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Abstract

Markowitz (1952) portfolio selection requires estimates of (i) the vector of expected

returns and (ii) the covariance matrix of returns. Many proposals to address the first

question exist already. This paper addresses the second question. We promote a new

nonlinear shrinkage estimator of the covariance matrix that is more flexible than previous

linear shrinkage estimators and has ‘just the right number’ of free parameters (that is, the

Goldilocks principle). In a stylized setting, the nonlinear shrinkage estimator is asymp-

totically optimal for portfolio selection. In addition to theoretical analysis, we establish

superior real-life performance of our new estimator using backtest exercises.

KEY WORDS: Large-dimensional asymptotics, Markowitz portfolio selection,

nonlinear shrinkage.

JEL CLASSIFICATION NOS: C13, G11.
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1 Introduction

Markowitz (1952) portfolio selection requires estimates of (i) the vector of expected returns

and (ii) the covariance matrix of returns. Green et al. (2013) list over 300 papers that have

been written on the first question, so it is fair to say we have a useful collection of explanatory

signals by now. By comparison, much less has been written about the covariance matrix.

The one thing we do know is that the textbook estimator, the sample covariance matrix,

is inappropriate. This is a simple degrees-of-freedom argument. The number of degrees of

freedom in the sample covariance matrix is of order N2, where N is the number of investable

assets. In finance, the sample size is typically of the same order of magnitude as N .1 Then the

number of points in the historical data base is also of order N2. We cannot possibly estimate

O(N2) free parameters from a data set of order N2. The number of degrees of freedom has

to be an order of magnitude smaller than N2, or else portfolio selection inevitably turns into

what Michaud (1989) calls “error maximization”.

Recent proposals by Ledoit and Wolf (2003, 2004a,b), Kan and Zhou (2007), Brandt et al.

(2009), DeMiguel et al. (2009a, 2013), Frahm and Memmel (2010), and Tu and Zhou (2011),

among others, show that this topic is currently gathering a significant amount of attention.

All these articles resolve the problem by going from O(N2) degrees of freedom to O(1). They

look for estimators of the covariance matrix, its inverse, or the portfolio weights that are

optimal in a space of dimension one, two, or three. For example, the linear shrinkage approach

of Ledoit and Wolf (2004b) finds a covariance matrix estimator that is optimal in the two-

dimensional space spanned by the identity matrix and the sample covariance matrix. Given

a data set of size O(N2), estimating O(1) parameters is easy. The point of the present paper

is that we can push this frontier. From a data set of size O(N2), we should be able, using

sufficiently advanced technology, to estimate O(N) free parameters consistently instead of

merely O(1). The sample covariance matrix with its O(N2) degrees of freedom is too loose,

but the existing literature with only O(1) degrees of freedom is too tight. O(N) degrees of

freedom is ‘just right’ for a data set of size O(N2): it is the Goldilocks order of magnitude.2

Our proposed solution can be divided into three steps.

The first step is to formulate a loss function that captures the out-of-sample variance of a

mean-variance efficient portfolio. We use a stylized version of the Markowitz (1952) problem

that abstracts from leverage constraints and short-sales constraints in order to focus on the core

of the matter: how to minimize portfolio variance under the constraint that expected return

meet a desired target. But the practical applications are more general than the stylized setting

used for mathematical analysis. For example, the empirical results presented in Section 5

incorporate leverage constraints and still get favorable results.

The second step is to characterize the behavior of this loss function asymptotically as the

1Sometimes it can even be smaller: think of ten years of monthly observations on the constituents of the

S&P 500. But let us just say it is of the same magnitude.
2The Goldilocks principle refers to the classic fairy tale The Three Bears, where young Goldilocks finds a

bed that is neither too soft nor too hard but ‘just right’. In Economics, this term describes a monetary policy

that is neither too easy nor too tight but ‘just right’.
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number of assets, N , and the sample size, T , go to infinity together, with their ratio, called

the concentration, converging to a finite, nonzero limit. This framework is known as large-

dimensional asymptotics. It is appropriate when the dimension of the investable universe is

not negligible compared to the sample size. Letting the number of assets go to infinity is not

new in finance, as it is an integral part of the Arbitrage Pricing Theory (APT) developed

by Ross (1976). Characterizing the limit of the portfolio selection loss function requires a

minimum of knowledge about the vector of expected returns. Since there are so many different

signals explaining the cross-section, we adopt the most neutral stance possible in order to

ensure a well-rounded performance.

The third step is to find a covariance matrix estimator that asymptotically minimizes

the loss function within a certain class of dimension O(N). In keeping with much of the

multivariate statistics literature, we use the class of rotation-equivariant estimators introduced

by Stein (1975, 1986). Rotation equivariance means that rotating the original set of variables

makes the estimator rotate the same way. This is appropriate in the general case where we have

no a priori information about the orientation of the eigenvectors of the population covariance

matrix. In practice, this entails keeping the same eigenvectors as the sample covariance matrix,

while modifying (also called shrinking) the sample eigenvalues nonlinearly in a completely free

manner. As there are N eigenvalues, this class is of dimension N . Our contribution is the

optimal such rotation-equivariant covariance matrix estimator for portfolio selection in large

dimensions.

This new estimator fares well on historical stock returns data. For example, for a universe

comparable to the S&P 500, our global minimum variance portfolio has an almost 50% lower

out-of-sample volatility than the 1/N portfolio promoted by DeMiguel et al. (2009b). Due to

the highly nonlinear nature of the optimal shrinkage formula derived in this paper, we improve

over the linear shrinkage estimator of Ledoit and Wolf (2004b) across the board. Having O(N)

free parameters chosen optimally and estimated consistently confers a decisive advantage over

having only O(1) free parameters, given that N is large and potentially unbounded. We

also demonstrate superior out-of-sample performance for portfolio strategies that target a

certain exposure to an exogenously specified vector of expected returns. Beyond finance, the

portfolio selection method introduced in this paper represents a contribution to the widely-used

technique of beamforming in signal processing (Du et al., 2010) and to optimal fingerprinting

in global warming research (Ribes et al., 2009), as the underlying mathematics are exactly

identical.

The remainder of the paper is organized as follows. Section 2 derives the loss function

tailored to portfolio selection. Section 3 finds the limit of this loss function under large-

dimensional asymptotics. Section 4 finds a covariance matrix estimator that is asymptotically

optimal with respect to the loss function defined in Section 2. Section 5 presents empirical find-

ings supporting the usefulness of the proposed estimator. Section 6 concludes. The Appendix

contains all figures, tables, and mathematical proofs, as well as an extension of the method to

the case where the number of assets is larger than sample size.
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2 Loss Function for Portfolio Selection

The number of assets in the investable universe is denoted by N . Let m denote an N ×1 cross-

sectional signal or combination of signals that proxies for the vector of expected returns. It can

be drawn from the four categories delineated in the wide-ranging survey by Subrahmanyam

(2010):

1. informal Wall Street wisdom (such as “value-investing”),

2. theoretical motivation based on risk-return model variants,

3. behavioral biases or misreaction by cognitively challenged investors, and

4. frictions such as illiquidity or arbitrage constraints.

The author documents at least 50 variables that fall in these categories. McLean and Pontiff

(2013) bring the tally up to 82 variables, and Green et al. (2013) to 333 variables. Further

overviews are provided by Ilmanen (2011) and Harvey et al. (2013).

In the empirical application of Section 5, we derive m from the momentum factor of

Jegadeesh and Titman (1993) for simplicity and reproducibility, but more sophisticated con-

structs are clearly possible. All m needs to have is some power to explain the cross-section of

expected asset returns.

The goal of researchers and investors alike is to put together a portfolio strategy that loads

on the vector m, however decided upon. Let Σ denote the N × N population covariance

matrix of asset returns; note that Σ is unobservable. Portfolio selection seeks to maximize the

reward-to-risk ratio:

max
w

w′m√
w′Σw

, (2.1)

where w denotes an N × 1 vector of portfolio weights. This optimization problem abstracts

from leverage and short-sales constraints in order to focus on the core of Markowitz (1952)

portfolio selection: the trade-off between reward and risk. A vector w is a solution to (2.1)

if and only if there exists a strictly positive scalar a such that

w = a× Σ−1m . (2.2)

This claim can be easily seen from the first-order condition of (2.1). The scale of the vector

of portfolio weights can be set by targeting a certain level of expected returns, say b, in which

case we get

w =
b

m′Σ−1m
× Σ−1m . (2.3)

Note that expression (2.3) is not scale-invariant with respect to b and m: if we double b, the

portfolio weights double; and if we replace m by 2m, the portfolio weights are halved. Scale

dependence can be eliminated simply by setting b ..=
√
m′m, which yields the scale-free solution

w =

√
m′m

m′Σ−1m
× Σ−1m . (2.4)
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In practice, the covariance matrix Σ is not known and needs to be estimated from historical

data. Let S̃ denote a generic (invertible) estimator of the covariance matrix. The plug-in

estimator of the optimal portfolio weights is

w̃ ..=

√
m′m

m′S̃−1m
× S̃−1m . (2.5)

All investing takes place out of sample by necessity. Since the population covariance matrix Σ

is unknown and the covariance matrix estimator S̃ is not equal to it, out-of-sample performance

is different from in-sample performance. We want the portfolio with the best possible behavior

out of sample. This is why we define the loss function for portfolio selection as the out-of-sample

variance of portfolio returns conditional on S̃ and m:

L

(
S̃,Σ,m

)
..= w̃′Σw̃ = m′m× m′S̃−1ΣS̃−1m

(
m′S̃−1m

)2 . (2.6)

3 Large-Dimensional Asymptotic Limit of the Loss Function

The basic description of the large-dimensional asymptotic framework is standard and is similar

to the one provided by Ledoit and Wolf (2013a). Some of the assumptions made in Section 2

are restated more formally below for the sake of completeness.

Assumption 3.1 (Dimensionality). Let T denote the sample size and N .

.= N(T ) the number

of variables. It is assumed that the ratio N/T converges, as T → ∞, to a limit c ∈ (0, 1) called

the concentration. Furthermore, there exists a compact interval included in (0, 1) that contains

N/T for all T large enough.

Quantities introduced in Section 2 will henceforth be indexed by the subscript T so that

we can study their asymptotic behavior. The assumption c < 1 is for ease of exposition only.

Unlike the proposals by Kan and Zhou (2007), Frahm and Memmel (2010) and Tu and Zhou

(2011), our method also handles the case c > 1, where the sample covariance matrix is not

invertible. This extension is presented in Appendix D.

Assumption 3.2 (Population Covariance Matrix). The population covariance matrix ΣT is a

nonrandom symmetric positive-definite matrix of dimension N . Let τ T
.

.= (τT,1, . . . , τT,N )′ de-

note a system of eigenvalues of ΣT sorted in increasing order. The empirical distribution func-

tion (e.d.f.) of the population eigenvalues is defined as: ∀x ∈ R, HT (x) .

.= N−1
∑N

i=1 1[τT,i,∞)(x),

where 1 denotes the indicator function of a set. It is assumed that HT converges weakly to a

limit law H, called the limiting spectral distribution (function). Supp(H), the support of H,

is the union of a finite number of closed intervals, bounded away from zero and infinity. Fur-

thermore, there exists a compact interval [h, h] ⊂ (0,∞) that contains Supp(HT ) for all T large

enough.

The existence of a limiting population spectral distribution is a usual assumption in the

literature on large-dimensional asymptotics.
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Assumption 3.3 (Data Generating Process). XT is a T ×N matrix of i.i.d. random variables

with mean zero, variance one, and finite 12th moment. The matrix of observations is YT .

.=

XT ×
√
ΣT , where

√
ΣT denotes the symmetric positive-definite square root of ΣT . Neither√

ΣT nor XT are observed on their own: only YT is observed.

If asset returns have nonzero means, as is usually the case, then it is possible to re-

move the sample means, and our results still go through because it only constitutes a rank-

one perturbation for the large-dimensional matrices involved, as shown in Theorem 11.43 of

Bai and Silverstein (2010). While the bound on the 12th moment simplifies the mathematical

proofs, Monte Carlo simulations reported in Table 2 of Ledoit and Wolf (2013b) suggest that

it is not needed in practice and can be replaced by a bound on the second moment.

The sample covariance matrix is defined as ST
..= T−1Y ′

TYT = T−1
√
ΣTX

′

TXT

√
ΣT . It

admits a spectral decomposition ST = UTΛTU
′

T , where ΛT is a diagonal matrix, and UT is

an orthogonal matrix: UTU
′

T = U ′

TUT = IT , where IT (in slight abuse of notation) denotes

the identity matrix of dimension N × N . Let ΛT
..= Diag(λT ) where λT

..= (λT,1, . . . , λT,N )′.

We can assume without loss of generality that the sample eigenvalues are sorted in increasing

order: λT,1 ≤ λT,2 ≤ · · · ≤ λT,N . Correspondingly, the ith sample eigenvector is uT,i, the

ith column vector of UT . The e.d.f. of the sample eigenvalues is given by: ∀x ∈ R, FT (x) ..=

N−1
∑N

i=1 1[λT,i,∞)(x).

The literature on sample covariance matrix eigenvalues under large-dimensional asymp-

totics is based on a foundational result due to Marčenko and Pastur (1967). It has been

strengthened and broadened by subsequent authors reviewed in the comprehensive and au-

thoritative monograph by Bai and Silverstein (2010). Under Assumptions 3.1–3.3, there exists

a continuously differentiable limiting sample spectral distribution F such that

∀x ∈ R FT (x)
a.s.−→ F (x). (3.1)

In addition, the existing literature has unearthed important information about the limit-

ing spectral distribution F , including an equation that relates F to H and c. This means

that, asymptotically, one knows the average number of sample eigenvalues that fall in any

given interval. Another useful result concerns the support of the distribution of the sam-

ple eigenvalues. Theorem 6.3 of Bai and Silverstein (2010) and Assumptions 3.1–3.3 imply

that the support of F , Supp(F ), is the union of a finite number κ ≥ 1 of compact intervals:

Supp(F ) =
⋃κ

k=1[ak, bk], where 0 < a1 < b1 < · · · < aκ < bκ < ∞.

Assumption 3.4 (Class of Estimators). We consider positive-definite covariance matrix esti-

mators of the type S̃T
.

.= UT D̃TU
′

T , where D̃T is a diagonal matrix: D̃T
.

.= Diag
(
d̃T (λT,1) . . . ,

d̃T (λT,N )
)
, and d̃T is a real univariate function which can depend on ST . We assume that there

exists a nonrandom real univariate function d̃ defined on Supp(F ) and continuously differen-

tiable such that d̃T (x)
a.s−→ d̃(x), for all x ∈ Supp(F ). Furthermore, this convergence is uniform

over x ∈ ⋃κ
k=1[ak + η, bk − η], for any small η > 0. Finally, for any small η > 0, there exists

a finite nonrandom constant K̃ such that almost surely, over the set x ∈ ⋃κ
k=1[ak − η, bk + η],

d̃T (x) is uniformly bounded by K̃ from above and by 1/K̃ from below, for all T large enough.
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This is the class of rotation-equivariant estimators introduced by Stein (1975, 1986): rotat-

ing the original variables results in the same rotation being applied to the covariance matrix

estimator. Rotation equivariance is appropriate in the general case where the statistician has

no a priori information about the orientation of the eigenvectors of the covariance matrix.

Remark 3.1. The linear shrinkage estimator of Ledoit and Wolf (2004b) also belongs to this

class of rotation-equivariant estimators, with the shrinkage function given by

d̃T (λT,i) ..= (1− k̂) · λT,i + k̂ · λ̄T where λ̄T
..=

1

N

N∑

j=1

λT,j . (3.2)

Here, the shrinkage intensity k̂ ∈ [0, 1] is determined in an asymptotically optimal fashion; see

Ledoit and Wolf (2004b, Section 3.3).

We call d̃T the shrinkage function because, in all applications of interest, its effect is to

shrink the set of sample eigenvalues by reducing its dispersion around the mean, pushing

up the small ones and pulling down the large ones. Shrinkage functions need to be as well

behaved asymptotically as spectral distribution functions, except possibly on a finite number of

arbitrarily small regions near the boundary of the support. The large-dimensional asymptotic

properties of a generic rotation-equivariant estimator S̃T are fully characterized by its limiting

shrinkage function d̃.

Estimators in the class defined by Assumption 3.4 are evaluated according to the limit as

T and N go to infinity together of the loss function defined in equation (2.6). For this limit to

exist, some assumption on the return predictive signal is required.3 The assumption that we

make below is coherent with the rotation-equivariant framework that we have built so far.

Assumption 3.5 (Return Predictive Signal). mT is distributed independently of ST , and its

distribution is rotation invariant.

Rotation invariance means that the normalized return predictive signal mT /
√
m′

TmT is

uniformly distributed on the unit sphere. This favors covariance matrix estimators that work

well across the board, without indicating a preference about the orientation of the vector of

expected returns. Furthermore, it implies that mT is distributed independently of any S̃T that

belongs to the rotation-equivariant class of Assumption 3.4. The limit of the loss function

defined in Section 2 is given by the following proposition, where C
+ ..= {a + i · b : a ∈ R, b ∈

(0,∞)} denotes the strict upper half of the complex plane; here, i ..=
√
−1.

Proposition 3.1. Under Assumptions 3.1–3.5,

m′

TmT × m′

T S̃
−1
T ΣT S̃

−1
T mT(

m′

T S̃T
−1

mT

)2
a.s.−→

∫
dF (x)

x |s(x)|2 d̃(x)2
[∫

dF (x)

d̃(x)

]2 , (3.3)

3The return predictive signal can be interpreted as an estimator of the vector of expected returns, which is

not available in practice.
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where, for all x ∈ (0,∞), s(x) is defined as the unique solution s ∈ R ∪ C
+ to the equation

s = −
[
x− c

∫
τ

1 + τ s
dH(τ)

]
−1

. (3.4)

All proofs are in Appendix B. Although equation (3.4) may appear dauting at first sight, it

is in fact a classic. It is the centerpiece of the original article by Marčenko and Pastur (1967)

from which all the literature on large-dimensional asymptotics derives. On the other hand,

equation (3.3) is a major mathematical innovation of this paper.

4 Optimal Covariance Matrix Estimator for Portfolio Selection

Proposition 3.1 enables us to characterize the optimal limiting shrinkage function as follows.

Proposition 4.1. Under Assumptions 3.1–3.5, a covariance matrix estimator S̃T minimizes

the almost sure limit of the loss function introduced in Section 2

LT

(
S̃T ,ΣT ,mT

)
.

.= m′

TmT
m′

T S̃
−1
T ΣT S̃

−1
T mT(

m′

T S̃
−1
T mT

)2 (4.1)

if and only if its limiting shrinkage function d̃ verifies

∀x ∈ Supp(F ) d̃(x) =
α

x |s(x)|2 for some constant α > 0 . (4.2)

Interestingly, a formula equivalent to equation (4.2) is attained by Ledoit and Péché (2011),

even though it is motivated by a different loss function, namely ‖S̃T − ΣT ‖F , where ‖A‖F ..=

Tr(AA′) denotes the Frobenius norm of a symmetric matrix. It is not immediately obvious

why two different loss functions lead to the same estimator. In contrast, Ledoit and Wolf

(2013a) show that the commonly-used loss function known as “Stein’s loss” leads to a different

estimator.

Proposition 4.1 characterizes the optimal covariance matrix estimator only up to an arbi-

trary positive scaling factor α. This is inherent to the problem of portfolio selection. As can be

seen from equation (2.3), two covariance matrices that only differ by the scaling factor α yield

the same vector of portfolio weights. Of all the possible scaling factors, α = 1 is the most natu-

ral, since it guarantees that the average eigenvalue of the covariance matrix estimator matches

the population covariance matrix asymptotically, as shown by the following proposition.

Proposition 4.2. Let Assumptions 3.1–3.5 hold, and let the limiting shrinkage function d̃ be

given by equation (4.2). Then

1

N
Tr
(
S̃T

)
− 1

N
Tr (ΣT )

a.s.−→ 0 (4.3)

if and only if α = 1.
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The challenge is to construct an estimator of the covariance matrix whose limiting shrinkage

function satisfies equation (4.2) with α = 1. The problem is that the function s(x) is not

directly observable. As can be seen from equation (3.4), it depends on the limiting distribution

of population eigenvalues H. Thus, a consistent estimator of the eigenvalues of the population

covariance matrix ΣT is needed. Fortunately, a recent breakthrough in the literature on large-

dimensional asymptotics has delivered just such an estimator. It is worth emphasizing an

important point: Under large-dimensional asymptotics, that is, when the number of stocks is

not small relative to sample size, it is impossible to estimate the population covariance matrix

consistently because the estimation problem is O(N2). But it is possible to estimate the

eigenvalues of the population covariance matrix consistently because the estimation problem

is O(N) only. This result is established formally by Ledoit and Wolf (2012, 2013b). Of the two

papers, we prefer to borrow the technique of the latter, because it also accomodates the singular

case N > T , which arises often in finance (cf. Appendix D). The method of Ledoit and Wolf

(2013b) for constructing a consistent estimator of population eigenvalues is reproduced in

Appendix C for convenience. The exact sense in which this estimator is consistent is stated in

the following proposition.

Proposition 4.3 (Ledoit and Wolf, 2013b; Theorem 2.2). Suppose that Assumptions 3.1–3.3

are satisfied. Let τ̂ T
.

.= (τ̂T,1, . . . , τ̂T,N )′ denote the estimator of population eigenvalues of

Ledoit and Wolf (2013b), as re-stated in Appendix C, with eigenvalues sorted in increasing

order. As per Assumption 3.2, τT
.

.= (τT,1, . . . , τT,N )′ denotes a system of eigenvalues of the

population covariance matrix ΣT sorted in increasing order. Then

1

N

N∑

i=1

(τ̂T,i − τT,i)
2 a.s.−→ 0 .

An asymptotically optimal estimator of the covariance matrix is obtained simply by insert-

ing the population eigenvalues estimator of Proposition 4.3 into equation (3.4).

Theorem 4.1. Suppose that Assumptions 3.1–3.5 are satisfied, and let τ̂T
.

.= (τ̂T,1, . . . , τ̂T,N )′

denote the population eigenvalues estimator of Ledoit and Wolf (2013b) as restated in Ap-

pendix C. Define the covariance matrix estimator

ŜT
.

.= UT D̂TU
′

T where D̂T
.

.= Diag
(
d̂T (λT,1), . . . , d̂T (λT,N )

)
, (4.4)

∀i = 1, . . . , N d̂T (λT,i) .

.=
1

λT,i |ŝ(λT,i)|2
, (4.5)

and, for all x ∈ (0,∞), ŝ(x) is defined as the unique solution ŝ ∈ R ∪ C
+ to the equation

ŝ = −
[
x− 1

T

N∑

i=1

τ̂T,i
1 + τ̂T,i ŝ

]−1

. (4.6)

Then ŜT minimizes in the class of rotation-equivariant estimators defined in Assumption 3.4

the almost sure limit of the portfolio selection loss function LT , as T and N go to infinity

together.
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Theorem 4.1 formulates a covariance matrix estimator that is optimal for portfolio selection

when the investment universe is large, within a much broader class of estimators than previously

considered. In particular, its shrinkage function (4.5) is of a highly nonlinear nature, unlike

the linear shrinkage function (3.2) of the estimator of Ledoit and Wolf (2004b). The next

section provides empirical evidence that this more flexible, nonlinear estimation strategy indeed

generates portfolios with superior out-of-sample properties.

5 Empirical Results

The goal of this section is to examine the out-of-sample properties of Markowitz portfolios

based on our newly suggested covariance matrix estimator. In particular, we make comparisons

to other popular investment strategies in the finance literature; some of these are based on

an alternative covariance matrix estimator while others avoid the problem of estimating the

covariance matrix altogether.

For compactness of notation, as in Section 2, we do not use the subscript T in denoting the

covariance matrix itself, an estimator of the covariance matrix, or a return predictive signal

that proxies for the vector of expected returns.

5.1 Data and General Portfolio Formation Rules

We download daily data from the Center for Research in Security Prices (CRSP) starting

in 01/01/1972 and ending in 12/31/2011. For simplicity, we adopt the common convention

that 21 consecutive trading days constitute one “month”. The out-of-sample period ranges

from 01/19/1973 until 12/31/2011, resulting in a total of 480 “months” (or 10,080 days). All

portfolios are updated “monthly”.4 We denote the investment dates by h = 1, . . . , 480. At

any investment date h, a covariance matrix is estimated using the most recent T = 250 daily

returns, corresponding roughly to one year of past data.

We consider the following portfolio sizes: N ∈ {30, 50, 100, 250, 500}. This range covers

the majority of the important stock indexes, from the Dow Jones Industrial Average to the

S&P 500. For a given combination (h,N), the investment universe is obtained as follows. We

first determine the 500 largest stocks (as measured by their market value on the investment

date h) that have a complete return history over the most recent T = 250 days as well as a

complete return ‘history’ over the next 21 days.5 Out of these 500 stocks, we then select N at

random: these N randomly selected stocks constitute the investment universe for the upcoming

21 days. As a result, there are 480 different investment universes over the out-of-sample period.

Financial return data frequently contain unusually large (in absolute value) observations.

In order to mitigate the effect of such observations on an estimated covariance matrix, we

employ a winsorization technique, as is standard with quantitative portfolio managers; the

4“Monthly” updating is common practice to avoid an unreasonable amount of turnover, and thus transaction

costs.
5The latter ‘forward-looking’ restriction is not a feasible one in real life but is commonly applied in the

related finance literature on the out-of-sample evaluation of portfolios.
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details can be found in Appendix E. Of course, we always use the ‘raw’, non-winsorized data

in computing the out-of-sample portfolio returns.

Remark 5.1 (Real Returns versus Log Returns). For forming the portfolios, we use real

returns. This is because for real returns, unlike for log returns, the return of a portfolio is

given by the ‘portfolio’ of the returns (that is, by the corresponding linear combination of the

individual stock returns).

On the other hand, for the evaluation of the realized out-of-sample returns, we use log

returns. This is because the log returns more closely reflect the out-of-sample performance of

a portfolio. For example, the average of the log returns corresponds one-to-one to the net asset

value of a portfolio (with initial investment $1, say) over the investment period, while is this

not true for the average of the real returns.

5.2 Global Minimum Variance Portfolio

We first focus on the well-known problem of estimating the global minimum variance (GMV)

portfolio, in the absence of short-sales constraints. The problem is formulated as

min
w

w′Σw (5.1)

subject to w′
1 = 1 , (5.2)

where 1 denotes a N × 1 vector of ones. It has the analytical solution

w =
Σ−1

1

1

′Σ−1
1

. (5.3)

The natural strategy in practice is to replace the unknown Σ by an estimator S̃ in for-

mula (5.3), yielding a feasible portfolio

w̃ ..=
S̃−1

1

1

′S̃−1
1

. (5.4)

Alternative strategies, motivated by estimating the optimal w of (5.3) ‘directly’, as opposed

to ‘indirectly’ via the estimation of Σ, have been proposed recently by Frahm and Memmel

(2010).

Estimating the GMV portfolio is a ‘clean’ problem in terms of evaluating the quality of a

covariance matrix estimator, since it abstracts from having to estimate the vector of expected

returns at the same time. In addition, researchers have established that estimated GMV

portfolios have desirable out-of-sample properties not only in terms of risk but also in terms of

reward-to-risk (that is, in terms of the information ratio); for example, see Haugen and Baker

(1991), Jagannathan and Ma (2003), and Nielsen and Aylursubramanian (2008). As a result,

such portfolios have become an addition to the large array of products sold by the mutual fund

industry.

The following five portfolios are included in the study.
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• 1/N : The equal-weighted portfolio promoted by DeMiguel et al. (2009b), among others.

This portfolio can be viewed as a special case of (5.4) where S̃ is given by the N × N

identity matrix. This strategy avoids any parameter estimation whatsoever.

• Sample: The portfolio (5.4) where S̃ is given by the sample covariance matrix; note

that this portfolio is not available when N > T , since the sample covariance matrix is

not invertible in this case.

• FM: The dominating portfolio of Frahm and Memmel (2010). The particular version

we use is defined in their equation (10), where the reference portfolio wR is given by

the equal-weighted portfolio. This portfolio is a convex linear combination of the two

previous portfolios 1/N and Sample. Therefore, it is also not available when N > T .

• Lin: The portfolio (5.4) where S̃ is given by the linear shrinkage estimator of Ledoit and Wolf

(2004b).

• NonLin: The portfolio (5.4) where S̃ is given by the estimator Ŝ of Theorem 4.1, with

the modification of Appendix D when N > T .

Remark 5.2 (Alternative O(1) Proposals). As mentioned in the introduction, there have

been many recent proposals based on O(1) degrees of freedom. We could not possibly include

them all in the empirical study and restrict attention to the linear shrinkage estimator of

Ledoit and Wolf (2004b). There are two reasons for this particular choice. First, since it also

belongs to class of rotation-equivariant estimators S̃ considered, it is the most natural O(1)

competitor to our O(N) nonlinear shrinkage estimator; see Remark 3.1. Second, no other O(1)

GMV portfolio has been shown to consistently outperform Lin. For example, DeMiguel et al.

(2009a) find that their NC2V norm-constrained portfolio beats Lin in only one out five real-life

data sets.

Remark 5.3 (Alternative Linear Shrinkage Estimators). Alternatively, the GMV portfolio es-

timator Lin could also based on the linear shrinkage estimators S̃ proposed by Ledoit and Wolf

(2003, 2004a). But these two estimators do not belong to the class of rotation-equivariant es-

timators considered and, therefore, are less natural competitors to our nonlinear shrinkage

estimator.

Furthermore, several previous studies have compared the three linear shrinkage estimators

of Ledoit and Wolf (2003, 2004a,b) without being able to find a clear winner among them; for

example, see Ledoit and Wolf (2004a) and DeMiguel et al. (2009a).

We report the following three out-of-sample performance measures for each scenario. (All

of them are annualized and in percent for ease of interpretation.)

• AV: We compute the average of the 10,080 out-of-sample log returns and then multiply

by 250 to annualize.

• SD: We compute the standard devviation of the 10,080 out-of-sample log returns and

then multiply by
√
250 to annualize.
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• IR: We compute the (annualized) information ratio as the ratio AV/SD.6

Our stance is that in the context of the GMV portfolio, the most important performance

measure is the out-of-sample standard deviation, SD. The true (but unfeasible) GMV portfolio

is given by (5.3). It is designed to minimize the variance (and thus the standard deviation)

rather than to maximize the expected return or the information ratio. Therefore, any portfo-

lio that implements the GMV portfolio should be primarily evaluated by how successfully it

achieves this goal. A high out-of-sample average return, AV, and a high out-of-sample informa-

tion ratio, IR, are naturally also desirable, but should be considered of secondary importance

from the point of view of evaluating the quality of a covariance matrix estimator.

We also consider the question of whether one portfolio delivers a lower out-of-sample stan-

dard deviation than another portfolio at a level that is statistically significant. Since we con-

sider five portfolios, there are ten pairwise comparisons. To avoid a multiple testing problem

and since a major goal of this paper is to show that nonlinear shrinkage improves upon linear

shrinkage in portfolio selection, we restrict attention to the single comparison between the two

portfolios Lin and NonLin. For a given scenario, a two-sided p-value for the null hypothesis

of equal standard deviations is obtained by the prewhitened HACPW method described in

Ledoit and Wolf (2011, Section 3.1).7

The results are presented in Table 1 and can be summarized as follows.

• The standard deviation of the true GMV portfolio (5.3) decreases in N . So the same

should be true for any good estimator of the GMV portfolio. As N increases from

N = 30 to N = 500, the standard deviation of 1/N decreases by only 1.5 percentage

points. On the other hand, the standard deviations of Lin and Nonlin decrease by 3.4

and 4.2 percentage points, respectively. Therefore, sophisticated estimators of the GMV

portfolio are successful in overcoming the increased estimation error for a larger number

of assets and indeed deliver a markedly better performance.

The same is not true for the portfolios Sample and FM, though, whose standard de-

viations decrease by only 0.6 and 1.1 percentage points, respectively, as N increases

from N = 30 to N = 100. Both portfolios break down for N = 250, when the sample

covariance matrix is nearly singular.

• 1/N is consistently outperformed by Lin and NonLin in terms of both the standard devi-

ation and the information ratio. (There is the single case N = 100 where the information

ratio of 1/N is barely higher than the information ratio of Lin.)

• Sample and FM outperform 1/N for N = 30, 50, 100 in terms of the standard deviation

but only for N = 30, 50 in terms of the information ratio.

• Although FM improves over Sample in terms of both the standard deviation and the

information ratio, it is itself consistently outperformed by Lin and NonLin.

6This version of the information ratio, which simply uses zero as the benchmark, is widely used in the mutual

fund industry.
7Since the out-of-sample size is very large at 10,080, there is no need to use the computationally more involved

bootstrap method described in Ledoit and Wolf (2011, Section 3.2), which is preferred for small sample sizes.
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• NonLin consistently outperforms Lin both in terms of the standard deviation and the

information ratio. (There is the single case N = 30 where the information ratio of Lin

is barely higher than the information ratio of NonLin.) The outperformance in terms of

the standard deviation is significant at the 0.01 level for N ≥ 50. The outperformance is

also economically meaningful for N = 100, 250, 500, ranging from 0.3 to 0.9 percentage

points.

In addition, all realized out-of-sample log returns are graphically displayed via boxplots in

Figure 1. One can see that Lin and NonLin generally deliver the tightest distributions.

Summing up, in the global minimum variance portfolio problem, NonLin dominates the

remaining four portfolios in terms of the standard deviation, and generally also in terms of the

information ratio.

5.3 Markowitz Portfolio with Momentum Signal

We now turn attention to a ‘full’ Markowitz portfolio with a signal.

As discussed at the beginning of Section 2, by now a large number of variables have

been documented that can be used to construct a signal in practice. For simplicity and re-

producibility, we use the well-known momentum factor (or simply momentum for short) of

Jegadeesh and Titman (1993). For a given period investment period h and a given stock, the

momentum is the the geometric average of the previous 12 “monthly” returns on the stock but

excluding the most recent “month”. Collecting the individual momentums of all the N stocks

contained in the portfolio universe yields the return predictive signal m.

In the absence of short-sales constraints, the investment problem is formulated as

min
w

w′Σw (5.5)

subject to w′m = b , and (5.6)

w′
1 = 1 , (5.7)

where b is a selected target expected return. The problem has the analytical solution

w = c1Σ
−1
1+ c2Σ

−1m , (5.8)

where c1 ..=
C − bB

AC −B2
and c2 ..=

bA−B

AC −B2
, (5.9)

with A ..= 1

′Σ−1
1 , B ..= 1

′Σ−1b , and C ..= m′Σ−1m . (5.10)

The natural strategy in practice is to replace the unknown Σ by an estimator S̃ in formu-

las (5.8)–(5.10), yielding a feasible portfolio

w̃ ..= c1S̃
−1
1+ c2S̃

−1m , (5.11)

where c1 ..=
C − bB

AC −B2
and c2 ..=

bA−B

AC −B2
, (5.12)

with A ..= 1

′S̃−1
1 , B ..= 1

′S̃−1b , and C ..= m′S̃−1m . (5.13)

The following five portfolios are included in the study.
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• EW-TQ The equal-weighted portfolio of the top-quintile stocks according to momen-

tum m. This strategy does not make use of the momentum signal beyond sorting of the

stocks in quintiles.

The value of the target expected return b for the remaining four portfolios below is then

given by the arithmetic average of the momentums of the stocks included in this portfolio

(that is, the expected return of EW-TQ according to the signal m).

• Sample: The portfolio (5.11)–(5.13) where S̃ is given by the sample covariance matrix;

note that this portfolio is not available when N > T , since the sample covariance matrix

is not invertible in this case.

• BSV: The portfolio (5.11)–(5.13) where S̃ is given by the identity matrix of dimen-

sion N ×N . This portfolio corresponds to the proposal of Brandt et al. (2009).

• Lin: The portfolio (5.11)–(5.13) where S̃ is given by the linear shrinkage estimator of

Ledoit and Wolf (2004b).

• NonLin: The portfolio (5.11)–(5.13) where S̃ is given by the estimator Ŝ of Theorem 4.1,

with the modification of Appendix D when N > T .

Our stance is that in the context of a ‘full’ Markowitz portfolio, the most important perfor-

mance measure is the out-of-sample information ratio, IR. In the ‘ideal’ investment problem

(5.8)–(5.10), minimizing the variance (for a fixed target expected return b) is equivalent to

maximizing the information ratio (for a fixed target expected return b). In practice, because

of estimation error in the signal, the various strategies do not have the same expected return

and, thus, focusing on the out-of-sample standard deviation is inappropriate.

We also consider the question whether one portfolio delivers a higher out-of-sample infor-

mation ratio than another portfolio at a level that is statistically significant. Since we consider

five portfolios, there are ten pairwise comparisons. To avoid a multiple testing problem and

since a major goal of this paper is to show that nonlinear shrinkage improves upon linear

shrinkage in portfolio selection, we restrict attention to the single comparison between the two

portfolios Lin and NonLin. For a given scenario, a two-sided p-value for the null hypothe-

sis of equal information ratios is obtained by the prewhitened HACPW method described in

Ledoit and Wolf (2008, Section 3.1).8

The results are presented in Table 2 and can be summarized as follows.

• The information ratio of the ‘ideal’ Markowitz portfolio (5.8)–(5.10) is expected to in-

crease in N , as the potential for diversification increases. So the same should be true for

any good estimator of the Markowitz portfolio. Of the five portfolios considered, only

Lin and NonLin have this desirable property.

• We again observe that Sample breaks down for N = 250, when the sample covariance

matrix is close to singular.

8Since the out-of-sample size is very large at 10,080, there is no need to use the computationally more

expensive bootstrap method described in Ledoit and Wolf (2008, Section 3.2), which is preferred for small

sample sizes.
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• The order, from worst to best, of the remaining four portfolios is EW-TQ, BSV, Lin, and

NonLin for all values of N .

• The outperformance of NonLin over Lin is significant at the 0.05 level for N = 50

and significant at the 0.01 level for N = 100, 250, 500. The outperformance is also

economically meaningful for N = 100, 250, 500, ranging from 0.07 to 0.19.

In addition, all realized out-of-sample log returns are graphically displayed via boxplots in

Figure 2. One can see that Lin and NonLin generally deliver the tightest distributions.

Summing up, in a ‘full’ Markowitz problem with a signal, NonLin dominates the remaining

four portfolios in terms of the information ratio.

Remark 5.4. Let us point out that we get higher information ratios here compared to the

GMV portfolios across the board for N ≥ 50. Therefore, using a return predictive signal can

really pay off, if done properly.

5.4 Robustness Checks

5.4.1 Subperiod Analysis

The out-of-sample period comprises 480 “months” (or 10,080 days). It might be possible

that the outperformance if NonLin over Lin is driven by certain subperiods but does not hold

universally. We address this concern by dividing the out-of-sample period into three subperiods

of 160 “months” (or 3,360 days) each and repeating the above exercises in each subperiod.

The results for the global minimum variance portfolio are presented in Tables 3–5. It can be

seen that NonLin is better than Lin in terms of the standard deviation in 14 out of the 15 cases,

and generally with statistical significance. (The single case in which Lin is better than NonLin,

namely the case N = 20 in the second subperiod, is significant at the 0.1 level only.) We also

note that NonLin is better than Lin in terms of the information ratio in 13 out of the 15 cases.

The results for the Markowitz portfolio with momentum signal are presented in Tables 6–8.

It can be seen that NonLin is better than Lin in terms of the information ratio in all 15 cases;

though, with one exception, statistical significance only obtains in the first subperiod.

Therefore, this analysis demonstrates that the outperformance of NonLin over Lin is con-

sistent over time and not due to a subperiod artifact.

5.4.2 Rolling-Window Analysis

As a further comparison, we carry out a rolling-window analysis. Starting in 12/10/1982, we use

the most recent 2,500 out-of-sample log-returns to compute (annualized) standard deviations

of the GMV portfolios and (annualized) information ratios for the Markowitz portfolios with

momentum signal. We repeat this exercise every subsequent trading day, ending in 12/31/2011.

For each scenario, this results in 7,581 “ten-year” rolling-window numbers, which are then

displayed in time series plots. To avoid a visual overload we only include Lin and NonLin in

the figures.
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Figure 3 presents the time series plots for the standard deviations of the GMV portfolios.

It can be seen that NonLin generally lies below Lin and that the differences tend to increase

in N .

Figure 4 presents the time series plots for the information ratios of the Markowitz portfolios

with momentum signal. It can be seen that NonLin generally lies above Lin and that the

differences tend to increase in N .

6 Conclusion

Despite is relative simplicity, Markowitz (1952) portfolio selection remains a cornerstone of

finance, both for researches and fund managers. When applied in practice, it requires two

inputs: (i) an estimate of the vector of expected returns and (ii) an estimate of the covariance

matrix of returns. The focus of this paper has been to address the second problem, having in

mind a fund manager who already has a return predictive signal of his own choosing to address

the first problem (for which end there exists a large literature already).

Compared to previous methods of estimating the covariance matrix, the key difference of

our proposal lies in the number of free parameters to estimate. Let N denote the number of

assets in the investment universe. Then previous proposals either estimateO(1) free parameters

— a prime example being linear shrinkage advocated by Ledoit and Wolf (2003, 2004a,b) —

or estimate O(N2) free parameters — the prime example being the sample covariance matrix.

We take the stance that in a large-dimensional framework, where the number of assets is of the

same magnitude as the sample size, O(1) free parameters are not enough, while O(N2) free

parameters are too many. Instead, we have argued that ‘just the right number’ (that is, the

Goldilocks principle) is O(N) free parameters.

Our theoretical analysis is based on a stylized version of the Markowitz (1952) under large-

dimensional asymptotics, where the number of assets tends to infinity together with the sample

size. We derive an estimator of the covariance matrix that is asymptotically optimal in a class of

rotation-equivariant estimators. Such estimators do not use any a priori information about the

orientation of the eigenvectors of the true covariance matrix. In particular, such estimators

retain the eigenvectors of the sample covariance matrix but use different eigenvalues. Our

contribution has been to work out the asymptotically optimal transformation of the sample

eigenvalues to the eigenvalues used by the new estimator of the covariance matrix. We term

this transformation nonlinear shrinkage.

Having established theoretical optimality properties under a stylized setting, we then put

the new estimator to the practical test on historical stock return data. Running backtest ex-

ercises (a) for the global minimum variance portfolio problem and (b) for a ‘full’ Markowitz

problem with a signal, we have found that nonlinear shrinkage outperforms previously sug-

gested estimators and, in particular, dominates linear shrinkage.
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Figure 1: Boxplots of the 10,080 out-of-sample log returns (in percent) of the various GMV

portfolios. The investment period is 01/19/1973–12/31/2011. For N = 250, Sample and FM

produce some very large returns (in absolute value) and their boxplots extend beyond the

limits of the vertical axis.
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Figure 2: Boxplots of the 10,080 out-of-sample log returns (in percent) of the various Markowitz

portfolios with momentum signal. The investment period is 01/19/1973–12/31/2011. For

N = 250, Sample produces some very large returns (in absolute value) and its boxplot extends

beyond the limits of the vertical axis.
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Figure 3: Annualized rolling-window standard deviations of the most recent 2,500 out-of-

sample log returns (in percent) for the GMV portfolios based on linear shrinkage (solid lines)

and nonlinear shrinkage (dashed lines). The investment period is 01/19/1973–12/31/2011 and

the interval of the reported time series is 12/10/1982–12/31/2011.
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Figure 4: Annualized rolling-window information ratios of the most recent 2,500 out-of-sample

log returns (in percent) for the Markowitz portfolios with momentum signal based on lin-

ear shrinkage (solid lines) and nonlinear shrinkage (dashed lines). The investment period is

01/19/1973–12/31/2011 and the interval of the reported time series is 12/10/1982–12/31/2011.
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Period: 01/19/1973–12/31/2011

1/N Sample FM Lin NonLin

N = 30

AV 15.19 10.61 11.01 11.26 11.22

SD 20.59 14.15 14.08 13.97 13.96

IR 0.74 0.75 0.78 0.81 0.80

N = 50

AV 14.97 10.12 10.50 10.80 10.93

SD 19.74 13.35 13.13 12.89 12.81∗∗∗

IR 0.76 0.76 0.80 0.84 0.85

N = 100

AV 14.55 7.93 8.71 9.14 9.71

SD 19.36 13.53 13.03 12.29 11.99∗∗∗

IR 0.75 0.57 0.67 0.74 0.81

N = 250

AV 14.68 −86.81 −86.81 9.17 10.55

SD 19.23 1, 014.13 1, 1014.13 11.94 10.65∗∗∗

IR 0.76 −0.09 −0.09 0.77 0.99

N = 500

AV 14.58 NA NA 10.17 10.19

SD 19.13 NA NA 10.64 9.74∗∗∗

IR 0.76 NA NA 0.95 1.05

Table 1: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and IR stands for informa-

tion ratio. All measures are based on 10,080 daily out-of-sample log returns from 01/19/1973

until 12/31/2011. In the rows labeled SD, the lowest number appears in bold face. In the

columns labeled Lin and NonLin, significant outperformance of one of the two portfolios over

the other in terms of SD is denoted by asterisks: *** denotes significance at the 0.01 level;

** denotes significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 01/19/1973–12/31/2011

EW-TQ Sample BSV Lin NonLin

N = 30

AV 15.40 14.61 16.82 14.82 14.93

SD 25.94 19.26 23.11 18.93 18.92

IR 0.59 0.76 0.73 0.78 0.79

N = 50

AV 19.26 14.31 18.06 15.19 15.71

SD 24.83 17.14 22.26 16.66 16.59

IR 0.78 0.83 0.81 0.91 0.95∗∗

N = 100

AV 19.53 14.18 18.63 15.36 15.98

SD 23.13 15.98 20.96 14.69 14.39

IR 0.86 0.87 0.91 1.02 1.09∗∗

N = 250

AV 18.56 −9.21 17.47 13.73 15.02

SD 22.12 743.03 20.15 14.24 12.96

IR 0.84 −0.01 0.87 0.96 1.15∗∗∗

N = 500

AV 18.79 NA 17.33 13.11 14.28

SD 21.79 NA 19.83 12.39 11.45

IR 0.86 NA 0.87 1.06 1.25∗∗∗

Table 2: Annualized performance measures (in percent) for various estimators of the Markowitz

portfolio with momentum signal. AV stands for average; SD stands for standard deviation;

and IR stands for information ratio. All measures are based on 10,080 daily out-of-sample log

returns from 01/19/1973 until 12/31/2011. In the rows labeled IR, the largest number appears

in bold face. In the rows labeled SD, the lowest number appears in bold face. In the columns

labeled Lin and NonLin, significant outperformance of one of the two portfolios over the other

in terms of IR is denoted by asterisks: *** denotes significance at the 0.01 level; ** denotes

significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 01/19/1973–05/08/1986

1/N Sample FM Lin NonLin

N = 30

AV 17.43 14.11 14.57 14.70 14.67

SD 15.43 11.44 11.32 11.27 11.21∗∗∗

IR 1.13 1.23 1.29 1.30 1.31

N = 50

AV 16.77 12.22 12.50 13.08 13.81

SD 14.97 10.83 10.65 10.55 10.47∗∗

IR 1.12 1.13 1.17 1.24 1.31

N = 100

AV 15.32 10.05 10.50 11.20 12.20

SD 14.50 10.48 10.09 9.51 9.17∗∗∗

IR 1.06 0.96 1.04 1.18 1.33

N = 250

AV 15.60 −334.94 −334.94 11.47 12.80

SD 14.23 849.48 849.48 8.77 7.72∗∗∗

IR 1.10 −0.39 −0.39 1.31 1.66

N = 500

AV 15.40 NA NA 12.45 13.46

SD 14.16 NA NA 7.72 6.94∗∗∗

IR 1.09 NA NA 1.61 1.94

Table 3: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and IR stands for informa-

tion ratio. All measures are based on 3,360 daily out-of-sample log returns from 01/19/1973

until 05/08/1986. In the rows labeled SD, the lowest number appears in bold face. In the rows

labeled SD, the lowest number appears in bold face. In the columns labeled Lin and NonLin,

significant outperformance of one of the two portfolios over the other in terms of SD is denoted

by asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Period: 05/09/1986–08/25/1999

1/N Sample FM Lin NonLin

N = 30

AV 18.83 11.28 11.96 12.11 12.29

SD 16.91 13.01 13.01 12.91∗ 12.97

IR 1.11 0.87 0.92 0.94 0.95

N = 50

AV 16.94 12.34 12.89 12.02 12.00

SD 15.94 12.43 12.24 12.02 12.00

IR 1.06 0.99 1.05 1.07 1.02

N = 100

AV 17.92 11.64 12.37 12.15 12.50

SD 15.51 12.77 12.26 11.66 11.55∗

IR 1.15 0.92 1.01 1.04 1.08

N = 250

AV 18.01 510.04 510.04 12.50 12.93

SD 15.39 1, 163.12 1, 163.12 10.89 9.88∗∗∗

IR 1.17 0.44 0.44 1.15 1.31

N = 500

AV 18.09 NA NA 14.53 13.30

SD 15.30 NA NA 9.70 9.13∗∗∗

IR 1.18 NA NA 1.50 1.46

Table 4: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and IR stands for informa-

tion ratio. All measures are based on 3,360 daily out-of-sample log returns from 05/09/1986

until 08/25/1999. In the rows labeled SD, the lowest number appears in bold face. In the rows

labeled SD, the lowest number appears in bold face. In the columns labeled Lin and NonLin,

significant outperformance of one of the two portfolios over the other in terms of SD is denoted

by asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Period: 08/26/1999–12/31/2011

1/N Sample FM Lin NonLin

N = 30

AV 9.30 6.44 6.51 6.96 6.70

SD 27.35 17.34 17.23 17.08 17.06

IR 0.34 0.37 0.38 0.41 0.39

N = 50

AV 11.21 5.81 6.13 6.34 6.69

SD 26.29 16.21 15.92 15.57 15.44∗∗

IR 0.43 0.36 0.38 0.41 0.43

N = 100

AV 10.40 2.11 3.27 4.06 4.43

SD 25.96 16.62 16.04 15.05 14.60∗∗∗

IR 0.40 0.13 0.20 0.27 0.30

N = 250

AV 10.42 −435.38 −435.38 3.56 5.92

SD 25.90 1, 003.23 1, 003.23 15.23 13.52∗∗∗

IR 0.40 −0.43 −0.43 0.23 0.43

N = 500

AV 10.25 NA NA 3.49 3.80

SD 25.75 NA NA 13.62 12.38∗∗∗

IR 0.40 NA NA 0.26 0.31

Table 5: Annualized performance measures (in percent) for various estimators of the GMV

portfolio. AV stands for average; SD stands for standard deviation; and IR stands for informa-

tion ratio. All measures are based on 3,360 daily out-of-sample log returns from 08/26/1999

until 12/31/2011. In the rows labeled SD, the lowest number appears in bold face. In the rows

labeled SD, the lowest number appears in bold face. In the columns labeled Lin and NonLin,

significant outperformance of one of the two portfolios over the other in terms of SD is denoted

by asterisks: *** denotes significance at the 0.01 level; ** denotes significance at the 0.05 level;

and * denotes significance at the 0.1 level.
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Period: 01/19/1973–05/08/1986

EW-TQ Sample BSV Lin NonLin

N = 30

AV 14.28 14.67 16.17 14.65 14.71

SD 20.29 14.86 18.14 14.63 14.60

IR 0.70 0.99 0.89 1.00 1.01

N = 50

AV 20.81 14.58 19.21 15.49 16.85

SD 19.51 13.68 17.60 13.33 13.25

IR 1.07 1.07 1.09 1.16 1.27∗∗∗

N = 100

AV 20.05 16.03 21.05 16.95 17.66

SD 17.79 13.00 16.21 11.86 11.47

IR 1.13 1.23 1.30 1.43 1.54∗

N = 250

AV 19.78 15.43 19.75 15.51 17.61

SD 16.99 577.29 15.60 10.32 9.14

IR 1.16 0.03 1.27 1.50 1.93∗∗∗

N = 500

AV 20.24 NA 20.20 14.80 17.23

SD 16.63 NA 15.36 9.01 8.11

IR 1.21 NA 1.32 1.64 2.12∗∗∗

Table 6: Annualized performance measures (in percent) for various estimators of the Markowitz

portfolio with momentum signal. AV stands for average; SD stands for standard deviation; and

IR stands for information ratio. All measures are based on 3,360 daily out-of-sample returns

from 01/19/1973 until 05/08/1986. In the rows labeled IR, the largest number appears in bold

face. In the columns labeled Lin and NonLin, significant outperformance of one of the two

portfolios over the other in terms of IR is denoted by asterisks: *** denotes significance at the

0.01 level; ** denotes significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 05/09/1986–08/25/1999

EW-TQ Sample BSV Lin NonLin

N = 30

AV 24.38 20.04 22.73 20.42 20.85

SD 25.18 18.40 22.76 18.31 18.34

IR 0.97 1.09 1.00 1.12 1.14

N = 50

AV 23.74 12.78 21.18 13.70 13.85

SD 23.34 17.06 20.72 16.66 16.60

IR 1.02 0.75 1.02 0.82 0.84

N = 100

AV 25.12 18.08 22.58 18.87 19.55

SD 20.60 15.97 18.63 14.84 14.77

IR 1.22 1.13 1.21 1.27 1.32

N = 250

AV 23.91 41.14 20.43 17.10 17.46

SD 20.02 669.21 18.26 13.66 12.89

IR 1.19 0.06 1.12 1.25 1.35

N = 500

AV 23.97 NA 20.35 16.98 17.15

SD 19.73 NA 17.91 11.63 11.22

IR 1.21 NA 1.13 1.46 1.53

Table 7: Annualized performance measures (in percent) for various estimators of the Markowitz

portfolio with momentum signal. AV stands for average; SD stands for standard deviation; and

IR stands for information ratio. All measures are based on 3,360 daily out-of-sample returns

from 05/09/1986 until 08/25/1999. In the rows labeled IR, the largest number appears in bold

face. In the columns labeled Lin and NonLin, significant outperformance of one of the two

portfolios over the other in terms of IR is denoted by asterisks: *** denotes significance at the

0.01 level; ** denotes significance at the 0.05 level; and * denotes significance at the 0.1 level.
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Period: 08/26/1999–12/31/2011

EW-TQ Sample BSV Lin NonLin

N = 30

AV 6.71 12.64 7.02 12.74 12.91

SD 32.14 22.17 28.27 21.87 21.84

IR 0.21 0.57 0.25 0.58 0.59

N = 50

AV 13.25 15.57 13.78 16.38 16.43

SD 30.40 20.07 27.34 19.44 19.35

IR 0.44 0.78 0.50 0.84 0.85

N = 100

AV 13.41 8.42 12.25 10.26 10.73

SD 28.11 19.43 25.38 17.76 17.30

IR 0.48 0.43 0.48 0.58 0.62

N = 250

AV 12.00 −84.23 12.24 8.58 9.98

SD 27.90 935.07 25.33 17.75 15.94

IR 0.43 −0.09 0.48 0.48 0.63∗

N = 500

AV 12.17 NA 11.45 7.54 8.45

SD 27.53 NA 24.97 15.61 14.19

IR 0.44 NA 0.46 0.48 0.59

Table 8: Annualized performance measures (in percent) for various estimators of the Markowitz

portfolio with momentum signal. AV stands for average; SD stands for standard deviation; and

IR stands for information ratio. All measures are based on 3,360 daily out-of-sample returns

from 08/26/1999 until 12/31/2011. In the rows labeled IR, the largest number appears in bold

face. In the columns labeled Lin and NonLin, significant outperformance of one of the two

portfolios over the other in terms of IR is denoted by asterisks: *** denotes significance at the

0.01 level; ** denotes significance at the 0.05 level; and * denotes significance at the 0.1 level.
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B Mathematical Proofs

B.1 Preliminaries

We shall use the notations Re(z) and Im(z) for the real and imaginary parts of a complex

number z, so that

∀z ∈ C z = Re(z) + i · Im(z) .

For any increasing function G on the real line, sG denotes the Stieltjes transform of G:

∀z ∈ C
+ sG(z) ..=

∫
1

λ− z
dG(λ) .

The Stieltjes transform admits a well-known inversion formula:

G(b)−G(a) = lim
η→0+

1

π

∫ b

a
Im
[
sG(ξ + iη)

]
dξ , (B.1)

as long as G is continuous at both a and b. Bai and Silverstein (2010, p.112) give the following

version for the equation that relates F to H and c. The quantity s =.. sF (z) is the unique

solution in the set {
s ∈ C : −1− c

z
+ cs ∈ C

+

}
(B.2)

to the equation

∀z ∈ C
+ s =

∫
1

τ
[
1− c− c z s

]
− z

dH(τ) . (B.3)

Although the Stieltjes transform of F , sF , is a function whose domain is the upper half

of the complex plane, it admits an extension to the real line s̆F (x) ..= limz∈C+→x sF (z) which

is continuous over x ∈ R. Furthermore, F has a continuous derivative F ′ = π−1Im [s̆F ] on all

of R with F ′ ≡ 0 on (−∞, 0]. (One should remember that, although the argument of s̆F is

real-valued now, the output of the function is still a complex number.)

Recall that the limiting e.d.f. of the eigenvalues of n−1Y ′

nYn = n−1Σ
1/2
n X ′

nXnΣ
1/2
n was de-

fined as F . In addition, define the limiting e.d.f. of the eigenvalues of n−1YnY
′

n = n−1XnΣnX
′

n

as F ; note that the eigenvalues of n−1Y ′

nYn and n−1YnY
′

n only differ by |n−p| zero eigenvalues.

It then holds:

∀x ∈ R F (x) = (1− c)1[0,∞)(x) + c F (x) (B.4)

∀x ∈ R F (x) =
c− 1

c
1[0,∞)(x) +

1

c
F (x) (B.5)

∀z ∈ C
+ sF (z) =

c− 1

z
+ c sF (z) (B.6)

∀z ∈ C
+ sF (z) =

1− c

c z
+

1

c
sF (z) . (B.7)

Although the Stieltjes transform of F , sF , is again a function whose domain is the upper

half of the complex plane, it also admits an extension to the real line (except at zero now):

∀x ∈ R \ {0}, s̆F (x) ..= limz∈C+→x sF (z) exists. Furthermore, the function s̆F is continuous

over R \ {0}.
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It can easily be verified that the function s(x) defined in equation (3.4) is in fact none other

than m̆F (x). Equation (4.2.2) of Bai and Silverstein (2010), for example, gives an expression

analogous to equation (3.4). Based on the right-hand side of equation (3.3), we introduce the

function

∀x ∈ Supp(F ) d∗(x) ..=
1

x |s(x)|2 =
1

x
∣∣s̆F (x)

∣∣2 =
x

|1− c− c x s̆F (x)|2
. (B.8)

B.2 Proof of Proposition 3.1

Given that it is only the normalized quantity (m′

TmT )
−1/2mT that appears in this proposition,

the parametric form of the distribution of the underlying quantity mT is irrelevant, as long

as (m′

TmT )
−1/2mT is uniformly distributed on the unit sphere. Thus, we can assume without

loss of generality that mT is normally distributed with mean zero and covariance matrix the

identity.

In this case, the assumptions of Lemma 1 of Ledoit and Péché (2011) are satisfied. This

implies that there exists a constant K1 independent of T , S̃T and mT such that

E

[(
1

N
m′

T S̃
−1
T mT − 1

N
Tr
(
S̃−1
T

))6
]
≤

K1

∥∥∥S̃−1
T

∥∥∥
N3

.

Note that
∥∥∥S̃−1

T

∥∥∥ ≤ K̃/h a.s. for large enough T by Assumption 3.4. Therefore,

1

N
m′

T S̃
−1
T mT − 1

N
Tr
(
S̃−1
T

)
a.s.−→ 0 .

In addition, we have

1

N
Tr
(
S̃−1
T

)
=

1

N

N∑

i=1

1

d̃T (λT,i)
=

∫
1

d̃T (x)
dFT (x)

a.s.−→
∫

1

d̃(x)
dF (x) .

Therefore,
1

N
m′

T S̃
−1
T mT

a.s.−→
∫

1

d̃(x)
dF (x) . (B.9)

A similar line of reasoning leads to

1

N
m′

T S̃
−1
T ΣT S̃

−1
T mT − 1

N
Tr
(
S̃−1
T ΣT S̃

−1
T

)
a.s.−→ 0 .

Notice that

1

N
Tr
(
S̃−1
T ΣT S̃

−1
T

)
=

1

N
Tr
(
U ′

TΣTUT D̃
−2
T

)
=

1

N

N∑

i=1

u′T,iΣTuT,i

d̃T (λT,i)2
.

Using Theorem 4 of Ledoit and Péché (2011), we obtain that

1

N

N∑

i=1

u′T,iΣTuT,i

d̃T (λT,i)2
a.s.−→

∫
x

|1− c− c x s̆F (x)|2 × d̃(x)2
dF (x) .
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Thus,
1

N
m′

T S̃
−1
T ΣT S̃

−1
T mT

a.s.−→
∫

d∗(x)

d̃(x)2
dF (x) , (B.10)

with the function d∗ defined by equation (B.8). Putting equations (B.9) and (B.10) together

yields

N
m′

T S̃
−1
T ΣT S̃

−1
T mT(

m′

T S̃
−1
T mT

)2
a.s.−→

∫
d∗(x)

d̃(x)2
dF (x)

(∫
1

d̃(x)
dF (x)

)2 .

Proposition 3.1 then follows from noticing that N−1m′

TmT
a.s.−→ 1.

B.3 Proof of Proposition 4.1

Recall that the function d∗ was defined in equation (B.8). Differentiating the right-hand side

of equation (3.3) with respect to d̃(x) for x ∈ Supp(F ) yields the first-order condition

−2
d∗(x)F ′(x)

d̃(x)3

[∫
dF (y)

d̃(y)

]2
+ 2

[∫
dF (y)

d̃(y)

]
F ′(x)

d̃(x)2

[∫
d∗(y)dF (y)

d̃(y)

]
= 0 ,

which is verified if and only if d̃(x)/d∗(x) is a constant independent of x. The proportional-

ity constant must be strictly positive because the covariance matrix estimator S̃T is positive

definite, as stated in Assumption 3.4.

B.4 Proof of Proposition 4.2

Theorem 4 of Ledoit and Péché (2011) and the paragraphs immediately above it imply that

1

N

N∑

i=1

u′T,iΣTuT,i
a.s.−→

∫
d∗(x) dF (x) . (B.11)

It can be seen that the left-hand side of equation (B.11) is none other than N−1Tr(ΣT ). In

addition, note that

1

N
Tr
(
S̃T

)
=

1

N

N∑

i=1

d̃T (λT,i) =

∫
d̃T (x) dFT (x)

a.s.−→
∫

d̃(x) dF (x) = α

∫
d∗(x) dF (x) .

(B.12)

Comparing equations (B.11) and (B.12) yields the desired result.

B.5 Proof of Theorem 4.1

Define the shrinkage function

∀x ∈ (0,∞) d̂T (x) ..=
1

x |ŝ(x)|2
.
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Theorem 2.2 of Ledoit and Wolf (2013b) and Proposition 4.3 of Ledoit and Wolf (2012) imply

that ∀x ∈ Supp(F ) d̂T (x)
a.s−→ d∗(x), and that this convergence is uniform over x ∈ Supp(F ),

apart from arbitrarily small boundary regions of the support. Note that Ledoit and Wolf

(2013b) denote the number of variables by p rather than by N and the sample size by n rather

than by T . Theorem 4.1 then follows from Proposition 4.1.

C Consistent Estimator of Population Eigenvalues

The estimation method developed by Ledoit and Wolf (2013b) is reproduced below solely for

the sake of convenience. Interested readers are invited to consult the original paper for details.

Note here again that Ledoit and Wolf (2013b) denote the number of variables by p rather than

by N and the sample size by n rather than by T .

The key idea is to introduce a nonrandom multivariate function, called the Quantized

Eigenvalues Sampling Transform, or QuEST for short, which discretizes, or quantizes, the

relationship between F , H, and c defined in equations (B.2) and (B.3). For any positive

integers T and N , the QuEST function, denoted by QT,N , is defined as

QT,N : [0,∞)N −→ [0,∞)N

v ..= (v1, . . . , vN )′ 7−→ QT,N (v) ..=
(
q1T,N (v), . . . , qpT,N (v)

)
′
,

where

∀i = 1, . . . , N qiT,N (v) ..= N

∫ i/N

(i−1)/N

(
Fv

T,N

)
−1

(u) du , (C.1)

∀u ∈ [0, 1]
(
Fv

T,N

)
−1

(u) ..= sup{x ∈ R : Fv

T,N (x) ≤ u} , (C.2)

∀x ∈ R Fv

T,N (x) ..= lim
η→0+

1

π

∫ x

−∞

Im
[
mv

T,N (ξ + iη)
]
dξ , (C.3)

and ∀z ∈ C
+ s ..= svT,N (z) is the unique solution in the set

{
s ∈ C : −T −N

Tz
+

N

T
m ∈ C

+

}
(C.4)

to the equation

s =
1

N

N∑

i=1

1

vi

(
1− N

T
− N

T
z s

)
− z

. (C.5)

It can be seen that equation (C.3) quantizes equation (B.1), that equation (C.4) quantizes

equation (B.2), and that equation (C.5) quantizes equation (B.3). Thus, Fv

T,N is the limiting dis-

tribution (function) of sample eigenvalues corresponding to the population spectral distribution

(function) N−1
∑N

i=1 1[vi,∞). Furthermore, by equation (C.2),
(
Fv

T,N

)
−1

represents the inverse

spectral distribution function, also known as the quantile function. By equation (C.1), qiT,N (v)

can be interpreted as a ‘smoothed’ version of the (i−0.5)/N quantile of Fv

T,N . Ledoit and Wolf
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(2013b) estimate the eigenvalues of the population covariance matrix simply by inverting the

QuEST function numerically:

τ̂T
..= argmin

v∈(0,∞)N

1

N

N∑

i=1

[
qiT,N (v)− λT,i

]2
. (C.6)

D The Singular Case N > T

Almost all of the analysis developed above goes through in the singular case N > T . The

only difference is that now N − T sample eigenvalues are equal to zero. In order to handle

them, Section 3.2.2 of Ledoit and Wolf (2013b) introduces the quantity defined as the unique

solution s =.. ŝ0 in (0,∞) to the equation

s =

[
1

T

N∑

i=1

τ̂T,i
1 + τ̂T,i s

]−1

, (D.1)

where τ̂ T
..= (τ̂T,1, . . . , τ̂T,N )′ is defined as in Proposition 4.3.

The optimal covariance matrix estimator for portfolio selection is built as in equation (4.4),

but with the changed definition

d̂T (λT,i) ..=





1(
N
T − 1

)
ŝ0

, if λT,i = 0

1

λT,i |ŝ(λT,i)|2
, if λT,i > 0

for i = 1, . . . , N . (D.2)

E Winsorization of Past Returns

Unusually large returns (in absolute value) can have undesirable impacts if such data are

used to estimate a covariance matrix. We migitate this problem by properly truncating very

small and very large observations in any cross-sectional data set. Such truncation is commonly

referred to as ‘Winsorization’, a method that is widely used by quantitative portfolio managers;

for example, see Chincarini and Kim (2006, p.180).

Consider a set of numbers a1, . . . , aN . We first compute a robust measure of location that

is not (heavily) affected by potential outliers. To this end we use the trimmed mean of the

data with trimming fraction η ∈ (0, 0.5) on the left and on the right. This number is simply

the mean of the middle (1− 2η) · 100% of the data. More specifically, denote by

a(1) ≤ a(2) ≤ . . . ≤ a(N) (E.1)

the ordered data (from smallest to largest) and denote by

M ..= ⌊η ·N⌋ (E.2)

the smallest integer less than or equal to η · N . Then the trimmed mean with trimming

fraction η is defined as

aη ..=
1

N − 2M

N−M∑

i=M+1

a(i) . (E.3)

34



We employ the value of η = 0.1 in practice.

We next compute a robust measure of spread. To this end, we use the mean absolute

deviation (MAD) given by

MAD(a) ..=
1

N

N∑

i=1

|ai −med(a)| , (E.4)

where med(a) denotes the sample median of a1, . . . , aN .

We finally compute upper and lower bounds defined by

alo ..= a0.1 − 5 ·MAD(a) and aup ..= a0.1 + 5 ·MAD(a) . (E.5)

The motivation here is that for a normally distributed sample, it will hold that a ≈ a0.1 and

s(a) ≈ 1.5 · MAD(a), where a and s(a) denote the sample mean and the sample median of

a1, . . . , aN , respectively. As a result, for a ‘well-behaved’ sample, there will usually be no

points below alo or above aup. Our truncation rule is then that any data point ai below alo

will be changed to alo and any data point ai above aup will be changed to aup. We apply this

truncation rule, one day at a time, to the past stock return data used to estimate a covariance

matrix. (Of course, we do not apply this truncation rule to future stock return data used to

compute portfolio out-of-sample returns.)
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