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1 Introduction

In many contexts, groups of economic agents supply efforts repeatedly, thereby
giving rise to sequences of performance signals that principals can use to re-
ward efforts. First, most organizations assess their employees’ performance
regularly. This performance information plays a crucial role for decisions
on bonus payments, promotion and tenure. Second, in many arms-length
relationships, buyers repeatedly procure goods and services from the same
pool of suppliers. They can use past experience with these suppliers as a
basis for the conditions of future interactions. Third, school and university
teachers repeatedly observe the performance of students in their classes and
can decide how to use this information for final grades.

Motivated by these real-world situations, we analyze the incentive effects
of different approaches to rewarding repeated performance. Specifically, we

ask the following questions:

1. How often should principals reward agents for good achievements?

Should there be frequent small rewards or rare large rewards?

2. Which weight should principals give to recent performance relative to

performance in the more distant past?

3. To which extent should the principal reveal the results of past perfor-

mance measurement to the agents?

We answer these questions for dynamic tournaments. Tournaments are
often used instead of contracts which condition explicitly and exclusively on
each agent’s own performance. In particular, organizations indeed provide
incentives with promotion tournaments.?

Specifically, we consider a two-period tournament with two risk-neutral
agents with identical and known abilities. To see the incentive effects of such

tournaments most clearly, we abstract from the important issue of selecting

2A well-known argument for tournaments is that they are more credible because they
are less prone to manipulation by the principal than contracts that depend explicitly on
the details of performance: When performance is not verifiable, a principal may claim
that performance was low to save on performance pay. Tournaments reduce this incentive,
because the total payments to the agents are independent of performance.



the agent with the highest innate ability for a particular task. The principal
chooses an incentive system, consisting of (i) the distribution of the prize
money across the two periods, (ii) the weight of first-period performance in
the second tournament and (iii) the information revelation policy.

After observing the policy, the agents choose effort levels in each period.
The principal observes the performance of each agent, which is a noisy mea-
sure of effort. In period 1, she awards the prize (if any) to the agent with
the higher performance. Under a full revelation policy, she communicates
the performance of both agents in the first period. Under a no revelation
policy, she neither communicates performance, nor who the winner was. In
period 2, the agents choose efforts again. The principal then allocates the
second-period prize to the agent for whom the weighted sum of first- and
second-period performance is highest.?

In line with the existing literature, we consider the case that a principal
regards efforts in different periods and by different agents as perfect sub-
stitutes and thus maximizes total effort. Contrary to most of the existing
literature, we also analyze the optimal policy for a principal who regards ef-
forts in different periods as imperfect substitutes and wants to balance them
across periods.* We believe this is important, because excessively low efforts
in some period may cause large harm, which cannot even be compensated
by an extremely large effort in other periods.

Apart from allowing for imperfect intertemporal effort substitution, our
approach differs from previous literature in three ways. First, we simultane-
ously consider information revelation, the prize distribution and performance
weights as design tools of the principal. Second, we include the possibility
that the distributions of the first- and second-period performance measures
differ - e.g. in their precision - reflecting heterogeneity of tasks across periods.

Third, we allow different cost functions across periods.

3In the no revelation case, the game is static. The model thus becomes a special case of
a multi-battle contest where agents compete simultaneously in a multiplicity of dimensions
(see, e.g., Clark and Konrad (2007) and Kovenock and Roberson (2010)). However, the
dynamic cross-period effects which occur under our full revelation regime are totally absent
in these papers.

4Specifically, she maximizes the product of first- and second-period efforts, or equiva-
lently, the sum of the logarithms. Aoyagi (2010) also allows for more general objectives
than maximizing total efforts.



Our contribution is threefold. First, we generalize existing results on
information revelation. Previous analysis has shown for special cases that
expected total efforts are lower with revelation than without when marginal
effort costs are convex, and conversely for concave marginal effort costs (see
Section 2). We show that this result holds for perfect and imperfect substi-
tutes, and for arbitrary first-period prizes and performance weights.

Second, we clarify the relation between first-period prizes and first-period
performance weights as incentives for first-period efforts. For both revelation
policies and for perfect as well as imperfect substitutes, the optimal first-
period prize is positive only if the distribution of the first-period observation
error difference is very precise, that is, highly concentrated near zero. We
then show that for quadratic cost functions and normally distributed obser-
vation errors, this condition is never satisfied. Even with more general distri-
butional assumptions, the scope for using first-period prizes is limited: For
imperfect substitutes and quadratic cost functions, the optimal first-period
prize is never higher than the second-period prize.

Whereas the optimal first-period prize is typically zero, the optimal weight
of first-period performance in the second-period tournament is strictly pos-
itive for both revelation policies, general cost functions and error distribu-
tions. The optimal weight is higher the lower the adverse effect of increasing
the first-period weight on future competitive intensity is. For quadratic cost
functions, normally distributed observation errors and perfect (imperfect)
substitutes, the optimal weight is the ratio of the variances (standard devia-
tions) of second-period and first-period observation error differences.

Third, we show that the potential gains from good design are quantita-
tively important. In the normal-quadratic example, the expected effort is at
least 40% higher when a principal chooses prizes and weights optimally than
when she distributes the prize money evenly across both periods without
giving weight to first-period performance in the second period tournament.

The organization of the paper is as follows. Section 2 discusses related
literature. In Section 3, we introduce the model. In Section 4, we analyze
the behavior of agents for given policies. Section 5 characterizes the optimal
policy. Section 6 interprets and sharpens our results in a normal-quadratic

example. Section 7 concludes.



2 Relation to the Literature

In this paper, we focus on the optimal design of multi-period rank-order tour-
naments, in particular, on feedback policy, prize structure and weight of past
performance.”>% The only paper we are aware of that simultaneously analyzes
these three design dimensions is Gershkov and Perry (2009). However, their
set-up differs substantially from ours. Most importantly, after period one,
the principal merely knows whether there is a tie (arising with positive prob-
ability) or whether one of the agents has performed better (and, if so, which
agent); there is no information on the size of the lead. In many contexts,
such a coarseness of the information structure appears to be appropriate.
However, in other contexts, the principal can collect and communicate in-
formation that provides the agents with a clear picture of how much their
performance differs from the performance of others. This information will
typically not be verifiable in a court, but for our purposes it is sufficient that
the principal and the agents share a common understanding of the relation
between promotion chances and the information communicated about the
agents’ relative positions.”

Also, Gershkov and Perry (2009) assume that the relation between win-
ning probabilities and efforts is the same in both periods, while we allow for
differences in the error structure. Finally, they only focus on maximization
of total effort.

We mention in passing the substantial literature analyzing agent behavior
in repeated tournaments without addressing optimal design. Several of these
papers allow for effects of first-period play on the second period that are
determined by technology rather than, as in our case, by the principal.®

Moreover, some papers study two-period contests (rank-order, all-pay and

®Nitzan (1994) and Konrad (2009) provide surveys of the literature on tournaments.

6 Another broadly related literature analyzes dynamic principal-agent relationships with
moral hazard in a non-competitive setting. Lewis and Sappington (1997) examine how
current incentives should optimally depend on past performance. Hansen (2013) and Chen
and Chiu (2013) deal with the optimal revelation policy. For reasons of space, however,
we will focus on studies that deal with repeated contests.

"With verifiable information, the principal could contract directly on efforts, and there
would be no need to use tournaments.

8See Schmitt et al. (2004), Grossmann and Dietl (2009), Grossmann (2011) and Baik
and Lee (2000).



Tullock, respectively) where the total effort in the two periods determines

the winner of a final prize.” 1

2.1 Performance revelation

Several papers analyze the effect of interim performance revelation on efforts
in dynamic tournaments. In a setting similar to ours, Aoyagi (2010) shows
that expected effort is higher with information revelation than without if and
only if marginal effort costs are concave.!! Unlike in our paper, there is only
one prize, and first-and second-period weights are the same. We endogenize
these assumptions by providing conditions under which the principal opti-
mally chooses the prizes and weights in this way. Moreover, we show that
the optimal revelation policy has the same features when these assumptions
do not hold.

Ederer (2010) introduces incomplete information about ability. The re-
sults are equivalent to those of Aoyagi (2010) if ability is non-complementary
to effort.!? If efforts and ability are complementary, it is possible that in-
formation revelation leads to higher expected efforts than no revelation even

with quadratic effort costs.!?

9See Hirata (2014) for all-pay auctions and Yildirim (2005) for Tullock contests. Casas-
Arce and Martinez-Jerez (2009) consider a related rank-order tournament where all agents
whose total performance is higher than a certain threshold win a prize.

10More broadly related, several papers analyze the agents’ behavior in a sequence of
contests where there is a prize for winning each contest, and an overall prize to the agent
who is the first to win a certain number of contests. Examples are Konrad and Kovenock
(2009) and Krumer (2013). Sela’s (2011) model is similar, the difference being that there
is no prize for winning a single contest.

1 Aoyagi (2010) is quite general with respect to the objective of the principal, and he
allows for partial revelation. Denter and Sisak (2013) show that effort may increase with
revelation if marginal efforts are concave. They use their set-up to analyze the effect of polls
on political campaign spending, allowing for an initial asymmetry before the beginning of
the first period.

12Ederer and Fehr (2013) use a special case of this model with equal abilities.

130ther papers address the revelation policy in dynamic tournaments under very differ-
ent assumptions. For example, Arbatskaya and Mialon (2012) analyze a lottery contest
where first- and second-period efforts are complements in affecting the probability of win-
ning. They find that revelation of first-period efforts decreases total efforts. Goltsman
and Mukherjee (2011) consider a contest in which the agents either succeed or fail, and
the prize is given to the agent who succeeded more often. The optimal policy reveals
performance only if both agents fail. Zhang and Wang (2009) consider revelation policies



2.2 The weight of past performance

Several authors ask whether there should be a bias towards the first-period
winner in the second period of a multi-period contest (Meyer 1992, Harbaugh
and Ridlon 2011 and Ridlon and Shin 2013). Meyer (1992) considers a set-
ting similar to our case with information revelation and a single prize, but
with risk-averse agents. She shows that the cost-minimizing choice of an
effort vector requires a bias towards the first-period winner.'* Our analysis
shows that the argument for giving a headstart also holds when the first-
period prize is much higher than the second-period prize, when there is no
information revelation, when intertemporal effort substitution is imperfect
and when there is no information revelation. Finally, we provide results on

the determinants of the size of the bias.'®

2.3 Distribution of prize money

A small number of papers derives the optimal distribution of prize money
across periods when there is an exogenously given technological link between
the first and the second period, creating an asymmetry between the agents
in the second period. The effects of such links are similar to those of a
positive weight of past performance in the assignment of the second-period
prize. Contrary to us, the authors focus on Tullock contests. For example,
in Moller (2012), the prize money received in the first period does not yield
direct utility to the agents, but reduces their effort costs in the second period.
Under some circumstances, the optimal policy requires a positive prize both
for the winner and for the loser in the first period.'® In Clark et al. (2013),

the winner in the first period may have lower effort costs in the second period.

in dynamic all-pay auctions with elimination.

1Ridlon and Shin (2013) show for a Tullock contest that an analogous result still holds
for small asymmetries in the abilities of agents. However, if the asymmetry is high, favoring
the first-period loser is optimal. In the dynamic all-pay auction of Harbaugh and Ridlon
(2011), favoring the first-period loser is always optimal.

15Contrary to us, Meyer (1992) assumes that the size of the bias is fixed ex ante rather
than a function of the performance difference in period 1.

16Gince agents are initially symmetric, unequal prizes in the first period yield an asym-
metry in the second period through their effect on second-period effort costs. This result
is therefore similar to a positive weight on past performance in our setting.



The effort-maximizing prize structure is to give only a second-period prize.
In Clark and Nilssen (2013), second-period effort costs fall with the first
period effort. The authors provide conditions under which it is optimal to
pay more than half of the total prize money in the second period.!” Apart
from the obvious difference in the structure of the contest, these papers do
not analyze revelation policies, nor do they allow for imperfect substitutes.
Some papers derive the optimal distribution of prize money across stages
in a two-period elimination tournament, where only the winners of the current
period compete again in the next period. A seminal paper is Moldovanu and
Sela (2006). Because elimination tournaments have a very different structure

than our model, the results are difficult to compare to ours.

3 The Model

We consider a class of two-stage rank-order tournaments. Given a fixed bud-
get W > 0, a principal chooses an incentive system Z, which is a tuple
(n,W1,p) € R x [0,W] x {0,1} to be explained below. For given Z, agents
i € {1,2} choose effort levels e; > 0 (t € {1,2})."® The effort cost function
K (e;;) has the following properties:

Assumption 1: K;; is independent of i and differentiable three times.
It satisfies K[, > 0, K} > 0, K;(0) = K/, (0) = 0. K[/(ey) > 0 or
K (eir) <0 must hold globally.

Thus, we can write K; = K;;. Note that we allow first- and second-
period tasks to differ with respect to effort costs. This reflects the idea that
the efforts in the two periods may be of very different types. Employees
or suppliers may have to carry out different tasks in different periods; stu-
dents learn different kinds of material in different phases of their education.
Therefore, effort costs may differ across tasks.

The agents maximize expected utility and are risk-neutral. Their utility is

additively separable in period-specific income and costs. At the end of each

1"We have a similar result in the case of imperfect substitutes, but for very different
reasons (see Proposition 7).
18Tn the following, the use of i and/or j as an index always implies i,j € {1,2} and

i # j.



period ¢, the principal observes performance, which is an imperfect measure
sit = e + € of effort. The error term ¢ is independently distributed across
agents and periods. In each period, the error distribution is the same for
agent 1 as for agent 2. However, the error distribution in period 1 may differ
from the one in period 2. This captures the notion that tasks in different
periods may also differ in terms of how easy it is to monitor effort.!”

Based on the first-period performance, the principal awards the first-
period prize W; to agent i if s;; > s;;. Agent ¢ receives the second-period
prize Wo = W — Wi if $;2 + 181 > sj2 +1s;1.2° The principal’s choice of the
first-period weight n € R thus determines the influence of past performance
on the chance of winning in the second period.

Under a full-revelation policy (p = 1), the principal communicates the
measured performance of both players to the agents before they choose their
second-period efforts. In practice, the principal will typically not communi-
cate a concrete number. Instead, she may communicate whatever relevant
information she has to the agents, thereby creating a common understanding
about their relative performance.?! Under a no-revelation policy (p = 0), the
principal does not communicate the performance assessment. She does not
even communicate who won the first-period prize and distributes both prizes
at the end of period 2.

The following notation is helpful to describe the solution of the game.

Definition 1 The error difference of player i in period t (t = 1,2) is
Aey = eiw—¢€ji, his relative first-period performance is As;; = s;1—5j1 =

Aej + Agyy, where Aey = e — ey

Clearly, Aeit = —Aejt, Agit = —Ai-fjt, ASil = —ASjl.

Tn a non-tournament setting, Ke et al. (2014) show that organizations optimally
hire workers into easy-to-monitor jobs with low effort costs and then promote them into
difficult-to-monitor jobs with high (marginal and absolute) effort costs. In our setting,
this would correspond to o1 < o3 and K (e) < K» (e), Kj (e) < K} (e).

20Tn each period, in case of a tie, the principal assigns the prize to each agent with
probability one half.

21 As we will see, second-period efforts depend negatively on the absolute value of the
performance difference in the first period. Hence, the principal has an incentive to always
report equal performances. This problem becomes negligible if the principal leaves the
communication to disinterested parties from within or outside the organization.



We make the following assumption on the error distributions:

Assumption 2 Agy is distributed as Fy(s) on R with a symmetric,
single-peaked, strictly positive and continuously differentiable density f; (s).

This implies f; (s) = f; (=s), f/(s) = —f/ (—s) and E (Ag;) = 0.2

For some results, we assume that the cost functions are quadratic:

(C1) The cost function is K; (e;) = % (er)” with k, > 0.

We assume that, given a fixed prize budget, the principal’s payoff is in-
creasing in efforts, where the efforts of different agents within periods are
perfect substitutes for the principal. We allow first- and second period ef-
forts to be either perfect or imperfect substitutes. For perfect substitutes,
the principal chooses the incentive system so as to maximize expected total
efforts. For imperfect substitutes, she maximizes the expected product of first
and second-period efforts. This corresponds to a complementarity between
first- and second-period efforts, making it desirable to have similar efforts in

both periods.

4 Behavior of the agents

We first analyze the equilibrium behavior of agents for given incentive system.

The following simple result is mentioned without proof.

Lemma 1 (i) The conditional probability that s;; > s;j1 given e; and ejy is
Fi(eq —ej1).

(11) The conditional probability that s;2 + 1nsi > Sj2 + 1sj1 given e;,e;o and
Asiy is Fy (nAsiy + €2 — €j2).

4.1 Full revelation

In period 2, a player’s information set consists of all combinations of period

1 efforts and error differences that are consistent with the own first-period

22The assumptions on the distribution of the error differences are guaranteed to hold if
the assumptions hold for the distributions of the observation errors.

10



effort e;; and the observed relative performance As;;.2> We use the Perfect
Bayesian Equilibrium (PBE) to deal with this imperfect information (Mas-
Colell et al. 1995, p. 285). The task is simplified because there are no
off-equilibrium events to consider, as f; is strictly positive on R. Moreover,
period 1 enters player ¢’s payoffs only via As;; and e;1, so that the unobserv-
able aspects of previous play (player j’s effort choices) are irrelevant for the
players’ choices.

A pure strategy o; of player i consists of a first-period choice e;; and a
function E;» mapping information sets (e;1, As;1) to actions e;o. If player i
chose e;1, observes As;; and assumes that player j plays the pure strategy
o; = (ej1, Ej2), he will assign probability one to the event that Ae;y =
As;1 — Aej;. We will always assume that beliefs are formed in this way,

without specifying them explicitly.

4.1.1 Second-period efforts

Using Lemma 1(ii), the expected second-period payoff of agent i, conditional

on the relative first-period performance and second-period efforts, is
Uiz (€2, €j2, Asi1) = Fy (nAsit + Aejn) Wo — Ky (€52) - (1)

Thus, the first period influences the second-period payoft via the first-period

relative performance As;;. The corresponding first-order condition is
fQ(T]ASil + ABQ)WQ = Ké (61‘2) . (2)

Though the game does not have any proper subgames because information
sets in period 2 are not singletons, payoffs in period 2 are constant on infor-

mation sets. We use this in the following definition.

Definition 2 The second-period effort game induced by As;, is the game
with players i = 1,2, strategy spaces X; = R™ and payoffs given by (1) for
(eiz,ejg) € Xz X Xj.

23This statement holds no matter whether the principal publicly announces the absolute
performance of each agent, or just the difference.

11



We obtain the following result:

Lemma 2 Suppose p =1 (full revelation) and Wy > 0.
(i) In any equilibrium of the second-period effort game, efforts are symmetric

and satisfy
ejo (Asit) = ey (Asinyn, Wa, 1) = (Ké)_l [f2 (nAsi1) Wa) (3)

(i) If effort costs are sufficiently convex, (3) defines the unique Nash equi-

librium of the second-period effort game.

Proof. See Appendix. =

Lemma 2 has some simple comparative statics implications.

Corollary 1 Suppose p =1, n # 0 and Wy > 0. Then e, is decreasing in

|Asq| and |n|, and increasing in Wi.

Proof. See Appendix. =

The result on |As;;| implies that, if a laggard (an agent with As;; < 0)
increases own effort, or a leader (an agent with As;; > 0) decreases efforts
marginally in period 1, both players increase effort in period 2.2* The other
two results identify policy effects. In particular, increasing the absolute value
of the first-period weight n reduces second-period efforts.

In the PBE, the symmetric equilibrium of the second-period effort game
is played after each realization of As;;. Thus, the expected second-period

payoft, conditional on first-period performance, is
UZSQ (Asil) = Uig (6:2 (ASH) ,6;2 (—Asil) ,Asil) . (4)
The expected second-period payoff, given first-period efforts, is

U% (eil, 6]'1) = EAE“ UZSQ (Aeil + Agil) . (5)

(2

24This result reflects the "well-known evaluation effect or lack-of-competition effect”
(Ederer 2010, p. 742).

12



4.1.2 First-period efforts

Using Lemma 1(i), agent i’s optimization problem in period 1 is

maxF1 (61‘1 — 6]‘1) W1 —I— UZEQ (Gz‘l, ejl) — Kl (61‘1) .

€i1>0
The corresponding first-order conditions is

U5,

fl (A€i1) Wl + aeil

= Kj (en). (6)
The following definition is crucial for the intuition.

Definition 3 The intensity of second-period competition is given by

C(n) = 2/000 f2(ns) f1(s)ds.

The logic of the definition is as follows. For each agent, f (s) captures
the density of the event that the relative first-period performance of this
player is s when efforts are symmetric (as in equilibrium). Since both players
choose identical equilibrium efforts in the second period, fs (ns) = fa (—ns)
captures the density of the event that a strike of luck of one agent in period
2 exactly compensates a strike of luck of the other agent of size s in period 1.
Therefore, C'(n) measures the joint probability of the event that the second-
period contest is a close run where a marginal effort increase of one agent
will affect the outcome of the second-period contest and tip the balance in
his favor: When C'(n) is high, an agent who has been lucky in the first period
cannot be too sure about his winning prospects in the second period, and
will therefore continue to put in some effort.

C(n) is a function of the weight n with several simple properties. First,

C'(n) = 2/00<> sfy(ns) f1(s)ds <0 for n > 0: (7)

13



An increase in the absolute value of the weight thus reduces the intensity of

second-period competition. Moreover:

Cm > 0 (8)
C(0) = f2(0) (9)
') = 0 (10)
C(m) = C(-n) (11)

We sometimes invoke a regularity condition that simplifies the interpretation
of our results:

(C2) For n > 0, nC(n) is increasing in 7.

This conditions holds, for instance, in Example E1 below. The following

condition rules out corner solutions in period 1:
f1(0) Wy +nWoC'(n) > 0. (12)

(12) can only be binding for negative 7.2

The following result uses (6) to derive equilibrium efforts:

Proposition 1 Suppose p =1 (full revelation).
(i) In any symmetric interior PBE, first-period efforts must satisfy

ey (n, Wi, Wy, 1) = (Ki)_l L1 (0) Wy +nWaC(n)] . (13)

(ii) Suppose the cost functions are sufficiently convex. If (12) holds, (3) and
(18) describe the unique symmetric PBE strategies. If (12) is violated, €5 = 0
and (3) describe the unique symmetric PBE strategies.

Proof. See Appendix. m

We defer the discussion of the second-order conditions to the appendix;

there we will show that they require sufficiently convex cost functions.?®

25We will show below that the principal will never choose negative values for 7.
26The relevant condition is (32).

14



By Proposition 1, if (C2) holds, then a higher positive weight of past effort
always induces higher first-period effort. The term in brackets on the right-
hand side of (13) is the marginal benefit from increasing e;;. The effect on the
expected first-period payoff is fi (0) Wy; the effect on the expected second-
period payoff is nW2C'(n), which is positive if n > 0. This term reflects the
direct effect of higher first-period effort on second-period winning chances.
The term does not capture strategic effects on the future efforts of the other
player. Such effects are relevant in the game, but they cancel out in the
symmetric equilibrium.?”

We now characterize second-period efforts. Symmetry of the equilibrium
in Proposition 1 implies As;; = Ag;;. Using (3) and taking the expectation

over Ag;;, we obtain:

Corollary 2 The expected efforts in period 2 in the full-revelation PBE de-

scribed in Proposition 1 are

E (e} (m, Wi, 1)) = 2 / D) o (s) Wal i (5) ds (14)

Proof. See Appendix. m

Together with Assumption 2, Corollary 2 implies that second-period ef-
forts decrease in |n|. Thus, first-period efforts must increase at least locally
in |n| near the optimal 1. Therefore, by (13), (C2) must hold locally near the
optimal 7. Otherwise, by Proposition 1 the principal could increase efforts in

both periods by reducing 7, contradicting optimality of 7.

2TTo see this, suppose n > 0; for n < 0, the argument is reversed. If, for any given
first-period effort choice, a player knew he was ahead of the other player, he would have
a strategic incentive to increase efforts to discourage player j from exerting effort in the
future, whereas the converse would hold for a player who knows he is behind the opponent.
Since the game is stochastic, players have to consider the expected strategic effects, which
can be positive or negative, but cancel out when first-period efforts are identical.
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4.2 No revelation

Under the no-revelation policy, agents simultaneously chose first- and second-

period efforts according to

eié%faefizo Fl (eil N 6j1> W1+ (15)
W2/ Fy (n(ea — €1+ S) + e — €j2) f1(s)ds — Ky (ein) — K (e2) .

The integral in (15) is the probability of winning the second-period prize,
conditional on effort choices.?® This leads to a simple characterization of the

Nash equilibrium.

Proposition 2 (i) Suppose p = 0 (no revelation). In any symmetric interior

Nash equilibrium, efforts must satisfy:

ey (n, Wi, Ws,0) = (Ki)il [f1(0) Wy 4+ nWoC(n)] >0 (16)
e3(n,Wa,0) = (K3)™' [W2C(n)] > 0. (17)

(i) If the cost functions are sufficiently convex and (12) holds, (16) and (17)

describe the unique symmetric Nash equilibrium of the game.?

Proof. See Appendix. m

Both effort levels reflect standard cost-benefit considerations. The mar-
ginal benefit of first-period efforts depends on the increased winning proba-
bility in period 2 (nC(n)) as well as period 1 (f; (0)).

By Propositions 1 and 2, first-period efforts in any symmetric equilibrium
are non-stochastic and equal under both revelation policies; we thus write

et (n, Wy, Wy) for first-period equilibrium efforts.

28This follows from Lemma 1(ii).

2In Appendix 8.1.6 we identify the meaning of “sufficient convexity”. We also show
that the second-order conditions hold locally for arbitrary convex cost function.

30The result reflects the fact that the marginal effect of first-period effort on expected
second period payoffs is identical under both policies. Intuitively, a marginal increase of e;;
has positive effects on the second-period payoffs of player 1 if it suffices to tip the balance in
the contest in period 2 in his favor. The probability that this happens, which is captured
by C(n) for both players, is independent of whether information on As;; is revealed to
players before they choose second-period efforts. In this argument, it is important to start
from the respective equilibrium, with equal efforts in both periods.
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5 Optimal policy

We now characterize the optimal policy of the principal.3! To this end, we fix
the total budget as W, so that Wy = W — W,. Since we focus on symmetric
equilibria and efforts within periods are perfect substitutes, we can write the
principal’s objective in terms of the efforts of only one agent. As first-period
efforts are non-stochastic, the principal’s objective functions for perfect and

imperfect substitutes, respectively, are:

VP(%WLP) = ei(n?WbW_Wﬂ_‘_E(e;(naW_Wlap)); (18)
VI(%WhP) = 6’{(77,W17W—W1)'E(@S(?],W—Wl,p)). (19)

5.1 Optimal revelation policy

According to (18) and (19), the principal chooses the revelation policy that
induces higher expected second-period efforts, no matter whether efforts are
perfect or imperfect substitutes. Using Jensen’s inequality, we can compare
the expected second-period efforts in the equilibria characterized by Propo-

sitions 1 and 2:32

Proposition 3 Vn e R, W, < W:
(i) If K" > 0, then e3 (n, W — W1,0) > E (e (n, W — Wy, 1)).
(i) If K3 <0, then €5 (n,W —W1,0) < E (e (n, W — Wi, 1)).

Proof. See Appendix. =
For quadratic costs, (i) and (ii) together imply that expected second-

period efforts are equal under both revelation policies.?® Proposition 3 ap-

3Tn the following discussion, we assume that, for given error distributions and effort
cost functions, second-order conditions hold for all allowable choices of the policy variables.
This is for instance true for the normal-quadratic example of Section 6.

32Tntuitively, with revelation, the agents base their second-period decisions on the re-
vealed asymmetry between players, whereas, without revelation, the expected asymmetry
is decisive. Compare second-period decisions with and without revelation for given effort
choices in the first period: For error realizations where the asymmetry is low (high) relative
to expectations, efforts will be higher (lower) with revelation than without.

33 Intuitively, the role of K4 is an immediate consequence of the fact that second-period
efforts are the inverse of marginal costs for p = 0 and the expectation of the inverse of
marginal costs for p = 1. Thus, concavity (convexity) of the inverse marginal costs is
decisive for which regime yields higher efforts on expectation.
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plies to all values of n and W; and, in particular, to those that maximize
es (n, W —Wy,0) or E(e5(n, W —Wiy,1)). Thus, even if the principal has
chosen the optimal parameters for a given revelation policy, switching to the
other revelation policy is beneficial if the corresponding condition on K’

holds. Hence, we have proven:

Corollary 3 The optimal revelation policy is the same for perfect and im-
perfect substitutes, with p =0 if K >0 and p =1 if KJ < 0. For K} =0,

expected payoffs are independent of the revelation policy.

The result extends Aoyagi (2010) who shows that, for one prize (W; = 0)
and equal weights (7 = 1), the effort cost function completely determines the
optimal revelation policy.®* Our result shows that this statement holds for

arbitrary W; and 7.

5.2 Optimal weight of past performance

The principal can give incentives for first-period efforts with W; or n. The
next result shows that, no matter how high the first-period prize is, the
principal should always assign a positive weight to past performance in the
second-period contest. For perfect substitutes, we denote the optimal choice
of n conditional on W; and p as n* (Wi, p) and the optimal choice of W,
conditional on 7 as W{'(n, p). For imperfect substitutes, we write n’ (W1, p)
and W{(n, p).

Proposition 4 n*(Wy,p) > 0 and n (Wy,p) >0V Wy <W and p=0,1.

Proof. See Appendix. =

This result holds because, for n = 0, the marginal effect of i) on first-period
effort is positive and bounded away from zero (a first-order effect), whereas
it is zero for second-period effort (a second-order effect). To understand the
latter point, note that the adverse effect of increasing n > 0 on second-period
efforts arises because the second-period contest becomes more asymmetric,
that is, less competitive (C'(n) < 0). As C"(0) = 0, this adverse effect

vanishes as 7 approaches 0.

34Ederer (2010) also treats this case in his discussion of non-complementary abilities.
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Proposition 4 states that performance evaluation should always have
some memory: Firms should consider not only the recent performance of
employees and suppliers, but also the performance in the distant past. Sim-
ilarly, students should not only be judged with respect to their recent per-
formance. The open question is: How large should the “shadow of the past”
be? To answer this question for perfect substitutes, the next result char-
acterizes the weight of past performance for quadratic costs (C1). In this
case, revelation and no revelation imply the same behavior. Thus, we write
nt(Wy) = nf(Wy,0) = nf' (W1, 1), and similarly for W (n). Furthermore, we
write (n”, W) = arg max, w, V7 (n, W1).

Proposition 5 Suppose (C1) holds. Then, ¥ Wy < W, n¥ (W1) satisfies

| 5 o

Proof. See Appendix. m
(20) captures the trade-off between strengthening first-period incentives
and weakening second-period competition. Changes in the error distributions

of second-period competition to the first-
35

that increase the sensitivity ‘%
period weight 7 for all n reduce the optimal 7.”> Furthermore, the higher
first-period marginal effort costs are compared to second-period marginal
effort costs, the lower is the optimal 1. Note that (20) and thus the optimal

n is independent of the first-period prize W;.3

5.3 Optimal first-period prize

We now supply several results on the optimal prize structure. We also use

these results to obtain further insights on the optimal weights.

35We illustrate this in Figure 2 below.
3VP(’I7W1)

36 This is due to the fact that W, enters o linearly. The relevant expression is

(43). Since % < 0, the increase in payoff by setting n optimally depends positively

on W — W1, the prize paid in the second period.
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5.3.1 Perfect substitutes

For perfect substitutes, we confine ourselves to quadratic costs (C1) in the
main text. The results are special cases of more general, but less transparent
results that we state and prove in Appendix 8.4 (Propositions 9 and 10).
For quadratic costs, it is optimal to give only one positive prize. Depend-
ing on the observation error distributions, the prize should be based only on

first-period performance (W} = W) or on second-period performance as well
(WP = 0).

Corollary 4 Suppose (C1) holds.
(i) If f1(0) < (Z—; + 77) C(n), then the optimal first-period prize conditional

onnisWE(n)=0. If3IneR st f1(0)< (,’j—; + 77> C(n), then the uncon-
ditonally optimal first-period prize is Wl = 0.
(i) If f1(0) > (Z—; + 77> C(n), then the optimal first-period prize conditional

onn is WE (n) =W. If f,(0) > (% + 77) C(n) ¥V n € R, then the uncondi-
tonally optimal first-period prize is WE = W.

Proof. See Appendix. m

The intuition is straightforward. By (i), when second-period competi-
tion (as captured by C(n)) is intense enough relative to the precision of the
first-period measurement (as captured by f; (0)), then second-period efforts
should be positive, which requires a second-period prize.’” Otherwise (case
(ii)), there should be no second-period prize. However, we will show in Sec-
tion 6 that W = 0 always holds in a normal-quadratic example. Note that
the condition under which there is no first-period prize is easier to satisfy
when first-period marginal effort costs are high compared to second-period

marginal effort costs.

Beyond quadratic effort costs In Appendix 8.4, we provide results on
the optimal first-period prizes and weights for general cost functions. These
results imply Proposition 4 for K;” = 0 as a special case. When K" # 0, the

effort choices with and without information revelation are no longer identical,

3TNote that f; (0) is a purely local measure of precision, capturing the probability that
identical efforts translate into identical performance measures.
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so that the optimal policies do not coincide. Proposition 9 in the Appen-
dix characterizes the optimal prize structure with information revelation for
K}" <0, in which case information revelation is superior to no revelation by
Proposition 3. Conversely, Proposition 10 in the Appendix characterizes the
optimal prize structure without information revelation for K" > 0, where
no information revelation is superior to revelation by Proposition 3. The
interpretation of the general propositions is similar as for quadratic costs: If
the first-period contest is too noisy, it is optimal not to give a first-period

prize.

5.3.2 Imperfect Substitutes

For imperfect substitutes, we also obtain a general condition under which the
optimal first-period prize for a given past weight is zero with performance
revelation. The result applies if K;” < 0, so that revelation is optimal by

Corollary 3.

Proposition 6 Suppose K" <0 fort=1,2. For alln >0, Wl(n,1) =0 if
f1(0) <nC (n).

Proof. See Appendix. =

Thus, as with perfect substitutes, this (sufficient) condition is easier to
satisfy if the first-period signal is not very precise (f; (0) is low) and second-
period competition C'(n) is intense. To obtain stronger results, we now
specialize to quadratic effort costs. As behavior is the same with and without
revelation, we write ! (W;) = n’ (W1, 0) = n’ (Wy, 1) and similarly for W (n).
Furthermore, we write (', W{) = argmax, w, V' (n, W;). We obtain:

Proposition 7 If (C1) holds, the optimal first-period prize conditional on
n is Wi(n) < % V' n, so that the optimal unconditional first-period prize is
wi <%

Proof. See Appendix. =
There is no counterpart of this result for perfect substitutes, where it
can, in principle, be optimal to refrain from inducing second-period effort

altogether. For imperfect substitutes, principals aim at a balanced effort
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distribution. Therefore, they need to make sure not to give excessive first-
period prizes, because they are already providing indirect incentives for first-
period effort through the weight 7.

The following result specifies the optimal solution further:

Proposition 8 Suppose (C1) holds.
(i) Wi (n) > 0 if and only if f1 (0) > 2nC (n). In this case

f1(0) = 2nC (n)

26 (0) —2nC ()~

Wil (n)=w

(ii) The optimal (Wll,nl) satisfies one of the following necessary properties:

I Cl(771> o 1 .
(a) Wi = 0 and ’C’(n[) =0

L hO e )| )
OWe = War o —apean 0™ '0071) =0

Proof. See Appendix. m

Result (i) describes the optimal prize structure conditional on 7. As with
perfect substitutes, the optimal first-period prize is positive if first-period
precision (captured by f; (0)) is high and second-period competition C (n) is
low. Moreover, the result sharpens Proposition 6 by showing that, at least
for quadratic costs, f1(0) < nC'(n) is not necessary to guarantee that the
conditionally optimal prize structure satisfies W{(n) = 0. Finally, the result
shows that, when (C1) and (C2) hold, first-period prizes and weights are
substitutes: The optimal first-period prize is lower the higher the first-period
weight 7 is.

Result (ii) describes the unconditionally optimal solution (W{,n1) for
quadratic costs. There are two possibilities, both depicted in Figure 1. Ac-
cording to (a), the first-period prize may be zero, in which case the optimal
first-period weight is described by a simple condition that depends exclu-
sively on C' (1) (see point A on the horizontal axis in Figure 1). As with
perfect substitutes, the weight is lower if the adverse effect of n on future
competition is higher. By (b), the first-period prize may be positive, in

which case the optimal first-period weight is determined by a condition that
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f1(0) =20'C (1)

W =W = 2c)
w '] C()
2 cel) |~ i(0)

Wi =0;
(")
Cnh)

/
:

f1(0) = 27C(n) n

1

2n!

Figure 1: Necessary conditions for imperfect substitutes

depends on error distributions not only via C' (n), but also via f; (0) directly,
as captured by W{ (n) (see point B on the diagonal line in Figure 1).3® The
error distributions determine which of the two cases in Proposition 8 applies.
For instance, with normal error distributions, the first-period prize is zero
(see Corollary 6 below).

Note that in contrast to the perfect substitutes case (Propositions 5 and
4), the optimal weights and prizes are independent of the relation between
first- and second-period effort costs and entirely determined by the properties

of the observation error distributions.

5.4 Restrictions on allowable policies

In some circumstances, principals may not be free to choose arbitrary incen-
tive systems. For instance, there may be a limit on the extent to which they
may consider past performance in current evaluations. Then first-period
prizes may act as substitutes for performance weights: For instance, with
perfect substitutes, Proposition 4 shows that it is weakly easier to satisfy
the condition for W (n) = W and correspondingly weakly more difficult to

satisfy the condition for W () = 0 when 7 is bounded above. Conversely,

38 Note that W{ (n) is typically not linear.
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the prize structure may be restricted. For instance, a principal may have
to spread the prize sum evenly. According to Proposition 7, W; < % must
hold for the optimal first-period prize with imperfect substitutes. In cases
where an unconstrained principal would set W, < %, a principal who has to
set W; = % is giving excessive first-period incentives relative to the uncon-
strained case. To make up for this, she has to adjust the weight of first-period

performance downwards.

6 A Normal-Quadratic Example

To obtain sharper results, we introduce a simple example.
Example E1: The cost function is K (ex) = 5¢2, for t = 1,2. The error
difference Aejy; is normally distributed with variance o?.3

Example E1 satisfies Assumptions 1 and 2.4°

Corollary 5 In F1, a PBE exists. The equilibrium efforts under revelation

and no revelation are

1 Wi nWs
Wy, Wy) = —— (L 172 ) 21
1(77 1 2) k’\/%(al W) ( )
Wo

6; (na W270) =FE (63 (77’ W27 1)) =

N T

Proof. See Appendix. =

Comparative statics for second-period efforts are straightforward. Lower
marginal effort costs, higher second-period prize, lower first-period weight
and higher first- and second-period precision induce higher second-period
efforts. Analogous results hold for period one. First-period efforts also in-
crease if the second-period precision increases, given n > 0: The parameter
change makes first-period effort more worthwhile, because the positive effect
on winning the second-period prize increases. Finally, a redistribution of the

prize sum from period 2 to period 1 increases first-period efforts, because the

39 A normally distributed error difference follows, for example, from normally distributed
observation errors.
40Tn the appendix, we also derive the second-order conditons ((66) and (68)).
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positive effect of an increase in the first-period prize is always stronger than

the negative effect of an identical decrease in the second-period prize.

Figure 2: Necessary conditions for n with perfect substitutes

Figure 2 illustrates Proposition 5 for Example E1. It shows how the

of second-period com-

petition to 7, which is low if the second-period performance measurement is
relatively imprecise compared to the first-period measurement, implying a
higher optimal weight of first-period performance.

Corollary 6 characterizes the optimal policy. The results endogenize the
assumption that W; = 0 and n = 1 in Aoyagi (2010) for identically normally

distributed error distributions (o) = 05). 1t

Corollary 6 In E1,
(i) n* (Wy) = 02 V Wy < W. Furthermore, W =0 and n® =3

(ii) Necessary condztzons for the optimum are n' = = 22 and Wi =0.

q
DO N

Proof. See Appendix. m
(i) shows that it is optimal to give only a second-period prize with per-
fect substitutes. Incentives for first-period efforts come exclusively from the

weight of past performance, which is the ratio of the error variances in the

41Similarly, we provide a justification for Ederer’s (2010) model with non-complementary
abilities in which W7 =0 and n = 0.
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two periods. (ii) yields a similar result for imperfect substitutes, with vari-
ances replaced by standard deviations. Note that n’ > n? if and only if
Z—f < 1: Greater precision of the second-period performance measure leads
to higher second-period efforts compared to the first-period efforts. With
imperfect substitutes, where an even effort flow is desired, a greater weight
of the first period is used to mitigate the asymmetry.

The example demonstrates the importance of the right incentive system.
To see this, suppose that initially the principal chooses (n, W7) = (0, %), SO
that there are two independent and identical tournaments. Next suppose that
the principal introduces the optimal policy in two steps: First, she maintains
the equal division of the prize sum across periods, but chooses the optimal
weight 7" (%), so that (n, W) = (Z—%, ). Finally, she chooses prizes and
weights optimally, so that (n, W) = (Z—%, 0). Simple calculations (available on
request) show that if the principal sets only 7 optimally, the relative increase

of her payoff, compared to the initial situation, is

PR G ) R U IV e B

" VE (0, 7) CETS

By optimally adjusting the prize structure as well, she achieves an additional

relative payoff increase of

2 2
P22 —_vP(22 W
o VEY) T (EE) vEra o
/% = .

The relative importance of these two effects depends on the precision of the
performance measures. If second-period performance measurement is very
precise (09 & 0), whereas the first-period measure is not, then Ef ~ 0;
If first-period performance measurement is very precise (o; =~ 0), whereas
the second-period measure is not, then E{;,l ~ 0. Thus, getting the perfor-
mance weight right (rather than choosing 7 = 0) is only important when
second-period performance measurement is imprecise; getting the second-
period prize right (rather than splitting the price equally) only matters when

first-period performance measurement is imprecise.
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relative payoff increase

Figure 3: Relative payoff increase when setting W, and 7 optimally

Compared to the initial situation, the total relative payoff increase from

setting both W3 and 1 optimally is

o2 w
v (F%’O) -V (077)_2 o2+ 03— (01 + 02)
Ve(.5) - (01+02)

P _
E,w, =

Figure 3 shows how the total relative payoff increase from choosing the op-

timal incentive system depends on the variances of the error distributions.

Ef;wl attains its minimum for o1 = 05 at V2 — 1 ~ 41%. Thus, the
percentage payoff increase from implementing the optimal policy is lowest
if both performance measurements are equally precise. Even in this case,
however, the benefits are substantial: The principal can achieve 41% higher
payoff with a budget-neutral policy adjustment. Figure 3 further shows that
if one of the performance measures is very precise (o; &~ 0), then Ef; w, ~ L
Hence, the more precise one of the performance measures, the more the

principal can benefit from implementing the optimal policy.
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7 Concluding Remarks

This paper analyzes intertemporal effort provision in two-stage tournaments.
A principal with a fixed budget for prizes faces two risk-neutral agents. She
observes noisy signals of effort in both periods. She aims at maximizing
either total efforts (perfect substitutes) or the product of first- and second-
period efforts (imperfect substitutes). She decides (i) how to spread prize
money across the two periods, (ii) how to weigh performance in the two
periods when awarding the second period prize, and (iii) whether to reveal
performance after the first period.

We obtain several new insights. First, design matters. The potential
losses from suboptimal incentive systems are substantial.*?> Second, several
interesting results of existing research on revelation policy and performance
weights are much more general than previously known, extending in partic-
ular to the important case that efforts in different periods are not perfect
substitutes. Third, we provide new results on the determinants of optimal
incentives. We show that the weight of past performance should depend
negatively on the extent to which a higher weight of the past reduces compe-
tition. We also show how the spread of prizes across periods and the choice
of weights depends on the relative precision of performance measures in the
two periods. Finally, we show that, under quite general conditions, there

should be no first-period prize.
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8 Appendix

8.1 Behavior of the Agents*
8.1.1 Proof of Lemma 2

(i) Equilibrium efforts must be positive because fo > 0 by Assumption 2 and
K (0) = 0 by Assumption 1. Since fs is symmetric by Assumption 2 and

- (UA511+A612) = NAsy +Aeg,

the left-hand side of the first-order condition (2) is equal for both agents. Hence
ey (Asi) = €jo(—As;,), so that the second-period efforts are the same for both
agents. Thus, (2) becomes fy (nAs;;) Wao= K (e;2). As K3> 0 by Assumption 1,
K, therefore is strictly increasing and thus invertible. Thus (3) must hold in any
equilibrium.

(ii) The following inequality guarantees that the second-period payoffs (1) of

player 7 are strictly concave in e;o:
fé (T]ASil—f—Aeig) W2 < Ké, (61‘2) A ASHG R, €2, 6]-26 RJr. (23)

(23) requires K to be sufficiently convex.** If this condition holds globally, the
first-order conditions (2) characterize a Nash equilibrium. Moreover, the equilib-
rium is unique, as (3) must necessarily hold in any equilibrium by Part (i) of the

lemma.

8.1.2 Proof of Corollary 1
The inverse function theorem yields

1
Ky (K3) ™ (fo (nAsyy) Wa))

#3The proofs in this section generalize Aoyagi (2010) and Ederer (2010) (for non-
complementary abilities) who assume W7 =0 and n = 1.

4By Assumption 2, f} (nAs;;+Ae;o) < 0 if nAs;1 + Aeja > 0, so that (23) always holds
in this case. For the case that nAs;; + Ae;2 < 0, suppose f4 is bounded above. Then (23)
holds globally if K has a sufficiently high lower bound.

(KD 7] (2 (nrs) W) =
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Thus (3) implies

ey nfy (nAs;) Wa )
sy K (K 57 (f2 (nAsyy) W) ’ (24)
8@2 _ A511f2 (nASzl) W2 . (25)
on Ky (K 57 (f2 (nAsyy) Ws)) ’
86,-2 . f (TIASM)
oW, Ky ((K5) " (f2 (ndsy) W) (26)

By Assumption 1, K> 0. By Assumption 2, if As;;< (>)0An #0AW,> 0,
then 7 f5 (nAs;;) > (<)0 and thus ((fz—zl > (<)0 . This implies that e;5 is de-
creasing in |As;1|. As Asj= Ae;;+Ae€;; we obtain the results for e;1 and ej;.
Similar arguments show that 65;;2> (<)0 for n < (>)0 and thus e;2 decreasing in

7] Since fo> 0 by Assumption 2, we have 2> 0.

8.1.3 Proof of Proposition 1

(1) We first derive expressions for ?9[@]-512 for symmetric first-period efforts. This
allows us to state the FOC.

Lemma 3

Proof. Applying the envelope theorem to (4), we obtain

dUj (Asy) OUg Oesy (—Asi) . U
dAsiy  Oejy OAsy OAs;

(28)

Using (24) and the symmetry of the density (Assumption 2),

66;2 (—Asi) :8612 (Asip) _ 77f/2 (nAsi) W
s OAsin K ((K5) ' (f2 (nAsy) Wh))

(1) implies

oU;

B 2 = —fo (NAsi+Aen) Wa,
€j2

oU;

5 ASZ = nfy (PAsiy+Aes) Wh.
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Using these equations in (28) and inserting Ae;s= 0, we obtain

dU3, _ nfy (nAsa) f3 (nAsa) W3
dAsi Ky ((K5) 7 (f2 (nAsy) Wa))

+nfy (nAsi) Wh.

Using this in (5), we obtain
ouUsg,
den
/w [_m (n(Dei+s)) f3 (0 (Dea+s) W3
K3 (K™ (f2 (n (Aen+s)) Wa))
= 77W2/_ fo (n(Aej+s)) f1(s)ds—

o [ fa(n(Aein+s)) fr(n(Aen+s))
* oo K (K™ (f2 (n(Aein+s)) Wa))

+nfa (n(Aea+s)) Wa| fi(s)ds

—00

f1(s)ds.
Let

A :/OO fa (n(Aei+s)) f1(s)ds,

B . - < fa(n(Aea+s)) fo(n(Aea+s)) fi () ds.

—oo KY ((Ké)fl (f2 (n (Aen+s)) Wa))

With this notation,
ouUs,

de;
Substituting s =t — Ae;; and ds = dt in A and decomposing the integral gives

= ngW,A —nW3B. 29)
2

0 o0
A= / N fa(nt) f1 (t—Aey) dt+ /0 fa(nt) f1 (t—Aey) dt.

Let u = —t. Symmetry of fi and fs by Assumption 2 implies fo (nt)= f2 (nu)
and f1 (t — Ae;j1)= f1(u+ Ae;p). Hence,

0 [e’e)
/ fa(nt) f1 (t—Aen)dt :/ fa (nu) f1 (u+ Aejy) du.
e 0
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Thus,
A = /oo fg (UU) fl (U—FA@“) du+ /OO fz (Ut) fl (t—Aeil) dt
0 0
= [ Rl (e ben) 5, (-de) dr
0

Substituting s =t — Ae;; and ds = dt in B and decomposing the integral, we

obtain

_ O fa(nt) 5 (nt) fr (t_Aeil)dt+ > fa(nt) f3 (nt) f1 (t_Aeﬂ)dt
oo K (K)T (2 ()W) Jo K (K5 (f2 (nt) Wa))

Again using u = —t and appealing to symmetry, fo (nt)=fa (nu), f4 (nt)=—f4 (nu)
and f1 (t — Aeﬂ): f1 (U —+ A€ﬂ). Thus

O fo(nt) f5 (nt) f1 (t— Aeu / f2(n nu)) fi (U+A€zl)d
u
o KY ((K3) ™" (fa () Wa)) K" f2 (u) W)

Hence,

B — /°° —fo (nu) f5 (W) fi (U+A€z1)du+ * fa(nt) f (777175) fi (t—Aeﬂ)dt
o Ky ()™ (fz (nu) Wa)) o K3 ((K5)" (f2(nt) Wa))
_ / J2(nt) f5( nt —f1 (t+Aei) +f, (t—Aey)]
K5 (K37 (f2 (nt) Wa))

dt.

Substituting the expressions for A and B into (29) and using s = ¢, we obtain

U,
86;2 Wz/ fa(ns) [f1 (s + Aei) +f1 (s — Aeq)] ds (30)

s [ Fa (03) £33 [ (5 + Dear) —fy (s — Aey)]
W5 ds.
o / K3 ((K) " (fa (ns) Wa))

With Ae;;= 0, we obtain (27). =
Together, (6) and Lemma 3 imply

J1(0) Wi4nW,C(n) = K (eq).
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By Assumption 1, K7 is invertible. We thus obtain (13) as a necessary condition
for any symmetric interior PBE.

(ii) We know from Lemma 2(ii) that (2) implies sequential rationality in the
second period. Moreover, from the discussion at the beginning of Section 4.1,
beliefs are consistent.

As K{(0) =0 by Assumption 1, efforts must be positive in any symmetric
equilibrium if (12) holds. Thus, by Part (i), (13) is a necessary condition for an

equilibrium. The second-order condition for player ¢ is
02U, "
fl (Aezl)WpL a K (611) Vezl, j1€ R* (31)

€i1

Inserting (30) in (31) gives

F1 (Bew) Wb, / TR s) [ (s + Aea) —fy (s — Aen) dst (32)

2 f2(ns) f3 (ns) [f1 (5+A€zl)+f1( — Aej)] "
W ds Kl €i1) -
i [ K3 (K3 (s (n9) 2) < ften)

The left-hand side of this inequality is decreasing in K/, while the right-hand side
is increasing in K. For given policy parameters and distributions, (31) there-
fore holds as long as min { K7 (0), K;(0)}, which is a lower bound for K7 (e;1)
and K7 ((Ké)_l (f2 (ns) Wa)), is sufficently large. In this case, the second-order
condition can be guaranteed to hold whenever the slopes of fi and f5 are bounded.

If these conditions hold globally, (13) thus describes an equilibrium, which is

the unique symmetric equilibrium.

8.1.4 Proof of Corollary 2

Symmetry of the equilibrium implies As;;= Ag;;. Hence, (3) implies
€5 (Asin, 0, W, 1) = (K3) " (f2 (nAein) Wa) .

Taking the expectation over Ag;1, we obtain
o0

Ecw (¢4 (Asi, 1, W, 1)) = / ()™ (2 () Wa) i (s) ds.

oo
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From the symmetry of the density by Assumption 2, we get (14).

8.1.5 Proof of Proposition 2

(i) From (15), the first-order conditions are

f1 (Bew) Wyt W, / T ha(n(Aeats) HAew) fi (s)ds = K} (en)

Wg / f2 (77 (Aei1+s) —{—Aeig) fl (S) ds = Ké (61‘2)
For the symmetric case Ae;;= Ae;o= 0, this simplifies to

fr Q) WinW,C(n) = Kj(en);
WeC(n) = Ky(ew).

Inverting K and K} yields (16) and (17).

(ii) If (12) holds, first-period equilibrium efforts are positive because K’(0) =0
by Assumption 1. Equilibrium efforts in the second period are positive because
W5C(n) > 0 by Assumption 2. By part (i), (16) and (17) are necessary equilibrium
conditions.

Consider the following second-order conditions*®

A Wt We [ fn eats) +8e) i (s)ds < K (ea)s - (33)
K e Wa [ (0 (Bearts) +cea) fi(5)ds
+ K4 (e2) - { f1(Aey) Witn*Ws / Z fh (0 (Aej+s) +Aei) f1(s)ds| (34)
—f1 (Aey) Wi, /Z fo (0 (Aes+s) +Aep) fi(s)ds < KY (e;1) Ki (es) .

If these conditions hold globally, the expected payoff of player 7 is a strictly con-
cave function of (€;1, €;2), so that (16) and (17) describe best responses, and thus

characterize a Nash equilibrium. Furthermore, this is the unique symmetric equi-

45(33) is the condition that expected payoffs are strictly concave in (e;1); (34) is the
condition that the Hessian of the expected payoff function has strictly positive determinant.
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librium.

8.1.6 Discussing Second-Order Conditions (No revelation)

Global Second-Order Conditions We first show that (33) and (34) hold
for given policy parameters and distributions as long as K; is sufficiently convex
for ¢ = 1, 2. For (33), this is obvious, as the right-hand side is increasing in K1" ().

To see that the statement is also true for (34), let

A

W /00 I3 (n (Aein+s) +Aes) f1(s)ds
B = f](Aeq) Wi+n* Wy /00 I3 (n (Aein+s) +Ae) f1(s)ds
C = —f1(Qeq) Wi, /00 f5 (n (Aea+s) +Ae;) f1(s)ds
With this notation, (34) can be written as
KY (en) A+ Ky (e) B+ C < KY (en) Ky (e:) (35)

To prove that (34) holds for sufficiently convex cost functions, suppose it does not
hold for some pair of cost function K and Ks. Let K, (e) =K (e) —i—%eQ. Then
(35) for f?l and }?2 is

KY (en) -A+K; (ei2) B+ C < (36)
k{l (Gz‘l) }?g (€i2) +K <K1’ (61'1) + f?g (eig) —A— B> —|—/§2

For all A and B, the right-hand side of this inequality can be made arbitrarily
high by increasing x, so that the inequality is satisfied and thus (34) holds.

Local Second-Order Conditions In the symmetric equilibrium, Ae;;=
Ae;p= 0. Using this equation in (33) and (34), f; (0)= 0 and the symmetry of f;
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and fy (Assumption 2) gives

W, / ) £ (s) ds < KU (en) (37)
W2 ?72W2 o ,
(et i) [ Ao A<t 9

By Assumption 2, fi (s)= fy(—s) and f}(ns)= —f, (—ns). This implies
that [*_ f3(ns) fi (s)ds = 0. Thus, the left-hand sides of (37) and (38) are all

0 and the inequalities hold automatically.
8.2 Revelation Policy: Proof of Proposition 3%
(14) and (17) imply

e (W =Wy, 0) =E (e (n, W =Wy, 1)) =

(K3) ™ (W = W1) C () —2/000 (K3) ™" (f2 (ns) (W = W1)) fu (s) ds

Using Definition 3 and the symmetry of f; and f, the right-hand side can be

(k)™ ((W ) [ ha) i (5)ds)

/ (D) (o (s) (W — W) Fu () ds

[e.o]

written as

Substituting g (s) = (W — W) f2 (ns), this becomes

) (oo neas) - [Ty a5

According to Jensen’s inequality, this expression is weakly negative (weakly posi-
tive) if (Ké)_l is convex (concave), which is the case if and only if K7 is concave
(convex), that is, K3’ <0 (K%' > 0).

40The proof resembles Aoyagi (2010) and Ederer (2010) (case with non-complementary
abilities), but allows for W7 > 0 and 7 # 1.
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8.3 Optimal Weights
8.3.1 Proof of Proposition 4

We start with several auxiliary results. Then, we show that 7 < 0 is never optimal.
Finally, we show that it is always optimal to increase 1 from zero to some positive

value.

Lemma 4 Suppose 1;> 0 and ny= —n;. Then,

(1)
e&r (i, W =Wy, 1) > €] (g, Wi, W —W1).
(1i)
E(e5(n, W =Wy, 1)=E(e5(ny,, W =W, 1)).
(iii)

e (1, W = Wy,0)=¢; (1, W — W1,0).
Proof. (i) From (13) and (16) and using (11), we have

€5 (ny, Wi, W — Wy) =€ (ny, Wy, W — W1) = (39)
(KD (2 (0) Witny (W = W) C(ny)) —
(KD (f2 (0) Wi—ny (W — W) C(n,)) -

As K7 >0, (K})™" is strictly increasing. Thus, (39) is strictly positive.
(i) (14) and f3 (ny8) = f2 (ny8) imply the result.
(iii) (17) and (11) imply the result. =

Lemma 5 Suppose W< W. Then,
(1) .
ae1 (777 Wla W - Wl)
on

(i)
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Proof. (i) From (13) and (16),

a1 K7 [(K)) ™ (1 (0) Watn (W — Wy) C (n))]
Hence,
et (n, W1, W — W) _ (w- Wl) ¢(0)
on n=0 K [(KD) ™ (f1(0) Wh)]
(W — W1) f2(0)
K{ [(K) ™ f(0)wn]

where the second equality follows from (9). As K > 0 and f5(0)>0

WJ/V—WQ > 0 provided W< W.
n=0

(ii) From (14),

O (¢ (n, W= Wi 1) _, [~ s W=W)A()
on -2 K5 [(K) " (o (o) (W~ (Y

Hence,

OF (€5 (ny, W = W1, 1))

ds =0
on 5T

:2/00 sfy (0) (W —W1) fi(s)
=0 o K3 (KD (f2(0) (W — W)

where the second equality follows from f5 (0) = 0. Next, from (17),

Oey (n, W —W1,0) _ (W —Wy)C'(n) ‘
on K [(K5) ™ (W = W1) Cln))]
Hence,
Oes (n, W —W1,0)| (W —Wy) " (0) —0
an o KLY TH(W =Wy C(0)]

where the second equality follows from (10). m

To see that 17 < 0 is never optimal, note that Lemma (4) (i)-(iii) implies that
for every n < 0, —n > 0 yields strictly higher first-period efforts and equally high
second-period efforts. Thus, for any revelation policy and whether efforts are

perfect or imperfect substitutes, the optimal 7 is non-negative.
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To see that for Wi < W the optimal 7 is positive, note that by Lemma (5) (i)
and (ii), increasing 1) marginally from zero increases first-period efforts, while there
is no effect on second-period efforts. Hence, for any revelation policy and whether

efforts are perfect or imperfect substitutes, the optimal 7 is positive provided

Wi< W.

8.3.2 Proof of Proposition 5

From (18),
8VP (777 Wl? 1) _ae; (777 W17 W — Wl) OF (63 (7717 W — Wla 1))
= + (42)
on o o
Using (C1) and (7) to simplify (40) and (41), (42) becomes
oVE (. Wy) (W =W1) (C) +nC'(m) (W —W1)C'()
= + (43)
on k1 ko
Solving %?]’Wl): 0 and rearranging gives the result.

8.4 Optimal Prize Structure for Perfect Substitutes

First, we provide results on the optimal prize structure for the case of general I;
and Ko that are not necessarily quadratic. As the revelation policy matters in
this case, we first address the optimal prize structure for the full revelation case
in Proposition 9. The result will rely on the Assumption that K}” < 0. This is
not a serious restriction: Corollary 3 states that K3'< 0 is the case in which full
revelation is optimal. Second, we consider the no revelation case in Proposition
10 for K{” > 0. Again, this is not a serious restriction because for K5'> 0 no

revelation is optimal by Corollary 3. Third, we derive Corollary 4 for K;"= 0.
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8.4.1 Full Revelation

Proposition 9 Suppose K" < 0 for t = 1,2. For all n>0, W¥(n,1)=0
(WP(n,1)= W) if and only if

W (0)<(>) K; {(K{)l (W C(n)) +2 / (K)o (1) W) £ (5) ds
(44)

Proof. Using (13) and (14) in (18) gives
VP, Wy 1) = (KD (fu(0) Witn (W = W) C(n)) (45)
2 [ (Galns) (W = W) i (5) s
0
This yields

oV (n,W,1)
ow,
f1(0) =nC(n)
K [(K) ™ (£ (0) Witn (W = W1) C((n))]

/ f2 ns) fi(s) ds
K3 [(K3) ™' (fa (ns) (W = W))]
and hence
aZVP (777 Wla 1) _
W2 -
KB (f1(0) Watn (W = W1) C (n))] (f1(0) =nC (1))
(K7 [(Ki)*l(fl()WlJr??(W W) Cm)])’
_2/“ (f2 (9))* K3 [(K35) ™" (f2 (ns) (W = W1))] fu (s) ds
0 (K% (K™ (f2(ns) (W — Wl)})
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27/ P
Since K]” > 0, K;”"< 0 implies % > 0. Thus, there is no interior

optimum. For W1=0 and W1=W, the principal’s expected payoffs are

o0

VP (,0,1) = (K) " ((WC () +2 / ()™ (2 (3) W) fi (5) ds:

VP (i, W, 1) = (K™ (f1 (0) W)

Therefore,
VP (77? 07 1) _VP (777 VVa 1) =
()™ (W C () +2 / TR (o () W) i (s) ds— (K™ (£ (0)W).

Hence, V' (1,0,1) =V (n, W, 1) > (<)0 if and only if (44) holds. =

8.4.2 No Revelation

For the no revelation case, we again restrict the third derivative of the cost func-

tions in such a way that the revelation policy is optimal by Corollary 3.

Proposition 10 Suppose K["> 0 fort=1,2. For alln >0
(i) W1 (n,0)=0 if

fi(0)—nC(n) C (n)
Ky [(K)™ (W C (n)] K [(Ky) ™ (WC ()]

< 0. (46)

(ii) W1 (n,0)=W if

fi1(0)—nC({)  C(n)
KY (KD (1) W)] K5 (0)

> 0. (47)
(ii) If neither (46) nor (47) holds, W1 € [0, W].
Proof. Using (16) and (17) in (18) gives
VP (777 Wla O) = (48)

(KD~ (fr (0) Watn (W = W) Cn)) + (K3) ™ (W = W1) C (n)) -
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This yields

aVP (777 W17 0)
ow,
f1(0) —nC (n) 3 C (n)
K7 [(KD)™ (A (0) Wit (W = W) C ()] KY [(K3) ™ (W = W1)C (n))]

and
*vr (n,W,0) _
ow?
(A0) =nC () K7 (K57 (1 (0) Wik (W = W) C ()]
(K7 [(K) 7 (h (0) Wik (W — W)€ m)])°
() Ky [ TH(W = W) C ()]
(K3 [(K3) ™ (W = W) € ())])

2y P
Since K7 > 0, K" > 0 implies W <0.

(i) Thus, the principal will set W1=0 provided

v’ (n, Wl,O)' A =Cm) C (n) —0
oW, wi—o KY[(KD)” (nWC( D] Ky [(K3) ™ (WC ()]
(ii) She will set W1=W provided
v’ (n,W,.,0) __ hO@O=Cm)  Cl)
oW, mew K7 [(K) (A (0)W)] K5 (0)

8.4.3 Proof of Corollary 4

(i) With K]"= 0, ProposMon 9 implies that W (1) always is a boundary solution,
with W[ (n)=0 1f (f1 0)W) < (f;—i—k—2> W' (n). This gives the first result.
Note that the left- hand side of the last equation is total effort for W= W while
the right-hand side is total effort for some 77 and W= 0. Hence, if the inequality
is satisfied for some 7, then total effort for this n and Wi= 0 is higher than for
Wi= W, which shows that W;= W cannot be optimal. In this case, since there
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is no interior optimum by Proposition 9, W;= 0 is optimal.*”

(ii) analogous.

8.5 Optimal Prize Structure for Imperfect Substitutes
8.5.1 Proof of Proposition 6

Using (13) and (14) in (19) yields

Vi, Wi, 1) = (KD (0) Widn (W — W) C(n)) - (49)
2A (52)™ (fa (ns) (W — W) 1 (s) ds

Using (49), we have

ov' (777 Wy, 1)
8W1

2(£(0 ) Jy° (K57 (f2 (ns) (W — W) fi (s) ds
Kw >< (0) Witn (W —W1) C (n))]

= (50)

2 (K/) (f1 (O)Wi+n(W —Wy)C(n))-

f2 (ns) <) ds
/ K" K/ f2 (775) (W—Wl))} fl( )d .

47This can also be derived from Proposition 10.
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Thus,

82VI (77’ W1> 1) _
@w)?
)* - K{'[(KD ™ (/i (0) Wity (W = W) C (n))]

3

2(f1(0) —nC(
(K7 [(KD) ™ (f (0) Win (W = W) C (n))])
|y <f2 (1) (W = W) £ (5) ds
B _ 4(f1(0)=nC (n / fa (ns) f1(s) ds
K7 (KD ™ (f (0) Wi ( W W) C Ky (K™ (f2 (778)2 (W —Wh))]

— ()™ (1 (0) WaAn (W — Wl)c())'Q/o (K [(53)™ E?EZZ)(W—W))D?{

Ky [(K5) ™ (a2 (ns) (W = W) fi (s) ds

Since V! (n,W,1)=0, W1=W is never optimal. Since K> 0, K< 0 implies
t t

2v/1
%’?1’1) > 01if f1 (0) —=nC'(n) < 0. For this case, there is no interior optimum

and thus W1=0.
8.5.2 Proof of Proposition 7
With (C1), (49) yields

(W —W1)C(n)

v ) =S E W g w v -y c ). 6
Thus
WS 15, o) (w - 2wy 2 () OV = W) (62

Because 7 > 0, C'(n) > 0 and k;> 0, W1>%W implies %W’fvl)< 0. Hence,

W1<% v .

47



8.5.3 Proof of Proposition 8

Clearly W1> 0 at the optimum if V(W) > 0, that is, using (52), if
ow
! W1=0

8VI(777W1)

f1(0)>2nC (n). To see that Wi= 0 at the optimum if ——z= < 0 or,
W1=0
equivalently, f1 (0) < 2nC' (n), first note that (52) implies
VI (n,Wy)_Cn )
’ -2 2nC' .

avI(nw,) . . . )
Thus T is monotone in Wl. Moreover, according to the proof of Proposi-
tion 7, M< 0 VIW; > =-. The last two statements imply that, whenever
%{%) _ O<O,then%<0forallwl < andthusz (n)=10.To

V(W)

R = 0 or, equivalently, f; (0)=

W1=0
*vIimw,)
W3

see that W= 0 at the optimum if 2

2nC' (n), note that f; (0) = 2nC (n) implies < 0, so that ¥< 0
VW 1> 0 and thus W (n) = 0.

For & n.W1) 8(W1 ) wio > 0, the first-order condition # 0 yields Wl (n) =

W2ff11(0—22717065(n17))> 0 for f1 (0) > 2nC(n). Summing up, we obtain

W00, 0, £, (0) > 20C ()
Wi (n)= { )—20C(n) 1 (53)

0, f1(0) < 2nC (n)

(ii) (53) shows that W] must correspond to one of the two cases mentioned
in the proposition. To complete the proof, we derive the first-order condition for

n' (W) for these two cases. From (51), we obtain

ovl(n, Wy (W — W1)?C (n)

oy T (C () +nC'(n) + (54)
W —W,)C
=0 (5, (0) Wi (W - W2) € ().
The first-order condition %W:O yields
Wi W (C ()" +2nC (1) C"(n) (55)

C (n)*+2nC () C'(n) — £, (0) C" (n)’

48



According to (53), Wi= 0 is a necessary condition for an optimum with f; (0) <

2nC(n). Inserting W= 0 in (55) gives the first-order condition 7 = —%,
which corresponds to Proposition 8(ii)(a). Analogously, W= W% is a
necessary condition for an optimum with f; (0) > 2nC(n). Inserting
W= W% in (55) and solving for fi (0) gives the first-order condition
f1(0)=— (gﬁ?)?g , which corresponds to Proposition 8(ii)(b).

8.6 The Normal-Quadratic Example E1
8.6.1 Proof of Corollary 5

Part 1: Auxilliary Results
We will first provide several auxiliary results. Note that \/%? fox exp (—t?) dt is

the error function, for which

% /00o exp (—t*) dt = 1. (56)

Next, for E1,
1 s
5) = exp | —=— o7
(o) = —=exn (=5 (57)
Hence,
1 s s
! = ——— —— |; 58
1) = e (- (58)
1 s*—o? s
" L .
10 = aren (-5
1 30}s—s° s
" t
= e —— .
1o = e (o)
As s = —oy (the solution to f/' (s) = 0 and f/” (s) < 0) maximizes f/(x), we
2

Ot

obtain Vo € R f] (z) < —\/%T‘Texp — 3% | and thus
t t

1

i (x) < J%\/Tp(l)

(59)
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Furthermore, (57) implies

[ rne e [ (- () )

Substituting s = \ﬁQt and ds = \/ﬁ;‘” dt implies

With (56), we get »
| st s =57 (60)

Next, (57) and (58) imply

0 [e'e] 2.2
/ Fa (ns) £} (s) ds= ——_ 1 / S - exp (—#) ds.
0 2roy Jo 05

Substituting s = ‘%’2 and ds = 2\[| |dt and noting that fo exp (—t)dt =1, we

obtain

1
4rno3’

/0 " fa () £} (ns) ds=— (61)

Furthermore, (57) implies

2
e / 2
C(n)= L / exp —( o1 +02> ds.
0

TO102 \/_0102

V20102 ¢ an ds =—L221%2 gy yields

bstituti =
Substituting s = m \/ﬁ

¢ (n)

exp

7T\/O'1’I7 —|—02 /

With (56), we get
1

V21 o2 + 0%7

C(n)= (62)
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so that

Clfn) = —— 11 (63)
V2w (o2 + 03

Part 2: Second-Order Conditions
Next, we derive sufficient conditions for the second-order conditions to hold.*8
Using K7 (e;;) =k, (23) simplifies to

f5(x) Wa< k Vo € R (64)

From Wo<W and (59),

w
o3+/2mexp (1)

(64) and (65) imply that a sufficient condition for (23) to hold is

f3 (w) Wa< (65)

P (66)

o2\/2mexp (1)

Similarly, (32) can be written as

£ (2) Wk / TRt —fi(s—o)ds  (67)

+

B[R9 5 09) s )1 (5 = ) ds <

Using (59), we obtain Vx € R

Wi
02\/2mexp (1)’

nW, /OOO fa(ns) [fi (s + ) —f’l (s — )] ds§2W2 |77f0 f2 (ns) d3|.

02\/2mexp (1)
s

fi (2) W <

h 2Wg OOO 2 é d
2 [ ) 20 U s )11 s )] s % fgﬂfpf(f)"s) |

48We only consider the second-order conditions for the full revelation case.
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This yields an upper bound for the left-hand side of (67):

1 o0 2W§ oo ,
o2 /or o (1) [W1+2W2 7]/0 fa (ns) ds| + ? 77/0 fa(ns) f5 (ns) d3:| .

With (60) and (61), this upper bound can be written as

Wi + Wy W3
+ : <
3 >
oiv2mexp (1) ko202 (2m)2 y/exp (1)

w . W2
oiv2mexp (1)  kolo? (2%)% exp(l).

A sufficient condition for (32) to hold is thus

k> W + W
oiv2rexp (1) kolo? (27r)g exp(l).

Part 3: Characterizing the equilibrium

(68)

Proposition 1 thus characterizes the PBE. As K}'= 0, Proposition 3 implies
that efforts under both revelation policies are equal in expected value. Inserting
(K;)™" (v) =%, (57) and (62) in (13) and (14) yields (21) and (22).

8.6.2 Proof of Corollary 6

(i) We first derive ¥ (W7). With (62) and (63), we obtain

C'(n)_ noi
Cm)  o3toin®

Proposition 5 (i) thus implies as a necessary condition, which

T
o2+o2n?” 147
is uniquely (and positively) solved by 7 :Z—§> 0. Since the optimal 1 must be
strictly positive by Proposition 4 and since the solution to the necessary con-
dition is unique and positive, the necessary condition is sufficient and we have
nt (W) :fv W< W. Next, we show that W['= 0. By Corollary 4, W= 0
if 3n such that f; (0)<(14n)C (n). From (57) and (62), this condition is

o

ho b

-1

= )

equivalent with ——< L0 = >2
q o1V2r \/ﬂ\/ff%n2+0’§ n

5—- In particular, this holds for
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(V1)

n? (Wl)zz . Hence, W= 0 and n* (Wl )
(ii) (62) and (63) yield

=)
Hl\?ll\?l\?

2 2
Pot+o—noy

C (n)* +C" () f1(0) = >0V 1.
21 (n?oi+03)?
This is inconsistent with }C ) — ]({1((0)) as for n > 0, ‘ C(n Ji((g)) is equivalent

to C (n)>+C" (1) f1 (0) = 0. Therefore, according to Proposition 8(ii)(b), W{> 0
cannot apply. Hence, Proposition (8)(ii) gives

‘C’(n)‘ 1
C (n)

as the necessary condition for n’. Using (62) and (63), this can be written as

noy 1

o3tain? 2’

which is solved by 7’ :g_’j
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