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Abstract. Any symmetric mixed-strategy equilibrium in a Tullock contest

with intermediate values of the decisiveness parameter (�2 < R < 1�) has

countably in�nitely many mass points. All probability weight is concentrated

on those mass points, which have the zero bid as their sole point of accu-

mulation. With contestants randomizing over a non-convex set, there is a

cost of being �halfhearted,�which is absent from both the lottery contest

and the all-pay auction. Numerical bid distributions are generally negatively

skewed, and exhibit, for some parameter values, a higher probability of ex-

post overdissipation than the all-pay auction.
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1. Introduction

Even after several decades, the game-theoretic analysis of Tullock�s (1980)

model of a political contest is still incomplete. Indeed, Nash equilibria in ei-

ther pure or mixed strategies have been described explicitly only for a range of

lower values of the decisiveness parameter (Pérez-Castrillo and Verdier, 1992;

Nti, 1999), and for the limit case of the all-pay auction (Hillman and Samet,

1987; Hillman and Riley, 1989; Baye et al., 1996), but not so for intermedi-

ate values. As has been widely acknowledged, this lack of a game-theoretic

prediction is undesirable, in particular because the resulting constraints on

the decisiveness parameter do not have a proper economic motivation (Che

and Gale, 2000; Konrad and Kovenock, 2009; Schweinzer and Segev, 2012;

Szymanski and Valetti, 2003).

For the case of intermediate values of the decisiveness parameter (�2 <

R < 1�), in which a pure-strategy Nash equilibrium does not exist, Baye

et al. (1994) proved the existence of a symmetric mixed-strategy Nash equi-

librium with complete rent dissipation, and subsequently approximated the

limit distribution by calculating equilibria of rent-seeking games with �nite

strategy spaces. Building on those results, Alcade and Dahm (2010) showed

that many contests of intermediate decisiveness allow a mixed-strategy equi-

librium that shares important statistics with the equilibrium of the corre-

sponding all-pay auction.1 However, a more structural understanding of the

limit distribution remained elusive. For example, it was not known if the limit

distribution is continuous like in the case of the all-pay auction, or a �nite col-

1These statistics include the probability of becoming active, the average level of expen-
diture, the ex-ante probability to win, as well as expected payo¤s.
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lection of mass points as in Che and Gale�s (2000) analysis of di¤erence-form

contests, or something completely di¤erent. Moreover, numerical calcula-

tions based on contests with �nite strategy spaces have tended to o¤er only

rather low-resolution images of the limit distribution.2

The present paper addresses these issues by deriving new structural prop-

erties of mixed-strategy Nash equilibria in the rent-seeking game. Speci�-

cally, it is shown that any symmetric mixed-strategy equilibrium in the Tul-

lock contest of intermediate decisiveness entails countably in�nitely many

mass points. Moreover, all probability weight is concentrated on these mass

points. Finally, the mass points form a discrete set in the strategy space,

and accumulate only at the zero bid, which itself is played with probability

zero.

These �ndings are potentially important because they imply that the

equilibrium prediction for intermediate values of the decisiveness parame-

ter di¤ers structurally (even though not necessarily statistically) from the

tractable cases that have been studied more frequently in the literature.

Indeed, contrasting both the lottery contest and the all-pay auction, the

equilibrium bid distribution for intermediate values of the decisiveness pa-

rameter has a non-convex support, which is implied by a cost of bidding a

strict convex combination of any two distinct positive optimal bids.3

2To address the problem, one may choose to modify the game (Dari-Mattiacci and
Parisi, 2005; Amegashie, 2012). While those alternative approaches might prove useful,
they do not necessarily solve the original problem (cf. Münster, 2007).

3Also the equilibria studied by Che and Gale (2000) feature a non-convex best response
set. However, in their framework, any convex combination of two optimal positive bids is
again optimal.
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Figure 1. Equilibrium payo¤ functions in the two-player Tullock contest

The main tools for proving the results of this paper are taken from the

realm of complex analysis. More speci�cally, one considers a contestant�s

equilibrium payo¤ function, i.e., the expected payo¤ of a contestant as a

function of her own expenditure, assuming that the other contestants adhere

to the equilibrium strategy. See Figure 1 for illustration. It is then shown

that the equilibrium payo¤function allows a complex-analytic extension to an

open connected subset of C that encompasses the real interval (0;1).4 But

any non-constant function that is analytic over an open connected subset

of the complex numbers has a discrete set of zeros. Since all expenditure

levels in the support of a mixed equilibrium strategy necessarily yield the

same expected payo¤, this allows deducing that all positive bids used in an

equilibrium strategy must be isolated points of the support, which is the key

4Generally, a function is called analytic when it can be represented locally by a con-
verging power series. See Section 2 for a formal de�nition.
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ingredient of the equilibrium analysis.5

The remainder of the paper is structured as follows. The necessary ma-

terial from complex analysis is reviewed in Section 2. Section 3 states and

proves the discreteness result. The equilibrium characterization can be found

in Section 4. Section 5 o¤ers numerical illustrations. Concluding remarks are

collected in Section 6. Appendix A describes the numerical approach that

has been used to calculate examples of bid distributions.

2. Background on analytic functions

This section recalls some concepts and results from complex analysis. For

further details and proofs, the reader is referred to any textbook on the topic,

such as Conway (1978).

Here is the de�nition of a complex-analytic function.

De�nition 2.1. A complex-valued function f is complex-analytic in an open

set U � C if, at any point z0 2 U , there is a power series
P1

m=0 �m(z� z0)m

in z around z0, with coe¢ cients �m 2 C for m = 0; 1; 2; :::, that converges to

f(z) for all z in a neighborhood V � U of z0.

A zero of a complex-valued function f is a point z in the domain of f such

that f(z) = 0. The following result says that the zeros of a non-constant

complex-analytic function on a connected open set necessarily form a discrete

set.
5To obtain the discreteness result, it would in principle su¢ ce to show that the equi-

librium payo¤ function is real-analytic on (0;1). However, I have not been able to prove
this result without resorting to methods from complex analysis.
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Lemma 2.2. If f is a complex-analytic function on an open connected

set U � C and if there is a sequence of distinct points z1; z2; ::: in U with

z0 = limn!1 zn 2 U and such that f(zn) = 0 for n = 1; 2; :::, then f(z) = 0

for all z 2 U .

The following two standard results in complex analysis serve as the main tech-

nical tools to show that the equilibrium payo¤ function in the rent-seeking

game allows an analytic extension to some complex domain that contains the

interval (0;1).

Lemma 2.3 (Cauchy�s Theorem) Let f be a complex-analytic function

on the open set U � C. Then

H
�
f(z)dz = 0 (1)

for every closed recti�able curve � that is homotopic to zero in U .

Lemma 2.4 (Morera�s Theorem) Let f be a continuous complex-valued

function on the open set U � C. Suppose that equation (1) holds for every

triangular path � in U . Then f is complex-analytic in U .

3. The support of mixed equilibria in the Tullock contest

In the sequel, I will discuss only the simple example of a two-player rent-

seeking game.6 Each player i = 1; 2 chooses a level of expenditure xi � 0.

For a �xed value of the parameter R � 0, player i�s payo¤ in the rent-seeking

game is given by

�i(xi; xj) =
xRi

xRi + x
R
j

� xi, (2)

6See Section 6 for a discussion of the scope of the results of this paper.
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where j 6= i, and the ratio is interpreted as 1
2
if the denominator vanishes.

Recall the following facts about the equilibrium set of this game. For

0 � R � 2, there exists a symmetric pure-strategy Nash equilibrium in

which each agent invests R
4
. For 2 < R <1, however, there does not exist a

pure-strategy equilibrium. Instead, there exists a symmetric mixed-strategy

equilibrium with complete rent dissipation.7

The following lemma collects those properties of Tullock�s �impact func-

tion�that are relevant for the discreteness result stated further below.

Lemma 3.1. For any �nite R � 0, the function h(xi) = xRi allows a

complex-analytic extension bh to an open neighborhood H of (0;1) in C.

Moreover, h(xi) > 0 for any xi > 0.

Proof. Denoting by ln zi the principal value of the complex logarithm, the

mapping bh(zi) = exp(R � ln zi) is complex-analytic on the halfplane H =

fzi 2 C : Re(zi) > 0g. Clearly, bh(xi) = h(xi) for any xi > 0. This proves the
�rst claim. The second claim is obvious. �

Fix now some parameter value R, and take some symmetric mixed-

strategy equilibrium �� of the rent-seeking game with decisiveness R. The

following result provides some information about the support S� of ��.

Theorem 3.2. S� \ (0;1) is discrete, and allows only the zero bid as a

potential accumulation point.

7To de�ne mixed-strategy equilibria, I follow the usual approach according to which
mixed strategies correspond to probability distributions on the respective player�s space
of pure strategies (Dasgupta and Maskin, 1986; Baye et al., 1994; Yang, 1994).
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Proof. For " 2 (0; 1) and � > 0 small, consider the rectangular domain

U("; �) = fzi 2 C : " < Re zi <
1

"
, jIm zij < �g, (3)

that is illustrated in Figure 2.

Figure 2. Construction of the domain U("; �)

It is claimed �rst that, for any " 2 (0; 1), there is some � = �(") > 0 such

that the complex-valued function

e�i(zi; xj) = bh(zi)bh(zi) + xRj � zi (4)

is well-de�ned and bounded on U("; �)�R+. To prove this claim, take some

" 2 (0; 1). On the non-empty compact interval I" = ["; 1
"
], the continuous

function h assumes a minimum value M > 0. Moreover, by Lemma 3.1, h

allows a complex-analytic extension bh to an open neighborhood H of (0;1)

in C. Since bh is continuous, there exists, for any xi 2 I", some �1(xi) > 0 such
that Re(bh(zi)) > M

2
for any zi 2 H with jzi � xij < �1(xi). Exploiting the

compactness of I" another time, there are �nitely many x1i ; :::; x
�
i 2 I" such

that for any xi 2 I", there is some �0 2 f1; :::; �g with jxi � x�0i j < �1(x�0i ).

Hence (see again Figure 2), there exists a � > 0 such that Re(bh(zi)) > M
2
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for any zi 2 U("; �). For this value of �, the function e�i is indeed well-
de�ned and bounded on U("; �) � R+. To prove the theorem, consider now

the complex-valued equilibrium payo¤ function

�i(zi) =

Z e�i(zi; xj)d��(xj). (5)

Because the integrand is bounded on U("; �) � R+ as well as continuous

in zi over U("; �) for any xj � 0, and because �� has a compact support,

Lebesgue�s Dominated Convergence Theorem implies that �i is continuous

on U("; �). To show that �i is even complex-analytic in U("; �), consider an

arbitrary triangular path � in U("; �). Then, for any xj � 0, since U("; �) is

contractible and e�i(�; xj) is complex analytic in U("; �), Cauchy�s Theorem
implies that I

�

e�i(zi; xj)dzi = 0. (6)

Integrating over �� yieldsZ �I
�

e�i(zi; xj)dzi� d��(xj) = 0. (7)

Since �� has a compact support, and e�i is bounded on U("; �)�R+, one may
exchange the order of integration in equation (7), so thatI

�

�Z e�i(zi; xj)d��(xj)� dzi = 0. (8)

But � was arbitrary, so that Morera�s Theorem implies that �i is indeed

analytic in the complex domain U("; �). On the other hand, �i is non-

constant in U("; �) for " su¢ ciently small because �i(xi) � 1 � xi for any

xi � 0. Fix now any x�i 2 S� such that x�i > 0. For " su¢ ciently small, x�i is an

interior point of I". Since x�i is a best response to �
�, one has �i(x�i )��� = 0,
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where �� denotes the expected equilibrium payo¤. By Lemma 2.2, there is

an open neighborhood bV of x�i in U("; �) such that x
�
i is the only zero of

�i ��� in bV . But then, eV = bV \R++ is an open neighborhood of x�i in the
strategy set R+ such that x�i is the only best response to �� in eV . �
4. Equilibrium characterization

By Theorem 3.2, any symmetric Nash equilibrium �� of the rent-seeking

game has the property that the intersection of its support S� with (0;1)

is discrete and allows only the zero bid as a potential accumulation point.

Thus, either S� is �nite, or the zero bid is an accumulation point of S�.

For R > 2, however, it will be shown below that the origin necessarily is

an accumulation point of S�.8 It is also shown that for R � 2, there are

no symmetric mixed-strategy equilibria in addition to the well-known pure-

strategy equilibrium.

As before, I will restrict attention to the simplest of all cases, and leave

any discussion to Section 6.

Theorem 4.1. In any symmetric equilibrium of the two-player rent-seeking

game with 2 < R < 1, the support of the distribution of expenditure levels

has the zero bid as an accumulation point. Thus, the equilibrium is charac-

terized by a sequence of mass points

y1 > y2 > ::: > 0, (9)

chosen with respective positive probabilities q1; q2; :::, so that limk!1 yk = 0

8This speci�c argument is applied more generally in a companion paper (2012).
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and
P1

k=1 qk = 1. Moreover,

1X
k=1

qky
R
K

yRK + y
R
k

� yK = 0, (10)

1X
k=1

qkRy
R�1
K yRk

(yRK + y
R
k )
2
� 1 = 0, (11)

for any integer K � 1. Finally, there are no non-degenerate mixed-strategy

equilibria for R � 2.

Proof. Suppose that the zero bid is not an accumulation point of S�. Then,

using Theorem 3.2, S� is discrete and compact, hence �nite. Let y1 > y2 >

::: > yL be the mass points of the equilibrium bid distribution, used with

respective probabilities q1; :::; qL, where
PL

k=1qk = 1. From the �rst-order

condition at yL,
LX
k=1

qkRy
R�1
L yRk

(yRL + y
R
k )
2
= 1, (12)

one obtains
LX
k=1

2yRk
yRL + y

R
k

qky
R
L

yRL + y
R
k

� yL =
2�R
R

yL: (13)

But since yk � yL for k = 1; :::; L, it follows that
LX
k=1

qky
R
L

yRL + y
R
k

� yL �
2�R
R

yL: (14)

Thus, for R > 2, bidding yL yields a negative expected payo¤ in equilibrium,

which is impossible. The contradiction shows that the origin is necessarily

an accumulation point of S�. To prove equation (10), one notes that

�� =
1X
k=1

qky
R
K

yRK + y
R
k

� yK , (15)

for any index K � 1, where �� is the expected equilibrium payo¤, as be-

fore. Taking the limit K ! 1, and subsequently exchanging the sum and
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the limit via Lebesgue�s Dominated Convergence Theorem implies then that

�� = 0. Finally, it is shown that there are no non-degenerate mixed-strategy

equilibria for R < 2. Indeed, by Theorem 3.2, any symmetric equilibrium bid

distribution consists of discretely located mass points fykgLk=1 that are cho-

sen with probabilities fqkgLk=1, where L � 1. Consider now the �rst-order

condition at y1, i.e.,
LX
k=1

qkRy
R�1
1 yRk

(yR1 + y
R
k )
2
� 1 = 0. (16)

Arguing as above, this implies

LX
k=1

qky
R
1

yR1 + y
R
k

� y1 �
2�R
R

y1, (17)

where the inequality is strict if L > 1. Hence, for R � 2, rent dissipation

would be imperfect in any non-degenerate mixed-strategy equilibrium. As

pointed out above, however, �� > 0 is feasible only if the zero bid is not

an accumulation point of S�. Thus, L is �nite. Comparing now (17) with

(14) shows that, indeed, L = 1. Thus, any symmetric equilibrium in the

two-player Tullock contest with R � 2 is necessarily in pure strategies. �

The equilibrium description provided by Theorem 4.1 contrasts with both

the unique (pure-strategy) Nash equilibrium in the lottery contest and the

unique (mixed-strategy) equilibrium in the all-pay auction. As already ex-

plained in the Introduction, the peculiar nature of the mixed-strategy equi-

libria in the Tullock contest is caused by the nonconvexity of the relevant

best-response set, which is illustrated by Figure 1. Intuitively, the subopti-

mality of bids placed, e.g., strictly between bids y1 and y2, captures a cost

of being �halfhearted�in the sense that such positive bids are too low to be

12



e¤ective against a decisive action by the opponent, but at the same time too

high as a measured defense against speculative underbidding.

5. Numerical illustrations

5.1 Solving the in�nite system

While Theorem 4.1 clari�es the structure of the mixed-strategy equilibrium

in the Tullock contest, it is also desirable to learn more about the speci�c

values of the parameters yk and qk. Since an explicit solution of equations

(10-11) is not readily available, I truncated the in�nite system and solved the

resulting �nite system numerically.9 Parameter values obtained along these

lines, rounded to the fourth digit, are shown in Table I. As can be seen, for

R kept �xed, the probability weight qk is generally declining in k. Moreover,

an increase in R pushes the mass points more tightly together and to higher

levels, at the same time lowering q1. In sum, this may be seen as re�ning

somewhat an earlier description given by Baye et al. (1994).10

9The numerical procedure is described in more detail in Appendix A.
10Baye et al. (1994, p. 372) write: �For R = 3 and Q > 4, one generally �nds that all

probability mass is loaded on the �rst few probabilities py, with most mass loaded on the
higher py�s�In this statement, the parameter Q denotes the value of the prize, which is in
their setting also the number of grid points.
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Table I. Numerical bid distributions

5.2 Higher moments of the bid distributions

Figure 3 exhibits the �rst four moments of the numerical bid distribution.

As the right-upper panel illustrates, the skewness of the bid distribution is

generally negative for R > 2, in contrast to the corresponding case of the

all-pay auction. Moreover, with variance increasing and skewness vanish-

ing for higher R, a higher degree of decisiveness seems to foster speculative

underbidding.

Figure 3: Moments of the numerical bid distributions
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5.3 Overdissipation

Figure 4 shows the probability of ex-post overdissipation, �(R), as a function

of R. Somewhat unexpectedly, �(R) exceeds, for some values of R, the prob-

ability of ex-post overdissipation in the all-pay auction, which is 0.5 (Baye et

al., 1999). In fact, �(R) approaches unity for R close to 2. These possibilities

are obviously related to the discreteness of the equilibrium bid distribution.

Figure 4. The probability of ex-post overdissipation

6. Concluding remarks

While Theorem 3.2 has been stated and proved only for symmetric equilibria

in the two-player Tullock contest, it re�ects a more general fact. Indeed, it

is not hard to see that the proof extends to settings with more than two

players, heterogeneous valuations, and alternative impact functions.11

Similarly, variants of Theorem 4.1 can be derived for other classes of

contests. In particular, the arguments made above extend to the case of

11For example, it su¢ ces to assume that the impact function h(xi) is real-analytic on the
interval (0;1), which is the case for many functional forms considered in the literature.
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symmetric equilibria in Tullock contests with N � 2 players, where then

non-degenerate mixed-strategy equilibria exist if and only if R > N=(N �1).

Starting from Theorem 4.1, one may also obtain an explicit characteriza-

tion of all-pay auction equilibria constructed by Alcade and Dahm (2010) in

contests with heterogeneous valuations. For example, if N � 2 contestants

possess respective valuations v1; :::; vN , where v1 � v2 � ::: � vN > 0, then

player 1 randomizes over in�nitely many positive mass points fykv2g1k=1 with

probabilities fqkg1k=1, player 2 randomizes over f0g [ fykv2g1k=1 with prob-

abilities 1 � v2=v1 and fqkv2=v1g1k=1, while players 3; :::; N remain inactive.

The characterization of the symmetric two-player equilibrium thereby sheds

light also on the structure of equilibria in more general contests.
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Appendix A. Numerical approach

Numerical bid distributions in the symmetric two-player Tullock contest have

been calculated by focusing on conditions (10-11) for indices K � Kmax,

where Kmax = 14, and by stipulating that yk = 0 for k > Kmax. This

approach led to a system of equations

qK = 2(1�
K�1X
k=1

qk � yK + �K(yK)� �K(yK)) (18)

=
4yK
R
(1� �0K(yK) + �0K(yK)), (19)
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for K = 1; :::; Kmax, with �error terms�

�K(x) =
K�1X
k=1

qkx
R

xR + yRk
, (20)

�K(x) =

KmaxX
k=K+1

qky
R
k

xR + yRk
. (21)

Ignoring all error terms generated useful initial values for approximate so-

lution vectors fykgK
max

k=1 and fqkgK
max

k=1 . In explicit terms, these initial values

were yK = R(R�2)K�1
(R+2)K

and qK = 4(R�2)K�1
(R+2)K

, for K = 1; :::; Kmax. Approxi-

mate solutions could then be improved locally at the K-th mass point, for

any K = 1; :::; Kmax, by solving (18-19) numerically for �updated� values

eyK and eqK of yK and qK . To ensure a cumulative probability of one, any

updated probability vector (q1; :::qK�1; eqK ; qK+1; :::; qKmax ; 1�
PKmax

k=1 qk) was

multiplied through with 1=(1 � qK + eqK). A Visual Basic macro executed

about 40 round-robin iterations of such updating. For any considered value

of R > 2, the procedure always converged to the same distribution, regardless

of changes made to initial conditions.
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