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Abstract

Path forecasts, defined as sequences of individual forecasts, generated by vector au-

toregressions are widely used in applied work. It has been recognized that a profound

econometric analysis requires, besides the path forecast, a joint prediction region that

contains the whole future path with a prespecified coverage probability. The forecasting

literature offers several different methods of computing joint prediction regions, where the

existing methods are either bootstrap based or rely on asymptotic results. The aim of

this paper is to investigate the finite-sample performance of three methods for constructing

joint prediction regions in various scenarios via Monte Carlo simulations.
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1 Introduction

Prediction is one of the key objectives in wide areas of applied time series analysis. This

corresponds to the following representative scenario: Given an observed k-dimensional time

series {y1, . . . , yT }, one is interested in predicting the future path of one of the variables, that

is, {ŷT,i(1), . . . , ŷT,i(H)} for some H ∈ N>0 and i ∈ {1, . . . , k}. For example, national banks

publish predictions of the monthly core inflation for the next twelve months or commercial

banks publish predictions of government bond yields over several time periods.

One of the workhorse models used for the computation of a path forecast ŶT,i(H) ..=

(ŷT,i(1), . . . , ŷT,i(H))′ in applied work is the vector autoregression originally proposed by Sims

(1980). According to Stock and Watson (2001), the reasons for the widespread use of the VAR

model are its simplicity and yet the capability of capturing rich dynamics in multivariate time

series. Current research involving path forecasts generated by VAR models include Meyer and

Zaman (2013) or Schorfheide and Song (2012).

Nevertheless, the amount of information about the future path of the variable of interest

that is actually obtained by computing ŶT,i(H) is almost negligible because the future path will

be different from the path forecast generated by a VAR(p̂) model with probability one at least

for continuous distributions. Thus, a profound econometric analysis requires, besides ŶT,i(H),

information about the uncertainty about the entire future path YT,H,i ..= (yT+1,i, . . . , yT+H,i)
′.

In other words, there is a strong need for a joint prediction region (JPR) that contains the

entire future path with a prespecified coverage probability.

In the context of VAR models, the literature offers different methods to construct a joint

prediction region for YT,H,i with prespecified coverage probability (1−α). Jordà and Marcellino

(2010) propose an asymptotic method to construct a rectangular and symmetric joint predic-

tion region. The method is on the one hand based on the assumption that the conditional

distribution of the prediction errors is asymptotically normal and on the other hand on the

application of results by Scheffé (1953, 1959) and Bowden (1970). Staszewska-Bystrova (2011)

proposes a heuristic bootstrap-based method. The joint prediction region with coverage prob-

ability (1−α) is constructed as the envelope of the remaining (1−α)% of generated conditional

bootstrap paths that survived a heuristic iterative elimination procedure. Staszewska-Bystrova

and Winker (2013) propose a method that constructs a joint prediction region by using a thresh-

old accepting optimization heuristic on the generated conditional bootstrap paths1. Finally,

the method of Wolf and Wunderli (2014) is also a bootstrap-based method, but has a sound

theoretical foundation. Their symmetric and rectangular joint prediction region is based on

the bootstrap predictive distribution of the standardized prediction errors.

In this paper, the finite-sample performance of the methods of Jordà and Marcellino (2010),

1The method of Staszewska-Bystrova and Winker (2013) is basically a refinement of Staszewska-Bystrova

(2011). However, the computational burden is enormous and yet the performance is generally inferior to the

one of Staszewska-Bystrova (2011), for details see Staszewska-Bystrova and Winker (2013, Section 4). Thus,

the method of Staszewska-Bystrova and Winker (2013) is omitted from the following performance analysis.
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Staszewska-Bystrova (2011) and Wolf and Wunderli (2014) for constructing a joint prediction

region based on a VAR model is investigated in various scenarios through Monte Carlo simula-

tions. First, the data generating process is correctly specified and the true lag order is assumed

to be known. Second, the data generating process is again correctly specified but the lag order

is estimated using the Bayesian information criterion (BIC). Third, the data generating process

is misspecified, that is, the data is generated according to a vector moving average process or

a threshold vector autoregressive process, but the joint prediction regions are computed based

on a VAR(p̂BIC) model. Fourth, the performance of the joint prediction regions based on a

VAR(p̂) model are compared to the performance of the joint prediction regions based on a

AR(p̂) model. A joint prediction region based on an AR(p) model is obtained by fitting an

univariate autoregressive model to {y1,i, . . . , yT,i}. The empirical coverages are reported for

all the various scenarios. For some of the scenarios the volumes, defined as the average of the

geometric-average widths, indicating the size of the joint prediction regions are also reported.

The remainder of the paper is organized as follows: Section 2 introduces vector autoregres-

sive processes, the different methods of constructing joint prediction regions and the employed

bootstrap method. Section 3 describes in detail the Monte Carlo experiment and presents the

results of simulation and section 4 finally concludes.

2 Model

2.1 Vector Autoregression

Consider a k-dimensional VAR(p) process:

yt = ν +A1yt−1 + . . .+Apyt−p + εt, (1)

where yt is a k-dimensional random vector, the Ai are fixed k × k coefficient matrices, ν is a

k-dimensional vector of fixed intercept terms, and {εt} is a k-dimensional i.i.d. process with

E[εt] = 0, E[εtε
′
t] = Σε. The covariance matrix Σε is assumed to be positive definite with finite

elements. Any VAR(p) process has a kp-dimensional VAR(1) representation

Yt = V + AYt−1 + Ut,

where

Yt ..=


yt

yt−1

...

yt−p+1

 , V ..=


v

0
...

0

 ,A ..=



A1 A2 · · · Ap−1 Ap

Ik 0 · · · 0 0

0 Ik · · · 0 0
...

...
. . .

...
...

0 0 · · · Ik 0


, Ut ..=


εt

0
...

0

 .

A VAR(p) process is stable and stationary if

det
(
Ik −A1z

1 − . . .−Apzp
)
6= 0 for z ∈ C, |z| ≤ 1.
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A stationary VAR(p) process admits a Moving Average (MA) representation of the following

form

yt = µ+

+∞∑
i=0

φiεt−i,

where µ = E[yt] = (Ik −A1 − . . .−Ap)−1 ν and the φi are fixed k×k MA-coefficient matrices.

2.2 Estimation and Finite Sample-Bias

The parameters of a VAR(p) process, β := vec(ν,A1, . . . , Ap), are consistently estimated by the

standard procedure of Least Squares (LS). The LS estimator can be written in the following

closed form expression β̂LS = ((ZZ ′)Z ⊗ Ik)y, where Z = [Z0, . . . , ZT ][(kp+1)×T )] with Z ′t
..=

[1 y′t · · · y′t−p+1] and y ..= vec((y1, . . . , yT )).

The number of lags, if unknown, is estimated by minimizing the Bayesian information

criterion2 (BIC) over a compact set of lag orders S ⊂ N>0

p̂BIC ∈ arg min
m∈S⊂N>0

BIC(m) = log
(∣∣∣Σ̂ε(m)

∣∣∣)+
log(T )

T
mk2,

where |Σ̂ε(m)| denotes the determinant of the estimated covariance matrix of εt based on a

VAR(m) process. The BIC is a consistent order selection criteria, that is, p̂BIC
p→ p, where

p→
denotes convergence in probability as T → ∞. A more detailed discussion about parameter

estimation and the order selection in vector autoregressions can be found in Lütkepohl (2005,

Section 3, Section 4).

It is a well-known fact that the presence of lagged endogenous variables in vector autore-

gressions entails that the LS estimator of β is biased in finite-samples, that is, E[β̂LS ] 6= β. As

a consequence, correcting the LS estimates for its finite-sample bias is desirable. The literature

offers two basic approaches of estimating the finite-sample bias of the least squares estimator;

bias estimates based on closed-form formulas or bias estimates based on bootstrap techniques.

Closed-form formulas have been derived by Yamamoto and Kunitomo (1981), Nicholls and

Pope (1988) and Pope (1990)3. The closed-form formulas are all based on asymptotic ap-

proximations of the finite-sample distribution of the least square estimator. Using asymptotic

approximations removes the bias up to first order; for details see Yamamoto and Kunitomo

(1981) or Pope (1990). Engsted and Pedersen (2014) show that the formula of Yamamoto

and Kunitomo (1981) and Pope (1990) are, although independently developed, in fact numer-

ically identical. From a computational point of view these closed-form solutions are easy to

implement and fast in terms of execution time.

2Alternatively, the lag order can be estimated using the Akaike information criterion (AIC) or the corrected

Akaike information criterion (AICc) of Hurvich and Tsai (1993). However, using the BIC results in a more

parsimonious model which is desirable for Monte Carlo simulations.
3Pope (1990) presents the same bias formula as Nicholls and Pope (1988) but shows that it is still valid under

milder assumptions than in the work of Nicholls and Pope (1988).
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A nonparametric bootstrap procedure to estimate the bias can be found in Kilian (1998).

This bootstrap procedure removes the first-order bias of the LS estimator; for details see Kilian

(1998). The bootstrap procedure is also straightforward to implement, but the computational

burden is substantial, which makes it less practical for a Monte Carlo simulation4.

Taking into account the trade-off between fast execution and accuracy of parameter esti-

mates, the choice falls on the bias correction of Pope (1990). Choosing the closed-form formulas

of Pope (1990) can be justified by the simulation study of Engsted and Pedersen (2014), which

shows for one thing that both approaches indeed yield a significant reduction in bias in fi-

nite samples and for another thing that the performance in terms of bias reduction of both

approaches is very similar for stationary processes.

Pope (1990) derives the following approximation for the bias of Â

Bias(Â) = − b
T

+O(T−
3
2 ), (2)

where

b = ΣU

[
(Ikp −A)−1 + A′

(
Ikp −

(
A′
)2)−1

+
k∑
i=1

λi
(
Ikp − λiA′

)−1

]
Σ−1
Y .

Here, Ikp denotes the kp× kp identity matrix, λi denotes the i-th eigenvalue of A, ΣY denotes

the covariance matrix of Yt and ΣU denotes the covariance matrix of Ut . Neglecting higher

order terms and replacing true parameters by its LS estimates yields the following estimate for

the finite-sample bias of Â and V̂

B̂ias(Â) = − 1

T
Σ̂U

[(
Ikp − Â

)−1
+ Â

′
(
Ikp −

(
Â
′)2
)−1

+

k∑
i=1

λ̂i

(
Ikp − λ̂iÂ

′)−1
]

Σ̂−1
Y (3)

B̂ias(V̂ ) = −B̂ias(Â)
(
Ikp − Â

)−1
V̂ . (4)

The bias-corrected parameter estimates are then given by

Â
BC

= ÂLS − B̂ias(Â) and V̂ BC = V̂LS − B̂ias(V̂ ).

Thus, given an observed sample, there are two different estimates of the parameters of a

VAR(p) process available

β̂LS ..= vec(ν̂, Â1, . . . , Âp) and β̂BCLS
..= vec(ν̂BC , ÂBC1 , . . . , ÂBCp ).

4Bauer et al. (2012) propose a refined nonparametric bootstrap approach, the so-called “inverse bootstrap

bias correction”. In their simulation study it is shown that the inverse bootstrap method yields a slightly more

accurate bias estimate than the bootstrap method of Kilian (1998) and the closed-form solution of Pope (1990).

However, this improvement comes at the cost of an even greater computational burden than the bootstrap

procedure of Kilian (1998). The inverse bootstrap method is therefore not suitable for a Monte Carlo simulation.
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2.3 Path Forecast and Prediction Error

A path forecast of length H for the i-th variable of a VAR(p) process, based on an observed

time series of length T , consists of H individual point forecasts and is denoted by

ŶT,i(H) ..= (ŷT,i(1), . . . , ŷT,i(H))′ , for i = 1, . . . , k.

Given an estimate β̃ for the parameters of the VAR(p) process, the individual point forecasts

are computed via the following standard forecasting recursion

ŷT (h) = ν̃ + Ã1ŷT (h− 1) + · · ·+ ÃpŷT (h− p), for h = 1, . . . ,H, (5)

where ŷT (j) = yT−j if j ≤ 0. Using the bias-corrected LS estimates β̂BCLS yields the path

forecast Ŷ BC
T,i (H), which will be used in the Monte Carlo simulation throughout.

The estimated prediction error for h ∈ {1, . . . ,H} is given by ûT+h
..= yT+h − ŷT (h).

Following the standard literature, see for example Lütkepohl (2005, Section 3.5), there are two

estimators of the covariance matrix of êT+h

Σ̂y(h) =
h−1∑
i=0

φ̂iΣ̂εφ̂
′
i and Σ̂ŷ(h) =

h−1∑
i=0

φ̂iΣ̂εφ̂
′
i +

Ω̂(h)

T
,

where an explicit formula for ˆΩ(h) can be found in Lütkepohl (2005, Section 3.5.2). Σ̂ŷ(h)

incorporates the uncertainty originated from the estimation of the parameters. Thus, given an

observed sample, there are four different estimates of the forecast error covariance matrix

Σ̂y(h) , Σ̂BC
y (h) , Σ̂ŷ(h) and Σ̂BC

ŷ (h).

2.4 JPR of Jordà and Marcellino (2010)

The joint prediction region for YT,i,H of Jordà and Marcellino (2010) is based on the assumption

that the conditional distribution of the prediction errors is asymptotically normal, that is,

√
T
(
ŶT,i(H)− YT,H,i|yT , yT−1, . . .

)
d→ N (0,Ξi,H) , (6)

where
d→ denotes convergence in distribution as T →∞. It is further assumed that a consistent

estimator of Ξi,H exists. Based on this distributional assumption, they derive an elliptical joint

prediction region using the method of Scheffé (1953, 1959):{
Ỹ ∈ RH : T (ŶT,i(H)− Ỹ )′Ξ̂−1

i,H(ŶT,i(H)− Ỹ ) ≤ χ2
(1−α),H

}
.

Finally, Jordà and Marcellino (2010) apply the lemma of Bowden (1970) to the elliptical joint

prediction region to come up with the following joint prediction region with a nominal coverage

probability of (1− α)

Ŷ BC
T,i (H)± P


√
χ2

(1−α),H

h
1[H×1]

 , (7)
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where 1[H×1] is a H-dimensional vector of ones, P is the lower-triangular Cholesky decomposi-

tion of T−1Ξ̂i,H and χ2
(1−α),h denotes the (1−α)-quantile of a χ2 distribution with h degrees of

freedom. The joint prediction region in (7) is then refined by a step-down recursive procedure

to obtain

Ŷ BC
T,i (H)± P


√
χ2

(1−α),h

h

H
h=1

. (8)

However, Staszewska-Bystrova (2013) shows that the coverage probability of the joint pre-

diction region based on (8) is severely distorted if P exhibits negative entries5. Staszewska-

Bystrova (2013) proposes instead the following modified Scheffé joint prediction region

JPRScheffé
..= Ŷ BC

T,i (H)± |P |


√
χ2

(1−α),h

h

H
h=1

. (9)

Jordà and Marcellino (2010) completely ignore the fact that β̂LS is biased in finite samples, P

is therefore computed based on the raw LS-estimates. A critical discussion about the Scheffé

joint prediction region is found in Wolf and Wunderli (2014, Section 3.3).

2.5 JPR of Staszewska-Bystrova (2011)

The neighbouring path (NP) method of Staszewska-Bystrova (2011) is a bootstrap based ap-

proach. More specifically, a total of B bootstrap paths Ŷ ∗T,H,i,b :=
(
y∗T+1, . . . , y

∗
T+H

)′
are

generated conditional on the original data {yT−p+1, . . . , yT } resulting in a bootstrap predictive

distribution which approximates the unknown distribution of the path forecast. The trans-

formation of the predictive distribution into a joint prediction region is then made by the

following heuristic iterative procedure: Remove the particular bootstrap path that is the fur-

thest away from Ŷ BC
T,i (H), where the distance is measured by the (squared) Euclidean norm6.

Repeat this procedure until α × B bootstrap paths are removed. The joint prediction region

for YT,i,H = (yT+1,i, . . . , yT+H,i)
′, denoted by NP Heuristic, with a nominal coverage of (1−α)

is then given by the envelope of the remaining (1− α)×B paths

JPRNP Heuristic
..=


l∗1,(1−α), u

∗
1,(1−α)

l∗2,(1−α), u
∗
2,(1−α)

...

l∗H,(1−α), u
∗
H,(1−α)

 , (10)

where l∗h,(1−α) denotes the lower bound of the envelope of the remaining (1−α)×B bootstrap

paths at forecast horizon h and u∗h,(1−α) denotes the corresponding upper bound. Note that

5The simulation study of Wolf and Wunderli (2014) shows that without the absolute value correction of

Staszewska-Bystrova (2013) the empirical coverage can be even close to zero for AR(p) models. Simulations run

by the author show that the same is indeed true for VAR(p) models.
6 Alternatively, Staszewska-Bystrova (2011) suggests the L1-norm, that is

∑H
h=1 |ŷT,i(h)− y∗T+h|. However,

the Euclidian norm seems to works better according to the simulation study in Staszewska-Bystrova (2011).
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the joint prediction region of Staszewska-Bystrova (2011) is not symmetric about Ŷ BC
T,i and

has a jagged shape due to the way of construction. A critical discussion about the NP Heuris-

tic method, especially the lack of asymptotic validity, is found in Wolf and Wunderli (2014,

Section 3.3).

Remark. The method of Staszewska-Bystrova and Winker (2013) basically replaces the heuris-

tic iterative elimination procedure of Staszewska-Bystrova (2011) by a sophisticated threshold

accepting optimization heuristic. However, the computational burden of the proposed thresh-

old accepting method is enormous and the extensive simulation study of Staszewska-Bystrova

and Winker (2013) demonstrates that the NP Heuristic method of Staszewska-Bystrova (2011)

generally outperforms the method of Staszewska-Bystrova and Winker (2013). Thus, in order

to be able to conduct the simulation study within a reasonable amount of time, the threshold

accepting method is omitted.

2.6 JPR of Wolf and Wunderli (2014)

The method of Wolf and Wunderli (2014) is based on the bootstrap predictive distribution

of the standardized prediction errors conditional on the original data {yT−p+1, . . . , yT }. The

aforementioned predictive distribution is obtained by computing B standardized bootstrap

prediction errors Ŝ∗T,b,i(H) ..= (û∗T,i,b(1)/σ̂∗T,b(1), . . . , û∗T,i,b(H)/σ̂∗T,b(H))′, where û∗T,i,b(h) ..=

ŷ∗T,i,b(h)− y∗T+h,i,b and σ̂∗T,b(h) denotes the bootstrap prediction standard error. Subsequently,

the empirical distribution of max∗H,b
..= ‖Ŝ∗T,b,i(H)‖∞ is obtained, where ‖·‖∞ denotes the max-

imum norm7. The symmetric and rectangular joint prediction region of Wolf and Wunderli

(2014) with a nominal coverage of (1− α) is then given by

JPRWW
..= Ŷ BC

T,i (H)±


d̂max,∗
|·|,(1−α) · σ̂

BC
T (1)

d̂max,∗
|·|,(1−α) · σ̂

BC
T (2)

...

d̂max,∗
|·|,(1−α) · σ̂

BC
T (H)

 , (11)

where d̂max,∗
|·|,(1−α) denotes the (1− α) quantile of the empirical distribution of max∗H,b and σ̂T (h)

denotes the prediction standard error for forecast period h. The bootstrap procedure already

incorporates the estimation uncertainty (through parameter re-estimation), therefore σ̂BCT (h)

is computed by
√

(
∑h−1

i=0 φ̂
BC
i Σ̂BC

ε (φ̂BCi )′)hh.

2.7 Bootstrap

Bootstrap data
{
y∗1, . . . , y

∗
T , y

∗
T+1, . . . , y

∗
T+H

}
, used for the NP Heuristic and the WW joint

prediction region, are generated by the following four step bootstrap procedure of Pascual

et al. (2011)

7For x ∈ Rd, the maximum norm is defined as ‖x‖∞ ..= max {|x1| , . . . , |xd|} .
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Step 1: Given β̂BCLS , {yt}Tt=1 and the corresponding series of centered and rescaled8 residuals

{ε̂t}Tt=p+1, generate a bootstrap sample {y∗1, . . . , y∗T } via the following recursion

y∗t =

yt if t = 1, . . . , p

ν̂ + Â1y
∗
t−1 + . . .+ Âpy

∗
t−p + e∗t if t = p+ 1, . . . , T

,

where e∗t is a random draw with replacement from the empirical distribution of {ε̂t}Tt=p+1.

Step 2: Obtain β̂∗,BCLS := (ν̂∗,BC , Â∗,BC1 , . . . , Â∗,BCp ) by fitting a VAR(p̂∗BIC) model to the

bootstrap sample {y∗1, . . . , y∗T }.

Step 3: Generate
{
y∗T+1, . . . , y

∗
T+H

}
via

y∗T+h = ν∗ + Â∗1y
∗
T+h−1 + . . .+ Â∗py

∗
T+h−p + e∗h, for h = 1, . . . ,H,

where y∗T+j = yT+j if j ≤ 0 and e∗h is a random draw with replacement from the empirical

distribution of {ε̂t}Tt=p+1.

Step 4: Repeat steps 1 to 3 B times.

The bootstrap procedure of Pascual et al. (2011) is asymptotically valid under some regularity

conditions, that is Ŷ ∗T,H,i converges in distribution to YT,H,i as T →∞, for the proof see Pascual

et al. (2011, p.14–15).

Remark. In Staszewska-Bystrova (2011), the bootstrap data
{
y∗1, . . . , y

∗
T , y

∗
T+1, . . . , y

∗
T+H

}
is

actually generated using the bootstrap-after-bootstrap procedure of Kim (2001). In contrast

to the previously outlined procedure of Pascual et al. (2011), the procedure of Kim (2001)

is based on the backward representation of a VAR(p) model. However, using the backward

representation for generating bootstrap predictive distributions has some serious disadvantages,

for a discussion see Pascual et al. (2011, Section 1). The similar finite-sample performance of

both approaches justifies the use of the Pascual et al. (2011) boostrap instead of the bootstrap-

after-bootstrap procedure.

3 Monte Carlo Simulation

3.1 Data Generating Processes

The basis data generating process (DGP) is a bivariate VAR(1) process previously used in

Amihud and Hurvich (2004), Amihud et al. (2009), and Engsted and Pedersen (2014)

DGP 1 yt =

(
1

1

)
+

(
0.80 0.10

0.10 0.85

)
yt−1 + εt. (12)

8The centering and rescaling is suggested as in Stine (1987).
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The process in (12) is stationary with corresponding characteristic roots of ρ1 = (1.385, 1.077)′.

In order to cover a broader range of stationarity characteristics, the coefficient matrix of the

process in (12) is modified, resulting in the following data generating processes and correspond-

ing characteristic roots

DGP 2 yt =

(
1

1

)
+

(
−0.80 0.10

0.10 −0.85

)
yt−1 + εt, ρ2 = (−1.385,−1.077)′ (13)

DGP 3 yt =

(
1

1

)
+

(
0.30 0.10

0.10 0.35

)
yt−1 + εt, ρ3 = (2.336, 4.506)′ (14)

DGP 4 yt =

(
1

1

)
+

(
−0.30 0.10

0.10 −0.35

)
yt−1 + εt, ρ4 = (−2.336,−4.506)′ (15)

DGP 5 yt =

(
1

1

)
+

(
0.30 0.10

0.10 −0.35

)
yt−1 + εt, ρ5 = (−2.740, 3.174)′. (16)

The sixth data generating process is a bivariate VAR(4) process originally considered in Kilian

(2001), but also used in the simulation study of Staszewska-Bystrova (2013)

DGP 6 yt =

(
1

1

)
+A(6,1)yt−1 +A(6,2)yt−2 +A(6,3)yt−3 +A(6,4)yt−4 + εt, (17)

where

A(6,1) ..=

(
0.6362 −0.0012

0.0190 0.5782

)
, A(6,2) ..=

(
−0.0168 −0.0285

0.5211 −0.3041

)

A(6,3) ..=

(
0.0273 −0.0028

0.1568 0.2229

)
, A(6,4) ..=

(
0.1517 −0.0198

−0.7600 −0.3168

)
.

The error process {εt} is assumed to be an i.i.d. process according to one of the following

three distributions

• εt ∼ N (0,Σε). A multivariate normal distribution with covariance matrix Σε.

• εt ..= 1√
3
× ε̃, where ε̃t ∼ t3(0,Σε). ε̃t follows a multivariate t-distribution with 3 degrees of

freedom. The covariance matrix of ε̃t is given by 3×Σε. As a result, each random variate

of ε̃t is scaled by 1√
3

to ensure that Var(εt) = Σε. In the following, this distribution of εt

is just called t-distribution.

• εt ..= C[k×k]

(
1√
6
×
(
ε̃t − 3[k×1]

))
, where ε̃i ∼ χ2

3 ∀i ∈ {1, . . . , k} and C is the lower-

triangular Cholesky decomposition of Σε. ε̃t is first centered and standardized to have a

covariance matrix equal to the identity matrix. The premultiplication with the Cholesky-

factor of Σε ensures that Var(εt) = Σε. In the following, this distribution of εt is just

called χ2-distribution.
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The covariance matrices of the six data generating processes are given by

Σ1,2,3,4,5
ε =

(
1 0

0 1

)
and Σ6

ε =

(
0.025 0.009

0.009 0.387

)
× 10−3,

where Σ6
ε is again taken from Kilian (2001) as the corresponding data generating process.

3.2 Misspecified Models

The assumption about the underlying true data generating process is crucial in applied work.

However, it is an assumption that is not verifiable in practice. It is therefore instructive

to investigate the finite-sample performance of each of the three methods of constructing

joint prediction regions if the underlying model is misspecified. More specifically, the data is

generated by either a vector moving average (VMA) process or a threshold vector autoregressive

(TVAR) process. The joint prediction regions are then computed with the same methodology

as in the previous section, that is, based on a VAR(p) model, where the lag order p is estimated

using the BIC.

The basis data generating process is a VMA(1) process used in Galbraith et al. (2002)

DGP 7: yt =

(
1

1

)
+

(
0.20 0.10

0.10 0.60

)
︸ ︷︷ ︸

:=M1

εt−1 + εt, ρ7 = (−5.669,−1.604)′, (18)

where ρ7 denotes the roots of det(I2+M1z). The coefficient matrix of the process in (18) is then

modified, resulting in the following additional data generating processes and corresponding

characteristic roots

DGP 8: yt =

(
1

1

)
+

(
−0.20 0.10

0.10 0.60

)
εt−1 + εt, ρ8 = (−1.633, 4.710)′ (19)

DGP 9: yt =

(
1

1

)
+

(
−0.20 0.10

0.10 −0.60

)
εt−1 + εt, ρ9 = (−5.669,−1.604)′ (20)

DGP 10: yt =

(
1

1

)
+

(
−0.80 0.10

0.10 −0.60

)
εt−1 + εt, ρ10 = (1.189, 1.790)′ (21)

DGP 11: yt =

(
1

1

)
+

(
1.20 0.10

0.10 0.90

)
εt−1 + εt, ρ11 = (−1.150,−0.813)′. (22)

Remark. A VMA(q) process has a pure VAR(∞) representation if det(Ik + M1z
1 + . . . +

Mqz
q) 6= 0 for z ∈ C, |z| ≤ 1. Thus, DGP 7 – DGP 10 exhibit a VAR(∞) representation,

whereas DGP 11 does not. This implies that the processes in (18), (19), (20) and (21) can be

approximated by a finite VAR process.

11



It is assumed that {εt} is an i.i.d. process with εt ∼ N (0,Σε), where Σε is taken from

Galbraith et al. (2002) and given by

Σε =

(
1.00 0.50

0.50 1.00

)
.

The last considered data generating process is a non-linear TVAR(1) process already used

by Tsay (1998). The process is given by

DGP 12: yt =

A
(1)
1 yt−1 + ε

(1)
t , if y1,t−1 < 0

A
(2)
1 yt−1 + ε

(2)
t , if y1,t−1 ≥ 0

, (23)

where

A
(1)
1 =

(
0.70 0.00

0.30 0.70

)
and A

(2)
1 =

(
−0.70 0.00

−0.30 −0.70

)

The error process is assumed to be an i.i.d. process with ε
(i)
t ∼ N (0,Σi) i ∈ {1, 2}. The

corresponding covariance matrices are also taken from Tsay (1998) and given by

Σ1 =

(
1.00 0.20

0.20 1.00

)
and Σ2 =

(
1.00 −0.30

−0.30 1.00

)
.

3.3 Multivariate vs. Univariate

Consider the following scenario: One observes a k-dimensional time series and is interested in

a path forecast and corresponding joint prediction region for the i-th variable. Besides the pre-

viously discussed multivariate methodology, there is basically the alternative of constructing a

path forecast and corresponding joint prediction region based on an univariate AR(p̂) model

fitted to {y1,i, . . . , yT,i}. More specifically, the data is generated according to the multivariate

DGP 1 – DGP 6, the path forecast and corresponding joint prediction regions are then com-

puted based on VAR(p̂) and AR(p̂). For simplicity, {εt} is assumed to be an i.i.d. process with

εt ∼ N (0, I2).

3.4 Design

The nominal coverage probability of each of the joint prediction regions is 90%. The empirical

coverage of a particular joint prediction region is computed in the usual way, that is, the

number of continuations that are completely covered by a joint prediction region divided by

the total number of continuations. In particular, 1, 000 time series samples {y1, . . . , yT } are

generated according to the specified data generating processes, each with 100 independent

continuations {yT+1, . . . , yT+H}. As a result, the empirical coverages are computed based on

100, 000 continuations and are therefore very accurate.

The forecast horizon is H ∈ {6, 12, 24}. The sample size is T ∈ {100, 400}. The number

of bootstrap samples for the WW and the NP Heuristic joint prediction region is B = 1, 000
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throughout. The lag order is initially assumed to be known and afterwards estimated using

the BIC. For the cases where the lag order is determined using the BIC, the maximum lag

order is 10, that is, the BIC is minimized over S = {1, . . . , 10}.
In order to be able to compare the volume of the joint prediction regions the geometric

average width is computed in each of the 1,000 Monte Carlo repetitions. More specifically, each

of the joint prediction regions can be characterized by the Cartesian product of H individual

prediction intervals, PIh = [lh, uh] ⊂ R, where uh and lh denote the upper and the lower bound

of the joint prediction region at a given forecast horizon h ∈ {1, . . . ,H}. The geometric-

average widths is then computed by wgeometric
..= (

∏H
i=1wi)

1
H , where wi ..= uh − lh. The

empirical geometric-average width, which will be reported, is then computed by taking the

average

w̄geometric =
1

1000

1000∑
m=1

(
H∏
i=1

wm,i

) 1
H

,

where wm,i ..= um,i − lm,i.

3.5 Results

The results for the six data generating processes (correctly specified), assuming the true lag

order is known, are summarized in Tables 1 and 2. The corresponding results when the true

lag order is unknown and instead estimated using the BIC are presented in Tables 3 and 4.

The empirical geometric-average widths for the cases where the lag is estimated are presented

in Table 5 and 6. The empirical coverages for the vector moving average models are presented

in Table 7 and the corresponding empirical geometric-average widths are found in Table 9 .

The results for the threshold vector autoregressive model are summarized in Tables 8 and 10.

Finally, the results of the univariate vs. multivariate experiment can be found in Table 11.

The main conclusions from the Monte Carlo simulations can be summarized as follows.

• The (modified) Scheffé joint prediction region of Jordà and Marcellino (2010) is not robust

with respect to the stationarity characteristics of the data generating processes (correctly

specified). More precisely, the method performs satisfactory for models whose roots are

near the non-stationary region. However, this is definitely not the case for models with

roots far away from the non-stationary region. In this case, the method suffers from mas-

sive undercoverage, especially at the long forecast horizons H ∈ {12, 24}. Concerning

the volume of the (modified) Scheffé joint prediction regions, there are two noticeable

insights. First, the volume is also not robust, meaning that for some data generating pro-

cesses the volume is strictly increasing in H, but for other data generating processes the

volume is only weakly increasing or in particular scenarios even decreasing in the forecast

horizon. Second, there are scenarios where w̄Scheffé > max {w̄WW-JPR, w̄NP Heuristic}, but

the coverage is strictly below the coverages of the other two methods.
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• The NP Heuristic joint prediction region of Staszewska-Bystrova (2011) features gener-

ally good performances for the short forecasting horizon H = 6. For H ∈ {12, 24}, the

performance depends on the stationarity characteristics and the distribution of the er-

rors, with good performances for processes whose roots are close to the non-stationarity

region, but with mild to substantial undercoverage for the other scenarios. However, the

dependence on the process characteristics declines when T = 400. Estimating the lag

order has almost no noticeable influence on the performance. The volume of the NP

Heuristic joint prediction region is increasing in H and weakly decreasing in the sample

size T .

• The joint prediction region of Wolf and Wunderli (2014) is generally robust with respect

to the various data generating processes (correctly specified). The performance is very

good for T = 400 regardless of whether the lag order is estimated or not. The WW

joint prediction region is still very reliable for T = 100 and H ∈ {6, 12} with empirical

coverages close to 90%, again without any noticeable disadvantage when p is estimated.

However, there is significant undercoverage for some scenarios with fat-tailed or skewed

errors when H = 24. The volume of the joint prediction region by Wolf and Wunderli

(2014) is increasing in H and decreasing in the sample size T . Both properties are clearly

desirable.

• For the cases when the underlying model is misspecified, the (modified) method of Jordà

and Marcellino (2010) suffers from severe undercoverage already for the short forecast

horizon and completely fails for H ∈ {12, 24}, independently of the type of data gen-

erating process (VMA or TVAR). The NP Heuristic method of Staszewska-Bystrova

(2011) performs reliably for the VMA processes and the TVAR process, when H = 6

and T = 100. For larger forecast horizons, there is mild to massive undercoverage. The

performance is considerably better for T = 400, but there is still mild undercoverage for

H = 24. The WW-JPR of Wolf and Wunderli (2014) performs very good for both types

of processes when T = 400. However, there is mild undercoverage for H = 24 when

T = 100. All in all, the method of Wolf and Wunderli (2014) is by far the most reliable

when the data generating process is misspecified which happens often in applied work.

• The WW and the NP Heuristic joint predictions based on a VAR(p̂) model outperform

their univariate counterparts. However, the method of Wolf and Wunderli (2014) pro-

duces reliable joint prediction regions when based on the univariate methodology and

H = 6. Curiously, the (modified) Scheffé joint prediction region exhibit a sligthly better

performance when based on the univariate model.
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Nominal Coverage 1− α = 90%

Normal distribution t-distribution χ2-distribution

DGP 1 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 85.3 84.3 83.5 85.8 83.2 81.1 87.3 85.1 83.9

NP Heuristic 88.2 87.4 86.3 87.4 84.9 81.9 88.9 87.0 85.1

WW 88.7 87.9 86.4 89.1 87.3 85.4 88.8 87.6 86.9

DGP 2 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 86.0 85.2 84.1 85.9 84.3 82.0 86.5 85.3 84.1

NP Heuristic 87.8 87.2 86.8 86.8 85.5 82.9 87.5 86.5 85.9

WW 89.6 89.2 88.7 89.1 88.2 86.1 89.4 88.7 88.1

DGP 3 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 67.5 48.1 31.6 70.3 52.2 32.2 71.6 53.3 33.4

NP Heuristic 87.4 84.2 79.5 85.5 80.9 71.1 87.7 85.5 80.7

WW 90.1 89.1 88.0 89.0 87.2 82.1 89.1 87.6 84.0

DGP 4 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 66.3 45.6 24.9 70.6 50.8 28.4 69.6 48.9 26.9

NP Heuristic 87.0 84.1 79.8 85.5 81.0 71.8 87.5 85.1 79.7

WW 89.9 89.6 88.8 89.0 87.2 82.4 89.0 87.6 83.8

DGP 5 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 66.0 47.2 29.6 69.9 51.6 31.0 72.0 53.3 33.4

NP Heuristic 87.1 84.0 78.5 85.4 85.4 70.5 87.9 85.3 81.0

WW 90.0 89.0 87.6 89.0 89.2 82.0 89.2 87.6 84.4

DGP 6 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 87.6 87.1 87.7 87.2 84.5 83.5 87.3 85.5 84.7

NP Heuristic 88.2 88.2 86.8 86.8 83.7 78.4 88.8 88.2 85.6

WW 90.0 90.4 90.2 88.3 86.7 83.6 89.7 89.4 88.0

Table 1: Known Lag, T = 100: Empirical Coverages.
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Nominal Coverage 1− α = 90%

Normal distribution t-distribution χ2-distribution

DGP 1 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 87.4 87.0 87.2 88.1 86.9 85.7 89.1 88.4 87.4

NP Heuristic 88.6 87.5 85.4 88.2 86.9 84.7 89.1 88.0 86.1

WW 89.7 89.5 88.9 90.1 89.8 89.3 90.0 89.7 89.1

DGP 2 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 87.3 87.3 87.3 88.0 86.8 85.1 88.4 88.0 87.1

NP Heuristic 88.6 87.6 86.3 88.2 87.0 85.1 88.7 87.8 86.3

WW 89.8 89.8 89.8 90.0 89.8 89.3 90.0 90.0 89.6

DGP 3 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 68.2 45.8 19.6 73.0 53.4 27.7 73.5 54.0 27.6

NP Heuristic 88.1 86.5 83.6 87.8 85.8 81.1 88.9 87.7 84.6

WW 89.7 89.6 89.3 89.8 89.6 88.3 89.9 89.6 88.4

DGP 4 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 68.4 44.9 17.0 73.2 52.6 26.6 71.1 49.7 22.6

NP Heuristic 88.4 86.6 83.2 88.3 85.9 81.7 88.4 87.2 84.1

WW 89.9 89.6 89.3 90.3 89.6 88.9 89.7 89.5 88.4

DGP 5 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 68.0 43.5 17.0 72.6 52.0 26.1 73.0 53.1 27.0

NP Heuristic 88.6 86.7 83.2 87.8 85.5 81.3 88.8 87.8 85.2

WW 90.1 89.7 89.3 89.8 89.3 88.6 89.7 89.7 88.9

DGP 6 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 87.0 86.6 86.2 86.7 84.1 82.0 87.2 85.7 84.1

NP Heuristic 88.6 87.5 85.6 88.4 86.4 83.8 89.3 88.2 86.3

WW 90.1 90.0 89.8 90.0 89.4 89.2 90.0 89.7 89.2

Table 2: Known Lag, T = 400: Empirical Coverages.
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Nominal Coverage 1− α = 90%

Normal distribution t-distribution χ2-distribution

DGP 1 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 85.2 84.0 83.3 85.6 83.2 81.1 87.2 85.5 83.7

NP Heuristic 88.0 87.0 85.8 85.6 82.0 75.0 88.6 87.0 85.1

WW 88.6 87.4 86.3 88.6 86.7 83.6 89.2 88.1 86.9

DGP 2 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 86.0 85.5 84.0 85.8 84.0 82.0 86.6 85.6 84.1

NP Heuristic 87.9 87.5 86.7 86.9 85.3 83.5 87.7 86.6 85.8

WW 89.8 89.5 88.5 88.9 87.7 85.6 89.7 88.9 88.2

DGP 3 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 66.8 47.7 32.1 70.1 51.6 32.7 72.3 53.2 34.4

NP Heuristic 87.3 84.1 79.8 85.2 79.8 70.9 88.1 85.4 80.9

WW 90.0 89.1 88.0 88.8 86.5 82.1 89.3 87.6 84.0

DGP 4 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 66.8 45.4 24.5 69.4 50.2 28.3 70.3 49.1 27.0

NP Heuristic 87.3 84.2 79.4 85.1 80.6 71.1 87.9 85.1 79.9

WW 90.4 89.7 88.6 88.6 86.9 81.7 89.4 87.6 84.0

DGP 5 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 66.3 47.3 29.7 70.3 50.8 32.5 71.8 53.3 32.9

NP Heuristic 87.2 84.6 78.1 85.3 80.1 70.3 88.0 85.4 80.7

WW 90.1 89.5 87.3 88.8 86.7 82.3 89.5 87.7 84.2

DGP 6 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 82.7 78.5 75.7 83.6 78.8 71.4 84.5 78.9 71.9

NP Heuristic 87.4 85.4 82.5 86.5 83.2 75.8 87.7 84.8 80.4

WW 88.8 87.9 86.8 88.6 86.9 82.7 89.3 88.1 85.9

Table 3: BIC order selection, T = 100: Empirical Coverages.
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Nominal Coverage 1− α = 90%

Normal distribution t-distribution χ2-distribution

DGP 1 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 87.3 87.0 87.2 87.7 87.0 85.7 88.9 88.2 87.6

NP Heuristic 88.6 87.4 86.3 87.7 86.2 82.8 88.8 87.9 85.9

WW 89.8 89.5 89.5 89.6 89.9 89.1 90.0 89.6 89.1

DGP 2 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 87.3 87.3 87.3 88.1 86.7 85.4 88.3 87.3 87.3

NP Heuristic 88.5 87.9 86.3 88.2 87.0 84.5 88.6 87.5 85.7

WW 89.8 90.0 89.7 90.2 89.8 89.0 89.9 89.6 89.2

DGP 3 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 68.4 45.8 19.3 73.3 53.2 28.0 73.4 53.5 27.4

NP Heuristic 88.5 86.7 83.7 87.9 85.8 81.5 88.7 87.3 84.5

WW 89.9 89.7 89.5 90.0 89.6 88.6 89.7 89.3 88.3

DGP 4 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 69.1 44.3 17.6 73.0 52.1 26.2 71.2 49.8 22.4

NP Heuristic 88.8 86.6 83.7 87.9 85.8 81.7 88.6 87.0 83.8

WW 90.2 89.9 89.6 89.9 89.5 88.9 89.8 89.3 88.2

DGP 5 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 68.4 44.4 17.2 73.0 51.9 27.0 72.9 52.6 26.8

NP Heuristic 88.4 86.6 83.1 88.1 85.8 81.4 88.6 87.4 84.7

WW 90.0 89.7 89.3 90.1 89.6 88.7 89.6 89.4 88.2

DGP 6 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 86.8 86.6 86.3 86.7 84.1 81.5 87.0 85.6 84.0

NP Heuristic 88.6 87.6 85.5 88.3 86.5 83.1 88.9 88.1 86.0

WW 90.0 90.0 90.0 90.0 89.5 88.5 89.8 89.7 89.2

Table 4: BIC order selection, T = 400: Empirical Coverages.
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Normal distribution t-distribution χ2-distribution

DGP 1 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 7.0 9.6 12.7 6.9 9.4 12.4 7.1 9.6 12.8

NP Heuristic 6.6 8.5 10.6 6.4 8.3 9.7 6.5 8.3 10.7

WW 6.5 8.2 10.0 6.9 9.2 11.4 6.9 8.9 11.1

DGP 2 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 7.2 9.9 12.9 6.9 9.5 12.6 7.1 9.9 13.0

NP Heuristic 6.6 8.2 10.0 6.6 8.8 11.3 6.7 8.6 10.5

WW 6.6 8.3 10.0 6.9 9.3 12.0 7.1 9.1 11.2

DGP 3 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 3.9 4.0 4.2 3.8 3.9 4.0 4.0 4.0 4.2

NP Heuristic 4.9 5.4 5.8 5.3 6.5 7.4 4.8 5.4 6.0

WW 5.1 5.7 6.2 6.1 8.0 9.3 6.1 7.3 8.3

DGP 4 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 3.9 3.9 3.9 3.8 3.8 3.8 3.9 3.9 3.9

NP Heuristic 4.9 5.4 5.8 5.3 6.6 7.6 5.0 5.7 6.3

WW 5.1 5.7 6.2 6.0 7.9 9.6 6.2 7.4 8.3

DGP 5 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 3.9 4.0 4.1 3.8 3.9 4.1 3.9 3.9 4.1

NP Heuristic 4.9 5.4 5.7 5.4 6.5 7.7 4.8 5.4 5.9

WW 5.1 5.7 6.1 6.1 7.9 10.1 6.1 7.3 8.3

DGP 6 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 3.0 3.6 4.3 3.0 3.7 4.4 3.1 3.6 4.2

NP Heuristic 3.0 3.5 4.0 3.0 3.8 4.4 2.9 3.5 4.0

WW 3.0 3.5 4.1 3.3 4.2 5.1 3.3 4.0 4.7

Table 5: BIC order selection, T = 100: Empirical Geometric-Average Widths.
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Normal distribution t-distribution χ2-distribution

DGP 1 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 7.2 9.9 13.2 7.0 9.8 12.8 7.2 9.9 13.0

NP Heuristic 6.4 7.9 9.5 6.3 8.2 10.1 6.0 7.8 9.4

WW 6.4 8.0 9.6 6.5 8.8 11.3 6.6 8.6 10.6

DGP 2 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 7.2 9.9 13.2 7.0 9.8 12.8 7.1 9.9 13.0

NP Heuristic 6.4 8.0 9.4 6.3 8.3 10.4 6.5 8.3 10.0

WW 6.4 8.0 9.6 6.6 8.8 11.3 7.2 9.9 13.0

DGP 3 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 3.9 3.9 3.8 3.9 3.8 3.8 3.9 3.9 3.8

NP Heuristic 4.9 5.4 5.9 5.4 6.7 8.0 4.6 5.2 5.8

WW 5.0 5.2 6.0 5.8 7.5 9.7 5.9 7.2 8.4

DGP 4 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 3.9 3.9 3.8 3.9 3.8 3.7 3.9 3.9 3.7

NP Heuristic 4.9 5.4 5.9 5.4 6.7 8.0 4.8 5.6 6.2

WW 5.0 5.5 6.1 5.8 7.4 9.7 6.0 7.2 8.4

DGP 5 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 3.9 3.9 3.7 3.9 3.8 3.7 3.9 3.8 3.7

NP Heuristic 4.9 5.4 5.8 5.4 6.7 8.0 4.5 5.2 5.8

WW 5.0 5.5 6.0 5.8 7.4 9.7 5.9 7.2 8.4

DGP 6 H=6 H=12 H=24 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 3.1 3.9 4.9 3.0 3.9 4.9 3.0 3.9 4.9

NP Heuristic 2.6 3.4 3.8 2.9 3.7 4.5 2.7 3.3 3.9

WW 2.9 3.4 3.9 3.1 4.0 5.1 3.1 3.9 4.7

Table 6: BIC order selection, T = 400: Empirical Geometric-Average Widths.
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Nominal Coverage 1− α = 90%

T = 100 T = 400

DGP 7 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 63.9 42.9 26.7 63.0 37.8 12.9

NP Heuristic 86.6 83.8 77.1 88.3 86.5 83.3

WW 88.8 88.3 85.6 89.6 89.4 88.8

DGP 8 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 57.7 33.4 14.8 55.7 26.9 6.6

NP Heuristic 86.7 83.5 77.2 88.2 86.4 83.0

WW 89.0 88.6 85.9 89.7 89.6 89.1

DGP 9 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 55.9 30.4 11.9 55.4 26.4 6.1

NP Heuristic 86.8 83.1 76.4 88.2 86.3 83.3

WW 89.0 88.4 85.7 89.6 89.2 89.2

DGP 10 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 79.5 70.8 54.8 79.4 67.9 46.8

NP Heuristic 86.7 86.0 82.6 88.1 87.1 84.9

WW 88.0 88.7 87.9 89.3 89.4 89.4

DGP 11 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 80.2 73.4 66.2 80.1 69.5 53.4

NP Heuristic 86.6 85.7 82.3 87.5 86.9 84.6

WW 87.3 87.7 86.8 88.5 89.1 88.9

Table 7: VMA-model, BIC order selection: Empirical Coverages.

Nominal Coverage 1− α = 90%

T = 100 T = 400

DGP 12 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 72.8 57.8 42.4 74.8 57.0 31.6

NP Heuristic 88.0 85.8 80.6 89.3 88.0 84.6

WW 89.6 88.9 86.8 90.5 90.5 89.7

Table 8: TVAR-model, BIC order selection: Empirical Coverages.
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Nominal Coverage 1− α = 90%

T=100 T=400

DGP 7 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 3.8 3.8 4.0 3.7 3.6 3.5

NP Heuristic 4.8 5.3 5.6 4.8 5.3 5.7

WW 4.9 5.5 5.9 4.9 5.4 5.9

DGP 8 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 3.5 3.5 3.5 3.4 3.3 3.2

NP Heuristic 4.8 5.2 5.5 4.8 5.3 5.6

WW 4.9 5.4 5.8 4.8 5.4 5.8

DGP 9 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 3.5 3.4 3.4 3.4 3.3 3.2

NP Heuristic 4.8 5.2 5.5 4.8 5.2 5.7

WW 4.9 5.4 5.8 4.8 5.3 5.8

DGP 10 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 5.3 5.6 5.7 5.1 5.3 5.3

NP Heuristic 5.7 6.4 6.9 5.7 6.4 6.9

WW 5.8 6.5 7.2 5.7 6.4 7.1

DGP 11 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 6.9 7.5 8.1 6.6 6.9 7.1

NP Heuristic 7.3 8.3 9.0 7.2 8.1 8.9

WW 7.3 8.3 9.1 7.2 8.2 9.0

Table 9: VMA-model, BIC order selection: Empirical Geometric-Average Widths.

Nominal Coverage 1− α = 90%

T = 100 T = 400

DGP 12 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 4.6 4.7 4.8 4.5 4.6 4.5

NP Heuristic 5.4 6.0 6.4 5.5 6.0 6.5

WW 5.5 6.2 6.7 5.5 6.1 6.7

Table 10: TVAR-model, BIC order selection: Empirical Geometric-Average Widths.
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Nominal Coverage 1− α = 90%

JPR’s based on VAR(p̂) JPR’s based on AR(p̂)

DGP 1 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 85.6 84.3 83.0 86.6 85.4 83.9

NP Heuristic 88.6 87.4 85.4 88.0 86.2 82.3

WW 88.9 87.7 85.4 88.5 87.1 83.8

DGP 2 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 85.7 85.4 83.8 86.9 86.6 84.3

NP Heuristic 87.5 87.6 86.6 88.4 87.3 85.0

WW 89.3 89.6 88.4 89.4 89.0 87.6

DGP 3 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 66.6 48.9 31.1 67.9 50.2 32.3

NP Heuristic 87.4 84.8 79.3 86.9 83.6 77.6

WW 89.9 89.6 87.8 88.8 87.9 85.9

DGP 4 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 66.6 45.5 24.9 67.4 46.3 26.1

NP Heuristic 87.0 84.0 79.6 86.6 82.9 78.0

WW 90.0 89.5 88.9 88.9 88.0 86.7

DGP 5 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 66.0 47.2 29.4 67.1 48.6 31.5

NP Heuristic 87.0 84.2 78.1 86.6 83.6 77.0

WW 90.0 89.3 87.9 88.8 87.9 85.8

DGP 6 H=6 H=12 H=24 H=6 H=12 H=24

Scheffé 83.7 80.5 75.8 84.5 80.9 75.9

NP Heuristic 88.1 86.4 82.9 87.7 85.6 81.2

WW 89.3 88.5 86.9 88.7 87.4 84.8

Table 11: BIC order selection, T = 100, multivariate vs. univariate: Empirical Coverages.
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4 Conclusion

Path forecasts, defined as sequences of individual forecasts, generated by vector autoregres-

sions are widely used in applied work. It has been recognized that a profound econometric

analysis requires, besides the path forecast, a joint prediction region that contains the whole

future path with a prespecified coverage probability. This paper investigates the finite-sample

performance of the methods of constructing joint prediction regions of Jordà and Marcellino

(2010), Staszewska-Bystrova (2011) and Wolf and Wunderli (2014) in various scenarios through

a Monte Carlo simulation.

The finite-sample performance of the asymptotic method of Jordà and Marcellino (2010)

is clearly inferior to the bootstrap based methods of Staszewska-Bystrova (2011) and Wolf

and Wunderli (2014). Furthermore, the asymptotic method is not robust with respect to

the characteristics of the underlying model; the undercoverage ranges from mild to severe.

Misspecification of the underlying model leads to a failure of the asymptotic method in the

sense that the joint prediction region is much too narrow resulting in a massive undercoverage.

The method Staszewska-Bystrova (2011) exhibts good and robust coverage properties for

the short forecast horizon. For larger forecast horizons, there is systematic undercoverage

where the extent depends on the model characteristics as well as the distribution of the errors.

The same properties apply for the case of model misspecification.

The best overall performance exhibits the method of Wolf and Wunderli (2014) in the sense

that the empirical coverage is closest to the nominal coverage for all considered methods and

scenarios. The method is generally robust with respect to model characteristics and produces

reliable joint prediction regions already for small sample sizes. Moreover, the method evem

works reliably when the model is misspecified.
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