut + νgAt + ρgMt + (ν − ρ)gLet . (B.8)
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Table 6: College-Labor CES

Variable Coefficient (Std. Err.)
Time 0.002∗∗ (0.000)
Labor Supply -0.274∗ (0.104)
Intercept -0.035 (0.066)
N 37
R2 0.821
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

With the two Equations (B.7) and (B.8) we can compute the two unknowns of interest,

gAt = γat and gMt = γmt.

Having computed efficiency units of labor and relative wages rates from the CPS 1974

to 2010, all that remains is pinning down the elasticities between college and non-college

labor, 1
1−ν , and between low- and high-math labor, 1

1−ρ . The parameter ν = 0.597 is set

as in the simulation (see Section 4). However, ρ used here is not directly comparable with

the parameter from Section 3. Therefore, in the appendix we estimate ρ using CPS data.

The firm’s nested-CES minimization problem provides the following relative wage equa-

tion,

ln(wmet)− ln(wet) = ln

(
(1− λ)
λ

)
+ ρ ln(Mt) + (ρ− 1) ln

(
Lmet
Lhet

)
. (B.9)

Assuming a linear time trend for ln(Mt), we can estimate this equation using relative wages

and efficiency units of labor to obtain ρ. Table 6 summarizes the results. The parameter

ρ = 0.726 is significant at five percent.12 In contrast, the equivalent regression for non-

college labor suggests perfect substitution between low- and high-math uneducated labor.

This is also consistent with the findings of Figure 2b.

With the elasticity parameters, ρ = 0.726 and ν = 0.597, we can compute the growth

in At and Mt to be consistent with the growth in relative wages of non-college/college and

low-/high-math labor, given the growth in efficiency units from the CPS during 1974 to

2010.
12The elasticity is not sensitive to the precise partitioning of low- and high-math occupations. For

example, splitting the sample by the the top-third versus bottom two-third yields similar results.
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Using the whole time period, this simple accounting exercise suggests that γet = 0.021

and γmet = 0.003. That is, MBTC is positive and larger than zero. To put this value into

perspective, comparing At versus At×Mt, the growth rates suggest that labor augmenting

technical change on high-math occupations grew about 16 percent per annum faster than

on low-math occupations.

For robustness, using ρ of plus/minus one standard deviation, ρ = 0.621 and ρ =

0.830, the relative growth of At ×Mt is 14 and 17 percent larger, respectively. The more

complimentary the two types of college labor, the smaller MBTC needs to be to match the

relative wage growth of both low- and high-math labor to non-college labor.
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