Ewerhart, Christian

Working Paper
Unique equilibrium in rent-seeking contests with a continuum of types

Working Paper, No. 159

Provided in Cooperation with:
Department of Economics, University of Zurich

Suggested Citation: Ewerhart, Christian (2014) : Unique equilibrium in rent-seeking contests with a continuum of types, Working Paper, No. 159, University of Zurich, Department of Economics, Zurich, http://dx.doi.org/10.5167/uzh-96176

This Version is available at:
http://hdl.handle.net/10419/111208

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Unique Equilibrium in Rent-Seeking Contests with a Continuum of Types

Christian Ewerhart

May 2014
Unique Equilibrium in Rent-Seeking
Contests with a Continuum of Types

Christian Ewerhart

May 26, 2014

Abstract It is shown that rent-seeking contests with continuous and independent type distributions possess a unique pure-strategy Nash equilibrium.

Keywords Rent-seeking · Private information · Pure-strategy Nash equilibrium · Existence · Uniqueness

JEL Classification C7, D7, D8

\footnote{Department of Economics, University of Zurich, Schönberggasse 1, CH-8001 Zurich, Switzerland; phone: +41-44-6343733; e-mail: christian.ewerhart@econ.uzh.ch.}
1 Introduction

While rent-seeking contests with continuous and independent type distributions are quite interesting, basic issues such as existence and uniqueness of a pure-strategy Nash equilibrium (PSNE) have been addressed only partially. Indeed, previous work on the issue of existence focused either on symmetric contests (Fey, 2008; Ryvkin, 2010) or on the case of a continuous technology (Wasser, 2013a, 2013b). Moreover, little general was known about the uniqueness of the equilibrium.

Below, it is shown that in any rent-seeking contest with independent and continuous types, there exists a unique PSNE. The result holds even when the contest is ex-ante asymmetric, so that the equilibrium may entail inactive types. Moreover, no restriction is imposed on the shape of the type distributions. Generally, existence ensures consistency of a model, whereas uniqueness strengthens numerical analyses, theoretical results, and experimental findings.

The rest of the paper is structured as follows. Section 2 describes the set-up. Existence is dealt with in Section 3. Section 4 discusses uniqueness. A numerical illustration can be found in Section 5. Section 6 concludes. An Appendix contains technical lemmas.

1 Uniqueness means here that for any given player, any two PSNE strategies differ at most on a null set. This corresponds to the strongest form of uniqueness for PSNE.

2 Asymmetry may be reflected, e.g., in heterogeneous distributions of marginal costs or in heterogeneous economies of scale.

3 Wärneryd (2003) explicitly allows for inactive types in a common-value setting.
There are $N \geq 2$ players. Each player $i = 1, \ldots, N$ observes a signal (or type) c_i, drawn from an interval $D_i = [c_i, \bar{c}_i]$, where $0 < c_i < \bar{c}_i$. Signals are independent across players. Moreover, player i does not observe the signal c_j of any other player $j \neq i$. The distribution function of player i's signal is denoted by $F_i = F_i(c_i)$. Each player i chooses a level of activity $y_i \geq 0$ at cost $g_i(y_i)$. It is assumed that $g_i(0) = 0$, and that g_i is twice continuously differentiable on \mathbb{R}_+, with $g'_i > 0$ on \mathbb{R}_+, and $g''_i \geq 0$. Player i's payoff is
\begin{equation}
\Pi_i(y_i, y_{-i}, c_i) = p_i(y_i, y_{-i}) - c_i g_i(y_i), \quad \text{where } p_i(y_i, y_{-i}) = y_i/(y_i + \sum_{j \neq i} y_j) \text{ if } y_i + \sum_{j \neq i} y_j > 0, \text{ and } p_i(y_i, y_{-i}) = 1/N \text{ otherwise.} \tag{4}
\end{equation}

A strategy for player i is a (measurable) mapping $\sigma_i : D_i \to \mathbb{R}_+$. Denote by S_i the set of strategies for player i. For a profile $\sigma_{-i} = \{\sigma_j\}_{j \neq i} \in S_{-i} = \prod_{j \neq i} S_j$, and a type $c_i \in D_i$, player i's interim expected payoff is given by
\begin{equation}
\bar{\Pi}_i(y_i, \sigma_{-i}, c_i) = \int_{D_{-i}} \Pi_i(y_i, \sigma_{-i}(c_{-i}), c_i) dF_{-i}(c_{-i}), \quad \text{where } D_{-i} = \prod_{j \neq i} D_j,
\end{equation}
\begin{equation}
\sigma_{-i}(c_{-i}) = \{\sigma_j(c_j)\}_{j \neq i}, \text{ and } dF_{-i}(c_{-i}) = \prod_{j \neq i} dF_j(c_j). \quad \text{A Bayesian Nash equilibrium (BNE) is a profile } \sigma^* = \{\sigma_i^*\}_{i=1}^N \in S = \prod_{i=1}^N S_i \text{ such that } \Pi_i(\sigma^*_i(c_i), \sigma^*_{-i}, c_i) \geq \Pi_i(y_i, \sigma^*_{-i}, c_i) \text{ for any } i = 1, \ldots, N, \text{ any } c_i \in D_i, \text{ and any } y_i \geq 0. \tag{5}
\end{equation}

A pure-strategy Nash equilibrium (PSNE) is a profile $\sigma^* \in S$ such that for any $i = 1, \ldots, N$, and for almost any $c_i \in D_i$, the inequality
\begin{equation}
\Pi_i(\sigma^*_i(c_i), \sigma^*_{-i}, c_i) \geq \Pi_i(y_i, \sigma^*_{-i}, c_i) \text{ holds for any } y_i \geq 0. \tag{6}
\end{equation}

\footnote{As usual, a simple change of variables allows to capture other types of contest success functions and other forms of uncertainty, e.g., about valuations. Cf. Ryvkin (2010).}

\footnote{As shown in the Appendix, this amounts to the standard definition.}
3 Existence

This section builds on prior work by Fey (2008), Ryvkin (2010), and Wasser (2013a). Existence is shown first for the ε-constrained contest, for $\varepsilon > 0$, in which each player $i = 1, \ldots, N$ may use only strategies with values in $[\varepsilon, \infty)$.

Lemma 3.1 There is a level of activity $E > 0$ such that, for any sufficiently small $\varepsilon > 0$, there exists a BNE σ^ε in the ε-constrained contest such that each player i’s strategy σ_i^ε is continuous, monotone, and bounded by E.

Proof. Since costs are strictly increasing and convex, there is an $E > 0$ such that any $y_i > E$ is suboptimal. Moreover, Π_i exhibits decreasing differences in y_i and c_i. Hence, existence of a monotone PSNE $\bar{\sigma}^\varepsilon$ in the ε-constrained contest follows from Athey (2001, Cor. 2.1). Note now that type c_i’s ε-constrained problem, $\max_{y_i \geq \varepsilon} \Pi_i(y_i, \bar{\sigma}^\varepsilon_{-i}, c_i)$, has a unique solution $y_i = \sigma_i^\varepsilon(c_i)$. Indeed, if $\bar{\sigma}^\varepsilon_{-i}(c_{-i}) \neq 0$ with positive probability, then $\Pi_i(\cdot, \bar{\sigma}^\varepsilon_{-i}, c_i)$ is strictly concave on $[\varepsilon, E]$, while otherwise, the unique solution is $y_i = \varepsilon$. Hence, $\sigma_i^\varepsilon(c_i) = \bar{\sigma}^\varepsilon_i(c_i)$ with probability one, for any $i = 1, \ldots, N$. This implies that $\sigma_i^\varepsilon(c_i)$ is also type c_i’s best response to σ^ε_{-i}, for any $i = 1, \ldots, N$, and any $c_i \in D_i$. Thus, $\sigma^\varepsilon = (\sigma_1^\varepsilon, \ldots, \sigma_N^\varepsilon)$ is a BNE in the ε-constrained contest. Clearly, each σ_i^ε is monotone. Finally, continuity of σ_i^ε follows from Berge’s Theorem, as $\Pi_i(\cdot, \sigma^\varepsilon_{-i}, \cdot)$ is continuous on the compact set $[\varepsilon, E] \times D_i$. \qed

Consider now a sequence $\{\varepsilon_m\}_{m=1}^\infty$ such that $\varepsilon_m \searrow 0$, and select a BNE σ_m in the ε_m-constrained contest for each $m \in \mathbb{N}$, with the properties specified in the previous lemma.

Lemma 3.2 The sequence $\{\sigma^m\}_{m=1}^\infty$ has a uniformly converging subse-
Proof. In view of Lemma 3.1 and the Theorem of Arzelà-Ascoli, it suffices to find a \(\lambda > 0 \) such that \(\sigma_i^m \) has everywhere a slope exceeding \(-\lambda\) for any \(m \in \mathbb{N} \) and any \(i \). In terms of the transformed choice variable \(y_i^\lambda = y_i + \lambda c_i \), a type \(c_i \)'s expected payoff in \(\sigma^m \) may be written as

\[
\Pi_i(y_i^\lambda, \sigma_i^m, c_i) = \int_{D_{-i}} \frac{(y_i^\lambda - \lambda c_i) dF_{-i}(c_{-i})}{y_i^\lambda - \lambda c_i + \sum_{j \neq i} \sigma_j^m(c_j)} - c_i g_i(y_i^\lambda - \lambda c_i),
\]

provided that \(y_i^\lambda - \lambda c_i = y_i > 0 \). Hence, for \(\lambda \) sufficiently large, the cross-partial

\[
\frac{\partial^2 \Pi_i^\lambda}{\partial y_i^\lambda \partial c_i} = \int_{D_{-i}} \frac{2 \lambda \sum_{j \neq i} \sigma_j^m(c_j) dF_{-i}(c_{-i})}{(y_i + \sum_{j \neq i} \sigma_j^m(c_j))^3} - g_i'(y_i) - c_i \lambda g_i''(y_i)\geq 0
\]

\[
\geq \frac{2 \lambda}{NE} \int_{D_{-i}} \frac{\sum_{j \neq i} \sigma_j^m(c_j) dF_{-i}(c_{-i})}{(y_i + \sum_{j \neq i} \sigma_j^m(c_j))^2} - g_i'(y_i)
\]

\[
\geq \frac{2 \lambda c_i}{NE} \frac{1}{1} g_i'(y_i)
\]

is seen to be positive in the range of \(c_i \) where \(y_i = \sigma_i^m(c_i) > 0 \). Thus, for \(\lambda \) large, \(y_i^\lambda \) is weakly increasing in \(c_i \), which proves the claim. \(\square \)

By Lemma 3.2, one may assume that \(\{\sigma^m\}_{m=1}^\infty \) converges uniformly to some \(\sigma^* \in S \). Next, it is shown that in \(\sigma^* \), at least one player is active with probability one.

Lemma 3.3 There is some player \(i \) such that \(\sigma_i^*(c_i) > 0 \) with probability one.
Proof. Suppose that for each i, there is a set $D_i \subseteq D_i$ of positive measure such that $\sigma^*_i(c_i) = 0$ for all $c_i \in D_i$. Then, by uniform convergence, there exists, for any $\varepsilon > 0$, an $m_0 = m_0(\varepsilon)$ such that $\sigma^m_i(c_i) < \varepsilon$ for any i, any $c_i \in D_i$, and any $m \geq m_0$. But, from the Kuhn-Tucker condition for type c_i in the ε_m-constrained contest,

$$0 \geq \int_{D_{-i}} \frac{\sum_{j \neq i} \sigma^m_j(c_j) dF_{-i}(c_{-i})}{\left(\sigma^m_i(c_i) + \sum_{j \neq i} \sigma^m_j(c_j)\right)^2} - c_i g'_i(E),$$

(5)

where $D_{-i} = \prod_{j \neq i} D_j$. Integrating over D_i, and subsequently summing over $i = 1, \ldots, N$, one obtains

$$0 \geq \int_{D} \frac{(N-1)dF(c)}{\sum_{i=1}^{N} \sigma^m_i(c_i)} - \sum_{i=1}^{N} g'_i(E) \int_{D_i} c_i dF_i(c_i),$$

(6)

where $D = \prod_{i=1}^{N} D_i$ and $dF(c) = \prod_{i=1}^{N} dF_i(c_i)$. For ε small, however, this is impossible. \qed

The following is the first main result of this paper.

Theorem 3.4 In the unconstrained contest, σ^* is a PSNE in continuous and monotone strategies.

Proof. Fix a player $i \in \{1, \ldots, N\}$. For any $m \in \mathbb{N}$, since σ^m is a BNE in the ε_m-constrained contest, $\Pi_i(\sigma^m_i(c_i), \sigma^m_{-i}, c_i) \geq \Pi_i(y_i, \sigma^m_{-i}, c_i)$ for any $c_i \in D_i$ and any $y_i \geq \varepsilon_m$. Therefore, if the event $\sigma^*_m(c_{-i}) = 0$ is null, letting $m \to \infty$ implies $\Pi_i(\sigma^*_i(c_i), \sigma^*_m_{-i}, c_i) \geq \Pi_i(y_i, \sigma^*_m_{-i}, c_i)$ for any $c_i \in D_i$ and any $y_i > 0$. Suppose next that $\sigma^*_m(c_{-i}) = 0$ with positive probability. Then, by Lemma 3.3, $\sigma^*_i(c_i) > 0$ with probability one. Let $c_i \in D_i$ with
\(\sigma^*_i(c_i) > 0 \). If \(y_i > 0 \), then the argument proceeds as above. To complete the proof, note that \(\Pi_i(\cdot, \sigma^*_i, c_i) \) is l.s.c., so that \(y_i = 0 \) cannot be the only profitable deviation for \(c_i \). \(\square \)

4 Uniqueness

Consider two PSNE \(\sigma^* \) and \(\sigma^{**} \) such that, for some player \(i \), the event \(\sigma^*_i(c_i) \neq \sigma^{**}_i(c_i) \) has positive probability. Then, as noted below, \(\sigma^* \) and \(\sigma^{**} \) must differ in an essential way for at least two players.

Lemma 4.1 There are players \(i \neq j \) such that each of the independent events \(\sigma^*_i(c_i) \neq \sigma^{**}_i(c_i) \) and \(\sigma^*_j(c_j) \neq \sigma^{**}_j(c_j) \) has positive probability.

Proof. Suppose there is some \(i \) such that \(\sigma^*_i(c_i) = \sigma^{**}_i(c_i) \) with probability one. Then, \(\Pi_i(\cdot, \sigma^*_i, c_i) = \Pi_i(\cdot, \sigma^{**}_i, c_i) \) for any \(c_i \in D_i \). Thus, \(\sigma^*_i(c_i) = \sigma^{**}_i(c_i) \) with probability one, which is a contradiction. \(\square \)

The following is the second main result of this paper.

Theorem 4.2 The PSNE in the unconstrained contest is unique.

Proof. Following Rosen (1965), write \(\sigma^{s*} = (1-s)\sigma^* + s\sigma^{**} \) for \(0 \leq s \leq 1 \), and consider

\[
\Phi_s = \sum_{i=1}^{N} \int_{D_i} \bar{\pi}_i(\sigma^{s*}, c_i) (\sigma^{**}_i(c_i) - \sigma^*_i(c_i)) dF_i(c_i) \tag{7}
\]

for \(s = 0, 1 \), where \(\pi_i(\sigma, c_i) = \partial \Pi_i(\sigma(c_i), \sigma_{-i}, c_i)/\partial y_i \) denotes type \(c_i \)'s marginal expected payoff at a profile \(\sigma \in S \).\(^6\) From the Kuhn-Tucker con-

\(^6\)It is shown in the Appendix that \(\Phi_0 \) and \(\Phi_1 \) are well-defined.
ditions, \(\pi_i(\sigma^*, c_i) \leq 0 \) for almost any \(c_i \in D_i \); moreover, \(\sigma^*_i(c_i) = 0 \) if \(\pi_i(\sigma^*, c_i) < 0 \). It follows that \(\Phi_0 \leq 0 \), and similarly, \(\Phi_1 \geq 0 \). To provoke a contradiction, it will be shown now that \(\Phi_1 - \Phi_0 < 0 \). Denote by
\[
\pi_i(\sigma, c_i, c_{-i}) = \partial \Pi_i(\sigma_i(c_i), \sigma_{-i}(c_{-i}), c_i)/\partial y_i \text{ type } c_i \text{'s marginal ex-post payoff at } \sigma \in S, \text{ when facing } c_{-i} \in D_{-i}.
\]
Then, by Lemma A.2 in the Appendix,
\[
\Phi_1 - \Phi_0 = \int_D \sum_{i=1}^N (\pi_i(\sigma^{**}, c_i, c_{-i}) - \pi_i(\sigma^*, c_i, c_{-i})) z_i(c_i) dF(c) \quad (8)
\]
\[
= \int_D \sum_{i=1}^N \left\{ \int_0^1 \frac{\partial \pi_i(\sigma^{**}, c_i, c_{-i})}{\partial s} z_i(c_i) ds \right\} dF(c), \quad (9)
\]
where \(z_i(c_i) = \sigma_i^{**}(c_i) - \sigma_i^*(c_i) \). An application of the chain rule delivers
\[
\frac{\partial \pi_i(\sigma^{**}, c_i, c_{-i})}{\partial s} = \sum_{j=1}^N \frac{\partial^2 p_i(\sigma_i^{**}(c_i), \sigma_{-i}^{**}(c_{-i}))}{\partial y_i \partial y_j} z_j(c_j) - c_i g_i''(\sigma_i^{**}(c_i)) z_i(c_i), \quad (10)
\]
for any \(i \), any \(c_i \in D_i \), and any \(c_{-i} \in D_{-i} \). It follows that
\[
\Phi_1 - \Phi_0 \leq \int_D \left(\int_0^1 \left(\sum_{i=1}^N \sum_{j=1}^N \frac{\partial^2 p_i(\sigma_i^{**}(c_i), \sigma_{-i}^{**}(c_{-i}))}{\partial y_i \partial y_j} z_i(c_i) z_j(c_j) \right) ds \right) dF(c). \quad (11)
\]
One can verify, however, that
\[
\sum_{i=1}^{N} \sum_{j=1}^{N} \frac{\partial^2 p_i(y_i, y_{-i})}{\partial y_i \partial y_j} z_i z_j
\]
\[
= - \sum_{i=1}^{N} \frac{2Y_{-i}}{Y^3} z_i^2 + \sum_{i=1}^{N} \sum_{j \neq i} \frac{Y - 2Y_{-i}}{Y^3} z_i z_j
\]
\[
= - \frac{2}{Y^3} \sum_{i=1}^{N} Y_{-i} z_i^2 - \frac{2}{Y^3} \sum_{i=1}^{N} \sum_{j > i} \sum_{k \neq i, j} y_k z_i z_j
\]
\[
= - \frac{1}{Y^3} \sum_{i=1}^{N} Y_{-i} z_i^2 - \frac{1}{Y^3} \sum_{i=1}^{N} \sum_{j = 1}^{N} \sum_{k \neq i, j} y_k z_i z_j
\]
\[
= - \frac{1}{Y^3} \sum_{i=1}^{N} (z_i^2 Y_{-i} + y_i Z_{-i}) \leq 0
\]
for any \((y_1, ..., y_N) \in \mathbb{R}_+^N \setminus \{0\}\) and any \((z_1, ..., z_N) \in \mathbb{R}^N\), where \(Y = \sum_{i=1}^{N} y_i\), \(Y_{-i} = \sum_{j \neq i} y_j\), and \(Z_{-i} = \sum_{j \neq i} z_j\). Moreover, \(z_i^2 Y_{-i} = z_i(c_i)^2 \frac{2}{Y^3} \sum_{j \neq i} \sigma_j^*(c_j)\) is positive for any \(s \in (0, 1)\) if \(\sigma_i^*(c_i) \neq \sigma_i^*(c_j)\) and \(\sigma_j^*(c_j) \neq \sigma_j^*(c_j)\) for some \(j \neq i\). Thus, by Lemma 4.1, \(\Phi_1 - \Phi_0 < 0\).

5 Numerical illustration

Figure 1 shows PSNE strategies in a two-player lottery contest, where types are distributed uniformly on \(D_1 = [0.01, 1.01]\) and \(D_2 = [0.51, 5.51]\), respectively. Note that player 2 remains inactive for \(c_2 > c_2^* \approx 4.21\).
Figure 1: An equilibrium involving inactive types

6 Concluding remark

While this paper has focused on the existence and uniqueness of a PSNE in asymmetric rent-seeking contests, it follows from the proofs that also any of the BNE studied by Fey (2008) and Ryvkin (2010) is unique.

7 Appendix: Technical lemmas

Lemma A.1 A profile $\sigma^* \in S$ is a PSNE in the unconstrained contest if and only if $\int_D \Pi_i(\sigma^*_i(c_i), \sigma^*_{-i}(c_{-i}), c_i)dF(c) \geq \int_D \Pi_i(\tilde{\sigma}_i(c_i), \sigma^*_{-i}(c_{-i}), c_i)dF(c)$ for any $i = 1, ..., N$, and any $\tilde{\sigma}_i \in S_i$.

Proof. Let σ^* be a PSNE, and consider a deviation $\tilde{\sigma}_i \in S_i$ for some player i. Then, $\Pi_i(\sigma^*_i(c_i), \sigma^*_{-i}, y_i) \geq \Pi_i(\tilde{\sigma}_i(c_i), \sigma^*_{-i}, c_i)$ for almost any $c_i \in D_i$. Integrating over D_i, the assertion follows via Fubini’s theorem. Conversely,
suppose that σ^* is not a PSNE. Then, there is a player i and a set $D_i \subseteq D_i$ of positive measure such that $\sigma^*_i(c_i)$ is not a best response to σ^*_{-i} for c_i, for any $c_i \in D_i$. Define $\tilde{\sigma}_i(c_i)$ as c_i’s best response to σ^*_{-i} if it exists; otherwise as $\sigma^*_i(c_i)/2$ if $\sigma^*_i(c_i) > 0$, and as $\Pr\{\sigma^*_{-i}(c_{-i}) = 0\}/(2\mathcal{g}_i(E))$ if $\sigma^*_i(c_i) = 0$. Then $\tilde{\sigma}_i$ is a profitable deviation. \(\square\)

Lemma A.2 Let $\sigma^* \in S$ be a PSNE in the unconstrained contest. Then, for almost any $c_i \in D_i$, the function $\pi_i(\sigma^*, c_i, \cdot)$ is integrable, with $\pi_i(\sigma^*, c_i) = \int_{D_{-i}} \pi_i(\sigma^*, c_i, c_{-i})dF_{-i}(c_{-i})$. Moreover, $\pi_i(\sigma^*, \cdot)$ is integrable.

Proof. The first claim is obvious if $\sigma^*_i(c_i) > 0$ for almost any $c_i \in D_i$. Suppose that $\sigma^*_i(c_i) = 0$ with positive probability. Then, by Lemma 3.3, the event $\sigma^*_{-i}(c_{-i}) = 0$ is null. Take some $c_{-i} \in D_{-i}$ with $\sigma^*_{-i}(c_{-i}) \neq 0$. Then, for any $c_i \in D_i$, by concavity, the difference quotient $\Pi_i(y_i, \sigma^*_{-i}(c_{-i}), c_i)/y_i$ is monotone increasing as $y_i \searrow 0$, with limit $\pi_i(\sigma^*, c_i, c_{-i})$. Since also $\Pi_i(y_i, \sigma^*_{-i}(c_{-i}), c_i)/y_i \geq -\mathcal{g}_i(E)$, the first claim follows from Levi’s theorem. The second claim follows from Lebesgue’s theorem, because $\pi_i(\sigma^*, \cdot) \leq 0$ from the Kuhn-Tucker conditions, and because $\pi_i(\sigma^*, \cdot) \geq -\mathcal{g}_i(E)$, as above. \(\square\)

References

