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Abstract

We study a structural model of R&D alliance networks in which firms jointly form R&D col-
laborations to lower their production costs while competing on the product market. We derive
the Nash equilibrium of this game, provide a welfare analysis and determine the optimal R&D
subsidy program that maximizes total welfare. We also identify the key firms, i.e. the firms
whose exit would reduce welfare the most. We then structurally estimate our model using a
panel dataset of R&D collaborations and annual company reports. We use our estimates to
identify the key firms and analyze the impact of R&D subsidy programs. Moreover, we ana-
lyze temporal changes in the rankings of key firms and how these changes affect the optimal
R&D policy.
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1. Introduction

R&D partnerships have become a widespread phenomenon characterizing technological dy-

namics especially in industries with rapid technological development such as, for instance, the

pharmaceutical, chemical and computer industries [cf. Ahuja, 2000; Hagedoorn, 2002; Powell et al.,

2005; Riccaboni and Pammolli, 2002; Roijakkers and Hagedoorn, 2006]. In those industries,

firms have become more specialized in specific domains of a technology and they tend to com-

bine their knowledge with the knowledge of other firms that are specialized in different tech-

nological domains [Powell et al., 1996; Weitzman, 1998]. The increasing importance of R&D

collaborations has spurred research for theoretical models studying these relationships, and

for empirical tests of these models.

In this paper, we consider a general model of competition à la Cournot, where firms choose
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both R&D expenditures and output levels. Firms can reduce their costs of production by in-

vesting into R&D as well as by establishing R&D collaborations with other firms. An important

– and realistic – innovation of our framework is to study the equilibrium outcomes in which

firms can establish R&D collaborations with both, competing firms in their own sector, as well

as firms in other sectors. In this model, R&D collaborations can be represented by a network.

This allows us to write the profit function of each firm as a function of two matrices, A and B,

where A is the adjacency matrix of the network capturing all the direct R&D collaborations,

while B is a competition matrix that keeps tract of which firm is in competition with which

other firm in the same product market. Because of these two matrices, and thus of these two

opposing effects of technology spillovers and competition, indirectly all firms interact with all

other firms. To illustrate this point, consider for example the car manufacturing sector. The

price of a car is determined by the demand for cars and the competition between other car

producing firms. However, when these firms have R&D collaborations not only with other

car manufacturing firms but also with firms from other sectors, the price of cars will also be

indirectly influenced by the firms from other industries.

We characterize the Nash equilibrium of our model for any type of R&D collaboration

network (i.e. any matrix A) as well as for any type of competition structure between firms (i.e.

any matrix B). We show that there exists a key trade off faced by firms between the technology

(or knowledge) spillover effect of R&D and the product rivalry effect of competition. The former

effect captures the positive impact of R&D collaborations on output and profits (through the

matrix A) while the latter captures the negative impact of competition and market stealing

effects (through the matrix B).

We show that the Nash equilibrium can be characterized by the fact that firms produce

their goods proportionally to their Katz-Bonacich centrality, a well-known measure in the so-

ciology literature that determines how central each firm is in the network, and also the degree

of competition in the product market. In particular, a very central firm in the network will not

always produce the highest output because the optimal output choice will also depend on the

competition intensity the firm faces in the product market.

We also provide a welfare analysis with an explicit expression for total welfare as a function

of the fundamental parameters of the model. We further provide a lower and an upper bound

on the welfare function with bounds that depend on the parameters as well as the topology

of the network. Moreover, we study the problem of optimal network design where we show

which network is the most efficient one (i.e. the one that maximizes welfare determined by

producer and consumer surplus among all possible networks). We then study two important

policies. First, our equilibrium characterization allows us to define the key firms, i.e. the firms

whose exit would reduce welfare the most. These are the systemically relevant firms for in-

dustry productivity and performance. Second, we study subsidy policies where the planner

can subsidize the R&D effort of each firm. In both cases, we are able to derive an exact formula

for any type of network and competition structure that determines who the key firm is and the

amount of subsidy that should be given to each of them.
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We then bring the model to the data by using a panel of R&D collaborations and annual

company reports over different sectors and years. We estimate the first-order conditions of the

model by testing the trade-off for firms between the technology (or knowledge) spillover effect of

R&D and the product rivalry effect of competition mentioned above. In terms of identification

strategy, we use firm and time fixed effects (as we have a panel of firms), an IV strategy and

an estimation of a network formation model. As predicted by the theoretical model, we find

that the spillover effect has a positive and significant impact on output and profit while, the

competition effect has a negative and significant impact. We also show that the net effect from

collaboration is positive.

Following our theoretical results, we empirically rank the key firms in terms of their con-

tribution to welfare across different sectors and countries. In particular, in our analysis of the

key firms we quantify theoretically and empirically the highest welfare loss incurred due to

the exit of a firm. Our results could thus help to guide policy makers in evaluating how much

it would be worth bailing out a particular firm. We also perform the same analysis for R&D

subsidies. We further analyze the temporal changes of the rankings of key firms and the subsi-

dized firms. We show, in particular, that the key firms are not always the most central ones by

any conventional measure. In other words, the key firms are not always the ones that have the

largest number of R&D collaborations, nor the highest eigenvector, betweenness or closeness

centrality. More importantly, we also show that the key firms are not the ones that have the

highest market share in their industry. For example, we find that General Motors is a key firm

but it does not have the highest market share in its sector since it detains ”only” 12.14 % of

market share while, for example, Hitachi, Altria or Pepsico have a much higher share (up to 50

%) but are not the top key firms. This means that it is not straightforward to determine which

firm should be ”targeted” in the network by only observing its market share, size or even its

position in the network. We believe that our analysis can be used to guide R&D policies that

aim at fostering the innovativeness of an economy, and we show how these policies need to be

dynamically adjusted to changes in the economy.

The rest of the paper is organized as follows. In the next section, we compare our contri-

bution to the existing literature. In Section 3, we develop a model of firms competing in the

product market with technology sharing R&D collaborations that allow them to reduce their

production costs. We characterize the Nash equilibrium of this game and show under which

conditions it exists, is unique and interior. Section 4 determines welfare and investigates the

optimal network structure of R&D collaborations. Section 5 introduces the definition and com-

putation of the key firms while Section 6 discusses optimal R&D subsidies. Section 7 describes

the data. Section 8 is divided in two parts. In Section 8.1, we define the econometric specifica-

tion of our model while, in Section 8.2, we highlight our identification strategy. The empirical

results are given in Section 9. The policy results of our empirical analysis are given in Section

10 where the key player analysis can be found in Section 10.1 while that of the subsidy analysis

is in Section 10.2. Finally, Section 11 concludes. The network definitions and characterizations

used throughout the paper are given in Appendix A, an analysis in terms of Bertrand compe-
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tition is performed in Appendix B and some additional results for welfare are in Appendix C.

In Appendix D, we provide a theoretical model of intra and interindustry collaborations. All

proofs can be found in Appendix E.

2. Related Literature

Our paper lies at the intersection of different strands of the literature. We would like to expose

them in order to highlight our contribution.

Network Theory Our theoretical model analyzes a game with strategic complementarities

where firms decide about output and R&D effort by taking the network as given. It thus be-

longs to the class of games known as games on networks [cf. Jackson and Zenou, 2014].1 Com-

pared to this literature, where a prominent paper is the one of Ballester et al. [2006], we re-

interpret their model in terms of R&D networks and extend their framework to account for

competition between firms not only within the same product market but also between different

product markets (see our Proposition 1). This yields very general results that can encompass

any possible network of collaborations and any possible interaction structure of competition

between firms. We also provide an explicit welfare characterization, provide lower and upper

bounds and determine which network maximizes total welfare (see Propositions 2, 3 and 4).

To the best of our knowledge, this is one of the first papers that provides such an analysis.2 We

also provide two policy analyses. The first one consists of subsidizing firms’ R&D efforts. We

are able to determine the optimal subsidy level both when it is homogenous (Proposition 6)

and when it is targeted to firms (Proposition 7). We are not aware of other studies of subsidy

policies in the context of networks.3 Finally, we extend the key player analysis proposed by

Ballester et al. [2006]. In their paper, they define a key player in the context of crime where

the removal of the key player generates the highest reduction of crime in the network. In our

context of R&D networks, we define a key firm as the one that would reduce total welfare

the most if it were removed. It is a different notion since the key firms are the ones whose

disappearance from the market would result in a dramatic in total welfare loss. By doing so,

we generalize the inter-centrality formula proposed in Ballester et al. [2006] by having both

network and competition effects defining the key player (see Proposition 5).

Theoretical Studies of R&D Collaboration Networks In the industrial organization litera-

ture, there is long tradition of models that analyze product and price competition with R&D

1The economics of networks is a growing field. For overviews of the literature, see Vega-Redondo [2007], Goyal
[2007], Jackson [2008], De Martı́ and Zenou [2011], Jackson and Zenou [2013, 2014], Zenou [2014].

2In a recent paper, Belhaj et al. [2013] study network design in a game on networks with strategic complements,
but without competition effects.

3There are some papers that look at subsidies in industries with R&D collaborations but the network
is not explicitly modeled. See e.g. Acemoglu et al. [2012]; Bagwell and Staiger [1994]; Bloom et al. [2002];
Hinloopen [2001]; Impullitti [2010]; Leahy and Neary [1997]; Qiu and Tao [1998]; Song and Vannetelbosch [2007];
Spencer and Brander [1983].
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collaborations, first pioneered by Arrow [1962] and then pursued by Spence [1984]. One

of their main insights is that incentives to invest in R&D are reduced by the presence of

such technology spillovers. This raised the interest for R&D cooperation as a means to in-

ternalize spillovers. More recently, the seminal works by D’Aspremont and Jacquemin [1988],

Suzumura [1992], Kamien et al. [1992] focus on the direct links between firms in the R&D col-

laboration process.

In all this literature, however, there is no explicit network of R&D collaborations. The first

paper that provides an explicit analysis of R&D networks is the one by Goyal and Moraga-Gonzalez

[2001].4 The authors introduce a strategic Cournot oligopoly game in the presence of external-

ities induced by a network of R&D collaborations. Benefits arise in these collaborations from

sharing knowledge about a cost-reducing technology. By forming collaborations, however,

firms also change their own competitive position in the market as well as the overall market

structure. Thus, there exists a two-way flow of influence from the market structure to the in-

centives to form R&D collaborations and, in turn, from the formation of collaborations to the

market structure. Westbrock [2010] extends their framework to analyze welfare and inequality

in R&D collaboration networks, but abstracts from R&D investment decisions.

However, these papers typically provide results only for a small number of firms or spe-

cific networks, such as regular networks (i.e. all firms have the same number of R&D collabo-

rations), star-shaped or complete networks, networks that we typically do not observe in the

real-world. Compared to these papers, we provide results for all possible networks with an

arbitrary number of firms and a complete characterization of equilibrium output and R&D ef-

fort choices in multiple interdependent markets. We also determine policies related to network

design, the identification of the key player and optimal R&D subsidies.

Econometrics of Networks The literature on identification and estimation of social network

models has progressed significantly recently (see Blume et al. [2011], for a recent survey). In

his seminal work, Manski [1993] introduces a linear-in-means social interaction model with

endogenous effects, contextual effects, and correlated effects. Manski shows that the linear-in-

means specification suffers from the ”reflection problem” and the different social interaction

effects cannot be separately identified. Bramoullé et al. [2009] generalize Manski’s linear-in-

means model to a general local-average social network model, whereas the endogenous effect

is represented by the average outcome of the peers. They provide some general conditions

for the identification of the local-average model using an indirect connection’s characteristics

as an instrument for the endogenous effect assuming that the network (and its adjacency ma-

trix) is exogenous. However, if the adjacency matrix is endogenous, i.e., if there exists some

unobservable factor that could affect both the link formation and the outcome, then the above

identification strategy would fail. Here, as we have a panel data where the network changes

over time (whereas in many applications, the network is observed at one point in time; [see e.g.

4See also Dawid and Hellmann [2012] and Goyal and Joshi [2003].
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Bramoullé et al., 2009; Calvó-Armengol et al., 2009]), we adopt a similar identification strategy

using instruments but with both firm and time fixed effects to attenuate the potential endo-

geneity of the adjacency matrix. We then go even further by considering instruments based on

the predicted adjacency matrix. For that, in the first stage of the estimation, we run a regression

of whether two firms i and j will have a link at time t (here an R&D collaboration) on some

exogenous control variables (e.g., whether these two firms had an R&D collaboration in the

past, whether they are in the same industry, and whether they are from the same country) to

get a predicted adjacency matrix. Then, we carry out our instrumental variable (IV) estimation

strategy described above with the predicted adjacency matrix and compare our results with the

actual adjacency matrix.

Empirical Studies of R&D Collaboration Networks There is a large empirical literature on

technology spillovers [see e.g. Bloom et al., 2013; Einiö, 2013; Griffith et al. , 2006; Jones, 1998].

Besides, there is also a large number of empirical papers on R&D networks, which are mostly

descriptive [see e.g. Fleming, 2007; Hanaki et al., 2010; Powell et al., 2005; Rosenkopf and Schilling,

2007]. Compared to these two literatures, we explicitly model the network of R&D collabora-

tions, structurally estimate our model and derive policy implications.

To illustrate our contribution, let us consider a prominent paper within the first strand of

literature, namely the one by Bloom et al. [2013]. This paper highlights the key trade-off faced

by firms between the technology (or knowledge) spillover effect of R&D and the product rivalry

effect. The former effect captures the positive impact of R&D collaborations on output and

profit while the latter captures the negative impact of competition. The authors first provide

different ”distance” measures between firms to capture technology spillovers and then test

the impact of these two effects on output and profits of firms. They show that the net effect

of R&D is positive so that the former dominates the latter effect. Differently to Bloom et al.

[2013] we can directly measure the technological spillovers between two firms through the

presence of an R&D collaboration between them. We further provide a theoretical model of

R&D collaboration networks that incorporates the trade off between the knowledge spillover

effect and the product rivalry effect. We structurally estimate our theoretical model using the

CATI alliance database and Compustat data and show that the net effect of R&D collaborations

is positive. Using our estimates, we empirically apply our model to analyze subsidy and key

player policies and provide a ranking of the top 25 firms. We believe that this is the first

empirical paper that provides such a ranking based on these two types of R&D policies.

The Key-Player Problem The problem of identifying key players in a network has a long his-

tory, at least in the sociology literature. Indeed, one of the focuses of this literature is to propose

different measures of network centrality and to assert the descriptive and/or prescriptive suit-

ability of each of these measures to different situations [see, in particular Wasserman and Faust,

1994]. Borgatti [2003, 2006] was among the first to investigate the issue of identifying key play-

ers, which is based on explicitly measuring the contribution of a set of actors to the cohesion

of a network. The basic strategy is to take any network property, such as density or maximum
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flow, and derive a centrality measure by deleting nodes and measuring the change in the net-

work property. Borgatti measures the amount of reduction in cohesiveness of the network that

would occur if some nodes were not present.

Ballester et al. [2006, 2010] were the first to define the key-player problem in terms of

thebehavior of agents, and the total activity is measured as the sum of efforts of all agents at

the Nash equilibrium. As stated above, from a theoretical viewpoint, we extend their inter-

centrality measure of the key player by looking at welfare loss instead of total activity (output)

loss and by including both, the network spillover and the competition effect. In our context, a

key firm can help to measure the fragility of the system, since, if it disappears from the econ-

omy, welfare reduction will be the highest among all other possible firms.

To the best of our knowledge, there are only two other papers that have empirically tested

the key player policy. Liu et al. [2012] test the key player policy for juvenile crime in the United

States, while Lindquist and Zenou [2013] identify key players for co-offending networks in

Sweden. We are the first to test the key player policy for R&D networks and propose a ranking

of firms according to their intercentrality measures. We also consider another policy which

consists of subsidizing the R&D expenditures of firms so that total welfare is maximized. In

the empirical section, we also compare the ranking of firms in terms of the key player and the

subsidy policies.

3. The Model

We consider a general Cournot oligopoly game in which a set N = {1, . . . , n} of firms is

partitioned in M heterogeneous product markets.5 We also allow for consumption goods to

be imperfect substitutes (and thus differentiated products) by adopting the consumer utility

maximization approach of Singh and Vives [1984]. We first consider the demand qi for the

good produced by firm i in market Mm, m = 1, . . . , M. A representative consumer in market

Mm obtains the following gross utility from consumption of the goods (qi)i∈Mm

Ūm((qi)i∈Mm
) = αm ∑

i∈Mm

qi −
1

2 ∑
i∈Mm

q2
i − ρ ∑

i∈Mm

∑
j∈Mm,j 6=i

qiqj.

In this formulation, the parameter αm captures the market size or heterogeneity in products,

whereas ρ ∈ (0, 1] measures the degree of substitutability between products. In particular,

ρ = 1 depicts a market of perfectly substitutable goods, while ρ = 0 represents the case of local

monopolies.

The consumer maximizes net utility Um = Ūm − ∑i∈Mm
piqi, where pi is the price of good

5In the empirical analysis, we measure the market in which each firm operates by the Standard Industrial Clas-
sification (SIC), which classifies industries by a four-digit code. As a result, a market corresponds to a particular
industry or sector.

7



i. This gives the inverse demand function for firm i

pi = ᾱi − qi − ρ ∑
j∈Mm,

j 6=i

qj, (1)

where we have denoted by ᾱi = ∑
M
m=1 αm1{i∈Mm}. In the model, we will study both the general

case in which ρ > 0 but also the special case when ρ = 0. The latter case is when firms are

local monopolies so that the price of the good produced by each firm i is only determined by its

quantity qi (and the size of the market) and not by the quantities of other firms, i.e. pi = ᾱi − qi.

Firms can reduce their costs for production by investing in R&D as well as by establishing

an R&D collaboration with another firm. The amount of this cost reduction depends on the

R&D effort ei of firm i and the R&D efforts of the firms that are collaborating with i, i.e., R&D

collaboration partners.6 Given the effort level ei ∈ R+, the marginal cost ci of firm i is given

by7

ci = c̄i − ei − ϕ
n

∑
j=1

aijej, (2)

The network G is captured by A, which is a symmetric n × n adjacency matrix. Its element

aij ∈ {0, 1} indicates if there exists a link between nodes i and j such that aij = 1 if there is

a link (i, j) and zero otherwise.8 In the context of our model, aij = 1 if firms i and j set up

an R&D collaboration (0 otherwise) and aii = 0. In Equation (2), the total cost reduction for

firm i stems from its own research effort ei and the research knowledge of other firms, i.e.,

knowledge spillovers, which is captured by the term ∑
n
j=1 aijej, where ϕ ≥ 0 is the marginal cost

reduction due to neighbor’s effort. We assume that R&D effort is costly. In particular, the cost

of R&D effort is an increasing function, exhibits decreasing returns, and is given by 1
2 e2

i . Firm

i’s profit is then given by

πi = (pi − ci)qi −
1

2
e2

i . (3)

Inserting marginal cost from Equation (2) and inverse demand from Equation (1) into Equation

(3) gives

πi = (ᾱi − qi − ρ ∑
j∈Mm ,j 6=i

qj − c̄i + ei + ϕ
n

∑
j=1

aijej)qi −
1

2
e2

i

= (ᾱi − c̄i)qi − q2
i − ρ

n

∑
j=1

bijqiqj + qiei + ϕqi

n

∑
j=1

aijej −
1

2
e2

i , (4)

where bij ∈ {0, 1} indicates whether firms i and j operate in the same market or not, and let

B be the n × n matrix whose ij-th element is bij. In Equation (4), we have that ∑j∈Mm,j 6=i qj =

6See also Kamien et al. [1992] for a similar model in which firms unilaterally choose their R&D effort levels.
7This generalizes earlier studies such as the one by D’Aspremont and Jacquemin [1988] where spillovers are

assumed to take place between all firms in the industry and no distinction between collaborating and non-
collaborating firms is made.

8See Appendix A.1 for more definitions on networks.
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∑
n
j=1 bijqj since bij = 1 if i, j ∈ Mm and i 6= j, and bij = 0 otherwise, i.e. if i and j do not belong

to the same market. In other words, the matrix B captures which firms operate in the same

market and which firms don’t. Take, for example, row i in matrix B. If there are only zeros,

then this means that firm i is alone in its market. If there is a 1 correponding to column j, then

this means that firms i and j operate in the same market (or sector).

In the following, we consider quantity competition among firms à la Cournot.9 The next

proposition establishes the Nash equilibrium where each firm i simultaneously chooses both

her quantities qi and her R&D effort ei in a given network of R&D collaborations.10

Proposition 1. Consider the n–player simultaneous move game with payoffs given by Equation (4)

and strategy space in R
n
+ × R

n
+. Denote by µi ≡ ᾱi − c̄i for all i ∈ N , µ the corresponding n × 1

vector, φ ≡ ϕ/(1 − ρ), |Mm| the size of the largest market, In the n × n identity matrix, u the

(n × 1) vector of 1 and λPF(A) the largest eigenvalue of A. Denote also by µ = maxi {µi | i ∈ N}
and µ = maxi {µi | i ∈ N}, with 0 < µ < µ. We have:

(i) If

ρ + ϕ <

(

max

{

λPF(A), max
m=1,...,M

{(|Mm| − 1)}
})−1

(5)

and

ρ max
m=1,...,M

{(|Mm| − 1)} < 1 − ϕλPF(A), (6)

hold, then there exists a unique interior Nash equilibrium with output levels given by

q = (In + ρB − ϕA)−1µ. (7)

(ii) Assume that there exists only a single market so that M = 1. Let the µ-weighted Bonacich

centrality be given by bµ (G, φ) ≡ (In − φA)−1
µ. If

φλPF (A) +
nρ

1 − ρ

(

µ

µ
− 1

)

< 1, (8)

holds, then there exists a unique interior Nash equilibrium with output levels given by

q =

(
1

1 − ρ

)[

bµ(G, φ)− ρ ‖bµ(G, φ)‖1

1 − ρ + ρ ‖bu(G, φ)‖1

bu(G, φ)

]

. (9)

(iii) Assume a single market (i.e., M = 1) and that µi = µ for all i ∈ N . If φλPF (A) < 1, then there

exists a unique interior Nash equilibrium with output levels given by

q =
µ

1 − ρ + ρ‖bu (G, φ) ‖1
bu (G, φ) . (10)

9In Appendix B we show that the same functional forms for best response quantities and efforts can be obtained
for price setting firms under Bertrand competition as we find them in the case of Cournot competition.

10See Appendix A.4 for a precise definition of the Bonacich centrality used in the proposition.
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(iv) Assume a single market (i.e., M = 1), µi = µ for all i ∈ N and that goods are non-substitutable

(i.e., ρ = 0). If ϕ < λPF(A)−1, then the unique equilibrium quantities are given by q =

µbu (G, ϕ).

(v) Let q be the unique Nash equilibrium quantities in any of the above cases (i) to (iv), then for all

i ∈ N = {1, . . . , n} equilibrium profits are given by

πi =
1

2
q2

i , (11)

and equilibrium efforts are given by

ei = qi. (12)

This proposition gives the results of the Nash equilibrium starting from the most general

case where firms can operate and have links in any market (case (i)) to the case when all firms

operate in the same market (case (ii)) and when they have the same fixed cost of production

and no product heterogeneity (case (iii)) and, finally, when, on top of that, goods are not sub-

stitutable (case (iv)). Indeed, it is easily verified (Appendix E, proof of Proposition 1) that

the first-order condition with respect to R&D effort ei is given by Equation (12)11 while the

first-order condition with respect to quantity qi leads to:

qi = µi − ρ
n

∑
j=1

bijqj + ϕ
n

∑
j=1

aijqj. (13)

or, in matrix form: q = µ − ρBq + ϕAq. In terms of the literature on games on networks

[Jackson and Zenou, 2014], this proposition generalizes the results of Ballester et al. [2006] and

Calvó-Armengol et al. [2009] for the case of local competition in different markets and choices

of both effort and quantity. This proposition provides a total characterization of an interior

Nash equilibrium as well as its existence and uniqueness in a very general framework when

different markets and different products are considered. If we consider case (i), the new con-

ditions are Equations (5) and (6), which guarantee the existence, uniqueness and interiority of

the Nash equilibrium solutions in the most general case. In case (ii) where all firms operate

in the same market, in order to obtain a unique interior solution, only the condition in Equa-

tion (8) is required, which generalizes the usual condition φλPF (A) < 1 given, for example, in

Ballester et al. [2006]. In fact, the condition in Equation (8) imposes a more stringent require-

ment on ρ, ϕ, A as the left-hand side of the inequality is now augmented by
nρ

1−ρ

(
µ
µ − 1

)

≥ 0.

That is, everything else equal, the higher the discrepancy µ/µ of marginal payoffs at the origin,

the lower is the level of network complementarities φλPF (A) compatible with a unique and

interior Nash equilibrium.

More generally, the key insight of Proposition 1 is the interaction between the network effect,

11The proportional relationship between R&D effort levels and output in Equation (12) has been confirmed in a
number of empirical studies [see e.g. Cohen and Klepper, 1996,].
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Figure 1: Equilibrium output from Equation (15) and profits for the three firms with varying

values of the competition parameter 0 ≤ ρ ≤ 1
2

(√
2 − 2ϕ

)

, µ = 1 and ϕ = 0.1. Profits of firms

1 and 3 intersect at ρ = ϕ (indicated with a dashed line).

through the adjacency matrix A, and the market effect, through the competition matrix B and

that is why the first-order condition with respect to qi given by Equation (13) takes into account

both of them. To better understand this result, consider the following simple example of an

industry composed of 3 firms and 2 sectors, M1 and M2, where firm 1 and 2, as well as firm

1 and firm 3 have an R&D collaboration, while firms 1 and 2 operate in the same market M1

(see Figure 1).

Then the adjacency matrix A and the competition matrix B are given by

A =






0 1 1

1 0 0

1 0 0




 , B =






0 1 0

1 0 0

0 0 0




 .

Assume that firms are homogeneous such that µi = µ for i = 1, 2, 3. Using Proposition 1, the

equilibrium output is given by

q = µ(I − ϕA + ρB)−1u =
µ

1 − 2ϕ2 + 2ϕρ − ρ2






1 + 2ϕ − ρ

(ϕ + 1)(1 − ρ)

(1 + ρ)(1 + ϕ − ρ)




 . (14)

Profits are equal to πi = 1/2q2
i for i = 1, 2, 3. The condition for an interior equilibrium is

ρ + ϕ < 1/
√

2. Figure 1 shows an illustration of equilibrium outputs and profits for the three

firms with varying values of the competition parameter 0 ≤ ρ ≤ 1
2

(√
2 − 2ϕ

)

, µ = 1 and

ϕ = 0.1. We see that firm 1 has higher profits due to having the largest number of R&D

collaborations when competition is weak (ρ is low compared to ϕ). However, when ρ increases,

11



its profits decrease and become smaller than the profit of firm 3 when ρ > ϕ. This result

highlights the key trade off faced by firms between the technology (or knowledge) spillover effect

and the product rivalry effect of R&D [cf. Bloom et al., 2013] since the former increases with ϕ,

which captures the intensity of spillover effect while the latter increases with ρ, which indicates

the degree of competition in the product market.

To better understand these two effects, consider the case of a single market, that is M = 1.

It is easily verified that, in that case, B = (uu⊤− In) where u = (1, . . . , 1)⊤ is an n-dimensional

vector of ones. In our example, if there is only one market, all three firms with compete with

each other in the same market so that:

B =






0 1 1

1 0 1

1 1 0




 .

If ϕ/(1 − ρ) < 1/
√

2, then the unique equilibrium output will given by:

q =
µ

1 − 2ϕ2 + 4ϕρ + ρ − 2ρ2






1 + 2ϕ − ρ

1 + ϕ − ρ

1 + ϕ − ρ




 . (15)

Since there is only one market, the position in the network will determine which firm will

produce the most and have the highest profit. Since firm 1 is the most central firm in the

network and has the highest Bonacich centrality, it has the highest profit. In other words,

when M = 1, only the technology (or knowledge) spillover effect matters and the position in the

network is the only determinant of output and profit. We saw, however, that this was not

the case in the previous example where there were two markets because, compared to firm 3,

even if firm 1 had the highest Bonacich centrality, it was competing with firm 2 on the product

market while firm 3 had no competitor in her market. In other words, there is now a trade off

between the position in the network (technology (or knowledge) spillover effect) and the position

in the product market (product rivalry effect). We have seen that, depending on the values of ρ

and ϕ, firm 1 can have a higher or lower output and profit than firm 3.

4. Welfare

Let us now determine the welfare of this economy. We will consider different cases from gen-

eral to more specific. Inserting the inverse demand from Equation (1) into net utility Um of the

consumer in market Mm shows that

Um =
1

2 ∑
i∈Mm

q2
i +

ρ

2 ∑
i∈Mm

∑
j∈Mm,

j 6=i

qiqj

12



In the special case of non-substitutable goods, when ρ = 0, we obtain

Um =
1

2 ∑
i∈Mm

q2
i ,

while in the case of perfectly substitutable goods, when ρ = 1, we get

Um =
1

2

(

∑
i∈Mm

qi

)2

.

The total consumer surplus is then given by U = ∑
M
m=1 Um. Producer surplus is given by

aggregate profits Π = ∑
n
i=1 πi. As a result, the total welfare is equal to W = U + Π.

4.1. Non-Substitutable Goods

When products are not substitutable (ρ = 0), the total welfare is given by the producer and

consumer surplus, which can then be written as

W(G) =
n

∑
i=1

(
q2

i

2
+ πi

)

=
n

∑
i=1

q2
i .

The following proposition provides upper and lower bounds on welfare for any given graph

G, and determines the welfare maximizing graph.

Proposition 2. Consider independent markets with ρ = 0 and let µi and ϕ be defined as in Proposition

1. Denote by G(n) the class of graphs with n nodes and the class of graphs with n nodes and m links by

H(n, m) ⊂ G(n).

(i) Let the largest eigenvalue of the adjacency matrix A be given by λPF and let vPF be the associated

eigenvector. Then social welfare can be written as

W(G) =
(µ⊤vPF)

2

(1 − ϕλPF)2
+ o

(
1

1 − ϕλPF

)

,

and in the limit of large ϕ the efficient graph G∗ = argmaxG∈H(n,m) W(G) is a nested split graph

in which the ordering of degrees {di}n
i=1 follows the ordering of {µi}n

i=1.

(ii) Assume that µi = µ for all i ∈ N . Then welfare in the efficient graph G∗ = argmaxG∈H(n,m) W(G)

can be bounded from above and from below as

µ2n

(1 − ϕd̄)2
≤ W(G∗) ≤ µ2n

(

1 − ϕ
√

(n − 1)d̄

)2
,

where d̄ = 2m
n is the average degree in G.
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Figure 2: (Left panel) The two bounds from Proposition 2 for ρ = 0.1, ϕ = 0.001, µ = 1,
m = n − 1 for varying values of n. (Right panel) The two bounds from Proposition 4 for the
same parameter values. Note that the comparison of welfare in the case of ρ = 0 and ρ > 0 in
the above figures for increasing n is not meaningful as the first considers a growing number of
products, while the latter a single product with an increasing number of firms producing it.

(iii) The efficient graph G∗ = argmaxG∈G(n) W(G) is the one that maximizes the largest eigenvalue

λPF, that is, the complete graph Kn.

This proposition provides several interesting results. First, when products are not substi-

tutable (ρ = 0), we are able to write an explicit expression of the total welfare as a function of

the fundamental parameters of the model and to provide a lower and an upper bound on this

welfare function where the bounds depend on the parameters as well as the topology of the

network (captured by the average degree in the network). Second, in terms of network design,

when ρ = 0, there is no competition effect and thus only spillover effects through the network

matter. As a result, it should not be surprising that the complete network is the efficient net-

work because of positive complementarities between firms. We also show that, when ϕ is large

(close to its maximum value in the limit), the nested split graph is the efficient network.12,13

Basically, in a nested-split graph the neighborhood of a node is contained in the neighborhoods

of the nodes with higher degrees (see König et al. [2014] for a discussion of these graphs). If

one looks at the leading term in the welfare function, then one can see that it depends on the

product of µ and the Perron eigenvector vPF. In any nested split graph, the node with the

highest degree also has the highest eigenvector. As a result, in order to maximize total welfare,

one wants to have the node i with the highest µi to have the highest eigenvector component,

which means that it should also have the highest degree. Note that similar results relating the

largest eigenvalue to efficiency have been obtained in Corbo et al. [2006], König et al. [2011]

and Belhaj et al. [2013]. The two bounds from Proposition 2 part (ii) are shown in Figure 2.

12The complete graph Kn is a particular (degenerate) case of a nested split graph.
13In Appendix A.3, we formally define nested-split graphs.
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4.2. Imperfectly Substitutable Goods

In this section, we allow for products to be substitutable, i.e. ρ > 0. Then social welfare is

given by

W(G) =
1

2

(
n

∑
i=1

q2
i + ρ

n

∑
i=1

n

∑
j 6=i

bijqiqj

)

+
n

∑
i=1

πi,

where equilibrium output and profit are given by Equations (9) and (11). Inserting profits as a

function of output leads to:

W(G) =
n

∑
i=1

q2
i +

ρ

2

n

∑
i=1

n

∑
j 6=i

bijqiqj = q⊤q +
ρ

2
q⊤Bq,

We are now able to state a similar result as in part (i) of Proposition 2 for the case of (imper-

fectly) substitutable goods.

Proposition 3. Denote by C = A− ρ
ϕ B, let {νi}n

i=1 be the eigenvalues of C and {vi}n
i=1 the associated

eigenvectors. Then welfare can be written as

W(G) =
2 − ρ

2

(µ⊤v1)
2

(1 − ϕν1)2

(

1 +
ρ

2 − ρ
v⊤

1 Bv1

)

+ o

(
1

1 − ϕν1

)2

.

Proposition 3 shows that when spillover effects are strong such that the leading terms in

1/(1 − ϕν1) dominate, then welfare is determined by the weighted sum of the eigenvector

components µ⊤v1 = ∑
n
i=1 µiv1,i and the pairwise eigenvector complementarity effects in dif-

ferent markets v⊤
1 Bv1 = ∑

n
i=1 ∑

n
j=1 v1,ibijv1,j.

To gain further insights, we will assume in the following that there is only a single market

(with M = 1, bij = 1 for i 6= j and bii = 1 for all i, j ∈ N ) and make the homogeneity

assumption that µi = µ for all i ∈ N . Then welfare can be written as follows

W(G) =
2 − ρ

2
‖q‖2

2 +
ρ

2
‖q‖2

1,

where ‖q‖p ≡
(

∑
n
i=1 q

p
i

) 1
p is the ℓp-norm of q and u = (1, . . . , 1)⊤ is a vector of ones. Using the

fact that ‖q‖2 ≤ ‖q‖1 ≤ √
n‖q‖2, we obtain an upper bound on welfare given by

W(G) ≤ 2 + (n − 1)ρ

2
‖q‖2

2 = (2 + (n − 1)ρ)Π,

where aggregate profits are given by Π = ∑
n
i=1 πi. Hence, welfare is upper bounded by a

proportionality factor times the total profits generated in the economy.

We next consider the efficient network for small values of φ = ϕ/(1 − ρ) (defined as in

Proposition 1).

Proposition 4. Consider a large market with substitutable goods where ρ > 0. Further, assume that
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µi = µ for all i = 1, . . . , n, and let ρ, µ, ϕ and φ be defined as in Proposition 1. Denote by G(n) the

class of graphs with n nodes and the class of graphs with n nodes and m links by H(n, m) ⊂ G(n).

(i) For small values of φ, such that terms of the order O(φ3) can be neglected, welfare W(G) is

maximized in the graph G ∈ H(n, m) with the smallest degree variance σ2
d .

(ii) For small values of φ such that terms of the order O(φ4) can be neglected, welfare W(G) for two

graphs G, G′ ∈ H(n, m) with the same degree variance σ2
d is higher for the one which is less

degree assortative.

(iii) Assume that 0 < ρ < 1. The welfare in the efficient graph G∗ = argmaxG∈H(n,m) W(G) and

can be bounded from above and from below as follows:

µ2

2

n((n − 1)ρ + 2)

((n − 1)(ρ − ϕ) + 1)2
≤ W(G∗) ≤ 2 − ρ

2

µ2

ρ2

(

ρ

2 − ρ
+

1 − ρ

n(1 − ρ − ϕ
√

2m(n − 1)/n))

)

.

(iv) Assume that 0 < ρ < 1. In the limit of weak spillovers and large population size the efficient

graph in G(n) is the complete graph Kn, that is limϕ→0 limn→∞ W(Kn) = W(G∗).

Proposition 4 case (i) contrasts to previous studies such as Westbrock [2010], where it is

argued that welfare in R&D collaboration networks is increasing with the degree variance. Part

(ii) of the proposition shows that, once we allow for stronger spillover effects, the assortativity

of the network also matters for welfare.14 Part (iii) gives a general result when the competition

effect is not too strong (i.e. when 0 < ρ < 1). In that case, the welfare maximizing graph G∗

can be bounded above and below. The two bounds from part (iii) of Proposition 4 are shown in

Figure 2. The last result shows again that the complete network is the efficient one if spillover

effects are not too strong.15

5. The Key Player Policy

As stated in the Introduction, the key-player problem has first been introduced in economics

by Ballester et al. [2006, 2010]. In the context of crime, they have argued that concentrating

efforts by targeting key players, i.e. criminals who once removed generate the highest possible

reduction in aggregate crime level in a network, can have large effects on crime because of

feedback effects or social multipliers. Based on a peer-effect model, Ballester et al. [2006, 2010]

have proposed a centrality measure (the intercentrality measure) that determines the key player

in each network. Because we are not dealing with crime but with R&D networks, we will

14The assortativity coefficient ρd(G) ∈ [−1, 1] is essentially the Pearson correlation coefficient of degree between
nodes that are connected. Positive values of ρd(G) indicate that nodes with similar degrees tend to be connected,
while negative values indicate that nodes with different degrees tend to be connected. See Newman [2002] and
Pastor-Satorras et al. [2001] for further details.

15In Appendix C, we provide additional results on welfare where we focus on a particular class of networks,
namely the ones with a large spectral gap.
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redefine the key-player policy in the following way. First, as shown in Proposition 1, where

only cases (iii) and (iv) correspond to the model of Ballester et al. [2006, 2010], we will consider

a much more general model where both network and competition effects matter in a context of

different markets (or sectors) and different types of goods. Second, we define the key player in

a different way: it will be the firm which once removed from the network reduces total welfare

the most (and not total activity or total output as in Ballester et al. [2006, 2010]). As it will turn

out, the centrality that we obtain to define the key player (or key firm) will be quite different

from the intercentrality measure proposed by Ballester et al. [2006, 2010].

Let G−i be the network obtained from G by removing firm i. The key firm is the one whose

removal from the network reduces welfare the most, i.e., the key firm i∗ ∈ N = {1, . . . , n} and

is defined by i∗ = arg maxi∈N {W(G)− W(G−i)}. The following proposition characterizes the

key firm i∗ both when ρ = 0 and when ρ > 0.

Proposition 5. Let ρ, µi, i ∈ N , ϕ and φ be defined as in Proposition 1.

(i) Assume that goods are not substitutable, i.e. ρ = 0 and let ϕ < 1/λPF. Moreover, let NG(ϕ, i) =

mii(G, ϕ) denote the generating function of the number of closed walks16 that start and ter-

minate at node i and let M(G, ϕ) ≡ (In − ϕA)−1. Then the key firm is given by i∗ =

arg maxi∈N ci(G, ϕ), where the intercentrality of firm i is given by

ci(G, ϕ) =
bµ,i(G, ϕ)

NG(ϕ, i)

[

(M(G, ϕ)bµ(G, ϕ))i −
1

2

bµ,i(G, ϕ)

NG(ϕ, i)
(M(G, ϕ)2)ii

]

. (16)

(ii) Assume that goods are substitutable, i.e. ρ > 0, that the matrix M(G, ρ, ϕ) = (In + ρB −
ϕA)−1 exists,17 and let bµ(G, ρ, ϕ) = M(G, ρ, ϕ)µ. Then the key firm is given by i∗ =

arg maxi∈N ci(G, ρ, ϕ), where the intercentrality of firm i is given by

ci(G, ρ, ϕ) =
bµ,i(G, ρ, ϕ)

mii(G, ρ, ϕ)

(

(M(G, ρ, ϕ)(2In + ρB)bµ(G, ρ, ϕ))i

−1

2

bµ,i(G, ρ, ϕ)

mii(G, ρ, ϕ)
(M(G, ρ, ϕ)(2In + ρB)M(G, ρ, ϕ))ii

)

.

Let us start with case (i), which assumes that goods are not substitutable, i.e. ρ = 0. We pro-

pose a new intercentrality measure, which is an alternative to that of Ballester et al. [2006, 2010]

defined as
bu,i(G,ϕ)2

NG(ϕ,i)
. Our intercentrality measure is defined as ci =

1
2

d
dϕ

(
ϕbµ,i(G,ϕ)2

NG(ϕ,i)

)

, which, af-

ter some calculations can be written as in Equation (16) (see the proof of Proposition 5). As for

the case of crime, the key firm needs not necessarily be the one producing the highest output

level or, equivalently, the one with the highest Bonacich centrality measure. This is because

the removal of the key firm has both a direct and an indirect effect on the total welfare and thus

16See Appendix A.2 for a formal definition of walk generating functions of a graph and some results associated
with them.

17See Proposition 1, item (i), for a sufficient condition that guarantees that this matrix is invertible.
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the choice of the key firm results from a compromise between these two effects. Indeed, if the

choice of the key firm was solely governed by the direct effect of firm removal on aggregate

welfare, then the most productive firms would be the natural candidates. But the choice of the

key firm needs also to take into account the indirect effect on aggregate welfare reduction in-

duced by the network restructuring that follows from the removal of one firm from the original

network. Our intercentrality measure defined in Equation (16) takes into account this trade off.

Interestingly, in both intercentrality measures (ours and that of Ballester et al. [2006, 2010]), the

two effecs appear since they include both the Bonacich centrality of the key firm (direct effect)

and the generating function of the number of closed walks that start and terminate at the key

firm (indirect effect through self-loops).

If we now consider the more general case (ρ > 0) where both the network effect and the

competition effect are taken into account, it can be seen that there is a difference in the weighted

Bonacich centralities bµ(G, ·) between part (i) and part (ii) of Proposition 5. While the first is

the standard weighted Bonacich centrality of the network G with firm specific weights µi (see

Appendix A.4), in part (ii), the Bonacich centrality depends on both, the adjacency matrix A

of network G and the block diagonal matrix B, which indicates which firm is competing with

other firms. This is an important generalization of the intercentrality measure of the key player,

which we believe is crucial when one deals with R&D networks (but also any network with

both spillover and competition effects), since, as stated above, there is a key trade off faced by

firms between the technology (or knowledge) spillover effect and the product rivalry effect of R&D

that needs to be accounted for.

6. The R&D Subsidy Policy

In this section, we would like to consider an alternative policy to the key player one, that is

R&D subsidies. Indeed, in order to foster innovative activities and economic growth, gov-

ernments in numerous countries have introduced R&D support programs aimed at increas-

ing R&D effort in the private sector.18 Also, national governments in a number of countries

subsidize R&D activities of domestic firms, particularly in industries in which foreign and do-

mestically owned firms are in competition for international markets. Such programs are, for

example, the Eureka program in the European Union or the SPIR program in the United States.

To better understand this issue, we would now like to extend our framework by consid-

ering an optimal R&D subsidy program in the short run, i.e. taking the network G as given.

For our analysis, we first assume that all firms obtain a homogeneous subsidy per unit of R&D

effort spent. We then proceed by allowing the social planner to differentiate between firms and

implement firm specific R&D subsidies.

18Public R&D grants covered about 7.5 % of private R&D in the OECD countries in 2004 (OECD [2012]). For
an overview of R&D tax credits which are another commonly used fiscal incentive for R&D investment, see
Bloom et al. [2002].
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6.1. Homogeneous R&D Subsidies

Let us first consider the case of a single market, M = 1. An active government is introduced

that can provide a subsidy, s ≥ 0, per unit of R&D. It is assumed that each firm receives the

same per unit R&D subsidy. The profit of firm i with R&D subsidy can then be written as:

πi = (ᾱ − c̄i)qi − q2
i − ρqi ∑

j 6=i

bijqj + qiei + ϕqi

n

∑
j=1

aijej −
1

2
e2

i + sei. (17)

This formulation is similar to that of Spencer and Brander [1983] where each firm i receives

a fixed amount of money sei proportional to firm i’s effort ei. The government (or planner)

is introduced here as an agent that can set subsidy rates on R&D effort in a period before

the firms spend on R&D. The assumption that the government can pre-commit itself to such

subsidies and thus can act in this leadership role is fairly natural. As a result, this subsidy

will affect the levels of R&D committed by firms but not the resolution of the output game. In

this context, the optimal R&D subsidy s∗ determined by the planner is found by maximizing

total welfare W(G, s) less the cost of the subsidy s ∑
n
i=1 ei taking into account the fact that firms

choose output and effort for a given subsidy level by maximizing profits in Equation (17). If

we define net welfare as W(G, s) ≡ W(G, s) − ∑
n
i=1 eisi, then the social planner’s problem is

given by

s∗ = arg maxs∈R+
W(G, s).

The following proposition derives the Nash equilibrium quantities and efforts, and the optimal

subsidy level that solves the planner’s problem.

Proposition 6. Consider the n–player simultaneous move game with profits given by Equation (17)

where firms choose quantities and efforts in the strategy space in R
n
+ × R

n
+. Further, let µi, i ∈ N be

defined as in Proposition 1.

(i) If Equation (5) holds, then the matrix M = (In + ρB − ϕA)−1 exists, and the unique interior

Nash equilibrium in quantities with subsidies (in the second stage) is given by

q = q̄ + sr, (18)

where q̄ = Mµ and r = ϕM
(

1
ϕ u + Au

)

. The equilibrium profits are given by

πi =
q2

i + s2

2
, (19)

(ii) Assume that goods are not substitutable, i.e. ρ = 0. Then if ∑
n
i=1

(
r2

i (1 − 3) + 2ri + 1
)
≥ 0, the

optimal subsidy level (in the first stage) is given by

s∗ =
∑

n
i=1 q̄i (1 − 2ri)

∑
n
i=1 (ri (2ri − 2)− 1)

,
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(iii) Assume that goods are substitutable, i.e. ρ > 0. Then if

n

∑
i=1

(

r2
i (1 − 3) + 2ri + 1 − ρ

n

∑
j=1

bijrirj

)

≥ 0,

the optimal subsidy level (in the first stage) is given by

s∗ =
∑

n
i=1

(

q̄i(2ri − 1) + ρ
2 ∑

n
j=1 bij(q̄irj + q̄jri)

)

∑
n
i=1

(

1 + ri

(

2 − 2ri − ρ ∑
n
j=1 bijrj

)) ,

In part (i) of Proposition 6, we solve the second stage of the game in which firms decide

their output given the homogenous subsidy s. In parts (ii) and (iii) of the proposition, we solve

the first stage when the planner optimally decide the subsidy per R&D effort when goods

are not substitutable, i.e. ρ = 0, and when they are (ρ > 0). We are able to determine the

exact value of the optimal subsidy to be given to each firm embedded in a network of R&D

collaborations in both cases. Interestingly, the optimal subsidy depends on the vector r =

Mu + ϕMAu where the vector Au determines the degree (i.e. number of links) of each firm.

6.2. Targeted R&D Subsidies

We now consider the case where the planner can discriminate between firms by offering differ-

ent subsidies. In other words, we assume that each firm i, for all i = 1, . . . , n, obtains a subsidy

si ≥ 0 per unit of R&D effort. The profit of firm i can then be written as:

πi = (ᾱ − c̄i)qi − q2
i − ρqi ∑

j 6=i

bijqj + qiei + ϕqi

n

∑
j=1

aijej −
1

2
e2

i + siei. (20)

As above, the optimal R&D subsidies s∗ are then found by maximizing welfare W(G, s) less

the cost of the subsidy ∑
n
i=1 siei, when firms are choosing output and effort for a given subsidy

level by maximizing profits in equation (20). If we define net welfare as W(G, s) ≡ W(G, s)−
∑

n
i=1 eisi, then the social planner’s problem is given by

s∗ = arg maxs∈Rn
+

W(G, s).

The following proposition derives the Nash equilibrium quantities and efforts (second stage),

and the optimal subsidy levels that solves the planner’s problem (first stage).

Proposition 7. Consider the n–player simultaneous move game with profits given by Equation (17)

where firms choose quantities and efforts in the strategy space in R
n
+ × R

n
+. Further, let µi, i ∈ N be

defined as in Proposition 1.

(i) If Equation (5) holds, then the matrix M = (In + ρB − ϕA)−1 exists, and the unique interior
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Nash equilibrium in quantities with subsidies (in the second stage) is given by

q = q̄ + Rs, (21)

where R = M (In + ϕA), and equilibrium profits are given by

πi =
q2

i + s2
i

2
. (22)

(ii) Assume that goods are not substitutable, i.e. ρ = 0. Then if the matrix In + 2R − 2R2 is positive

definite, the optimal subsidy levels (in the first stage) are given by

s∗ = (In + 2R − 2R2)−1(2R − In)q̄.

(iii) Assume that goods are substitutable, i.e. ρ > 0. Then if the matrix In − 2R⊤ ( 1
2(2In + ρB

)
R −

In) is positive definite, the optimal subsidy levels (in the first stage) are given by

s∗ =
(

In − 2R⊤
(

1

2
(2In + ρB

)

R − In)

)−1 (

R⊤(2In + ρB)− In

)

q̄.

As in the previous proposition, in part (i) of Proposition 7, we solve for the second stage of

the game in which firms decide their output given the targeted subsidy si. In parts (ii) and (iii),

we solve the first stage of the model when the planner optimally decide the targeted subsidy

per R&D effort when goods are substitutable, i.e. ρ > 0, and when they are not. We are able

to determine the exact value of the optimal subsidy to be given to each firm embedded in a

network of R&D collaborations in both cases. We will use the results of these two propositions

below to empirically study R&D collaborations between firms in our dataset.

We would like now to test the different parts of the theoretical results. First, we will test

Proposition 1 and will try to disentangle between the technology (or knowledge) spillover effect

and the product rivalry effect of R&D. Second, once the parameters of the model have been

estimated, we will determine who the key firms are in our dataset and compared to the ones

that should be subsidized.

7. Data

We use data on interfirm R&D collaborations stemming from the MERIT-CATI database.19

Given its history and coverage, the MERIT-CATI database is one of the few databases that

allows us to study patterns in R&D partnerships in several industries, both domestic and in-

ternationally, in different regions of the world over an extended period of several decades.

19We would like to thank Christian Helmers for providing access to the dataset.
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This database contains information about strategic technology agreements, including any al-

liance that involves some arrangements for mutual transfer of technology or joint research,

such as joint research pacts, joint development agreements, cross licensing, R&D contracts,

joint ventures and research corporations [cf. Hagedoorn, 2002].20 The database records only

agreements for which a combined innovative activity or an exchange of technology is at least

part of the agreement. Moreover, only agreements that have at least two industrial partners

are included in the database, thus agreements involving only universities or government labs,

or one company with a university or lab, are disregarded. From the MERIT-CATI database

we then obtain a total of 13, 040 companies. The systematic collection of inter-firm alliances

started in 1987 and ends in 2006. However, information about alliances prior to 1987 are avail-

able in the database, and we use all the information available starting from the year 1950.21

We construct the R&D alliance network by assuming that an alliance lasts for 5 years [similar

to e.g. Rosenkopf and Padula, 2008].22 In the robustness section below (Section 9.2.2), we will

test our model for different durations of alliances.

Figure 3 shows the number of firms n participating in an alliance in the R&D network

constructed in this way, the average degree d̄, the degree variance σ2
d and the the degree co-

efficient of variation, i.e. cv = σd/d̄, over the years 1990 to 2005. One can see that there are

very large variations over the years of the number of firms having an R&D alliance with other

firms. Starting from 1990, we observe a strong increase followed by a sudden drop to a low

level. Since 1998 it is again increasing. Interestingly, the average number of alliances per firm

(captured by the average degree d̄), the degree variance σ2
d as well as the degree coefficient of

variation cv have decreased over the years, indicating lower inter-firm collaboration activity

levels.

In Figure 4,23,24 exemplary plots of the largest connected component in the R&D network

for the years 1990, 1995, 2000 and 2005 are shown. In 1990, the giant component had a core-

periphery structure with many R&D interactions between firms from different sectors. If we

look at the same picture in 2005, the core-periphery structure seems less obvious and two

cores and a periphery seem to emerge, where in one of the cores there are only few interac-

tions between firms of different sectors. This may indicate more specialization in R&D alliance

partnerships.

20Schilling [2009] compares different alliance databases, including MERIT-CATI, and finds that the different
databases show similar patterns.

21As explained below, we do not have information available on firms’ financial reports from Standard & Poor’s
Compustat database prior to 1950. Hence we choose this year as the first year of observation in our sample.

22Rosenkopf and Padula [2008] use a five-year moving window assuming that alliances have a five-year life span,
and state that the choice of a five-year window is consistent with extant alliance studies [e.g. Gulati and Gargiulo,
1999; Stuart, 2000] and conforms to Kogut [1988] finding that the normal life span of most alliances is no more than
five years. Moreover, Harrigan [1988] studies 895 alliances from 1924 to 1985 and concludes that the average life-
span of the alliance is relatively short, 3.5 years, with a standard deviation of 5.8 years and 85 % of these alliances
last less than 10 years. Park and Russo [1996] focus on 204 joint ventures among firms in the electronic industry for
the period 1979–1988. They show that less than half of these firms remain active beyond a period of five years and
for those that last less than 10 years (2/3 of the total), the average lifetime turns out to be 3.9 years.

23See Appendix A.1 for the definition of a connected component.
24Only firms for which we could obtain their industry classification are shown.
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Figure 3: The number of firms n participating in an alliance, the average degree d̄, the degree
variance σ2

d and the degree coefficient of variation cv = σd/d̄.
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(a) 1990: n = 303, m = 777. (b) 1995: n = 405, m = 795.

(c) 2000: n = 497, m = 845. (d) 2005: n = 513, m = 861.

Figure 4: Network snapshots of the largest connected component for the years (a) 1990, (b)
1995, (c) 2000 and (d) 2005 with the number of firms n and the number of links m. Node
colors represent different industry SIC codes at the 4-digit level. The nodes’ sizes indicate
their degree.
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Figure 5: Empirical output distribution P(q) and the distribution of degree P(d) for the years
1975, . . . , 2006. The data for output has been logarithmically binned and non-positive data
entries have been discarded.

The CATI database provides the names for each firm in an alliance. We matched the firms’

names in the CATI database with the firms’ names in Standard & Poor’s Compustat US and

Global fundamentals databases, to obtain information about their balance sheets and income

statements. For this purpose we adopted and extended the name matching algorithm devel-

oped as part of the NBER patent data project.25 From our match between the firms’ names

in the CATI database and the firms’ names in the Compustat database, we obtained a firm’s

gross profit, sales and research and development expenses. Moreover, we obtained informa-

tion about a firm’s number of employees and capital.

The empirical distributions for output P(q) (using a logarithmic binning of the data with

100 bins) and the degree distribution P(d) are shown in Figure 5. Both indicate a power-law

distribution and a power law decay for large observations.

8. Econometric Analysis

8.1. Econometric Specification

In this section we introduce the econometric equivalent to the equilibrium quantity produced

by each firm given in Equation (13). Our empirical counterpart of the marginal cost cit of firm

i from Equation (2) at period t has a fixed cost equal to c̄it = η∗
i − ǫit − x⊤it β, and thus we get

cit = η∗
i − ε it − x⊤it β − eit − ϕ

n

∑
j=1

aij,tejt, (23)

where xit is a k-dimensional vector of observed exogenous characteristics of firm i, η∗
i captures

the unobserved (to the econometrician) firm-specific fixed effect, and ε it captures the remaining

25See https://sites.google.com/site/patentdataproject/Home .
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unobserved (to the econometrician) characteristics of the firms. We use capital and labor to

capture xit. Moreover, we assume that η∗
i and ε it can be observed by other firms.

Similarly to Equation (1), the inverse demand function for firm i is given by:

pit = ᾱm + ᾱt − qit − ρ
n

∑
j=1

bijqjt, (24)

where bij = 1 if i and j are in the same market and zero otherwise. In this equation, ᾱm

indicates the market-specific fixed effect and ᾱt captures the time fixed effect due to exogenous

demand shifters that affect consumer income, number of consumers (population), consumer

taste and preferences and expectations over future prices of complements and substitutes or

future income.

Denote by κt ≡ ᾱt and ηi ≡ ᾱm − η∗
i . Observe that κt captures the time fixed effect while ηi,

which includes both ᾱm and η∗
i , captures the firm fixed effect. Then, proceeding as in Section

3 (see, in particular the proof of Proposition 1), adding the subscript t for time and using

Equations (23) and (24), the econometric model equivalent to the best-response quantity in

Equation (13) is given by:

qit = ϕ
n

∑
j=1

aij,tqjt − ρ
n

∑
j=1

bijqjt + x⊤it β + ηi + κt + ǫit. (25)

Observe that the econometric specification in Equation (25) has a similar specification as the

product competition and technology spillover production function estimation in Bloom et al.

[2013] where the estimation of ϕ will give the intensity of the technology (or knowledge) spillover

effect of R&D while the estimation of ρ will give the intensity of the product rivalry effect. How-

ever, differently to these authors, we explicitly take into account the technology spillovers

stemming from R&D collaborations by using a network approach.

In vector-matrix form, we can write Equation (25) as

qt = ϕAtqt − ρBqt + Xtβ + η+ κtun + ǫt, (26)

where qt = (q1t, · · · , qnt)⊤, At = [aij,t ], B = [bij], Xt = (x1t, · · · , xnt)⊤, η = (η1, · · · , ηn)⊤,

ǫt = (ǫ1t, · · · , ǫnt)⊤, and un is an n-dimensional vector of ones.

For the T periods, Equation (26) can be written as

q = ϕdiag{At}q − ρ(IT ⊗ B)q + Xβ + uT ⊗ η+ κ ⊗ un + ǫ, (27)

where q = (q⊤
1 , · · · , q⊤

T )
⊤, X = (X⊤

1 , · · · , X⊤
T )

⊤, κ = (κ1, · · · , κT)
⊤, and ǫ = (ǫ⊤

1 , · · · , ǫ⊤
T )

⊤,

All vectors are of dimension (nT × 1), where T is the number of years available in the data.

In terms of data, our main variables will be measured as follows. The output qit is the value

of sales of firm i at time t and comes from the Compustat data. The network data comes from

the Cati database and aij,t = 1 if there is an R&D collaboration between firms i and j in the
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last s years before time t, where s is the duration of an alliance.26 The exogenous variables

captured by xit are the firm’s number of employees and capital. Finally, we measure bij as in

the theoretical model so that bij = 1 if firms i and j are the same industry (measured by the

industry SIC codes at the 4-digit level) and zero otherwise.

8.2. Identification and IV Estimation

We adopt here a structural approach in the sense that we estimate exactly the first-order con-

dition of the firm’s maximization in terms of output and R&D effort, which lead to Equation

(26). Interestingly, the best-response quantity in Equation (26) corresponds to a high-order

Spatial Auto-Regressive (SAR) model with two spatial lags Atqt and Bqt [Lee and Liu, 2010].

As in the SAR model, the spatial lags Atqt and Bqt are endogenous variables and need to be

instrumented by AtXt and BXt.

To be more specific, let us consider Equation (25). The output of firm i at time t, qit, is a

function of the total output of all firms that have an R&D collaboration with firm i at time t,

i.e. q̄a,it = ∑
n
j=1 aij,tqjt, and the total output of all firms that operate in the same market as firm

i, i.e. q̄b,it = ∑
n
j=1 bijqjt. Due the feedback effect, qjt also depends on qit and, thus, q̄a,it and q̄b,it

are endogenous. We instrument q̄a,it by the total number of employees and total capital of all

firms that have an R&D collaboration with firm i, i.e. ∑
n
j=1 aij,txit, and instrument q̄b,it by the

total number of employees and total capital of all firms that operate in the same industry as

firm i, i.e. ∑
n
j=1 bijxit. In other words, we estimate Equation (25) using a two stage least squares

(2SLS) approach where, in the first stage we regress q̄a,it and q̄b,it on ∑
n
j=1 aij,txit and ∑

n
j=1 bijxit,

respectively, to obtain ˆ̄qa,it and ˆ̄qb,it. In the second stage of the estimation, we replace the spatial

lags in Equation (25) by ˆ̄qa,it and ˆ̄qb,it and estimate

qit = ϕ ˆ̄qa,it − ρ ˆ̄qb,it + x⊤it β + ηi + κt + ǫit. (28)

Obviously, the above identification strategy based on IVs is valid only if Xt and At are

exogenous. To control for the potential endogeneity of Xt, we consider IVs based on time-

lagged employment and capital, i.e. AtXt−1 and BXt−1, for Atqt and Bqt. However, this could

not be enough. Indeed, the potential endogeneity of Atis a little more complicated to deal

with. At is endogenous if there exists an unobservable factor that affects both qit and aij,t. If

the unobservable factor is time-invariant, then it is captured by the firm fixed effect. If the

unobservable factor is time-specific, then it is captured by the time fixed effect. Therefore,

the fixed effects in the panel data model is helpful to attenuate the potential endogeneity of

At. As a robustness check, we also consider IVs based on the predicted adjacency matrix, i.e.

ÂtXt following Kelejian and Piras [2012]. To be more specific, let us consider the estimation

of Equation (25) using the predicted adjacency matrix by a three stage least squares (3SLS)

approach. In the first stage of the estimation, we obtain obtain the predicted links âij,t from

26For the benchmark estimation results reported in Table 1, we set s = 5. We report estimation results with
different lengths of alliance duration in Table 3 and the results are robust.
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the regression of aij,t on whether firms i and j collaborated before time (t − s) where s is the

duration of an alliance, whether i and j are in the same industry (measured by the first 2 digits

of their SIC codes), whether i and j are both U.S. firms.27 In the second stage, we regress q̄a,it

on ∑
n
j=1 âij,txjt to obtain ˜̄qa,it, and regress q̄b,it on ∑

n
j=1 bijxit to obtain ˆ̄qb,it. In the third stage, we

replace the spatial lags in Equation (25) by ˜̄qa,it and ˆ̄qb,it respectively and estimate

qit = ϕ ˜̄qa,it − ρ ˆ̄qb,it + x⊤it β + ηi + κt + ǫit. (29)

Let us now give a formal definition for the estimator. In Equation (27), η and κ capture

respectively the firm and time fixed effects. We allow for η and κ to depend on diag{At}, B

and X by treating them as vectors of unknown parameters. To avoid the incidental problem,

we transform Equation (27) using a within projector J = JT ⊗ Jn where JT = IT − 1
T uTu⊤

T and

Jn = In − 1
n unu⊤

n . The transformed Equation (27) is

Jq = ϕJdiag{At}q − ρJ(IT ⊗ B)q + JXβ + Jǫ. (30)

where the firm and time fixed effects η and κ have been washed out.

As stated above, to estimate Equation (30), we consider the IV matrix with the actual ad-

jacency matrix At, i.e. Q1 = J[diag{At}X, (IT ⊗ B)X, X], and the IV matrix with the predicted

adjacency matrix Ât = [âij,t ], i.e. Q2 = J[diag{Ât}X, (IT ⊗ B)X, X].

Let P1 = Q1(Q
⊤
1 Q)−1

1 Q⊤
1 P2 = Q2(Q⊤

2 Q)−1
2 Q⊤

2 and Z = [diag{At}q, (IT ⊗ B)q, X]. The

2SLS estimator with IVs based on the actual adjacency matrix is given by (Z⊤P1Z)−1Z⊤P1q.

The 3SLS estimator with IVs based on the predicted adjacency matrix is given by (Z⊤P2Z)−1Z⊤P2q.

With the estimates of ϕ, ρ, β, we can recover η and κ by the least squares dummy variable

method.

9. Empirical Results

9.1. Results from Estimating our Model

The parameter estimates of Equationn (26) are reported in Table 1, which reports three different

models. Models A and B are the 2SLS estimation of (26) with time fixed effects only and time

and firm fixed effects, respectively. Model C is the 3SLS estimation of (26) where we estimate

the adjacency matrix (network formation) in the first stage. In all these models, we obtain the

expected signs, that is the technology (or knowledge) spillover effect (estimate of ϕ) has always a

positive impact on own output while the product rivalry effect (estimate of −ρ) has always nega-

tive impact on own output. Indeed, the more a given firm collaborate with other firms in R&D,

the higher is her output production. This indicates that R&D by allied firms in the network

27A year-by-year linear regression is carried out. The estimated coefficients of the regressors are all statistically
significant with expected signs. The estimation results of this first stage are omitted to save space and are available
upon request.

28



Table 1: Parameter estimates (with standard errors in parenthesis) from a panel
regression with time dummies of Equation (26). Model A does not include firm
fixed effects (f.e.), while Model B introduces also firm fixed effects. Model C
uses the predicted instead of the actual adjacency matrix.

Model A Model B Model C

time f.e. yes yes yes
firm f.e. no yes yes

ϕ 0.0382*** (0.0059) 0.0092*** (0.0025) 0.0236*** (0.0045)
ρ 0.0037*** (0.0004) 0.0035*** (0.0006) 0.0027*** (0.0006)
β1 0.0615*** (0.0060) 0.0419*** (0.0077) 0.0400*** (0.0073)
β2 0.8530*** (0.0520) 1.1316*** (0.0370) 1.0970*** (0.0386)

# obs. 29184
R2 = 0.9447

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

is associated with higher product value and indicate that there are strategic complementari-

ties between own and allied firms. However, conditional on technology spillovers, the more

firms compete in the same market, the lower is the production of the good by the given firm.

As in Bloom et al. [2013], this table shows that the magnitude of the first effect (technology

spillover) is much higher than that of the second effect (product rivalry). Keeping all the other

firms’ output levels constant, suppose firm j is both a collaboration partner of firm i and oper-

ates in the same market as firm i. Then we find that the net effect of firm j increasing its output

by one unit is captured by the difference of the two effects. As the technology spillover effect

is much higher than the rivalry effect, we find that the latter dominates the former so that the

net returns to R&D collaborations are strictly positive. Furthermore, this table also shows that

capital and labor have a positive and significant impact on own output.

9.2. Robustness Checks

9.2.1. Missing Data

The actual number of observations used in the estimation is much less than the 13, 040 compa-

nies in MERIT-CATI database due to missing data in the dependent variables (qit, eit) and con-

trols xit. The presence of missing data not only introduces some technical difficulty as the panel

is unbalanced,28 but may also lead to more severe consequences. Suppose aij,t = 1 and the ob-

servation on qjt is missing. Then, the missing observation introduces an measurement error to

28For notational simplicity, we present the estimation procedure for a balanced panel. For an unbalanced panel
due to missing data, the projector introduced by Wansbeek and Kapteyn [1989] can be easily extended to the current
model to eliminate the individual and time fixed effects.
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Table 2: Parameter estimates (with standard errors in parenthesis) from a
panel regression with time dummies of Equation (26). Model A does not
include firm fixed effects (f.e.), while Model B introduces also firm fixed
effects. Model C uses the predicted instead of the actual adjacency matrix.
Firms for which one of the neighbors has missing data are dropped from the
sample.

Model A Model B Model C

time f.e. yes yes yes
firm f.e. no yes yes

ϕ 0.0382*** (0.0059) 0.0035 (0.0043) 0.0432** (0.0188)
ρ 0.0037*** (0.0004) 0.0046*** (0.0006) 0.0037*** (0.0007)
β1 0.0615*** (0.0060) 0.0555** (0.0072) 0.0559*** (0.0067)
β2 0.8530*** (0.0520) 1.1107*** (0.0546) 1.0678*** (0.056)

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

the spatial lag ∑
n
j=1 aij,tqjt in Equation (25) and the above estimators may not be consistent.29

Note that, this is a different sampling issue from the one studied by Chandrasekhar and Lewis

[2011] and Liu [2013], where the dependent variable and controls can be observed and the ob-

servations on network links might be missing. This missing data issue is more in line with the

one in Wang and Lee [2013]. However, the method in Wang and Lee [2013] cannot be applied

here as they consider a random-effect panel data model rather than a fixed-effect model and

they assume that there is no missing data in control variables.

As a robustness check, we estimate our model using the subsample of firms whose collab-

oration partners have no missing outputs. For those firms, the collaboration effect is correctly

specified. The estimation results are reported in Table 2 and remain largely unchanged with

respect to those reported in Table 1.

9.2.2. Time Span of Alliances

We here analyze the impact of considering different time spans (other than 5 years as in the

previous section) for the duration of an alliance. The estimation results from Table 1 in Section

8.2 for alliance durations ranging from 3 to 7 years are shown in Table 3. We find that the

estimates are robust over the different durations considered.

9.2.3. Intra- versus Interindustry Collaborations

So far, we have assumed that network effects or knowledge spillovers were the same whether

they were intra- or inter-industry collaborations. In the real-world, the knowledge spillovers

29The missing observation of an individual firm output is less a concern for the product rivalry effect because we
directly use the industry-level total output from the data to get ∑

n
j=1 bijqjt.
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Table 3: Parameter estimates (with standard errors in parenthesis) from a panel regression with time dummies of
Equation (26) including firm fixed effects assuming different durations of an alliance ranging from 3 to 7 years.

3 years 4 years 5 years 6 years 7 years

ϕ 0.0122*** (0.0037) 0.0110*** (0.0033) 0.0092*** (0.0025) 0.0095*** (0.0027) 0.0095*** (0.0023)
ρ 0.0034*** (0.0006) 0.0035*** (0.0006) 0.0035*** (0.0006) 0.0034*** (0.0006) 0.0034*** (0.0006)
β1 0.0429*** (0.0074) 0.0426*** (0.0075) 0.0419*** (0.0077) 0.0420*** (0.0076) 0.0418*** (0.0077)
β2 1.1295*** (0.0370) 1.1290*** (0.0373) 1.1316*** (0.0370) 1.1255*** (0.0381) 1.1213*** (0.0379)

# obs. 29200 29116 29026 28934 28837

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.
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between two firms in the same industry (say Volvo and Honda in the car manufacturing sector)

may be different than between two firms from different industries (for example, between Volvo

and Toshiba in the car manufacturing and ICT sectors, respectively). The rationale is that the

involved firms might differ in the similarity of their areas of technological competences and

knowledge domains depending on whether the collaborating firms operate in the same or in

different industries [cf. Nooteboom et al., 2006; Powell and Grodal, 2006].30

In this section, we extend our empirical model (25) by allowing for intra-industry technol-

ogy spillovers to differ from inter-industry spillovers. The generalized model is given by:31

qit = ϕ1

n

∑
j=1

a
(1)
ij,t qjt + ϕ2

n

∑
j=1

a
(2)
ij,t qjt − ρ

n

∑
j=1

bijqjt + x⊤it β + ηi + κt + ǫit, (31)

where a
(1)
ij,t = aij,tbij, a

(2)
ij,t = aij,t(1− bij), and the coefficients ϕ1 and ϕ2 capture the intra-industry

and the inter-industry technology spillover effect, respectively. In vector-matrix form, we have:

qt = ϕ1A
(1)
t qt + ϕ2A

(2)
t qt − ρBqt + Xtβ + η+ κtun + ǫt, (32)

The parameter estimates from a fixed-effect panel regression with time dummies of Equation

(31) are given in Table 4. We observe that the signs and significance of the coefficients stay the

same as before. Interestingly, the effects of R&D spillovers of own industry on own output is

much higher than that of R&D spillovers from other industries. This highlights the importance

of technology spillovers from firms in the same industry driven by similarities in technology

[cf. Cohen and Levinthal, 1990; Nooteboom et al., 2006].

10. Policy Results

We now go back to our main estimation results (provided in Table 1) and analyze the different

policies highlighted in Section 5 (key-player policy) and Section 6 (subsidy policy).

10.1. Determining the Key Firms

Now that we have credible estimates of the main parameters of the model, i.e. ϕ, ρ, β1 and β2

(given in Table 1), using the results of Section 5, and especially Proposition 5, we can calculate

the intercentrality of each firm in our database. The corresponding formula is given in part

(ii) of Proposition 5. This will determine the key players or key firms in our dataset. We can

therefore rank the firms according to their intercentrality measures. This means that the firm

that will be ranked number 1 is such that, if it exits from the market, then it will generate the

30This specification also allows for testing the possibility that allied firms which operate in the same market
might form a collusive agreement and thus affect each other’s quantity levels differently than firms operating in
different markets [cf. Duso et al., 2012; Goeree and Helland, 2012].

31The theoretical foundation of equation (31) can be found in Appendix D.
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Table 4: Parameter estimates (with standard errors in
parenthesis) from a fixed effects panel regression with
time dummies of Equation (31). Model D does not
include firm fixed effects (f.e.), while Model E intro-
duces also firm fixed effects.

Model D Model E

time f.e. yes yes
firm f.e. no yes

ϕ1 0.0625*** (0.0096) 0.0306*** (0.0110)
ϕ2 0.0258*** (0.0035) 0.0053*** (0.0019)
ρ 0.0044*** (0.0004) 0.0038*** (0.0006)
β1 0.0558*** (0.0044) 0.0451*** (0.0064)
β2 0.8924*** (0.0434) 1.1219*** (0.0394)

*** Statistically significant at 1% level.
** Statistically significant at 5% level.
* Statistically significant at 10% level.

highest loss in total welfare in the economy. The firm ranked number 2 will be the one that, if

removed, will generate the second highest loss in total welfare, etc..

A ranking of the first 25 firms with the highest impact on welfare upon exit in the year 1990

can be found in Table 5 while the corresponding ranking in the year 2005 is shown in Table

6. In these two tables, we also calculate the market share of each firm in the primary 4-digit

sector in which it operates, its degree d (i.e. the number of R&D collaborations), its eigenvector

centrality vPF, its betweenness and closeness centralities (see Wasserman and Faust [1994] and

Jackson [2008] for a list and definitions of these and other centrality measures), the relative

output or Bonacich centrality of the firm, the key player according to Ballester et al. [2006,

2010] (i.e. the firm which once removed generates the highest decrease in total activity) and

finally the key player defined in the present paper (i.e. the firm which once removed generates

the highest decrease in total welfare).

It should be clear that key firms are not always those with the highest centralities. If we

look, for example, at Table 5, then one can see that the key firm is General Motors but it is not the

one that has the highest number of R&D collaborations (degree), nor the highest eigenvector,

betweenness or closeness centrality. More importantly, General Motors is not the firm that has

the highest market share in its sector since it detains ”only” 12.14 % of market share while, for

example, Hitachi, Altria or Pepsico have a much higher share (up to more than 50 %). This means

that it is not straightforward to determine which firm should be ”targeted” in the network by

only observing its market share, size or even its position in the network. Interestingly, our

intercentrality and that of Ballester et al. [2006, 2010] give roughly the same rankings of firms.

If General Motors would be removed from the market, then total welfare will be reduced by

23.85 %, while total output (sales) will decrease by 6.44 %. If Sony (which has 32 % of market

share of its market) or Procter and Gamble (which has nearly 59 % of market share of its market)

33



ra
n

k

year
1990 1995 2000 2005

100

101

102

1 General Motors Corp.

2 Exxon Corp.

3 Siemens A.G.

4 DaimlerChrysler Corp

5 Chevron

6 Fiat SpA.

7 Toyota Motor Corp.

8 Hitachi Ltd.

9 Volkswagen A.G.

10 Texaco Inc.

11 Altria Group
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25 Total SA

Figure 6: Change in ranking of the 25 key firms (Table 5) from the year 1990 to the year 2005.

were removed from the economy, then less than 1 % decrease in output or welfare would

follow.

If we now compare the key player ranking between 1990 and 2005 (15 years after), then,

from Tables 5 and 6, we find that key firms change over time. For example, General Motors,

which was the key firm in 1990 is ranked number 4 in 2005 and its removal will reduce welfare

by 6.53 % and total output by 2.29 % while these numbers were 23.85 and 6.44 % in 1990. More

generally, it can be seen that the decline in welfare and total output due to the removal of the

highest ranked firms is generally much lower in 2005. Apart from the fact that some key firms

in 1990 are not anymore present in 2005 (for example, Texaco, Unilever, Elf Aquitaine), most key

firms are still ”key” in 2005. Figure 6 captures this idea by showing the change in the ranking

of the 25 highest ranked firms from 1990 to 2005. The ranking of firms can be quite stable for

some, while it is rather volatile for others. For example Daimler Chrysler was among the four

highest ranked firms in 1990 and moved up int the ranking to second place in 2005. In contrast,

Hoechst A.G., which was among the 15 highest ranked firms in 1990 slipped down to rank 499

in 2003. The left panel of Figure 7 shows the (ordered) percentage decrease in welfare due to

the removal of a firm over the years 1990 to 2005. The exit of most firms has only a minor

impact on welfare, while the highest ranked ones can considerably affect total welfare.

10.2. R&D Subsidies

As an alternative policy to the key player analysis in the previous section, we now would like

to study empirically the subsidy policy both for the homogenous subsidy, s∗, (see Proposition
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Table 5: Key player ranking for the year 1990 for the first 25 firms.

Firm Share [%]a d vPF Betweennessb Closenessc qi/‖q‖1 [%]d ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
[%]e W(G)−W(G−i)

W(G) [%] Rank

General Motors Corp. 12.1445 83 0.0545 0.0436 451.4219 5.8191 6.4430 23.8516 1
Exxon Corp. 10.1151 23 0.0146 0.0023 352.7285 5.5412 5.5290 21.0288 2
Siemens A.G. 20.1008 170 0.1877 0.0911 518.0625 2.6049 3.1586 5.0410 3
DaimlerChrysler Corp 5.2310 0 0.0195 0.0017 330.0020 2.6246 2.5719 4.5619 4
Chevron 3.7009 25 0.0141 0.0079 351.7266 2.3556 2.3937 4.0250 5
Fiat SpA. 4.7173 32 0.0408 0.0168 396.7344 2.2813 2.3462 3.8197 6
Toyota Motor Corp. 6.2806 46 0.0549 0.0153 407.9688 2.2261 2.3579 3.5419 7
Hitachi Ltd. 37.6873 111 0.1289 0.0359 478.9062 2.0132 2.1847 2.8829 8
Volkswagen A.G. 4.1641 26 0.0096 0.0047 281.2852 2.0177 2.0340 2.8101 9
Texaco Inc. 3.9206 34 0.0158 0.0028 349.6562 1.9002 1.9484 2.6897 10
Altria Group 57.0787 0 0.0000 0.0000 0.0000 1.5113 1.5113 1.5204 11
Renault 2.9712 13 0.0042 0.0020 270.2812 1.4930 1.4771 1.5196 12
Toshiba Corp. 10.4548 103 0.1312 0.0313 460.5176 1.3201 1.4640 1.3301 13
Unilever N.V./Plc. 8.2910 16 0.0068 0.0035 323.2695 1.3860 1.3812 1.2771 14
Hoechst A.G. 13.8715 29 0.0115 0.0127 348.9766 1.3491 1.3683 1.2714 15
Elf Aquitaine 3.1007 13 0.0025 0.0049 259.8105 1.3895 1.3572 1.2493 16
Bayer A.G. 12.8762 13 0.0016 0.0056 251.6250 1.2504 1.2431 1.0596 17
Sony Corp. 32.0711 57 0.0883 0.0110 404.7207 1.1597 1.2587 0.9718 18
Alcatel-Lucent 31.0329 0 0.0000 0.0000 0.0000 1.1935 1.1529 0.9469 19
Metro AG 11.3765 0 0.0000 0.0000 0.0000 1.0385 1.0385 0.7180 20
Pepsico Inc. 52.5069 3 0.0000 0.0000 0.0000 1.0074 1.0038 0.6752 21
Boeing Company 37.1888 5 0.0086 0.0001 278.9453 0.9991 0.9915 0.6696 22
Volvo A.B. 1.3887 31 0.0045 0.0106 278.3184 0.9203 0.9282 0.6598 23
Procter & Gamble 58.8860 5 0.0002 0.0013 168.6270 0.9879 1.0049 0.6504 24
Total SA 2.2696 0 0.0000 0.0000 0.0000 0.9891 0.9582 0.6209 25

a Market share in the primary 4-digit sector in which the firm is operating.
b The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by (n − 1)(n −

2), the maximum number of such paths.
c The closeness centrality of node i is computed as ∑

n
j=1 2−dG(i,j), where dG(i, j) is the length of the shortest path between i and j in the network

G [Dangalchev, 2006].
d The relative output of a firm i is computed as qi/‖q‖1 = bµ,i/‖bµ‖1.
e The decrease in output due to the removal of firm i is computed as

‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
=

bu,i(G)bµ,i(G)
mii(G)

/‖bµ(G)‖1.
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Table 6: Key player ranking for the year 2005 for the first 25 firms.

Firm Share [%]a d vPF Betweennessb Closenessc qi/‖q‖1 [%]d ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
[%]e W(G)−W(G−i)

W(G) [%] Rank

Exxon Corp. 7.8647 3 0.0000 0.0000 0.0000 3.7352 3.6706 16.9843 1
DaimlerChrysler Corp 7.5743 25 0.0086 0.0166 124.7754 2.8079 2.8860 10.0255 2
Toyota Motor Corp. 7.7760 11 0.0049 0.0010 103.9712 2.6658 2.6190 9.0050 3
General Motors Corp. 7.7341 25 0.0065 0.0086 119.6819 2.2636 2.2857 6.5354 4
Total SA 3.6544 0 0.0000 0.0000 0.0000 2.2086 2.1704 5.9033 5
Mitsubishi Corp 87.2569 14 0.1259 0.0004 168.5938 1.9756 2.0920 4.9633 6
Chevron 4.4312 6 0.0001 0.0000 44.0676 1.9967 1.9622 4.8175 7
Volkswagen A.G. 4.8178 11 0.0046 0.0051 104.1240 1.7621 1.7150 3.9439 8
Mitsui Group 30.0437 3 0.0008 0.0000 53.0688 1.6387 1.6423 3.2730 9
Hitachi Ltd. 27.8692 54 0.1718 0.0282 200.1504 1.2792 1.4240 2.1865 10
Itochu Corp. 21.1047 2 0.0000 0.0007 25.0889 1.3323 1.3348 2.1566 11
RWE AG 3.5459 0 0.0000 0.0000 0.0000 1.2686 1.2255 1.9533 12
Sumitomo Corp 90.5320 4 0.0000 0.0000 1.5000 1.2327 1.2327 1.8592 13
Marubeni Corp. 17.5319 0 0.0000 0.0000 0.0000 1.1387 1.1307 1.5721 14
Siemens A.G. 11.0608 41 0.0255 0.0059 140.9321 1.0710 1.0942 1.4144 15
UBS AG 66.4551 0 0.0000 0.0000 0.0000 0.9069 0.9069 1.0063 16
NTT DoCoMo 4.3962 18 0.1035 0.0086 176.1514 0.8159 0.8464 0.8839 17
Sony Corp. 32.1340 44 0.2352 0.0171 212.3281 0.7692 0.8554 0.8666 18
Toshiba Corp. 9.9939 52 0.2512 0.0215 214.1133 0.7181 0.8249 0.7764 19
Fiat SpA. 2.3538 18 0.0051 0.0044 97.6677 0.7957 0.7599 0.7727 20
Intel Corp. 9.8341 89 0.2462 0.0385 221.3911 0.7445 0.7162 0.7686 21
Metro AG 17.6754 2 0.0171 0.0000 112.4143 0.7796 0.7925 0.7596 22
Endesa 1.5322 0 0.0000 0.0000 0.0000 0.7918 0.7649 0.7558 23
Altria Group 40.0416 0 0.0000 0.0000 0.0000 0.7390 0.7364 0.6664 24
Renault 2.0905 16 0.0029 0.0013 91.4758 0.7400 0.6998 0.6293 25

a Market share in the primary 4-digit sector in which the firm is operating.
b The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by (n− 1)(n −

2), the maximum number of such paths.
c The closeness centrality of node i is computed as ∑

n
j=1 2−dG(i,j), where dG(i, j) is the length of the shortest path between i and j in the

network G [Dangalchev, 2006].
d The relative output of a firm i is computed as qi/‖q‖1 = bµ,i/‖bµ‖1.
e The decrease in output due to the removal of firm i is computed as

‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
=

bu,i(G)bµ,i(G)
mii(G)

/‖bµ(G)‖1.
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Figure 7: (Left panel) The ordered percentage decrease in welfare due to the removal of firm i
over the years 1990 to 2005. (Right panel) The ordered targeted subsidy level of firm i over the
years 1990 to 2005.

6) and for the targeted subsidy (see Proposition 7), where we denote by ‖s∗‖1 = ∑
n
i=1 s∗i the

total amount of subsidies. In Figure 8, in the top panel, we calculate the optimal homogenous

subsidy times R&D effort, s∗‖e‖1, over time (top left panel) and the percentage increase in

welfare due to the homogenous subsidy over time (top right panel). Interestingly, the total

subsidized effort increases over time by nearly fourfold between 1990 and 2005. In terms

of welfare, the highest increase (almost 6 %) is in 1990, 2000 and 2005, while the increase in

welfare in 1995 is smaller (around 4.5 %). The bottom panel of Figure 8 does the same exercise

for the targeted subsidy policy. The results are quite similar. However, the targeted subsidy

program has a much higher impact on total welfare since it can improve it by up to 80 % while

the homogeneous subsidies can improve total welfare by up to 6 %. Moreover, the optimal

subsidy levels show a strong variation over time. Both, the homogeneous and the aggregate

targeted subsidy, seem to follow a cyclical trend that resembles the one we have observed

for the number of firms participating in R&D collaborations in a given year in Figure 3. This

cyclical trend is also reminiscent of the R&D expenditures observed in the empirical literature

on business cycles [cf. Barlevy, 2007; Galı́, 1999]

We can compare the optimal subsidy level predicted from our model with the R&D tax

subsidies actually implemented in the United States and selected other countries between 1979

to 1997 [see Bloom et al., 2002; Impullitti, 2010]. While these time series typically show an

increase of R&D subsidies over time, they do not seem to incorporate the cyclicality that we

obtain for the optimal subsidy levels. Our analysis thus suggests that policy makers should

adjust R&D subsidies to these cycles.

Let us now provide a similar ranking for the key player policy by ranking firms in terms

of targeted subsidies. In other words, if the planner wants to maximize total welfare, which

firm should have the highest subsidy and how much. The ranking of the first 25 firms by their

optimal subsidy levels in 1990 can be found in Table 7 while the one for 2005 is shown in Table

8. As for the key player policy, we see that the ranking of firms in terms of subsidy does not
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correspond to other rankings in terms of network centrality or market share. The ranking is

similar to the one for the key firms. In particular, the top three firms in the key player ranking

in 1990 (General Motors Corp., Exxon Corp. and Siemens A.G.) are also the top three firms for the

subsidy ranking in the same year. There is also volatility in the ranking since many firms that

are ranked in the top 25 in 1990 are not anymore there in 2005 (for example, Texaco Inc., Fiat,

Motorola, etc.). Figure 9 shows the change in the ranking of the 25 highest subsidized firms

(Table 7) from 1990 to 2005.

Observe that our subsidy rankings typically favor larger firms as they tend to be better

connected in the R&D network than small firms. This adds to the discussion of whether large

or small firms are contributing more to the innovativeness of an economy [cf. Economist, 2011;

Mandel, 2011], by adding another dimension along which larger firms can have an advantage

over small ones in creating R&D spillover effects that contribute to the ever all productivity

of the economy. While studies such as Spencer and Brander [1983] and Acemoglu et al. [2012]

find that R&D often should be taxed rather than subsidized, we find in line with e.g. Hinloopen

[2001] that R&D subsidies can have a significantly positive effect on welfare. As argued by

Hinloopen [2001] the reason why our results differ from Spencer and Brander [1983] is that we

take into account consumer surplus when deriving the optimal R&D subsidy. Moreover, in

contrast to Acemoglu et al. [2012], we do not focus on entry and exit but incorporate the net-

work of R&D collaborating firms. This allows us to take into account the R&D spillover effects

of incumbent firms, which are typically ignored in studies of the innovative activity of incum-

bent firms versus entrants. We therefore see our analysis as complementary to Acemoglu et al.

[2012], and we show that R&D subsidies can trigger considerable welfare gains when technol-

ogy spillovers through R&D alliances are incorporated.

Finally, if we compare the key player ranking and the subsidy ranking, we see that many

firms appear in both rankings (such as General Motors, Exxon, Sony, etc.) but many firms do

not (such as Motorola, Texas Instruments, Sun Microsystems, etc.). We believe that the key player

policy is more efficient than the subsidy policy. First, it captures the fragility of the system.

Second it allows the planner to help or bail out the key firms whose removal or disappearance

would be extremely costly in terms of total welfare and total activity for the economy.

11. Conclusion

In this paper, we have developed a model in which firms jointly form R&D collaborations

(networks) to lower their production costs while at the same time competing on the product

market. We have highlighted the positive role of the network in terms of technology spillovers

and the negative role of product rivalry in terms of market competition. We have also de-

termined the importance of the key firms and targeted subsidies on the total welfare of the

economy.

Using a panel of R&D alliance networks and annual reports, we have then tested our the-

oretical results and first showed that the magnitude of the technology spillover effect is much
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Table 7: Subsidies ranking for the year 1990 for the first 25 firms.

Firm Share [%]a d vPF Betweennessb Closenessc qi/‖q‖1 [%]d ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
[%]e s∗ [1012] Rank

General Motors Corp. 12.1445 83 0.0545 0.0436 451.4219 5.8163 6.4400 0.1787 1
Exxon Corp. 10.1151 23 0.0146 0.0023 352.7285 5.6300 5.6176 0.1410 2
Siemens A.G. 20.1008 170 0.1877 0.0911 518.0625 2.5355 3.0746 0.1069 3
Fiat SpA. 4.7173 32 0.0408 0.0168 396.7344 2.3043 2.3700 0.0798 4
Toyota Motor Corp. 6.2806 46 0.0549 0.0153 407.9688 2.1970 2.3271 0.0789 5
Chevron 3.7009 25 0.0141 0.0079 351.7266 2.3915 2.4302 0.0769 6
Texaco Inc. 3.9206 34 0.0158 0.0028 349.6562 1.9093 1.9577 0.0695 7
Hitachi Ltd. 37.6873 111 0.1289 0.0359 478.9062 1.9889 2.1583 0.0691 8
DaimlerChrysler Corp 5.2310 0 0.0195 0.0017 330.0020 2.7359 2.6809 0.0613 9
Toshiba Corp. 10.4548 103 0.1312 0.0313 460.5176 1.2887 1.4292 0.0607 10
Volkswagen A.G. 4.1641 26 0.0096 0.0047 281.2852 2.0391 2.0556 0.0568 11
Intel Corp. 12.2966 78 0.1404 0.0222 458.6562 0.0325 0.0370 0.0534 12
Motorola Inc. 18.5193 76 0.1340 0.0172 424.8301 0.5729 0.6572 0.0488 13
McDonnell Douglas Corp. 21.8941 64 0.0338 0.0125 343.3789 0.6786 0.7643 0.0449 14
Sony Corp. 32.0711 57 0.0883 0.0110 404.7207 1.1516 1.2498 0.0436 15
Electronic Data Systems Corp. 6.8935 25 0.0711 0.0045 381.2832 0.4109 0.4305 0.0428 16
Sun Microsystems 11.0880 89 0.1664 0.0222 434.1582 0.1435 0.1708 0.0427 17
Texas Instruments Inc. 20.5932 76 0.1217 0.0159 415.5879 0.3100 0.3467 0.0422 18
TRW Inc 7.0559 52 0.0515 0.0111 364.2559 0.4293 0.4627 0.0412 19
Volvo A.B. 1.3887 31 0.0045 0.0106 278.3184 0.9245 0.9324 0.0409 20
Renault 2.9712 13 0.0042 0.0020 270.2812 1.5079 1.4918 0.0406 21
National Semiconductor Corp. 5.3366 50 0.1048 0.0045 422.4453 0.1409 0.1474 0.0404 22
Hoechst A.G. 13.8715 29 0.0115 0.0127 348.9766 1.3179 1.3366 0.0374 23
Honeywell Inc. 63.9769 61 0.1004 0.0117 416.0898 0.2321 0.2567 0.0343 24
Xerox Corp. 84.2264 34 0.0817 0.0045 385.7695 0.5864 0.6359 0.0326 25

a Market share in the primary 4-digit sector in which the firm is operating.
b The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by (n− 1)(n− 2),

the maximum number of such paths.
c The closeness centrality of node i is computed as ∑

n
j=1 2−dG(i,j), where dG(i, j) is the length of the shortest path between i and j in the network

G [Dangalchev, 2006].
d The relative output of a firm i is computed as qi/‖q‖1 = bµ,i/‖bµ‖1.
e The decrease in output due to the removal of firm i is computed as

‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
=

bu,i(G)bµ,i(G)
mii(G)

/‖bµ(G)‖1.
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Table 8: Subsidies ranking for the year 2005 for the first 25 firms.

Firm Share [%]a d vPF Betweennessb Closenessc qi/‖q‖1 [%]d ‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
[%]e s∗ [1012] Rank

Exxon Corp. 7.8647 3 0.0000 0.0000 0.0000 3.7512 3.6863 0.2663 1
DaimlerChrysler Corp 7.5743 25 0.0086 0.0166 124.7754 2.8408 2.9198 0.2553 2
Toyota Motor Corp. 7.7760 11 0.0049 0.0010 103.9712 2.6595 2.6128 0.2319 3
General Motors Corp. 7.7341 25 0.0065 0.0086 119.6819 2.2439 2.2658 0.2037 4
Mitsubishi Corp 87.2569 14 0.1259 0.0004 168.5938 1.9663 2.0821 0.1853 5
Volkswagen A.G. 4.8178 11 0.0046 0.0051 104.1240 1.7669 1.7196 0.1584 6
Total SA 3.6544 0 0.0000 0.0000 0.0000 2.2221 2.1836 0.1559 7
Hitachi Ltd. 27.8692 54 0.1718 0.0282 200.1504 1.2674 1.4109 0.1528 8
Chevron 4.4312 6 0.0001 0.0000 44.0676 2.0051 1.9704 0.1403 9
Toshiba Corp. 9.9939 52 0.2512 0.0215 214.1133 0.7051 0.8101 0.1325 10
Sony Corp. 32.1340 44 0.2352 0.0171 212.3281 0.7640 0.8496 0.1285 11
Mitsui Group 30.0437 3 0.0008 0.0000 53.0688 1.6301 1.6337 0.1173 12
Fujitsu Ltd. 17.3622 44 0.1993 0.0159 204.4375 0.5170 0.5511 0.1155 13
Intel Corp. 9.8341 89 0.2462 0.0385 221.3911 0.7351 0.7071 0.1091 14
NTT DoCoMo 4.3962 18 0.1035 0.0086 176.1514 0.8191 0.8497 0.0989 15
Itochu Corp. 21.1047 2 0.0000 0.0007 25.0889 1.3392 1.3417 0.0951 16
RWE AG 3.5459 0 0.0000 0.0000 0.0000 1.2759 1.2325 0.0901 17
Sumitomo Corp 90.5320 4 0.0000 0.0000 1.5000 1.2274 1.2274 0.0880 18
Microsoft Corp. 21.5980 90 0.1986 0.0856 245.1406 0.3090 0.3098 0.0879 19
Siemens A.G. 11.0608 41 0.0255 0.0059 140.9321 1.0430 1.0656 0.0816 20
Marubeni Corp. 17.5319 0 0.0000 0.0000 0.0000 1.1449 1.1368 0.0806 21
Sharp Corp. 8.5948 23 0.1325 0.0056 160.2207 0.3494 0.3530 0.0784 22
Mitsubishi Electric Corp 5.6782 22 0.1218 0.0054 189.0078 0.4137 0.4363 0.0702 23
Continental A.G. 4.3929 10 0.0046 0.0001 99.3442 0.2956 0.2906 0.0656 24
UBS AG 66.4551 0 0.0000 0.0000 0.0000 0.9111 0.9111 0.0653 25

a Market share in the primary 4-digit sector in which the firm is operating.
b The normalized betweenness centrality is the fraction of all shortest paths in the network that contain a given node, divided by
(n − 1)(n − 2), the maximum number of such paths.

c The closeness centrality of node i is computed as ∑
n
j=1 2−dG(i,j), where dG(i, j) is the length of the shortest path between i and j in the

network G [Dangalchev, 2006].
d The relative output of a firm i is computed as qi/‖q‖1 = bµ,i/‖bµ‖1.
e The decrease in output due to the removal of firm i is computed as

‖q(G)‖1−‖q(G−i)‖1

‖q(G)‖1
=

bu,i(G)bµ,i(G)
mii(G)

/‖bµ(G)‖1.
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3 Siemens A.G.
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5 Toyota Motor Corp.
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8 Hitachi Ltd.

9 DaimlerChrysler Corp

10 Toshiba Corp.

11 Volkswagen A.G.
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13 Motorola Inc.
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24 Honeywell Inc.

25 Xerox Corp.

Figure 9: Change in the ranking of the 25 highest subsidized firms (Table 7) from 1990 to 2005.

higher than that of the product rivalry effect, indicating that the latter dominates the former

so that the net returns to R&D collaborations are strictly positive. We have also identified the

key firms whose default would reduce social welfare and aggregate industry output the most.

Finally, we have drawn some policy conclusions about optimal R&D subsidies from the results

obtained over different sectors, as well as their temporal variation.

We believe that the methodology developed in this paper offers a fruitful way to analyze

the existence of R&D spillovers and their policy implications in terms of firms’ subsidies. We

also believe that putting forward the role of the network in terms of R&D collaborations is key

to understand the different aspects of these markets.
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Appendix

A. Definitions and Characterizations

A.1. Network Definitions

A network (graph) G is the pair (N , E) consisting of a set of nodes (vertices) N = {1, . . . , n}
and a set of edges (links) E ⊂ N × N between them. A link (i, j) is incident with nodes i

and j. The neighborhood of a node i ∈ N is the set Ni = {j ∈ N : (i, j) ∈ E}. The degree

di of a node i ∈ N gives the number of links incident to node i. Clearly, di = |Ni|. Let

N (2)
i =

⋃

j∈Ni
Nj\ (Ni ∪ {i}) denote the second-order neighbors of node i. Similarly, the k-

th order neighborhood of node i is defined recursively from N (0)
i = {i}, N (1)

i = Ni and

N (k)
i =

⋃

j∈N (k−1)
i

Nj\
(
⋃k−1

l=0 N
(l)
i

)

. A walk in G of length k from i to j is a sequence 〈i0, i1, . . . , ik〉
of nodes such that i0 = i, ik = j, ip 6= ip+1, and ip and ip+1 are (directly) linked, that is

ipip+1 ∈ E , for all 0 ≤ p ≤ k − 1. Nodes i and j are said to be indirectly linked in G if there exists

a walk from i to j in G containing nodes other than i and j. A pair of nodes i and j is connected

if they are either directly or indirectly linked. A node i ∈ N is isolated in G if Ni = ∅. The

network G is said to be empty (denoted by K̄n) when all its nodes are isolated.

A subgraph, G′, of G is the graph of subsets of the nodes,N (G′) ⊆ N (G), and links, E(G′) ⊆
E(G). A graph G is connected, if there is a path connecting every pair of nodes. Otherwise G

is disconnected. The components of a graph G are the maximally connected subgraphs. A

component is said to be minimally connected if the removal of any link makes the component

disconnected.

A dominating set for a graph G = (N , E) is a subset S of N such that every node not in

S is connected to at least one member of S by a link. An independent set is a set of nodes in a

graph in which no two nodes are adjacent. For example the central node in a star K1,n−1 forms

a dominating set while the peripheral nodes form an independent set.

Let G = (N , E) be a graph whose distinct positive degrees are d(1) < d(2) < . . . < d(k), and

let d0 = 0 (even if no agent with degree 0 exists in G). Further, define Di = {v ∈ N : dv = d(i)}
for i = 0, . . . , k. Then the set-valued vector D = (D0,D1, . . . ,Dk) is called thedegree partition

of G. Consider a nested split graph G = (N , E) and let D = (D0,D1, . . . ,Dk) be its degree

partition. Then the nodes N can be partitioned in independent sets Di, i = 1, . . . ,
⌊

k
2

⌋

and a

dominating set
⋃k

i=⌊ k
2⌋+1

Di in the graph G′ = (N\D0, E). Moreover, the neighborhoods of

the nodes are nested. In particular, for each node v ∈ Di, Nv =
⋃i

j=1 Dk+1−j if i = 1, . . . ,
⌊

k
2

⌋

if

i = 1, . . . , k, while Nv =
⋃i

j=1 Dk+1−j \ {v} if i =
⌊

k
2

⌋

+ 1, . . . , k.

In a complete graph Kn, every node is adjacent to every other node. The graph in which no

pair of nodes is adjacent is the empty graph K̄n. A clique Kn′ , n′ ≤ n, is a complete subgraph

of the network G. A graph is k-regular if every node i has the same number of links di = k for

all i ∈ N . The complete graph Kn is (n − 1)-regular. The cycle Cn is 2-regular. In a bipartite

graph there exists a partition of the nodes in two disjoint sets V1 and V2 such that each link
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connects a node in V1 to a node in V2. V1 and V2 are independent sets with cardinalities n1 and

n2, respectively. In a complete bipartite graph Kn1,n2 each node in V1 is connected to each other

node in V2. The star K1,n−1 is a complete bipartite graph in which n1 = 1 and n2 = n − 1.

The complement of a graph G is a graph Ḡ with the same nodes as G such that any two

nodes of Ḡ are adjacent if and only if they are not adjacent in G. For example the complement

of the complete graph Kn is the empty graph K̄n.

Let A be the symmetric n × n adjacency matrix of the network G. The element aij ∈ {0, 1}
indicates if there exists a link between nodes i and j such that aij = 1 if (i, j) ∈ E and aij = 0 if

(i, j) /∈ E . The k-th power of the adjacency matrix is related to walks of length k in the graph. In

particular,
(
Ak
)

ij
gives the number of walks of length k from node i to node j. The eigenvalues

of the adjacency matrix A are the numbers λ1, λ2, . . . , λn such that Avi = λivi has a nonzero

solution vector vi, which is an eigenvector associated with λi for i = 1, . . . , n. Since the adjacency

matrix A of an undirected graph G is real and symmetric, the eigenvalues of A are real, λi ∈ R

for all i = 1, . . . , n. Moreover, if vi and vj are eigenvectors for different eigenvalues, λi 6= λj,

then vi and vj are orthogonal, i.e. v⊤
i vj = 0 if i 6= j. In particular, R

n has an orthonormal basis

consisting of eigenvectors of A. Since A is a real symmetric matrix, there exists an orthogonal

matrix S such that S⊤S = SS⊤ = I (that is S⊤ = S−1) and S⊤AS = D, where D is the

diagonal matrix of eigenvalues of A and the columns of S are the corresponding eigenvectors.

The Perron-Frobenius eigenvalue λPF(G) is the largest real eigenvalue of A associated with G, i.e.

all eigenvalues λi of A satisfy |λi| ≤ λPF(G) for i = 1, . . . , n and there exists an associated

nonnegative eigenvector vPF ≥ 0 such that AvPF = λPF(G)vPF. For a connected graph G

the adjacency matrix A has a unique largest real eigenvalue λPF(G) and a positive associated

eigenvector vPF > 0. There exists a relation between the number of walks in a graph and its

eigenvalues. The number of closed walks of length k from a node i in G to herself is given by
(
Ak
)

ii
and the total number of closed walks of length k in G is tr

(
Ak
)
= ∑

n
i=1

(
Ak
)

ii
= ∑

n
i=1 λk

i .

We further have that tr (A) = 0, tr
(
A2
)

gives twice the number of links in G and tr
(
A3
)

gives

six times the number of triangles in G.

A.2. Walk Generating Functions

Denote by u = (1, . . . , 1)⊤ the n-dimensional vector of ones and define M(G, φ) = (In −
φA)−1. Then, the quantity NG(φ) = u⊤M(G, φ)u is the walk generating function of the graph

G [cf. Cvetkovic et al., 1995]. Let us show this result. Let Nk denote the number of walks of

length k in G. Then we can write Nk as follows

Nk =
n

∑
i=1

n

∑
j=1

a
[k]
ij = u⊤Aku,

where a
[k]
ij is the ij-th element of Ak. The walk generating function is then defined as

NG(φ) ≡
∞

∑
k=0

Nkφk = u⊤
(

∞

∑
k=0

φkAk

)

u = u⊤ (In − φA)−1
u = u⊤M(G, φ)u.
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For a k-regular graph Gk, the walk generating function is equal to

NGk
(φ) =

n

1 − kφ
.

It holds that NG(0) = n, and one can show that NG(φ) ≥ 0. We further have that

M(G, φ) = (In − φA)−1 =
∞

∑
k=0

φkAk =
∞

∑
k=0

φkSΛ
kS⊤,

where Λ ≡ diag(λ1, . . . , λn) is the diagonal matrix containing the eigenvalues of the real, sym-

metric matrix A, and S is an orthogonal matrix with columns given by the orthogonal eigen-

vectors of A (with S⊤ = S−1), and we have used the fact that A = SΛS⊤ [Horn and Johnson,

1990]. The eigenvectors vi have the property that Avi = λivi and are normalized such that

v⊤
i vi = 1. Note that A = SΛS⊤ is equivalent to A = ∑

n
i=1 λiviv

⊤
i . It then follows that

u⊤M(G, φ)u = u⊤S
∞

∑
k=0

φk
Λ

kS⊤u,

where

S⊤u =
(

u⊤v1, . . . , u⊤vn

)⊤
,

and

Λ
k =









λk
1 0 . . . 0

0 λk
2 . . . 0

...
. . .

...

0 . . . λk
n









= λk
1











1 0 . . . 0

0
(

λ2
λ1

)k
. . . 0

...
. . .

...

0 . . .
(

λn
λ1

)k











.

We then can write

u⊤M(G, φ)u =
∞

∑
k=0

φkλk
1

(

u⊤v1, . . . , u⊤vn

)











1 0 . . . 0

0
(

λ2
λ1

)k
. . . 0

...
. . .

...

0 . . .
(

λn
λ1

)k











(

u⊤v1, . . . , u⊤vn

)⊤
,

which gives

u⊤M(G, φ)u =
∞

∑
k=0

φkλk
1

(

(u⊤v1)
2 +

(
λ2

λ1

)k

(u⊤v2)
2 + . . . +

(
λn

λ1

)k

(u⊤vn)
2

)

=
n

∑
i=1

(u⊤vi)
2

∞

∑
k=0

φkλk
i

=
n

∑
i=1

(u⊤vi)
2

1 − φλi
.
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The above computation also shows that

Nk = u⊤Aku =
n

∑
i=1

(u⊤vi)
2λk

i .

Hence, we can write the walk generating function as follows

NG(φ) = u⊤M(G, φ)u =
∞

∑
k=0

Nkφk =
n

∑
i=1

(v⊤
i u)2

1 − λiφ
.

If λ1 is much larger than λj for all j ≥ 2, then we can approximate

NG(φ) ≈ (u⊤v1)
2

∞

∑
k=0

φkλk
1 =

(u⊤v1)
2

1 − φλ1
.

Cvetkovic et al. [1995, p. 45] has found an alternative expression for the walk generating func-

tion given by

NG(φ) =
1

φ



(−1)n
cAc

(

− 1
φ − 1

)

cA

(
1
φ

) − 1



 ,

where cA(φ) ≡ det (A − φIn) is the characteristic polynomial of the matrix A, whose roots

are the eigenvalues of A. It can be written as cA(φ) = φn − a1φn−1 + . . . + (−1)nan, where

a1 = tr(A) and an = det(A). Further, Ac = uu⊤ − In − A is the complement of A, and uu⊤

is an n × n matrix of ones. This is a convenient expression for the walk generating function,

as there exist fast algorithms to compute the characteristic polynomial [Nakos and Williams,

2000; Samuelson, 1942].

A.3. Nested Split Graphs

Let us define nested split graphs [Cvetkovic and Rowlinson, 1990; Mahadev and Peled, 1995],

which include many common networks such as the star network. Moreover, as their name

already indicates, they have a nested neighborhood structure. This means that the set of neighbors

of each agent is contained in the set of neighbors of each higher degree agent. Nested split

graphs have particular topological properties and an associated adjacency matrix with a well

defined structure.

In order to characterize nested split graphs, it will be necessary to consider the degree

partition of a graph, which is defined as follows:

Definition 1 (Mahadev and Peled [1995]). Let G = (N , E) be a graph whose distinct positive

degrees are d(1) < d(2) < . . . < d(k), and let d0 = 0 (even if no agent with degree 0 exists in G).

Further, define Di = {v ∈ N : dv = d(i)} for i = 0, . . . , k. Then the set-valued vector D =

(D0,D1, . . . ,Dk) is called the degree partition of G.

With the definition of a degree partition, we can now give a more formal definition of a
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nested split graph.32

Definition 2 (Mahadev and Peled [1995]). Consider a nested split graph G = (N , E) and let D =

(D0,D1, . . . ,Dk) be its degree partition. Then the nodes N can be partitioned in independent sets Di,

i = 1, . . . ,
⌊

k
2

⌋

and a dominating set
⋃k

i=⌊ k
2⌋+1

Di in the graph G′ = (N\D0, E). Moreover, the

neighborhoods of the nodes are nested. In particular, for each node v ∈ Di, i = 1, . . . , k,

Nv =







⋃i
j=1 Dk+1−j if i = 1, . . . ,

⌊
k
2

⌋

,
⋃i

j=1 Dk+1−j \ {v} if i =
⌊

k
2

⌋

+ 1, . . . , k.
(33)

In the following, we will call the sets Di, i =
⌊

k
2

⌋

+ 1, . . . , k, dominating subsets, since the set

Di induces a dominating set in the graph obtained by removing the nodes in the set
⋃k−i

j=0 Dj

from G.

A nested split graph has an associated adjacency matrix which is called stepwise matrix and

it is defined as follows:

Definition 3 (Brualdi and Hoffman [1985]). A stepwise matrix A is a symmetric, binary (n × n)-

matrix with elements aij satisfying the condition: if i < j and aij = 1 then ahk = 1 whenever h < k ≤ j

and h ≤ i.

If a nested split graph is connected we call it a connected nested split graph. From the step-

wise property of the adjacency matrix, it follows that a connected nested split graph contains

at least one spanning star, that is, there is at least one agent that is connected to all other agents

(see e.g. König et al. [2014] for further properties).

A.4. Bonacich Centrality

We introduce a network measure capturing the centrality of a firm in the network due to

Bonacich [1987]. Let A be the symmetric n × n adjacency matrix of the network G and λPF

its largest real eigenvalue. The matrix M(G, φ) = (I−φA)−1 exists and is non-negative if and

only if φ < 1/λPF.33 Then

M(G, φ) =
∞

∑
k=0

φkAk. (34)

The Bonacich centrality vector is given by

bu(G, φ) = M(G, φ) · u, (35)

32Let x be a real valued number x ∈ R. Then, ⌈x⌉ denotes the smallest integer larger or equal than x (the ceiling
of x). Similarly, ⌊x⌋ denotes the largest integer smaller or equal than x (the floor of x).

33The proof can be found e.g. in Debreu and Herstein [1953].
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where u = (1, . . . , 1)⊤. We can write the Bonacich centrality vector as

bu(G, φ) =
∞

∑
k=0

φkAk · u = (I − φA)−1 · u.

For the components bu,i(G, φ), i = 1, . . . , n, we get

bu,i(G, φ) =
∞

∑
k=0

φk(Ak · u)i =
∞

∑
k=0

φk
n

∑
j=1

(

Ak
)

ij
. (36)

Because ∑
n
j=1

(
Ak
)

ij
counts the number of all walks of length k in G starting from i, bu,i(G, φ) is

the number of all walks in G starting from i, where the walks of length k are weighted by their

geometrically decaying factor φk.

Observe that we can also define the weighted Bonacich centrality exactly as above but when

u is not anymore the (n × 1) vector of 1 but any (n × 1) vector.

The Bonacich matrix of Equation (34) is also a measure of structural similarity of the firms in

the network, called regular equivalence. Blondel et al. [2004]; Leicht et al. [2006] define a similar-

ity score bij, which is high if nodes i and j have neighbors that themselves have high similarity,

given by bij = φ ∑
n
k=1 aikbkj + δij. In matrix-vector notation this reads M = φAM + I. Rear-

ranging yields M = (I − φA)−1 = ∑
∞
k=0 φkAk, assuming that φ < 1/λPF. We hence obtain that

the similarity matrix M is equivalent to the Bonacich matrix from Equation (34). The average

similarity of firm i is 1
n ∑

n
j=1 bij =

1
n bu,i(G, φ), where bu,i(G, φ) is the Bonacich centrality of i.

It follows that the Bonacich centrality of i is proportional to the average regular equivalence

of i. Firms with a high Bonacich centrality are then the ones which also have a high average

structural similarity with the other firms in the R&D network.

Since equilibrium profits are closely related the the Bonacich centralities of the firms in

the network, it is worth introducing a connection between the Bonacich centrality of a node

and its coreness in the network. Coreness is defined as follows: Given a network G, the in-

duced subgraph Gk ⊆ G is the k-core of G if it is the largest subgraph such that the degree of

all nodes in Gk is at least k. Note that the cores of a graph are nested such that Gk+1 ⊆ Gk.

Cores can be used as a measure of centrality in the network G. Note that k-cores can be ob-

tained by a simple pruning algorithm: at each step, we remove all nodes with degree less

than k. We repeat this procedure until there exist no such nodes or all nodes are removed.

We define the coreness of each node as follows: The coreness of node i, cori, is k if and only

if i ∈ Gk and i /∈ Gk+1. We have that cori ≤ di. However, there is no other relation be-

tween the degree and coreness of nodes in a graph. We then have the following result due to

Manshadi and Johari [2010], which relates the Nash equilibrium to the k-cores of the graph: If

cori = k then bi(G, φ) ≥ 1
1−φk , where the inequality is tight when i belongs to a disconnected

clique of size k + 1. The coreness of networks of firms has also been studied empirically in

Kitsak et al. [2010] and Rosenkopf and Schilling [2007]. In particular, Kitsak et al. [2010] find

that the coreness of a firm correlates with its market value. We can easily explain this from our

model because we know that firms in higher cores tend to have higher Bonacich centrality, and
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therefore higher sales and profits (cf. Proposition 1).

B. Bertrand Competition

In the case of price setting firms we obtain from the profit function in Equation (3) the FOC

with respect to price pi for firm i

∂πi

∂pi
= (pi − ci)

∂qi

∂pi
− qi = 0.

When i ∈ Mm, then observe that from the inverse demand in Equation (1) we find that

qi =
αm(1 − ρm)− (1 − (nm − 2)ρm)pi + ρm ∑ j∈Mm,

j 6=i
pj

(1 − ρ)(1 + (nm − 1)ρm)
,

where nm ≡ |Mm|. It then follows that

∂qi

∂pi
= − 1 − (nm − 2)ρm

(1 − ρm)(1 + (nm − 1)ρm)
.

Inserting into the FOC with respect to pi gives

qi = − 1 − (nm − 2)ρm

(1 − ρm)(1 + (nm − 1)ρm)
(pi − ci).

Inserting Equations (1) and (2) yields

qi =
(1 − (nm − 2)ρm)(αm − c̄i)

ρm(4 − (2 − ρm)nm − ρm)
− 1 − (nm − 2)ρm

4 − (2 − ρm)nm − ρm
∑

j∈Mm,
j 6=i

qj

+
(1 − (nm − 2)ρm)

ρm(4 − (2 − ρm)nm − ρm
ei +

(1 − (nm − 2)ρm)ϕ

ρm(4 − (2 − ρm)nm − ρm

n

∑
j=1

aijej.

The FOC with respect to R&D effort is the same as in the case of perfect competition, so that

we get ei = qi. Inserting equilibrium effort and rearranging terms gives

qi =
(1 − (nm − 2)ρm)(αm − c̄i)

ρm(4 − (2 − ρm)nm − ρm)− 1(1 − (nm − 2)ρm)

− ρm(1 − (nm − 2)ρm)

ρm(4 − (2 − ρm)nm − ρm)− 1(1 − (nm − 2)ρm)
∑

j∈Mm,
j 6=i

qj

+
ϕ(1 − (nm − 2)ρm)

ρm(4 − (2 − ρm)nm − ρm)− 1(1 − (nm − 2)ρm)

n

∑
j=1

aijqj.
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If we denote by

µi ≡
(1 − (nm − 2)ρm)(αm − c̄i)

ρm(4 − (2 − ρm)nm − ρm)− 1(1 − (nm − 2)ρm)
,

ρ ≡ ρm(1 − (nm − 2)ρm)

ρm(4 − (2 − ρm)nm − ρm)− 1(1 − (nm − 2)ρm)
,

λ ≡ ϕ(1 − (nm − 2)ρm)

ρm(4 − (2 − ρm)nm − ρm)− 1(1 − (nm − 2)ρm)
.

Then we can write equilibrium quantities as follows

qi = µi − ρ
n

∑
j=1

bijqj + λ
n

∑
j=1

aijqj. (37)

Observe that the reduced form Equation (37) is identical to the Cournot case in Equation (39).

C. Additional Results on Welfare

Here, we analyze welfare issues for a particular class of networks, namely the ones with a

large spectral gap, such that λ1 is much larger than λj for all j ≥ 2.34 These networks not only

allow for a more explicit computation of welfare, but they are also representative for many

real-world networks with a fat-tailed degree distribution,35 as we observe it in our data (see

Figure 5).

Proposition 8. Consider substitutable goods and assume that µi = µ for all i = 1, . . . , n, and let φ and

µ be defined as in Proposition 1. Then in the limit of φ approaching the inverse of the largest eigenvalue

λPF from below welfare can be written as

lim
φ↑1/λPF

W(G) =
2 − ρ

2

µ2

ρ2

(
ρ

2 − ρ
+

1

‖v1‖2
1

)

.

Further, denote by G(n) the class of graphs with n nodes and the class of graphs with n nodes and m

links by H(n, m) ⊂ G(n). Consider the class S(n, m) ⊂ H(n, m) of graphs with a large spectral

gap, such that λ1 = λPF is much larger than λj for all j ≥ 2. Then the welfare maximizing graph

G∗ = argmaxG∈S(n,m) W(G) in this class is the one that minimizes the ℓ1-norm ‖v1‖1 of the principal

eigenvector v1 associated with the largest eigenvalue λ1.

Proposition 8 implies that the social planner’s problem reduces to finding the principal

eigenvector of A. For this problem there exist efficient algorithms, e.g. by using the power

iteration method [Mises and Pollaczek-Geiringer, 1929].

34The spectral gap is defined as λ1 − λ2. It is maximal in the complete graph Kn where it is equal to n. In the star
K1,n−1 we get λ1 − λ2 =

√
n − 1. In a k-regular graph we obtain λ1 − λ2 = µn−1, where µn−1 is the second smallest

eigenvalue of the Laplacian Q = diag(d)− A and d is the vector of degrees in G.
35Mihail and Papadimitriou [2002] have shown that networks with a power-law degree distribution also have a

power-law eigenvalue distribution. See also Anderson et al. [2010]; Dorogovtsev et al. [2003].
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Note that the norm ‖v1‖1 is the projection of the principal eigenvector v1 onto the all ones

vector u,

‖v1‖1 = ‖v1‖2‖u‖2 cos(α1) =
√

n cos(α1),

where α1 is the angle between the vector v1 and u. α1 is called the principal graph angle

[Cvetkovic et al., 1997, Chap. 4.5]. Welfare can then be written in terms of the graph angle

α1 as follows

lim
φ↑1/λPF

W(G) =
2 − ρ

2

µ2

ρ2

(
ρ

2 − ρ
+

1

n cos(α1)2

)

.

Consider the spectral decomposition of the matrix A given by A = ∑
n
i=1 λiviv

⊤
i , then the

principal graph angle satisfies cos(α1)
2 = 1

n‖v1v⊤
1 ‖1. Moreover, its value is maximal for the

regular graph, where it is one. We thus have that ‖v1‖2
1 ≤ n, and we obtain a lower bound for

welfare given by

lim
φ↑1/λPF

W(G) ≥ 2 − ρ

2

µ2

ρ2

(
ρ

2 − ρ
+

1

n

)

,

which is the welfare function in the regular graph. For the star G = K1,n−1 the principal eigen-

vector is given by v1 = 1√
2(n−1)

(
√

n − 1, 1, . . . , 1)⊤ where the corresponding largest eigenvalue

is λ1 =
√

n − 1. In this case (v⊤
1 u)2 = 1

2(2
√

n − 1 + n), and we obtain a lower bound on wel-

fare in the efficient graph given by

lim
φ↑1/λPF

W(K1,n−1) =
2 − ρ

2

µ2

ρ2

(
ρ

2 − ρ
+

2

2
√

n − 1 + n

)

.

This is larger than the value we have obtained for the regular graph.36 Note that the star has

a higher degree variance than the regular graph. This indicates that the result of Proposition 4

does not hold for large values of the spillover parameter φ. Moreover, the star is dissortative

while the complete graph is not.

The quantity ‖v1‖2
1 = (∑n

i=1 v1i)
2 has been called mixedness of G by Rucker et al. [2002],

since it relates to the variance of the principal eigenvector components as follows37

σ2
v1

=
1

n − 1





n

∑
i=1

v2
1i −

1

n

(
n

∑
i=1

v1i

)2


 =
n − ‖v1‖2

1

n(n − 1)
.

The variance σ2
v1

is decreasing in ‖v1‖1, and it is minimal for the regular graph where v1i =

1/
√

n for all i = 1, . . . , n, that is to say they are maximally mixed. Welfare can then be written

as

lim
φ↑1/λPF

W(G) =
2 − ρ

2

µ2

ρ2

(
ρ

2 − ρ
+

1

n(1 − (n − 1)σ2
v1
)

)

.

36Observe that W(K1,n−1) =
2

n+2
√

n−1
> W(Kn) =

1
n and limn→∞ W(K1,n−1)/W(Kn) =

2n
n+2

√
n−1

= 2.

37An alternative way to write the norm is ‖v1‖2
1 = n − ∑

n
j=1 ∑

j−1
l=1(vkj − vkl)

2 [Van Mieghem, 2011, p.40], which

shows that ‖v1‖2
1 is maximal for an eigenvector v1 with minimal difference between its components.
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This suggests that the welfare maximizing graph (among the graphs with a large spectral gap)

is eigenvector heterogeneous, or minimally mixed. Rucker et al. [2002] have shown by means

of numerical computations for all networks of size n ≤ 10 that graphs called k-kites minimize

the mixedness.

A graph with a principal eigenvalue λ1 contains the more walks, the larger is ‖v1‖2
1. More-

over, the reciprocal 1/‖v1‖2
1 measures the share of self returning walks among all walks. It

follows that, a small value of ‖v1‖2
1 implies a large share of self returning walks, or a small

probability that a randomly chosen walk ends at a vertex other than its origin. In terms of our

model, where the network governs the way knowledge spillovers and diffusion are directed

between firms, we thus find that the welfare maximizing graph has a large share of self return-

ing walks, that is, knowledge originating in a firm passes through others before returning to its

originator. This indicates that maximizing the cross-fertilization of knowledge and knowledge

recombination between firms is welfare enhancing [cf. Weitzman, 1998].

D. Intra- versus Interindustry Collaborations: Theory

We extend our model by allowing for intra-industry technology spillovers to differ from inter-

industry spillovers. The profit of firm i ∈ N is still given by πi = (pi − ci)qi − 1
2 e2

i , where

the inverse demand is pi = ᾱi − qi − ρ ∑
n
j=1 bijqj. The main change is in the marginal cost of

production, which is now equal to

ci = c̄i − ei − ϕ1

n

∑
j=1

a
(1)
ij ej − ϕ2

n

∑
j=1

a
(2)
ij ej,

where we have introduced two matrices A(1) and A(2) with elements a
(1)
ij and a

(2)
ij , respectively,

indicating a collaboration within the same industry (with the superscript (1)) or across different

industries (with the superscript (2)). Note that we can write A(1) = A ◦ B and A(2) = A ◦ (U −
B), with the matrix B having elements bij ∈ {0, 1} indicating whether firms i and j operate in

the same market or not, U being a matrix of all ones, and ◦ denotes the Hadamard elementwise

matrix product.38 Inserting this marginal cost of production into the profit function gives

πi = (ᾱi − c̄i)qi − q2
i − ρqi

n

∑
j=1

bijqj + qiei + ϕ1qi

n

∑
j=1

a
(1)
ij ej + ϕ2qi

n

∑
j=1

a
(2)
ij ej −

1

2
e2

i .

As above, from the first-order condition with respect to R&D effort, we obtain ei = qi. Inserting

this optimal effort into the first-order condition with respect to output, we obtain

qi = ᾱi − c̄i − ρ
n

∑
j=1

bijqj + ϕ1

n

∑
j=1

a
(1)
ij qj + ϕ2

n

∑
j=1

a
(2)
ij qj.

38Let A and B be m × n matrices. The Hadamard product of A and B is defined by [A ◦ B]ij = [A]ij[B]ij for all
1 ≤ i ≤ m, 1 ≤ j ≤ n, i.e. the Hadamard product is simply an element-wise multiplication.
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Denoting by µi ≡ ᾱi − c̄i, we can write this as

qi = µi − ρ
n

∑
j=1

bijqj + ϕ1

n

∑
j=1

a
(1)
ij qj + ϕ2

n

∑
j=1

a
(2)
ij qj. (38)

If the matrix In + ρB − ϕ1A(1) − ϕ2A(2) is invertible, this gives us the equilibrium quantities

q = (In + ρB − ϕ1A(1) − ϕ2A(2))−1µ.

Let us now write the econometric equivalent of Equation (38). Proceeding as in Section 8.1,

using Equations (23) and (24) and introducing time t, we get

µit = x⊤it β + ηi + κt + ǫit.

Plugging this value of µit into Equation (38), we obtain

qit = ϕ1

n

∑
j=1

a
(1)
ij,t qjt + ϕ2

n

∑
j=1

a
(2)
ij,t qjt − ρ

n

∑
j=1

bijqjt + x⊤it β + ηi + κt + ǫit,

where a
(1)
ij,t = aij,tbij and a

(2)
ij,t = aij,t(1 − bij). This is Equation (31) in Section 9.2.3.

E. Proofs

Before we proceed with the proof of Proposition 1 we state the following lemma which will be

needed in the proof.

Lemma 1. Let A and B be two symmetric, real matrices and assume that the inverse A−1 exists and is

non-negative and also that B is non-negative. Provided that λmax(A−1B) < 1 we have that

(i) the following series expansion exists

(A + B)−1 =
∞

∑
k=0

(−1)k(A−1B)kA−1,

(ii) for any x ∈ Rn
+ we have that A−1Bx < x, and

(iii) if also A−1x > 0 then (A + B)−1x > 0.

Proof of Lemma 1. We first prove part (i) of the lemma. Notice that

(A + B)−1 = (A(In + A−1B))−1

= (In + A−1B))−1A−1

=
∞

∑
k=0

(−1)k(A−1B)kA−1,
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where the Neumann series expansion for (In + A−1B))−1 can be applied if λmax(A−1B) < 1.

For the second part (ii), observe that λmax(A−1B) < 1 is equivalent to A−1Bx < x for

any x ∈ Rn
+. To see this consider an orthonormal basis of Rn spanned by the eigenvectors

of A−1B. Then we can write x = ∑
n
i=1 civi with suitable coefficients ci = x⊤vi/(v

⊤
i vi) and

A−1Bvi = λivi. It then follows that

A−1Bx =
n

∑
i=1

ciλivi ≤ λmax(A
−1B)

n

∑
i=1

civi = λmax(A
−1B)x.

Hence, if λmax(A−1B) < 1 it must hold that A−1Bx < x.

For part (iii) of the proof note that we can write the series expansion of the inverse as

follows

(A + B)−1x =
∞

∑
k=0

(−1)k(A−1B)kA−1x = A−1x − A−1BA−1x + A−1BA−1BA−1x − . . . .

By assumption we have that A−1x ≥ 0. Then denote by x̃ = A−1x ≥ 0. Then the first two

terms in the series can be written as

(In − A−1B)A−1x = (In − A−1B)x̃ > 0

where the inequality follows from part (ii) of the lemma. Next, consider the third and fourth

terms in the series expansion

(A−1BA−1B − A−1BA−1BA−1B)x̃ = A−1BA−1B(In − A−1B)x̃ ≥ 0,

where the inequality follows again from the fact that (In − A−1B)x̃ > 0 from part (ii) of the

lemma and the assumption that A−1 and B are non-negative matrices. We can then iterate by

induction to show the desired claim.

Proof of Proposition 1. Let us start with the most general case, i.e. case (i). The profit of firm

i ∈ N is given by

πi = (ᾱi − c̄i)qi − q2
i − ρ ∑

j∈Mm ,j 6=i

qiqj + qiei + ϕqi

n

∑
j=1

aijej −
1

2
e2

i ,

where bij ∈ {0, 1} is the ij-th element of the n × n matrix B defined by
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and um is a n × 1 zero-one vector with elements umi = 1 if i ∈ Mm and umi = 0 otherwise for

all i = 1, . . . , n. Moreover, Dm = diag(um) is the diagonal matrix with diagonal entries given

by um. The FOC of profits with respect to R&D effort ei of firm i is given by

∂πi

∂ei
= qi − ei = 0,

so that we obtain

ei = qi.

The FOC with respect to quantity is given by

∂πi

∂qi
= ᾱi − c̄i − 2qi − ρ

n

∑
j=1

bijqj + ei + ϕ
n

∑
j=1

aijej.

Inserting equilibrium effort and rearranging terms gives

qi = (ᾱi − c̄i)− ρ
n

∑
j=1

bijqj + ϕ
n

∑
j=1

aijqj.

In the following we denote by µi ≡ ᾱi − c̄i, so that we obtain for equilibrium quantity

qi = µi − ρ
n

∑
j=1

bijqj + ϕ
n

∑
j=1

aijqj. (39)

In matrix-vector notation it can be written as

q = µ− ρBq + ϕAq

or, equivalently,

(In + ρB − ϕA)q = µ.

The matrix In + ρB − ϕA is invertible if its determinant is not zero. This also guarantees the

uniqueness and existence of the equilibrium. Following Lee and Liu [2010], the determinant

of In − ∑
p
j=1 λjWj is strictly positive if ∑

p
j=1 |λj| < 1/ maxj=1,...,p ‖Wj‖, where ‖Wj‖ is any
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matrix norm, including the spectral norm (which is the largest eigenvalue of Wj). We have

that the largest eigenvalue of the matrix B is equal to the size of the largest market |Mm|
minus one (as this is a block-diagonal matrix with all elements being one in each block and

zero diagonal), and the largest eigenvalue of A is the Perron-Frobenius eigenvalue λPF(A). A

sufficient condition for invertibility is then given by

ρ + ϕ <

(

max

{

λPF(A), max
m=1,...,M

{(|Mm| − 1)}
})−1

,

which can also be written as

1 + ϕ/ρ <

(

max

{

λPF(A), max
m=1,...,M

{(|Mm| − 1)ρm}
})−1

.

When the inverse of In + ρB − ϕA exists, we can write equilibrium quantities as

q = (In + ρB − ϕA)−1µ.

We have shown that there exists a unique equilibrium given by q = (In + ρB − ϕA)−1µ,

but we have not yet shown that it is interior, i.e. qi > 0, ∀i ∈ N . We will deal with corner

solutions below. Profits in equilibrium can be written as

πi = (ᾱi − c̄i)qi − ρqi

n

∑
j=1

bijqj + ϕqi

n

∑
j=1

aijqj −
1

2
q2

i .

From Equation (39) it follows that

ρqi

n

∑
j=1

bijqj − ϕqi

n

∑
j=1

aijqj = ρqi

n

∑
j=1

bijqj − ϕqi

n

∑
j=1

aijqj

= qi((ρB − ϕA)q)i

= qi((In + ρB − ϕA)q − q)i

= qi ((ᾱi − c̄i)− qi) , (40)

so that we can write equilibrium profits as

πi = (ᾱi − c̄i)qi − qi ((ᾱi − c̄i)− qi)−
1

2
q2

i

=
1

2
q2

i .

Let us now deal with case (ii) in the proposition, i.e. we assume that all firms operate in the

same market so that M = 1. The first-order condition for a firm i is given by Equation (39),
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which, when M = 1, can be written as:

qi = µi − ρ ∑
j 6=i

qj + ϕ
n

∑
j=1

aijqj

Let us have the following notation: q−i ≡ ∑j 6=i qj, which is the total ouput of all firms but

excluding firm i. The equation above is equivalent to:

qi = µi − ρq−i + ϕ
n

∑
j=1

aijqj

We can now define q ≡ ∑j 6=i qj + qi, which corresponds to the total output of all firms (includ-

ing i). The equation above is now equivalent to

qi = µi − ρq + ρqi + ϕ
n

∑
j=1

aijqj

⇔ qi =
1

(1 − ρ)
µi −

ρ

(1 − ρ)
q +

ϕ

(1 − ρ)

n

∑
j=1

aijqj (41)

Observe that even if firms are local monopolies (i.e. ρ = 0) this solution is still well-defined.

Observe also that 1 − ρ > 0 if and only if ρ < 1, which we assume throughout.

In matrix form, Equation (41) can be written as:

[

I− ϕ

(1 − ρ)
A

]

q =
1

1 − ρ
µ− ρq

1 − ρ
u

where µ = (µ1, ...., µn)
⊤, and u = (1, ...., 1)⊤. Denote φ = ϕ/ (1 − ρ). If φλPF(A) < 1, this is

equivalent to

q =

(
1

1 − ρ

)

(I−φA)−1
µ− ρq

1 − ρ
(I−φA)−1

u

This equation is equivalent to:

q =

(
1

1 − ρ

)

[bµ(G, φ)− ρq bu(G, φ)] (42)

where bu(G, ϕ/ (1 − ρ)) = (I − φA)−1 u is the unweighted vector of Bonacich centralities and

bµ(G, ϕ/ (1 − ρ)) = (I − φA)−1
µ is the weighted vector of Bonacich centralities where the

weights are the µi for i = 1, . . . , n.39

We need now to calculate q. Multiplying Equation (42) to the left by u⊤, we obtain:

(1 − ρ) q = ‖bµ(G, φ)‖1 − ρq ‖bu(G, φ)‖1

39A definition and further discussion of the Bonacich centrality is given in Appendix A.4.
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where

‖bµ(G, φ)‖1 = uTbµ(G, φ) =
n

∑
i=1

bµi
(G, φ) =

n

∑
i=1

n

∑
j=1

+∞

∑
p=0

φpa
[p]
ij µj

is the sum of the weighted Bonacich centralities and

‖bu(G, φ)‖1 = u⊤bu(G, φ) =
n

∑
i=1

bu,i(G, φ) =
n

∑
i=1

n

∑
j=1

+∞

∑
p=0

φpa
[p]
ij

is the sum of the unweighted Bonacich centralities. Solving this equation, we get:

q =
‖bµ(G, φ)‖1

(1 − ρ) + ρ ‖bu(G, φ)‖1

Plugging this value of q into Equation (42), we finally obtain:

q =

(
1

1 − ρ

) [

bµ(G, φ)− ρ ‖bµ(G, φ)‖1

1 − ρ + ρ ‖bu(G, φ)‖1

bu(G, φ)

]

(43)

This corresponds to Equation (9) in the proposition. For each firm i, we thus have

qi =

(
1

1 − ρ

)[

bµ,i(G, φ)− ρ ‖bµ(G, φ)‖1

1 − ρ + ρ ‖bu(G, φ)‖1

bu,i(G, φ)

]

(44)

Next, we consider corner solutions and provide conditions which guarantee that the equi-

librium is always interior. For that, we would like to show that qi > 0, ∀i = 1, . . . , n. Using

Equation (44), this is equivalent to

bµ,i(G, φ) >
ρ ‖bµ(G, φ)‖1

1 − ρ + ρ ‖bu(G, φ)‖1

bu,i(G, φ), ∀i = 1, . . . , n. (45)

Denote by µ = maxi {µi | i ∈ N} and µ = maxi {µi | i ∈ N}, with µ < µ. Then, ∀i = 1, . . . , n,

we have

‖bu(G, φ)‖1 =
n

∑
i=1

n

∑
j=1

∞

∑
p=0

φpa
[p]
ij µj

≤ µ
n

∑
i=1

n

∑
j=1

∞

∑
p=0

φpa
[p]
ij = µ ‖bu(G, φ)‖1

and

bµ,i(G, φ) =
n

∑
j=1

∞

∑
p=0

φpa
[p]
ij µj ≥ µ bu,i(G, φ) =

n

∑
j=1

∞

∑
p=0

φpa
[p]
ij µ

Thus, a sufficient condition for Equation (45) to hold is:

µ bu,i(G, φ) >
ρµ ‖bu(G, φ)‖1

1 − ρ + ρ ‖bu(G, φ)‖1

bu,i(G, φ)
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or equivalently

µ >
ρµ ‖bu(G, φ)‖1

1 − ρ + ρ ‖bu(G, φ)‖1

or

1 − ρ > ρ ‖bu(G, φ)‖1

(

µ

µ
− 1

)

(46)

Observe that, by definition,

‖bu(G, φ)‖1 =
n

∑
i=1

n

∑
j=1

∞

∑
p=0

φpa
[p]
ij =

∞

∑
p=0

φpu⊤Apu (47)

We know that λPF (A
p) = λPF (A)p, for all p ≥ 0.40 Also, u⊤Apu/n is the average connec-

tivity in the matrix Ap of paths of length p in the original network A, which is smaller than

that its spectral radius λPF (A)p [Cvetkovic et al., 1995], i.e. u⊤Apu/n ≤ λPF (A)p. Therefore,

Equation (47) leads to the following inequality

‖bu(G, φ)‖1 =
∞

∑
p=0

φpu⊤Apu ≤ n
∞

∑
p=0

φpλPF (A)p =
n

1 − φλPF (A)
.

A sufficient condition for Equation (46) to hold is thus

φλPF (A) +
nρ

1 − ρ

(

µ

µ
− 1

)

< 1.

Clearly, this interior equilibrium is unique. This is the condition given in the proposition for

case (ii).

Let us now go back to case (i) in the proposition and show that we have an interior equilib-

rium with all firms producing at positive quantity levels, that is q = (In + ρB − ϕA)−1µ > 0.

To do this we would like to apply Lemma 1. Let In − ϕA be the matrix A in the lemma and

ρB the corresponding matrix B. We have that both are real and symmetric, and that B is a

non-negative matrix. Further, provided that ϕ < 1/λPF(A), the inverse A−1 exists and is

non-negative. Next, we need to show that λPF(A
−1B) < 1, but this is equivalent to

λPF((In − ϕA)−1ρB) < 1.

40Observe that λPF (A
p) = λPF (A)p is true for both a symmetric and an asymmetric adjacency matrix A as long as

A has non-negative entries aij ≥ 0. This follows from the Perron-Frobenius theorem.
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Note that

λPF((In − ϕA)−1ρB) = ρλPF((In − ϕA)−1B)

≤ ρλPF((In − ϕA)−1)λPF(B)

=
ρλPF(B)

1 − ϕλPF(A)
,

so that a sufficient condition is given by

ρλPF(B)

1 − ϕλPF(A)
< 1,

which is implied by

ρλPF(B) = ρ max
m=1,...,M

{(|Mm| − 1)} < 1 − ϕλPF(A).

The lemma then implies that (A + B)−1x > 0 for any vector x > 0, and in particular for the

vector µ, which is positive by assumption.

Consider now case (iii) where not only M = 1 but also µi = µ for all i = 1, . . . , n. If

φλPF (A) < 1, the equilibrium condition in Equation (43) can be further simplified to

q =
µ

1 − ρ + ρ‖bu (G, φ) ‖1
bu (G, φ) . (48)

It should be clear that the output is now always strictly positive.

Let us now consider case (iv) where markets are independent and goods are non-substitutable

(i.e., ρ = 0). If ϕ < λPF(A)−1, the equilibrium quantity further simplifies to q = µbu (G, φ),

which is always strictly positive. Equilibrium profit follows from Equation (11).

Proof of Proposition 2. We first give a proof of part (ii) of the proposition. Assuming that

µi = µ for all i = 1, . . . , n, at the Nash equilibrium, we have that q = µM(G, ϕ)u, where we

have denoted by M(G, ϕ) ≡ (In − ϕA)−1.41 We then obtain

W(G) = q⊤q = µ2u⊤M(G, ϕ)2u.

Observe that the quantity u⊤M(G, ϕ)u is the walk generating function NG(ϕ) of G that we de-

41Note that there exists a relationship between the matrix M(G, ϕ) with elements mij(G, ϕ) and the length of
the shortest path ℓij between nodes i and j in the network G, which have been used e.g. in Bala and Goyal [2000];
Jackson and Wolinsky [1996]. Namely

ℓij = lim
ϕ→0

∂ ln mij(G, ϕ)

∂ ln ϕ
= lim

ϕ→0

ϕ

mij(G, ϕ)

∂mij(G, ϕ)

∂ϕ
.

See also Newman [2010, Chap. 6]. This means that the length of the shortest path between i and j is given by the
relative %age change in the weighted number of walks between nodes i and j in G with respect to a relative %age
change in ϕ in the limit of ϕ → 0.
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fined in detail in Appendix A.2. Using the results of Appendix A.2, we obtain:

u⊤M(G, ϕ)2u = u⊤
(

∞

∑
k=0

ϕkAk

)2

u

= u⊤
(

∞

∑
k=0

k

∑
l=0

ϕlAl ϕk−lAk−l

)

u

=
∞

∑
k=0

(k + 1)ϕku⊤Aku

= NG(ϕ) +
∞

∑
k=0

kϕku⊤Aku.

Alternatively, we can write

∞

∑
k=0

(k + 1)ϕku⊤Aku =
∞

∑
k=0

(k + 1)Nk ϕk =
d

dϕ
(ϕNG(ϕ)),

so that

u⊤M(G, ϕ)2u =
d

dϕ
(ϕNG(ϕ)) = NG(ϕ) + ϕ

d

dϕ
NG(ϕ).

Using Rayleigh’s inequality, one can show that [Van Mieghem, 2011, p. 51]

d

dϕ
(ϕNG(ϕ)) ≥ 1

λ1

d

dϕ
(NG(ϕ)).

From this we can obtain a lower bound on welfare given by

W(G) ≥ µ2 1

λ1

d

dϕ
(NG(ϕ)).

Further, using the fact that

u⊤Aku =
n

∑
i=1

(u⊤vi)
2λk

i ,

NG(ϕ) =
n

∑
i=1

(v⊤
i u)2

1 − λi ϕ
,
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we can write

u⊤M(G, ϕ)2u =
n

∑
i=1

(v⊤
i u)2

1 − λi ϕ
+

n

∑
i=1

(u⊤vi)
2

∞

∑
k=0

kϕkλk
i

=
n

∑
i=1

(v⊤
i u)2

1 − λi ϕ
+

n

∑
i=1

(u⊤vi)
2 ϕλi

(1 − ϕλi)2

=
n

∑
i=1

(u⊤vi)
2

1 − ϕλi

(

1 +
ϕλi

1 − ϕλi

)

=
n

∑
i=1

(u⊤vi)
2

(1 − ϕλi)2
.

From the above it follows that welfare can also be written as

W(G) = µ2 d

dϕ
(ϕNG(ϕ)) = µ2

n

∑
i=1

(u⊤vi)
2

(1 − ϕλi)2
.

This expression shows that gross welfare is highest in the graph where λ1 approaches 1/ϕ.

Since, in the k-regular graph Gk it holds that NG(ϕ) = n
1−kϕ and d

dϕ (ϕNG(ϕ)) = NG(ϕ)+ ϕ d
dϕ =

NG(ϕ) = n
1−kϕ + nkϕ

(1−kϕ)2 = n
1−kϕ

(

1 + kϕ
1−kϕ

)

= n
(1−kϕ)2 , which gives us a lower bound on

welfare in the efficient graph n
(1− 2m

n ϕ)2 ≤ W(G∗), where we have used the fact that the number

of links in a k-regular graph is given by m = nk
2 .

In order to derive an upper bound, observe that

u⊤M(G, ϕ)2u =
n

∑
i=1

(u⊤vi)
2

(1 − ϕλi)2
,

and we can write welfare as follows

W(G) = µ2
n

∑
i=1

(u⊤vi)
2

(1 − ϕλi)2

≤ µ2 ∑
n
i=1(u

⊤vi)
2

(1 − ϕλ1)2

≤ µ2 n

(1 − ϕλ1)2
,

where we have used the fact that NG(0) = ∑
n
i=1(u

⊤vi)
2 = n so that (u⊤v1)

2 < n. Moreover,

the largest eigenvalue in a graph G with m links and n nodes is bounded from above by λ1 ≤
√

2m(n−1)
n ≤ n − 1.42 This gives us an upper bound on welfare according to

W(G∗) ≤ µ2 n
(

1 − ϕ
√

2m(n − 1)/n
)2

,

42If we assume that G is connected then we can also use the bound λ1 ≤
√

2m − n + 1 ≤ n − 1.
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which completes part (ii) of the proposition. Part (iii) follows immediately, if the number

of links m can be chosen freely, because the largest eigenvalue λ1 is upper bounded by the

largest eigenvalue of the complete graph Kn, which is the (n − 1)-regular graph. In this case,

upper and lower bounds coincide, and the efficient graph is therefore complete, that is Kn =

argmaxG∈G(n) W(G).

Finally, a similar calculation as in part (ii) shows that

µ⊤Mµ =
n

∑
i=1

(µ⊤vi)
2

1 − ϕλi
,

and similarly

µ⊤M2µ =
n

∑
i=1

(µ⊤vi)
2

(1 − ϕλi)2
,

so that welfare can be written as

W(G) = µ2µ⊤M2µ = µ2
n

∑
i=1

(µ⊤vi)
2

(1 − ϕλi)2
,

which completes part (i) of the proposition.

Proof of Proposition 3. In the case of imperfectly substitutable goods, welfare can be written

as

W(G) =
2

2
q⊤q +

ρ

2
q⊤Bq.

Further, denoting by M = (In + ρB − ϕA)−1 we can write equilibrium output as q = Mµ, and

welfare can be written as

W(G) = µ⊤M2µ+
ρ

2
µ⊤MBMµ.

Observe that M = (In − ϕC)−1, where we have denoted by C = A − ρ
ϕ B, so that we can

write M = ∑
∞
k=0 ϕkCk. Let {νi}n

i=1 be the eigenvalues of C and vi the associated eigenvectors.

Further, let Λ = diag{ν1, . . . , νn} and S the matrix whose columns are the eigenvectors vi.

Then we have that C = SΛS⊤, and we can write M = ∑
∞
k=0 ϕkSΛkS⊤. From this one can show

that

µ⊤Mµ =
n

∑
i=1

(µ⊤vi)
2

1 − ϕνi
,

and similarly

µ⊤M2µ =
n

∑
i=1

(µ⊤vi)
2

(1 − ϕνi)2
.
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Moreover, we have that

µ⊤MBMµ = µ⊤M
M

∑
m=1

(

umu⊤
m − Dm

)

Mµ

=
M

∑
m=1

(µ⊤Mum)(u
⊤
mMµ)−µ⊤Mµ

=
M

∑
m=1

(
n

∑
i=1

(µ⊤vi)(u
⊤
mvi)

1 − ϕνi

)2

−
n

∑
i=1

(µ⊤vi)
2

(1 − ϕνi)2

=

(
n

∑
i=1

(µ⊤vi)(viBvi)

1 − ϕνi

)2

−
n

∑
i=1

(µ⊤vi)
2

(1 − ϕνi)2
.

It then follows that welfare can be written as

W(G) =
2 − ρ

2

n

∑
i=1

µ⊤vi

1 − ϕνi

(

µ⊤vi

1 − ϕνi

(

1 +
ρ

2 − ρ
v⊤

i Bvi

)

+
ρ

2 − ρ

n

∑
j 6=i

(µ⊤vi)(v
⊤
i Bvj)

1 − ϕνi

)

.

Proof of Proposition 4. Let us start with part (i) of the proposition. Assuming that µi = µ for

all i = 1, . . . , n, we have that

q =
µ

1 + ρ(u⊤M(G, φ)u − 1)
M(G, φ)u,

with M(G, φ) ≡ (In − φA)−1, and we can write

W(G) =
2 − ρ

2

µ2

(1 + ρ(u⊤M(G, φ)u − 1))2

(

u⊤M(G, φ)2u +
ρ

2 − ρ
(u⊤M(G, φ)u)2

)

.

Using the fact that u⊤M(G, φ)u = NG(φ) and u⊤M(G, φ)2u = d
dφ (φNG(φ)), we then can write

welfare in terms of the walk generating function NG(φ) as

W(G) =
2 − ρ

2

µ2

(1 + ρ(NG(φ)− 1))2

(
d

dφ
(φNG(φ)) +

ρ

2 − ρ
NG(φ)

2

)

.

Next, observe that

NG(φ) = N0 + N1φ + N2φ2 +O(φ3),

and consequently
d

dφ
(φNG(φ)) = N0 + 2N1φ + 3N2φ2 + O(φ3).
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Inserting into welfare gives

W(G) =
µ2(−ρ + N0ρ + 2)

2N0(1 − ρ + N0ρ)2
− N1µ2ρ(−ρ + N0ρ + 2)

N0(1 − ρ + N0ρ)3
φ

+
1

2
µ2(−ρ + 2)

( −N2
1 + N0N2

N3
0 (1 − ρ + N0ρ)2

+

(
3N2

1 ρ2

(1 − ρ + N0ρ)4
− 2N2ρ

(1 − ρ + N0ρ)3

)(
1

N0
+

ρ

−ρ + 2

))

φ2

+O(φ)3.

Using the fact that

N0 = n,

N1 = 2m = nd̄,

N2 = d⊤d = n(d̄2 + σ2
d ),

we get

W(G) =
µ2(−ρ + nρ + 2)

2n(1 − ρ + nρ)2
− 2

(
mµ2ρ(−ρ + nρ + 2)

)

n(1 − ρ + nρ)3
φ

+
1

2
µ2(−ρ + 2)

(−4m2 + 2mn + n2σ2

n3(1 − ρ + nρ)2
+

(
12m2ρ2

(1 − ρ + nρ)4

− 4mρ

(1 − ρ + nρ)3
− 2nρσ2

(1 − ρ + nρ)3

)(
1

n
+

ρ

−ρ + 2

))

φ2

+O(φ)3.

Taking the derivative with respect to σ2
d yields

∂W(G)

∂σ2
d

=
µ2φ2

((
−1 +

(
1 + n − 2n2

)
ρ
)

ρ + 2 − (1 + n)ρ2
)

2n(1 + (−1 + n)ρ)3
+ O(φ)3,

and in the limit of large n we obtain

lim
n→∞

n2 ∂W(G)

∂σ2
d

= −µ2ρφ2

ρ2
+O(φ)3,

which is negative, indicating that welfare is decreasing in the degree variance σ2
d for large n up

to the second order of φ.

Let us now deal with part (ii) of the proposition. Up to the third order in φ we have that

NG(φ) = N0 + N1φ + N2φ2 + N3φ3 + O(φ4),

and consequently

d

dφ
(φNG(φ)) = N0 + 2N1φ + 3N2φ2 + 4N2φ3 +O(φ4).
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Inserting into welfare gives and using the fact that

N0 = n,

N1 = 2m = nd̄,

N2 = d⊤d = n(d̄2 + σ2
d ),

we get

W(G) =
µ2(−ρ + nρ + 2)

2n(1 − ρ + nρ)2
− 2

(
mµ2ρ(−ρ + nρ + 2)

)

n(1 − ρ + nρ)3
φ

+
1

2
µ2(−ρ + 2)

(−4m2 + 2mn + n2σ2

n3(1 − ρ + nρ)2
+

(
12m2ρ2

(1 − ρ + nρ)4

− 4mρ

(1 − ρ + nρ)3
− 2nρσ2

(1 − ρ + nρ)3

)(
1

n
+

ρ

−ρ + 2

))

φ2

+
1

2
µ2(−ρ + 2)

(

−4mρ
(
−4m2 + 2mn + n2σ2

)

n3(1 − ρ + nρ)3
+

2
(
8m3 − 8m2n + n2N3 − 4mn2σ2

)

n4(1 − ρ + nρ)2

+

(

− 32m3ρ3

(1 − ρ + nρ)5
+

24m2ρ2

(1 − ρ + nρ)4
− 2N3ρ

(1 − ρ + nρ)3
+

12mnρ2σ2

(1 − ρ + nρ)4

)(
1

n
+

ρ

−ρ + 2

))

φ3

+O(φ)4.

Taking the derivative with respect to N3 yields

∂W(G)

∂N3
= −µ2φ3

((
1 +

(−1 + n2
)

ρ
)

ρ + (−1 + ρ)2
)

n2(1 + (−1 + n)ρ)3
+O(φ)4,

and in the limit of large n we obtain

lim
n→∞

n3 ∂W(G)

∂N3
= −µ2ρφ3

ρ2
+O(φ)4.

It follows that welfare in the limit of large n is decreasing in N3. We have that [Van Mieghem,

2011, p. 183]

N3 =
n

∑
i=1

d3
i −

1

2

n

∑
i=1

n

∑
j=1

aij(di − dj)
2

=
N2

2

N1
+ ρd(G)

(
n

∑
i=1

d3
i −

N2
2

N1

)

︸ ︷︷ ︸

≥0

,

where ρd(G) is the degree assortativity coefficient of G [Newman, 2003]. Since welfare is de-

creasing in N3, and N3 is increasing in the assortativity ρd(G), we have that welfare in the limit

of large n is decreasing in ρd(G).

We now deal with part (iii) of the proposition. We first provide a lower bound on welfare
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in the efficient graph G∗ by considering the complete graph Kn. Welfare can be written as

W(G) =
2 − ρ

2

µ2

ρ2

u⊤M2u + ρ
2−ρ(u

⊤Mu)2

(
1−ρ

ρ + u⊤Mu
)2

.

For the complete graph Kn we have that

u⊤Mu =
n

1 − (n − 1)φ
,

u⊤M2u =
n

(1 − (n − 1)φ)2
,

so that we obtain for welfare in the complete graph

W(Kn) =
µ2

2

n((n − 1)ρ + 2)

(ρ((n − 1)φ + n − 1)− kφ + 1)2
.

Using the fact that φ = ϕ
1−ρ this can be written as

W(Kn) =
µ2

2

n((n − 1)ρ + 2)

((n − 1)(ρ − ϕ) + 1)2
.

This gives us the lower bound on welfare in part (iii) of the proposition. To obtain an upper

bound, note that welfare can be written as

W(G) =
2 − ρ

2

µ2

ρ2

u⊤M2u
(u⊤Mu)2 +

ρ
2−ρ

(
1−ρ

ρ +u⊤Mu
)2

(u⊤Mu)2

.

Next, observe that

(
1−ρ

ρ + u⊤Mu
)2

(u⊤Mu)2
= 1 +

2(1 − ρ)

ρ

1

u⊤Mu
+

1 − ρ

ρ

1

(u⊤Mu)2
≥ 1,

if ρ ≤ 1. This implies that

W(G) ≤ 2 − ρ

2

µ2

ρ2

(
u⊤M2u

(u⊤Mu)2
+

ρ

2 − ρ

)

.
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Moreover, we have that43

u⊤M2u

(u⊤Mu)2
=

d
dφ (φNG(φ))

NG(φ)2

=
∑

n
i=1

(u⊤vi)
2

(1−φλi)2

(

∑
n
i=1

(u⊤vi)2

1−φλi

)2

≤
1

1−φλ1
∑

n
i=1

(u⊤vi)
2

1−φλi
(

∑
n
i=1

(u⊤vi)2

1−φλi

)2

=
1

(1 − φλ1)NG(φ)

≤ 1

n(1 − φλ1)
,

where we have used the fact that NG(φ) ≥ NG(0) = N0 = n. Hence, we obtain an upper

bound on welfare in the efficient graph G∗ for large n given by

W(G∗) ≤ 2 − ρ

2

µ2

ρ2

(
1

n(1 − φλ1)
+

ρ

2 − ρ

)

.

Using the upper bound λ1 ≤ max{
√

2m(n − 1)/n, ∆}, where ∆ ≡ max{i=1,...,n} di, we get

W(G∗) ≤ 2 − ρ

2

µ2

ρ2

(

ρ

2 − ρ
+

1

n(1 − φ(max{
√

2m(n − 1)/n, ∆}))

)

.

This allows us to state an upper and lower bound (from the explicit solution for welfare in the

complete graph Kn) for the efficient graph G∗ = argmaxG∈H(n,m) W(G).

In the following let us denote by W the upper bound on welfare in part (iii) of the proposi-

tion. Then, for part (iv) of the proposition, note that in the limit of large n the upper bound W

converges to

lim
n→∞

W =
ρµ2

2ρ2
,

43Let x ≡ Mu, then we can write

u⊤M2u

(u⊤Mu)2
=

‖x‖2
2

‖x‖2
1

=
∑

n
i=1 x2

i

(∑n
i=1 |xi|)2

= π(x)−1,

which is the inverse of the participation ratio π(x). The participation ratio π(x) measures the number of elements of
x which are dominant. We have that 1 ≤ π(x) ≤ n, where a value of π(x) = n corresponds to a fully homogenous
case, while π(x) = 1 corresponds to a fully concentrated case (note that, if all xi are identical then π(x) = n, while
if one xi is much larger than all others we have π(x) = 1). Moreover, π(x) is scale invariant, that is, π(ϕx) = π(x)
for any ϕ ∈ R+.
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while for the complete graph we get

lim
n→∞

W(Kn) =
µ2

2

ρ

(ϕ − ρ)2
.

Hence, we have that

lim
n→∞

W(Kn)

W
=

ρ2

(ϕ − ρ)2
.

Hence, we get

lim
ϕ→0

lim
n→∞

W(Kn)

W
= 1,

which proves part (iv) of the proposition.

Proof of Proposition 5. (i) In the case of independent markets (ρ = 0), the welfare can be

written as

W(G) = q⊤q = µ⊤M(G, φ)2µ,

where M(G, φ) = (In − φA)−1. Using the fact that (see the proof of Proposition 2):

µ⊤M(G, φ)2µ =
d

dφ
(φNG(φ)) = µ⊤ d

dφ
(φM(G, φ))µ,

welfare can be written as

W(G) = µ⊤ d

dφ
(φM(G, φ))µ,

we can write the change in welfare due to the exit of firm i as follows

W(G)−W(G−i, φ) =
(

µ⊤M(G, φ)2µ−µ⊤M(G−i, φ)2µ
)

=

(
d

dφ
φ
(

µ⊤M(G, φ)µ− µ⊤M(G−i, φ)µ
))

.

Denoting by

∆i(G, φ) ≡ µ⊤M(G, φ)µ−µ⊤M(G−i, φ)µ,

we can write the change in welfare as follows

W(G)− W(G−i, φ) =

(
d

dφ
φ (∆i(G, φ))

)

.

We next turn to the analysis of the quantity ∆i(G, φ). We first make the following obser-

vation (see Lemma 1 in Ballester et al. [2006])

mjk(G
−i, φ) = mjk(G, φ)− mij(G, φ)mik(G, φ)

mii(G, φ)
.
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We then can write

µ⊤M(G−i, φ)µ = ∑
j,k

µjmjk(G
−i, φ)µk

= µ⊤M(G, φ)µ− ∑j,k µjmij(G, φ)mik(G, φ)µk

mii(G, φ)

= µ⊤M(G, φ)µ− bµ,i(G, φ)2

mii(G, φ)
,

and we obtain

∆i(G, φ) =
bµ,i(G, φ)2

mii(G, φ)
.

We then define the centrality measure

ci ≡
1

2

d

dφ
(φ∆i(G, φ)) =

1

2

d

dφ

(
φbµ,i(G, φ)2

mii(G, φ)

)

. (49)

The centrality ci corresponds to the welfare loss incurred from to the removal of firm i.

Observe that

mii(G, φ) = NG(φ, i) ≡
∞

∑
k=0

a
[k]
ii φk,

is the generating function of the number of closed walks that start and terminate at node

i. It can be written as [Van Mieghem, 2011]

NG(φ, i) =
n

∑
k=1

(vkv⊤
k )ii

1 − λkφ
= −

cA−i

(
1
φ

)

φcA

(
1
φ

) ,

where cA(φ) ≡ det (A − φIn) is the characteristic polynomial of the matrix A, and A−i is

the matrix obtained from A by removing the i-th column and row. We can then write the

centrality index as follows.

ci =
1

2

d

dφ

(
φbµ,i(G, φ)2

NG(φ, i)

)

. (50)

This shows that the centrality index c(G, φ) is determined by the Bonacich centrality
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bi(G, φ) of firm i and the walk generating function NG(φ, i). Further note that44

d

dφ

(
φbµ,i(G, φ)2

NG(φ, i)

)

=
bµ,i(G, φ)2

NG(φ, i)
+

φbµ,i(G, φ)

NG(φ, i)
[2(M(G, φ)Abµ(G, φ))i

−bµ,i(G, φ)

NG(φ, i)
(M(G, φ)AM(G, φ))ii

]

=
bµ,i(G, φ)

NG(φ, i)

[

2(M(G, φ)bµ(G, φ))i −
bµ,i(G, φ)

NG(φ, i)
(M(G, φ)2)ii

]

= µ⊤M(G, φ)µ−µ⊤M(G−i, φ)µ

= ∆i(G, φ). (51)

We then can write the centrality as follows

ci =
bµ,i(G, φ)

NG(φ, i)

[

(M(G, φ)bµ(G, φ))i −
1

2

bµ,i(G, φ)

NG(φ, i)
(M(G, φ)2)ii

]

.

(ii) Welfare for ρ > 0 is given by

W(G) =
1

2

n

∑
i=1

q2
i +

ρ

2

n

∑
i=1

n

∑
j=1

bijqiqj +
n

∑
i=1

πi.

Using the fact that πi =
1
2 q2

i , we obtain for welfare

W(G) =
n

∑
i=1

q2
i +

ρ

2

n

∑
i=1

n

∑
j=1

bijqiqj.

In vector-matrix notation this can be written as

W(G) = q⊤(G)q(G) +
ρ

2
q⊤(G)Bq(G).

We denote by G−i the network obtained from G by removing firm i. Applying Lemma 1

in Ballester et al. [2006] to the weighted symmetric matrix M(G, ρ, ϕ), we get

mjk(G
−i, ρ, ϕ) = mjk(G, ρ, ϕ)− mij(G, ρ, ϕ)mik(G, ρ, ϕ)

mii(G, ρ, ϕ)

For equilibrium output we have that q = bµ = Mµ, so that we obtain for the output of

44We have used the fact that
dM(G,φ)

dφ = M(G, φ)AM(G, φ), which follows from dX−1

dφ = −X−1 dX
dφ X−1 for any

invertible matrix X.
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firm j after the removal of firm i

qj(G
−i) =

n−1

∑
l=1

mjl(G
−i)µ−i

l (G)

=
n−1

∑
l=1

(

mjl(G)− mij(G)mil(G)

mii(G)

)

µ−i
l (G)

=
n

∑
l=1

mjl(G)µl −
mij(G)

mii(G)

n

∑
l=1

mil(G)µl

= (M(G)µ)j −
mij(G)bµ,i(G)

mii(G)
.

Moreover, we have that

n−1

∑
j=1

qj(G
−i) = u⊤M(G)µ(G)− bu,i(G)bµ,i(G)

mii(G)

We then have that

q(G−i)⊤B−iq(G−i) =
n

∑
j,k=1

qj(G
−i)b−i

jk qk(G
−i)

=
n

∑
j,k 6=i

bjk

(

qj(G)− mij(G)qi(G)

mii(G)

)(

qk(G)− mik(G)qi(G)

mii(G)

)

=
n

∑
j,k 6=i

bjkqj(G)qk(G)− bµ,i(G)

mii(G)

n

∑
j,k 6=i

bjk(qj(G)mik(G) + qk(G)mij(G))

+
bµ,i(G)2

mii(G)2

n

∑
j,k 6=i

bjkmij(G)mik(G).

This can be simplified to

q(G−i)⊤B−iq(G−i) = q(G)⊤Bq(G)− qi(G)

mii(G)

(

2(M(G)Bq(G))i −
qi(G)

mii(G)
(M(G)BM(G))ii

)

In the special case of B = In this is

q(G−i)⊤q(G−i) = q(G)⊤q(G)− qi(G)

mii(G)

(

2(M(G)q(G))i −
qi(G)

mii(G)
(M(G)2)ii

)

.

We then obtain

W(G)− W(G−i) = (q⊤(G)q(G)− q⊤(G−i)q(G−i)) +
ρ

2
(q⊤(G)Bq(G)− q⊤(G−i)Bq(G−i))

=
qi(G)

mii(G)

(

(M(G)(2In + ρB)q(G))i −
1

2

qi(G)

mii(G)
(M(G)(2In + ρB)M(G))ii

)

=
bµ,i(G)

mii(G)

(

(M(G)(2In + ρB)bµ(G))i −
1

2

bµ,i(G)

mii(G)
(M(G)(2In + ρB)M(G))ii

)

.
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Proof of Proposition 6. (i) The FOC of profits in Equation (17) with respect to effort is

∂πi

∂ei
= qi − ei + s = 0,

so that equilibrium effort is

ei = qi + s.

The FOC with respect to output is given by

∂πi

∂qi
= (ᾱ − c̄i)− 2qi − ρ ∑

j 6=i

bijqj + ei + ϕ
n

∑
j=1

aijej = 0.

Inserting equilibrium efforts, rearranging terms and introducing the reduced from vari-

ables of Equation (??) gives

qi = µi − ρ ∑
j 6=i

bijqj + ϕ
n

∑
j=1

aijqj + s + ϕdis.

where di = ∑
n
j=1 aij is the degree (or total number of links) of firm i. In vector-matrix

notation this is

(In + ρB − ϕA)q = µ+ su + ϕsAu.

We then can write equilibrium quantities as follows

q = q̄ + sr,

where we have denoted by

q̄ ≡ (In + ρB − ϕA)−1µ = Mµ

r ≡ ϕ(In + ρB − ϕA)−1

(
1

ϕ
In + A

)

u = Mu + ϕMd,

where M = (In + ρB − ϕA)−1. The vector q̄ gives equilibrium quantities in the absence

of the subsidy and is derived in Section 3. The vector r has elements ri for i = 1, . . . , n.

Furthermore, equilibrium profits are given by

πi =
1

2
q2

i +
1

2
s2,

(ii) Net social welfare is given by

W(G, s) = W(G, s)− s
n

∑
i=1

ei =
n

∑
i=1

(
q2

i + πi − sei

)
=

n

∑
i=1

q2
i − s

n

∑
i=1

qi −
n

2
s2.
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Using the fact that qi = q̄i + sri, where

q̄ = (In − ϕA)−1µ = Mµ

r = ϕ(In − ϕA)−1

(
1

ϕ
In + A

)

u = µ+ ϕd,

we can write net welfare as follows

W(G, s) =
n

∑
i=1

(q̄i + ris)
2 −

n

∑
i=1

(q̄i + ris)−
n

2
s2.

The FOC of net welfare W(G, s) is given by

∂W(G, s)

∂s
= 2

n

∑
i=1

q̄i (2ri − 1) + s
n

∑
i=1

(
2r2

i − 2ri − 1
)
= 0,

from which we obtain the optimal subsidy level

s∗ =
∑

n
i=1 q̄i (1 − 2ri)

∑
n
i=1 (ri (2ri − 2)− 1)

,

where the equilibrium quantities are given by Equation (18). For the second-order deriva-

tive we obtain
∂2W(G, s)

∂s2
= −

n

∑
i=1

(
−2r2

i + 2ri + 1
)

,

and we have an interior solution if the condition ∑
n
i=1

(
−2r2

i + 2ri + 1
)
≥ 0 is satisfied.

(iii) Net welfare can be written as

W(G, s) =
1

2

n

∑
i=1

q2
i +

ρ

2

n

∑
i=1

n

∑
j 6=i

bijqiqj +
n

∑
i=1

πi − s
n

∑
i=1

ei

=
n

∑
i=1

q2
i +

n

2
s2 +

ρ

2

n

∑
i=1

n

∑
j 6=i

bijqiqj −
n

∑
i=1

(qi + s)s.

Using the fact that qi = q̄i + sri, where

q̄ ≡ (In + ρB − ϕA)−1µ

r ≡ ϕ(In + ρB − ϕA)−1

(
1

ϕ
In + A

)

u,

we can write net welfare as follows

W(G, s) =
n

∑
i=1

(q̄i + ris)
2 − ns2 +

ρ

2

n

∑
i=1

n

∑
j 6=i

bij(q̄i + sri)(q̄j + srj)−
n

∑
i=1

(q̄is + ris
2).
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Figure E.1: The concave welfare function W̄(G, s) for different years and different subsidy
levels s. The location of the maximum s∗ for each year is indicated with a vertical line.

The FOC of net welfare W(G, s) is given by

∂W(G, s)

∂s
=

n

∑
i=1

(

2q̄iri − q̄i +
ρ

2
bij(q̄irj + q̄jri)

)

+ s
n

∑
i=1

(

2r2
i − 2ri − 1 + ρ

n

∑
j=1

bijrirj

)

= 0,

from which we obtain the optimal subsidy level

s∗ =
∑

n
i=1

(

q̄i(2ri + 1) + ρ
2 ∑

n
j=1 bij(q̄irj + q̄jri)

)

∑
n
i=1

(

1 + ri

(

2 − 2ri − ρ ∑
n
j=1 bijrj

)) ,

where the equilibrium quantities are given by Equation (18). The second-order derivative

is given by

∂2W(G, s)

∂s2
= −

n

∑
i=1

(

−2r2
i + 2ri + 1 − ρ

n

∑
j=1

bijrirj.

)

.

Hence, the solution is interior if ∑
n
i=1

(

−2r2
i + 2ri + 1 − ρ ∑

n
j=1 bijrirj

)

≥ 0.

The concave welfare function W̄(G, s) for different years and different subsidy levels s is

shown in Figure E.1. The location of the maximum s∗ for each year is indicated with a vertical

line.

Proof of Proposition 7. (i) The FOC of profits from Equation (20) with respect to effort is

∂πi

∂ei
= qi − ei + si = 0,
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so that equilibrium effort is

ei = qi + si.

The FOC with respect to output is given by

∂πi

∂qi
= (ᾱ − c̄i)− 2qi − ρ ∑

j 6=i

bijqj + ei + ϕ
n

∑
j=1

aijej = 0.

Inserting equilibrium efforts together with the reduced from variables of Equation (??)

and rearranging terms gives

qi = µi − ρ ∑
j 6=i

bijqj + ϕ
n

∑
j=1

aijqj + si + ϕ
n

∑
j=1

aijsj.

In vector-matrix notation this is

(In + ρB − ϕA)q = µ+ s + ϕAs.

We then can write equilibrium quantities as follows

q = q̄ + Rs,

where we have denoted by

q̄ ≡ (In + ρB − ϕA)−1µ = Mµ

R ≡ ϕ(In + ρB − ϕA)−1

(
1

ϕ
In + A

)

= M + ϕMA,

with M = (In + ρB− ϕA)−1. The matrix R has elements rij for 1 ≤ i, j ≤ n. Furthermore,

one can show that equilibrium profits are given by

πi =
1

2
q2

i +
1

2
s2

i .

(ii) Net welfare can be written as follows

W(G, s) =
n

∑
i=1

(
q2

i

2
+ πi − siei

)

=
n

∑
i=1

q2
i −

n

∑
i=1

qisi −
1

2

n

∑
i=1

s2
i .

Using the fact that qi = q̄i + rijsj, with

q̄ = (In − ϕA)−1µ = Mµ

R = ϕ(In − ϕA)−1

(
1

ϕ
In + A

)

= µ+ ϕd,
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where R is symmetric, i.e. rij = rji, we can write net welfare as follows

W(G, s) =
n

∑
i=1

q̄2
i −

n

∑
i=1

q̄isi −
1

2

n

∑
i=1

s2
i +

n

∑
i=1

(
n

∑
j=1

rijsj

)(

2q̄i +
n

∑
j=1

rijsj − si

)

.

The FOC for net welfare W(G, s) yields the following system of linear equations

∂W(G, s)

∂si
= −q̄i − si +

n

∑
k=1

rki

(

2q̄k +
n

∑
j=1

rkjsj − sk

)

+
n

∑
k=1

(
n

∑
j=1

rkjsj

)(
1

2
rki − δki

)

= 0.

In vector-matrix notation this can be written as

(In + 2R − 2R2)s = (2R − In)q̄.

When the conditions for invertibility are satisfied, it then follows that the optimal subsidy

levels can be written as

s∗ = (In + 2R − 2R2)−1(2R − In)q̄,

with q̄ = (In − ϕA)−1µ = bµ. The second-order derivative is given by

∂2W(G, s)

∂si∂sj
= −δij − 2rij + 2

n

∑
k=1

rkirkj.

In vector-matrix notation this can be written as

∂2W(G, s)

∂s∂s⊤
= −In + 2R − 2R2.

Hence, we obtain a global maximum for the concave quadratic optimization problem if

the matrix In + 2R − 2R2 = In − 2R2 + 2R is positive definite, which means that it is also

invertible and its inverse is also positive definite.

(iii) In the case of interdependent markets, when goods are substitutable, net welfare can be

written as

W(G, s) =
1

2

(
n

∑
i=1

q2
i + ρ

n

∑
i=1

n

∑
j 6=i

bijqiqj

)

+
n

∑
i=1

πi −
n

∑
i=1

siei

=
n

∑
i=1

q2
i −

n

∑
i=1

qisi − 2
n

∑
i=1

s2
i +

ρ

2

n

∑
i=1

n

∑
j 6=i

bijqiqj.
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Using the fact that qi = q̄i + rijsj, with

q̄ ≡ (In + ρB − ϕA)−1µ

R ≡ ϕ(In + ρB − ϕA)−1

(
1

ϕ
In + A

)

,

where R is in general not symmetric, unless AB = BA,45 we can write net welfare as

follows

W(G, s) =
n

∑
i=1

(

q̄i +
n

∑
j=1

rijsj

)2

−
n

∑
i=1

(

q̄i +
n

∑
j=1

rijsj

)

si −
1

2

n

∑
i=1

s2
i

+
ρ

2

n

∑
i=1

n

∑
j=1

bij

(

q̄i +
n

∑
k=1

riksk

)(

q̄j +
n

∑
l=1

rjlsl

)

.

The FOC is given by

∂W(G, s)

∂si
= −q̄i + 2

n

∑
k=1

rki q̄k − si − 2
n

∑
k=1

rkisk + 2
n

∑
k=1

n

∑
j=1

rkirkjsj

+
ρ

2

n

∑
l=1

n

∑
j=1

bliq̄lrji +
ρ

2

n

∑
l=1

n

∑
j=1

blj q̄jrli +
ρ

2

n

∑
l=1

n

∑
j=1

blj

(

rli

n

∑
k=1

rjksk + rji

n

∑
k=1

rlksk

)

= 0.

In vector-matrix notation this can be written as follows

∂W(G, s)

∂s
= −q̄ + q̄⊤(2R + ρBR)− s − 2R⊤

(

In −
1

2
(2In + ρB)R

)

s

When the matrix In − 2R⊤ ( 1
2(2In + ρB

)
R − In) is invertible, the optimal subsidy levels

can then be written as

s∗ =
(

In − 2R⊤
(

1

2
(2In + ρB

)

R − In)

)−1 (

R⊤(2In + ρB)− In

)

q̄,

where the equilibrium quantities in the absence of the subsidy are given by

q̄ = (In + ρB − ϕA)−1µ.

The second-order derivative is given by

∂2W(G, s)

∂s∂s⊤
= −In + 2R⊤(In −

1

2
(2In + ρB)R).

45While the inverse of a symmetric matrix is symmetric, the product of symmetric matrices is not necessarily
symmetric.
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Hence, we obtain a global maximum for the concave quadratic optimization problem if

the matrix In + 2R⊤(In − 1
2(2In + ρB)R) is positive definite. Note that if this matrix is

positive definite then it is also invertible and its inverse is also positive definite.

Proof of Proposition 8. In terms of the walk generating function welfare can be written as

W(G) =
2 − ρ

2

µ2

ρ2

NG(φ)
2

(
1−ρ

ρ + NG(φ)
)2

(

ρ

2 − ρ
+

d
dφ (φNG(φ))

NG(φ)2

)

=
2 − ρ

2

µ2

ρ2

(1 − φλ1)
2NG(φ)

2

(
1−ρ

ρ (1 − φλ1) + (1 − φλ1)NG(φ)
)2

(

ρ

2 − ρ
+

(1 − φλ1)
2 d

dφ (φNG(φ))

(1 − φλ1)2NG(φ)2

)

.

Then the following limits for the walk generating function hold

lim
φ↑1/λ1

(1 − φλ1)NG(φ) = lim
φ↑1/λ1

(1 − φλ1)
n

∑
i=1

(u⊤vi)
2

1 − φλi
= (u⊤v1)

2

lim
φ↑1/λ1

(1 − φλ1)
2NG(φ)

2 = lim
φ↑1/λ1

(1 − φλ1)
2

(
n

∑
i=1

(u⊤vi)
4

(1 − φλi)2
+

n

∑
i=1

n

∑
j 6=i

(u⊤vi)
2(u⊤vj)

2

(1 − φλi)(1 − φλj)

)

= (u⊤v1)
4

lim
φ↑1/λ1

(1 − φλ1)
2 d

dφ
(φNG(φ)) = lim

φ↑1/λ1

(1 − φλ1)
2

n

∑
i=1

(u⊤vi)
2

(1 − φλi)2
= (u⊤v1)

2.

In the limit of φ ↑ λ1 we then get for welfare

lim
φ↑1/λ1

W(G) =
2 − ρ

2

µ2

ρ2

(u⊤v1)
4

(u⊤v1)4

(
ρ

2 − ρ
+

(u⊤v1)
2

(u⊤v1)4

)

=
2 − ρ

2

µ2

ρ2

(
ρ

2 − ρ
+

1

(u⊤v1)2

)

.

This expression is increasing with decreasing values of (u⊤v1)
2 = ‖v1‖2

1. We thus find that

the welfare maximizing graph G∗ is the one that minimizes the ℓ1-norm ‖v1‖1 of the principal

eigenvector v1 associated with the largest eigenvalue λ1.
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