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Abstract

This paper considers the problem of testing a finite number of moment inequalities. We
propose a two-step approach. In the first step, a confidence region for the moments is constructed.
In the second step, this set is used to provide information about which moments are “negative.”
A Bonferonni-type correction is used to account for the fact that with some probability the
moments may not lie in the confidence region. It is shown that the test controls size uniformly
over a large class of distributions for the observed data. An important feature of the proposal is
that it remains computationally feasible, even when the number of moments is large. The finite-
sample properties of the procedure are examined via a simulation study, which demonstrates,
among other things, that the proposal remains competitive with existing procedures while being

computationally more attractive.
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1 Introduction

Let W;,i =1,...,n, be an i.i.d. sequence of random variables with distribution P € P on R¥ and

consider the problem of testing
Hy: P ePgversus H : Pe Py, (1)

where
Po={PeP :EpW] <0} (2)

and P; = P\ Py. Here, the inequality in (2) is intended to be interpreted component-wise and
P is a “large” class of possible distributions for the observed data. Indeed, we will only impose
below a mild (standardized) uniform integrability requirement on P. Our goal is to construct tests

¢On = On(Wh,...,W,) of (1) that are uniformly consistent in level, i.e.,

limsup sup Ep[¢,] < a (3)

n—oo PePy
for some pre-specified value of o € (0, 1).

In the interest of constructing tests of (1) that not only satisfy (3), but also have good power
properties, it may be desirable to incorporate information about which components of Ep[W;]
are “negative.” FExamples of tests that incorporate such information implicitly using subsampling
include Romano and Shaikh (2008) and Andrews and Guggenberger (2009), whereas examples of
tests that incorporate such information more explicitly include the “generalized moment selec-
tion” procedures put forward by Andrews and Soares (2010), Canay (2010), and Bugni (2011).
Andrews and Barwick (2012a) propose a refinement of “generalized moment selection” termed
“recommended moment selection” and discuss four reasons why such an approach is preferable.
Therefore, our theoretical and numerical comparisons will be mainly restricted to the method of
Andrews and Barwick (2012a); extensive comparisons with previous methods are already available

in that paper.

Our two-step solution to this problem is similar in spirit to the recommended moment selection
approach. In the first step, we construct a confidence region for Ep[W;] at some “small” significance
level 5 € [0,a]. In the second step, we then use this set to provide information about which
components of Ep[W;] are “negative” when constructing tests of (1). Importantly, similar to the
approach of Andrews and Barwick (2012a), we account in our asymptotic framework for the fact
that with some probability, Ep[W;] may not lie in the confidence region, using a Bonferonni-type

correction; see Remark 2.4 for further discussion.

Our testing procedure and those just cited are related to Hansen (2005), who uses a similar two-
stage approach for the same problem, but does not account for the fact that with some probability,

Ep[W;] may not lie in the confidence region. He instead assumes that § tends to zero as n tends



to infinity and only establishes that his test is pointwise consistent in level instead of the stronger
requirement (3). The importance of the distinction between (3) and this weaker requirement has
been emphasized in the recent literature on inference in partially identified models; for exam-
ple, see Imbens and Manski (2004), Romano and Shaikh (2008), and Andrews and Guggenberger
(2010). Another important feature of our approach stems from our choice of confidence region
for Ep[W;]. Through an appropriate choice of confidence region for Ep[W;], our approach remains
computationally feasible even when the number of components of Ep[W;], denoted by k, is large.
In particular, unlike Hansen (2005), we are able to avoid having to optimize over the confidence

region numerically.

As described in Remark 2.6, similar computational problems are also present in the approach put
forward by Andrews and Barwick (2012a). As a result, they employ computational shortcuts whose
validity is only justified using simulation. Even using these shortcuts, they must restrict attention
to situations in which & < 10, which precludes many economic applications, including entry models,
as in Ciliberto and Tamer (2009), where k = 2™+ when there are m firms, or dynamic models
of imperfect competition, as in Bajari et al. (2007), where k may even be as large as 500. For
situations in which k£ < 10 and a = .05, both procedures are equally easy to implement; however,
for situations in which « # .05, our procedure is considerably easier to implement even when k£ < 10.
This feature allows us, for example, to construct p-values more easily than Andrews and Barwick
(2012a). On the other hand, in contrast to Andrews and Barwick (2012a), we are unable to establish
that the lefthand-side of (3) equals a and expect that it is strictly less that a, though we can argue
it is not much less than «; see Remark 2.2. Even so, for the situations when both procedures are
available, we find in a simulation study that our procedure is nearly as powerful as the one proposed
by Andrews and Barwick (2012a).

Other related literature includes Loh (1985), who also uses a similar two-stage approach in the
context of some parametric hypothesis testing problems, but, like Hansen (2005), does not account
for the fact that with some probability the nuisance parameter may not lie in the confidence
region. It is also related to Berger and Boos (1994) and Silvapulle (1996), who improve upon Loh
(1985) by introducing a Bonferonni-type correction similar to ours. This idea has been used by
Stock and Staiger (1997) to construct a confidence region for the parameters of a linear regression
with possibly “weak” instrumental variables. It has also been used in a nonparametric context by
Romano and Wolf (2000) to construct a confidence interval for a univariate mean that has finite-
sample validity and is “efficient” in a precise sense. Finally, this idea is introduced in a general
setting by McCloskey (2012), though the assumptions there technically preclude moment inequality
problems; see McCloskey (2012, Section 2.1.3) for further discussion.

The remainder of the paper is organized as follows. In Section S.1 of the online supplement to this
paper, we first consider the testing problem in the simplified setting where P = {N(y,X) : p € Rk }

for a known covariance matrix . Here, it is possible to illustrate the main idea behind our



construction more clearly and also to obtain some exact results. In particular, we establish an upper
bound on the power function of any level-a test of (1) by deriving the most powerful test against any
fixed alternative. This result confirms the bound suggested by simulation in Andrews and Barwick
(2012b, Section 7.3). We consider the more general, nonparametric setting in Section 2. We apply
our main results to the problem of constructing confidence regions in partially identified models
defined by a finite number of moment inequalities in Section 3. Section 4 sheds some light on
the behavior of our procedures in finite samples via a simulation study, including an extensive
comparison of our procedure with the one proposed recently by Andrews and Barwick (2012a).

Proofs of all results can be found in the Appendix.

2 The Nonparametric Multi-Sided Testing Problem

Let W;,i = 1,...,n, be an i.i.d. sequence of random vectors with distribution P € P on R* and
consider the problem of testing (1). The unknown family of distributions P will be a nonparametric
class of distributions defined by a mild (standardized) uniform integrability condition, as described
in the main results below. Before proceeding, we introduce some useful notation. Below, B, denotes
the empirical distribution of the W;,i = 1,...,n. The notation p(P) denotes the mean of P and
w;(P) denotes the jth component of u(P). Let W, = w(P,) and W = pj(P,). The notation X(P)
denotes the covariance matrix of P and O'JQ-(P) denotes the variance of the jth component of P. The
notation Q(P) denotes the correlation matrix of P. Let Q, = Q(P,) and sz’n = 0]2.(]5”). Finally,
let S2 = diag(S?,,... ,S,%,n).

1,n

Our methodology incorporates information about which components of p(P) are “negative” by
first constructing a (nonparametric) upper confidence rectangle for 1 at nominal level 1 — 3. Our

bootstrap confidence region for this purpose is given by

W - .
Mn(l—ﬁ)z{uEszlr%aé(kWSKnl(l—B,Pn)} ) (4)
where Vil (P) = Win)
Kn(x,P):P{g?gk HAG 5 jn gx} . (5)

Next, a test statistic T}, is required such that large values of T,, provide evidence against Hy.

For simplicity, below we consider several different test statistics of the form
T, =T (8, /alWy, )

for some function T : R¥ x (R¥)?2 — R that is continuous in both arguments and weakly increasing

in each component of its first argument. As in Andrews and Barwick (2012a), other test statistics



may be considered as well. In particular, we consider
Tmax = max \/ﬁWj,n
1<j<k  Sjn

T = inf Z,(t)Q 1 Z,(t) (7)
teERkK:t<0

where _ _
B \/ﬁ(Wln —t) \/ﬁ(Wkn —t)
Zp(t) = | et
Sl,n Skm

and the inequality in the infimum is interpreted component-wise. Following Andrews and Barwick

(2012a), we also consider an “adjusted” version of T in which Q, is replaced with
Q, = max{e — det(,),0} - I, + Q. ,
for some fixed € > 0, with I} denoting the k-dimensional identity matrix, i.e.,
T — inf o 7, (£)'Q, N Za(t) (8)
teRF:<0

This modification accommodates situations in which Q(P) may be singular. Finally, we also consider
the “modified method of moments” test statistic of Andrews and Soares (2010) defined as

3 (0 g o

We also require a critical value with which to compare T},. For € R and \ € R¥, let

Jn(z, A\, P) = P {T(S;l(\/ﬁ(Wn — u(P)) + Sy V/nA, Qn) < x} . (10)

Note that
P{T, <z} = Jy(z,u(P), P) . (11)

Importantly, for any = and P, J,(z, A, P) is nonincreasing in each component of \. It is natural to
replace P in the righthand-side of (11) with P, but this approximation to the distribution of T,
fails when P is on the “boundary” of the null hypothesis; for example, see Andrews (2000). On
the other hand, if u(P) were known exactly, then one could plug in this value for u(P) and replace
the final P in the right-hand side of (11) with P,. Obviously, x(P) is not known exactly, but we
may use the confidence region for u(P) defined in (4) to limit the possible values for p(P). This

idea leads us to consider the critical value defined by

tn(l—a+p8) = sup JY1—a+B,\P,), (12)
AEM,, (1—B)NR*.

where R_ = (—o00,0]. The addition of 5 to the quantile is necessary to account for the possibility
that u(P) may not lie in M, (1 — 8). It may be removed by allowing  to tend to zero with the



sample size. However, the spirit of this paper, as well as Andrews and Barwick (2012a), is to
account for the selection of moments in order to achieve better finite-sample size performance; see

Remark 2.4 below for further discussion.

The calculation of é&,(-) in (12) is straightforward because J; 1(1—a+ 3, A, P,) is nondecreasing
in each component of . It follows that the supremum in (12) is attained when A = A* has jth

component equal to the minimum of zero and the upper confidence bound for the p;, i.e.,

* . T S‘nKﬁl(l_van)

)\j:mln{Wj,n—F L NG ,0p . (13)
Then,

tn(l—a+8)=J; 0 —a+ B2, P,) . (14)

Since 3 € (0, «), we define our test so that it fails to reject the null hypothesis not only whenever
T,, is less than or equal to the critical value defined above, but also whenever M, (1 — 3) C R*.

Formally, our test is, therefore, given by

én = dn(c,B) = 1= 1{{Ma(1= ) CRE}U{T, Sl —a+B)} |, (15)

where 1{-} denotes the indicator function. The following theorem shows that this test controls the
probability of a Type I error uniformly over P in the sense that (3) holds, as long as P satisfies a

mild (standardized) uniform integrability condition.

Theorem 2.1. Let W;,i =1,...,n, be an i.i.d. sequence of random vectors with distribution P € P
on R¥. Suppose P is such that, for all 1 < j < k,

<W>21{‘W‘>A}] —0. (16)

Fiz 0 < 8 < «. The test ¢, of (1) defined by (15) with T,, given by (6), (8) or (9) satisfies (3).

lim sup Ep
A—00 pep

Remark 2.1. If, in addition to satisfying the requirements of Theorem 2.1, P is required to satisfy
infpep det(2(P)) > 0, then the conclusion of Theorem 2.1 holds when T;, is given by (7). m

Remark 2.2. By arguing as in Remark S.1.2 in the online supplement to this paper, it is in fact
possible to show that the left-hand side of (3) is at least o — 3, so that for small /3, the test is not

overly conservative. B

Remark 2.3. In some cases, the null hypothesis may be such that some components of Ep[W;] are
equal to zero rather than less than or equal to zero. That is, rather than testing that P belongs in

Py given by (2), the problem is to test that P belongs to Po given by

Po={PcP: Ep[W,; ] =0forjcJy, Ep[W;1] <0 forjec Jo},



where J; and J; form a partition of {1, ..., k}. Such a situation may be accommodated in the frame-
work described above by writing Ep[W; 1] = 0 as two inequalities Ep[W; 1] < 0 and —Ep[W;;] < 0.
Note that it may be possible to improve upon this approach by exploiting the additional structure

of the null hypotheses, as is done in Remark S.1.4 in the online supplement to this paper. m

Remark 2.4. For § = 3, tending to zero, it follows from our analysis that the test ¢ (53,), where

6n(8) =1 - 1{{M,(1 - B) R} U{T, < a1 - )} }

satisfies

limsup sup Ep[¢)(8,)] < a
n—oo PePy

under the assumptions of Theorem 2.1. To see this, suppose that the assumptions of Theorem 2.1
hold. Let ¢, = ¢n(a, 3) be defined as in (15). Fix any € > 0. By monotonicity, we have for all
large enough n that M, (1 — 3,) C M,(1 — €). Hence, for all such n, we have that ¢! (3,) < ¢ (¢).
Moreover, ¢, (a + €, €) = ¢ (€). It, therefore, follows from Theorem 2.1 that

limsup sup Ep [gbi‘l(ﬁn)] < limsup sup Ep [d)n(a + ¢, e)} <a-+te.

n—oo PecPy n—oo PecPy

Since the choice of € > 0 was arbitrary, the desired result follows. The test ¢} (/3,) defined in this
way is similar to the “generalized moment selection” procedures of Andrews and Soares (2010),
Canay (2010), and Bugni (2011). On the other hand, the test ¢, defined by (15), which accounts
for the impact of the choice of 8 on the finite-sample behavior of the testing procedure, is more

similar to the procedure of Andrews and Barwick (2012a). m

Remark 2.5. An “optimal” approach to choosing § is described in Remark S.1.6. We have found

that a reasonable simple choice is 5 = «/10. Further discussion is given in Section 4.

Remark 2.6. For the hypothesis testing problem considered in this section, Andrews and Barwick
(2012a) consider an alternative testing procedure that they term “recommended moment selection.”
In order to describe a version of their method based on the bootstrap, fix k < 0. Let An be the
k-dimensional vector whose jth component equals zero if \/ﬁij /Sjn > k and —oo otherwise (or,

for practical purposes, some very large negative number). Define the “size correction factor”

i = inf{n >0: sup  Jp(J7 N1 — o, hn, Po) 1,0, By) > a} : (17)
AERF:A<0

The proposed test is then given by
dn(@) = 1{T,, > J, 1 (1 — a, An, Po) + 0}

where T), is given by T2 or T2 see (7) and (8). The addition of 9, is required because, in
order to allow the asymptotic framework to better reflect the finite-sample situation, the authors

do not allow k to tend to zero with the sample size n. As explained in Remark S.1.5 in the online



supplement to this paper, determination of 7, defined in (17) is computationally prohibitive, even
in a parametric setting. This remains true here, so the authors resort to an approximation to
the supremum in (17) analogous to the one described in Remark S.1.5. The authors provide an
extensive simulation study, but no proof, in favor of this approximation and restrict attention to
situations in which £ < 10 and o = .05. The authors also provide simulation-based evidence
to support a further approximation to 7, that only depends on k and the smallest off-diagonal
element of ,,. A data-dependent way of choosing x similar to the way of choosing 3 described in
Remark S.1.6 is described as well. m

3 Confidence Regions for Partially Identified Models

In this section, we consider the related problem of constructing a confidence region for identifiable
parameters that is uniformly consistent in level. Concretely, let X;,7 = 1,...,n, be an i.i.d. se-
quence of random variables with distribution P € P on some general sample space S, where P is
again a nonparametric class of distributions defined by a mild (standardized) uniform integrability
requirement on P. We consider the class of partially identified models in which the identified set,
©o(P), is given by

©o(P)={0 € ©:Ep[g(X;,0)] <0}, (18)

where © is some parameter space (usually some subset of Euclidean space) and g : S x © — R*.

Here, for each 6, g(+, 0) is a vector of k real-valued functions, and the inequality in (18) is intended to

be interpreted component-wise. We wish to construct random sets C,, = C, (X1, ..., X,) satisfying
liminf inf inf P{#eC,}>1—-a (19)
n—oo PeP 0eO(P)

for some pre-specified o € (0,1). As in Romano and Shaikh (2008), we refer to such sets as
confidence regions for identifiable parameters that are uniformly consistent in level. Note that in
this paper we will not consider the construction of confidence regions for the identified set itself; see
Chernozhukov et al. (2007), Bugni (2010), and Romano and Shaikh (2010) for further discussion

of such confidence regions.

As in Romano and Shaikh (2008), our construction will be based upon the duality between
constructing confidence regions and hypothesis tests. Specifically, we will consider tests of the null
hypotheses

Hy:Eplg(X;,0)] <0 (20)

for each 6 € © that control the usual probability of a Type I error at level o. To this end, for each
0 € ©, let ¢,(0) be the test of (20) given by the following algorithm.



Algorithm 3.1.
(a) Set W; = g(X;,0).
(b) Compute the bootstrap quantile K, 1(1 — 3, ]5”), where K, (xz, P) is given by (5).
(¢) Using K;'(1— 3, B,) from (b), compute M, (1 — ) via equation (4).
(d) Using K;; (1 — B, P,) from (b), compute \* via equation (13).
(e) Compute the bootstrap quantile é,(1 —a + B) = J, 11 —a + B, )\*,Pn), where Jy(z, A, P) is
given by (10).
(f) Compute ¢, (0) = ¢n, where ¢y, is given by (15).

Consider
C,={0€0:¢,00)=0}. (21)

The following theorem shows that C), satisfies (19). In the statement of the theorem, we denote by
wi(6, P) and 0]2(9, P) the mean and variance, respectively, of g;(X;,6) under P.

Theorem 3.1. Let X;,i = 1,...,n, be an i.i.d. sequence of random variables with distribution
P € P. Suppose P is such that, for all 1 < j <k,

(s o

lim sup sup Ep
A—00 PP 90 (P)

g'(XhH) —;L(@,P) .
o Er) ‘”}]‘0‘

Then, Cy, defined by (21) with T), given by (6), (8) or (9) satisfies (19).

4 Simulation Study

The goal of this section is to study the finite-sample performance of our two-step procedure. For
the reasons mentioned in the introduction, the comparison with other procedures is reserved to the
newly-recommended procedure of Andrews and Barwick (2012a) (henceforth abbreviated as AB)
with certain details provided in Andrews and Barwick (2012b). In their notation, the preferred
procedure is the “recommended moment selection” (RMS) test based on (Sg,gp(l)) with data-

dependent tuning parameters & and 7 and it is termed “qlr, ad/t-Test/xkAuto”.

We compare finite-sample performance both in terms of maximum null rejection probability
(MNRP) and average power for a nominal level of o = 0.05. The design of the simulation study is
equal to the one used by AB for their Table III.

We focus on results for k = 2,4, and 10. For each value of k, we consider three correlation
matrices: Qneg, Qzero, and Qpys. The matrix Qzer, equals Ij, (that is, the identity matrix). The
matrices ey and Q2p,s are Toeplitz matrices with correlations on the diagonals (as they go away
from the main diagonal) given by the following. For & = 2: p = —0.9 for Qn¢y and p = 0.5
for Qp,s. For k = 4: p = (-0.9,0.7,-0.5) for Qneg and p = (0.9,0.7,0.5) for Qpy,. For k = 10:



p = (—0.9,0.8,—0.7,0.6, —0.5,0.4, —0.3,0.2, —0.1) for Qe and p = (0.9,0.8,0.7,0.6,0.5,...,0.5)

for Qpeys.

For k = 2, the set of u vectors Ms(Q2) for which asymptotic average power is computed in-
cludes seven elements: M () = {(¢1,0), (12, 1), (13,2), (14, 3), (15, 4), (6, 7), (17, po7) }, where p;
depends on Q. For brevity, the values of p; in M2(£2) and the sets My(Q2) for k = 4,10 are given
in Section 7.1 of Andrews and Barwick (2012b). We point out, however, that we reverse the signs
of the mean vectors used by AB, since in our framework the inequality signs are reversed in the

null and alternative hypotheses.

To showcase the value, in terms of power properties, of incorporating information about which
components of Ep[W;] are “negative”, we also include a one-step procedure which ignores such
information. This one-step procedure simply uses J,, 1(1—a, A, 15”) with the “least favorable” value
of A, i.e., A = 0, as the critical value for the test statistic. Equivalently, it can be described as
our two-step procedure using 5 = 0. Such an approach is expected to have higher power when
all non-positive moments are equal to zero (or at least very close to zero) but is expected to have

reduced power when some non-positive moments are far away from zero.

AB find that a bootstrap version of their test has better finite-sample size properties than a
version based on asymptotic (normal) critical values. Therefore, we only implement bootstrap
versions, both for the glr, ad/t-Test/kAuto test and our two-step and one-step procedures. All

bootstraps use B = 499 resamples; this is also the case for the first step of our two-step procedure.

The two-step procedure uses S = 0.005 for the construction of the confidence region in the first
step. Using larger values of 8 leads to somewhat reduced average power in general. Lower values
of B8 do not make a noticeable difference in terms of average power, but require a larger number of
bootstrap resamples in the first step. (The reason is that the number of bootstrap samples needed

to accurately estimate a 8 quantile is inversely related to 3, for small values of j3).

Unlike Andrews and Barwick (2012b), we do not consider any singular covariance matrices €.
Therefore, the qlr, ad/t-Test/xkAuto test as well as our two-step and one-step procedures use, for sim-
plicity and reduced computational burden, the “unadjusted” quasi-likelihood ratio test statistic (7)
rather than the “adjusted” version (8). For the scenarios that we consider, this does not make any

difference.

4.1 Maximum Null Rejection Probabilities

Following AB, to ensure computational feasibility, empirical MNRPs are simulated as the maximum
rejection probability over all u vectors that are composed only of zero and —oo entries, containing

at least one zero entry. So for dimension k, there are a total of 2 — 1 null vectors to consider. It is

10



worth emphasizing, however, that it has not been proven that the maximum over these 2¥ — 1 null

vectors equals the maximum over all u vectors satisfying the null.

For each scenario, we use 10,000 repetitions to compute empirical MNRPs. The results are
presented in the upper half of Table 1 and can be summarized as follows; from here on, we use the
term AB-Rec to denote the recommended procedure of AB, i.e., the glr, ad/t-Test/kAuto test.

e All procedures achieve a satisfactory performance.

e The empirical MNRP of the AB-Rec procedure is generally somewhat higher compared to
the two-step and one-step procedures.

e The empirical MNRPs are somewhat higher when the distribution of the elements is heavy-

tailed (i.e., t3) or skewed (i.e., x3) versus standard normal.

4.2 Average Powers

FEmpirical average powers are computed over a set of m different alternative p vectors, with m =7
when k£ = 2, m = 24 when k = 4, and m = 40 when k = 10. For a fixed k, the specific set of
i vectors depends on the correlation matrix Q € {Qneg, Qzero, pos}; see Andrews and Barwick
(2012b, Subsection 7.2) for the details. For each scenario, we use 10,000 repetitions to compute
empirical average powers when k£ = 2 and k = 4, and 5,000 repetitions to compute empirical average
powers when k = 10. Unlike AB, we first report “raw” empirical average powers instead of size-
corrected empirical average powers. If anything, this slightly favors the recommended procedure
of AB, since our two-step and one-step procedures were seen to have (somewhat) lower empirical
MNRPs in general. The results are presented in the lower half of Table 1 and can be summarized

as follows.

e For every scenario, the AB-Rec procedure has the highest empirical average power and the
one-step procedure has the lowest empirical average power. However, this does not mean
that the AB-Rec procedure is uniformly more powerful than the other two procedures. For
individual alternative pu vectors, even the one-step procedure can have higher empirical power
than the AB-Rec procedure; for example, this happens when all non-positive moments are
equal to zero.

e The two-step procedure generally picks up most of the difference in empirical average powers
between AB-Rec and the one-step procedure; across the 27 scenarios, the average pickup
is 74.1% and the median pickup is 76.4%. In particular, the relative improvement of the two-
step procedure over the one-step procedure tends to be largest when it is needed most, i.e.,
when the differences between AB-Rec and the one-step procedure are the largest. Such cases
correspond to {dncg; across these 9 scenarios, the average pickup of the two-step procedure
is 82.2% and the median pickup is 83.7%.
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As mentioned before, reporting “raw” empirical average powers slightly favors the recommended
procedure of AB, so we also compute “size-corrected” average powers for the two-step procedure. Be-
cause of the extremely high computational burden when k = 10, we are only able to do this for k = 2
and k = 4, however, as follows. For a given combination of k € {2,4}, Q € {Qncg, Qzero, Qpos}, and
Dist € {N(0,1),t3,x3}, we vary the nominal level « for the two-step procedure, keeping 3 = 0.005
fixed, until the resulting MNRP matches that of the AB-Rec procedure with a = 0.05. Denote
the corresponding nominal level « for the two-step procedure by agc; for the 18 different combina-
tions of (k, (2, Dist) considered, we find that ag. € [0.051,0.055]. We then use oy to compute the
“size-corrected” average empirical power for the given combination of (k, (2, Dist). The results are
presented in Table 2. The “fair” comparison is the one between AB-Rec and Two-Steps.. It can be
seen that the difference is always smaller than for the “unfair” comparison between AB-Rec and

Two-Step.

4.3 Maximum Null Rejection Probabilities for a Large Number of Moment

Inequalities

We finally turn attention to a case with a large number of inequalities, i.e., a case with k > 10, for

which the procedures of AB are no longer available.

We feel that it is most informative to compute MNRPs. Since a comparison to AB-Rec (or any
other of the procedures suggested by AB) is no longer possible, it is not clear what useful information

could be taken away from computing empirical average powers.

As discussed before, computing MNRPs, in principle, involves the evaluation of 2¥ — 1 NRPs.
Given current computational powers, this is infeasible for any value of k much larger than 10.
However, for the special case of {2 = Qz.,, the problem is reduced to the evaluation of & NRPs
only. This is because, under the identity covariance matrix, for a given number of zero entries, the
position of these entries does not matter. So if there are p zero entries, say, one only has to evaluate
a single NRP rather than (];) NRPs; and without loss of generality, the corresponding single null
vector can be chosen as (0,...,0,—00,...,—00)".

We use k = 50, which corresponds to roughly the limit of our computational capabilities. The
sample sizes considered are n = 100,500. It turns out that for n = 100, in many instances, the
qlr test statistic cannot be computed because of numerical difficulties. We suspect that the reason
is that for (k = 50,n = 100), the sample covariance matrix is ill-conditioned; this problem is
exacerbated in the bootstrap world where, in a given data set, there are always some repeated

observations.

Therefore, in addition to the qlr test statistic, we also consider the following two alternative test
statistics: first, the “modified method of moments” (MMM) test statistic TMMM defined in (9) and

second, the maximum test statistic 7)*** defined in (6).

12



For each scenario, we use 5,000 repetitions to compute empirical MNRPs. The results are

presented in Tables 3 and can be summarized as follows.

e For n = 100, the results for the glr test statistic are not available due to the numerical difficul-
ties described above. The other two test statistics yield satisfactory performance throughout,
though the one-step procedure is somewhat conservative when the distribution of the elements
is heavy-tailed (i.e., t3) or skewed (i.e., x3).

e For n = 500, both the two-step method and the one-step procedure yield satisfactory perfor-

mance for all test statistics and all distributions of the elements considered.
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A Appendix

In Appendix A.1, we establish a series of results that will be used in the proof of Theorem 2.1 in

Appendix A.2. The proof of Theorem 3.1 is then provided in Appendix A.3.

A.1 Auxiliary Results

Lemma A.1l. Suppose p, is a sequence in R¥ such that p, — pu with p € R" = (R_ U {—o0})".
For 7 € RF and T' a positive definite k x k real matriz, define

7,1T)= inf T—tlr,
furT) = _int i =l

where ||z||lr = (2 F:C) for = € R*. (Below, we may simply write ||z|| for ||z||r,.) Suppose
(Tn, T'n) — (7, T), where T" is positive definite. Then, fn(7n,Tn) — f(7,T), where

f(r,T)= inf |7 —t||r .
teRk:t<—p

PrOOF: We first argue that f,,(7,,1) — fu(7,T) — 0. To see this, first note, by strict convexity
and continuity of ||F%(7' — 1) as a function of ¢ € R¥, that there exists ¢ < —u, such that

inf |02 (r — )] = mm IIF2(T—t)H—|IF2(T—t*)II
teRF:t<—pp teRk:1<—

Next, since 0 < —pu,, note that

102 (7 — )| < T2 7] - (22)
Finally, observe that

(T Tn) = fu(r,T) = teRk{g_Mnré( —t)l\—tRk{g_#n\lféﬁ—t)ll
= min T3 (7 — )| — i (I )]
< Hr%—t*m—Hr%v—t*)u
< Hrm t) - rz(v—tm
= HF%(Tn >+r27—t> T3 (7 — )|
— |ITE (e — T)+r2r T2 (r —t8) —T2(r — 7))
< I3 (- T)H+HF2F 2 — Iillopl I3 (7 — £5)]]
< 02 (70 — DI + [[TAT5 = Ll T3 7]
— 0,

where the first equality follows from the definition of the relevant norms, the second equality follows

from strict convexity and continuity, the first inequality follows from the definition of ¢; and the

14



fact that t; < —pu,, the second inequality follows from the reverse triangle inequality, the third and
fourth equalities follow by inspection, the third inequality follows form the triangle inequality and
the definition of the operator norm, the fourth inequality follows from (22), and the convergence

to zero follows from the assumed convergences of 7,, and I';,.

Next, we argue that f,,(7,I') — f(7,T'). For this purpose, it is useful to assume, without loss of
generality, that p, = (u%l), /M(f)) and g = (uM, u?), where all components of u(!) are finite and
all components of 1 are infinite. Define ¢(!) to be a vector of ones with the same length as p(!);

define ¢(?) similarly. First note for 0 < ¢, — 0 sufficiently slowly and n sufficiently large that

inf |7 —t|lr > inf || —t||p
tERFt<—pin teRFt<— () 1)+ (en(D),00)
= inf |7 — (ent™, 0.2y —#]|p .

teRFt<—(uD,uY)

But, by identifying 7, in the preceding paragraph with 7 — (€, 0.(?)) here, we see that the final
expression equals

inf |7 —t|lr + o(1) . (23)
teRE:t<— () 1Y)

The same argument with e < 0 establishes that inf,cge,._, [T —#[|r in fact equals (23). To
complete the argument, we argue that
inf |7 —t|lr = inf ||7—t||r . (24)
teRkt<—(u) 1) teERF:t<—p

To establish this fact, given any subsequence ny, consider a further subsequence ny, such that /1,,(12,32

is strictly increasing. By the monotone convergence theorem, we see that

inf |7 —t|[r — inf ||7—¢[|p.
teRk;t<—(u<1>,#;2,j£) teRF:t<—p
Hence, (24) holds. m
Lemma A.2. Let W;,i = 1,...,n, be an i.i.d. sequence of random variables with distribution

P € P on R, where P satisfies (16). Then, M, (1 — j3) defined by (/) satisfies

lim inf I;lggp{u(P) eM,(1-8)}>1-8. (25)

n—oo

PRrROOF: Follows immediately from Theorem 3.7 in Romano and Shaikh (2012). m

Lemma A.3. Consider a sequence {P, € P : n > 1} where P is a set of distributions on RF
satisfying (16). Let Wy, ,i =1,...,n, be an i.i.d. sequence of random variables with distribution P,.

Suppose

forall1 < j <k. Then,
Po{M,(1-B)CRF} 1.
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PROOF: Note that we may write M, (1 — () as the set of all 4 € R¥ such that

< OiP) | VXiin = i (Ba)) | Vs (Pu) | K1 8, Pu)
T ovn 7;(Pn) o;(Pa) o;(Pn)

for all 1 < j < k. From Lemma 11.4.1 of Lehmann and Romano (2005), we see that

\/E(Wj,n - F‘j(Pn))

Sj,n

=0Op, (1) .
By assumption,
vV (Fn) NN
oj(Fn)

From Lemma 4.8 in Romano and Shaikh (2012), we see that

Sin P
— 8.
Uj(Pn)

Finally, note that
Ky (1= B, B) = O, (1)

because, using the Bonferroni inequality, it is asymptotically bounded above by ®~!(1—3/k), from
which the desired result follows. m

Lemma A.4. Let P’ be the set of all distributions on R* and let P be a set of distributions on RF
satisfying (16). For (P,Q) € P’ x P, define

_ L) — 1 _ o(P) _
(@ Py =max{ s { [*1ri0,@) = i\ Pl esp-0aa b |45 < 1) @) - a1}
where )
Xj —1;(P) Xj — i (P)
ri(\ P) = Ep <H> 1{‘ SN (26)
’ aj(P) aj(P)
and the norm ||-|| is the component-wise mazimum of the absolute value of all elements. Let {Q,, €
P :n>1} and {P, € P :n > 1} be such that p(P,, Q) — 0 and for some ) #1 C {1,...k},
;/Jﬁ()];i:; — —0; forall j € I and some 6; >0
and i
n 7,n .
= — —00 forallj¢lI.
o5 (Pn)
Then, for T, given by (6), (8) or (9), we have
lim sup sup }Jn(x, Any Br) — Jn(x, A, Qn)‘ =0. (27)

n—oo  gcRkE
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PRrROOF: Consider first the case where T, is given by (6). Note that

Vidin _ 0j(Pa) ViAjn
Sin Sin i ()

From Lemma 4.8 in Romano and Shaikh (2012), we see that

Sj n Py
— — 1.
oj(Fp)
Hence,
Ain
Vdin g —5; foralljel (28)
7,
and \
\/gj’n&—oo forall j &I . (29)
7,

It follows that

\/E(Wj,n - Mj(Pn)) +
Sin Sin

max
1<j<k

jel

Vidin) VA(Win — 1i(Pn))  ndja
) _max( ij,n J + S >+0Pn(1). (30)

Next, we argue that

- (ﬁ(Wj,n ~1i(@n) ﬁw-,n>
1<j<k

= Imax
jel

Sjn Sjn

Sjn Sin

(ﬁ(Wj,n - N](Qn)) + \/ﬁ)\j’n> + OQn(l) .

(31)
For this purpose, it suffices to show that the convergences in (28) and (29) also hold with P, replaced
by @». To see this, first note that by arguing as in the proof of Lemma 4.11 in Romano and Shaikh
(2012) we have that

lim limsupr;(\,Qn) =0 .

A—=00  n—oo

The convergence p(P,, Q,) — 0 implies further that

0j(Pn)
Oj(Qn)

—1 foralll1<j<Ek.

Since
ViAin _ 0j(@n) 05(Pn) VAjn
Sjn Sjm  05(@n) 05(Pr)
the desired conclusion follows. Finally, (27) now follows from (30) and (31) and by arguing as in

the proof of Lemma 4.11 in Romano and Shaikh (2012).

Now consider the case where T), is given by (8). Note that

T = inf Zn(£) 20 DX(Pa) S22 (t)
n teRkit<*\/ED_1(Pn))\n n() n ( n) n TL()
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where

—t,...,

> (VWi — pa(P))
20 = (M
D*(P,) = diag(0i(Pp),...,00(P)) .

Now suppose by way of contradiction that (27) fails. It follows that there exists a subsequence ny

along which the left-hand side of (27) converges to a non-zero constant and

QP,,) — QF, aswell as (32)

<W1,nk — M1 (Pnk)) Wk,nk - ;uk(Pnk
Ul(fzk) ’ ’ Uk(F%k)

!
))> 4 Z ~ N(0,9%) under P,, . (33)
Since
Dz(Pnk)S;f — I,

we have further that

P, _
Qn, D*(Py,)S,2 =¥ max{e — det(Q),0}; + Q* =Q . (34)

Note that along such a subsequence ny we also have that

A /nk/\jmk

— —0; foralljel (35)
Uj(Pnk) ’
and \
VU AG iy, .
Y= 5 —oo forall j&1. (36)
0 (Pny,)

Hence, by Lemma A.1 and the extended continuous mapping theorem (van der Vaart and Wellner,
1996; Theorem 1.11.1), we have that

Taad & g (7 —/Q7Y(Z — t) under Py, . (37)
teRF:t<—§
Note that a similar result under slightly stronger assumptions could be established using, for exam-
ple, Lemma S.1 in Bugni et al. (2012). Moreover, by Chow and Teicher (1978, Lemma 3, p.260),

we have that

sup | Py {7959 < 2} — P{ inf  (Z-t)QNZ-t) < x} -0,

zeR teRk:t<—§

since the distribution of inf,cpryc_5(Z —t)'Q71(Z —t) is continuous everywhere except possibly at

zero and

P AT < 0} — P{Z < =5} = p{ inf  (Z-t)QN(Z-1t)< o} .
teRF:t<—4§

Next, note that by arguing as above it follows from the assumed convergence p(P,,, @y, ) — 0 that
(32) — (36) all hold when P,, is replaced by @Q,,. Hence, by the triangle inequality, we see that

along ny, the lefthand-side of (27) must converge to zero, from which the desired result follows.
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Finally, consider the test statistic (9), for which the argument is easier. For example, the above
argument for (8) can be used with €, replaced by the identity, so that the convergence (37) holds
with Q replaced by the identity. m

Lemma A.5. Consider a sequence {P, € P : n > 1} where P is a set of distributions on RF
satisfying (16). Let Wy, ;,i = 1,...,n, be an i.i.d. sequence of random variables with distribution P, .
Suppose that for some ) # 1 C {1,...k},

\/ﬁuj(Pn)

W — —0; forall j €I and some §; >0

and

— —oo forallj ¢ 1.
Then,
Pof{T, > J, (1 —a+ B, u(Py), Py} = a— 8.
PRrROOF: Let P’ and p(P, Q) be defined as in Lemma A.4. Trivially,
P{P,eP}—1.
From Lemma 4.8 in Romano and Shaikh (2012), we see that

Py
—0.

‘ Sin
max —1
1<5<klo;(Pp)

From Lemma 4.9 in Romano and Shaikh (2012), we see that

- PTL

It follows from Lemma 4.12 in Romano and Shaikh (2012) that
A Pn

p(Pp, P,) =0 .

The desired result now follows by applying Lemma A.4 with A, = u(P,) and Theorem 2.4 in
Romano and Shaikh (2012). m

A.2 Proof of Theorem 2.1

Suppose by way of contradiction that (3) fails. It follows that there exist a subsequence nj and
n > « such that

There are two cases to consider.
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First, consider the case where there exists a further subsequence (which, by an abuse of notation,

we continue to denote by ny) such that

\/ﬁkﬂj (Pnk )

Lk dy Tkl oo
Jj(Pnk)

for all 1 < j < k. Then, by Lemma A.3, we see that
P M, (1-B)CRF} 1.

Hence,
EPnk [¢nk] — 0 )
contradicting (38).

Second, consider the case where there exists a further subsequence (which, by an abuse of
notation, we continue to denote by ny) and ) # I C {1,...k} such that

\/ﬁkﬂj (Pnk) _

—d; for all j € I and some §; > 0
Uj(Pnk) ’ !

and

\/TTkMJ' (P’ﬂk)

gj (Pnk)
Next, recall the definition of é,(1 — o+ ) in (14) and note that

— —oo forallj¢1I.

EPnk. [P, ] < Py {Tnk > Cp(1—a+ /B)}
< Pnk {Tnk > J;kl(l —a+ 67N(Pnk)7 Pnk)} + Pnk {N(Pnk) ¢ Mnk(l - 6)} .
Then, by Lemmas A.2 and A.5, we have that
limsupEp, [¢n,] <o,
k—o0

contradicting (38). m

A.3 Proof of Theorem 3.1

Follows immediately from Theorem 2.1 by identifying the distribution of g(X;, #) under P € P and
0 € Oy(P) in the present context with the distribution of W; under P in Theorem 2.1. m
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Table 1: Empirical maximum null rejection probabilities (MNRPs), upper half, and empirical

average powers, lower half, of the AB-recommended procedure, the two-step procedure, and the

one-step procedure. The nominal level is « = 5% and the sample size is n = 100. All results are
based on 10,000 repetitions when k£ = 2,4 and on 5,000 repetitions when k& = 10.

k=2 k=4 k=10
Test Dist HO/Hl QNeg Qzero QPos QNeg Qzero QPos Q]\/eg QZero QPos
AB-Rec  N(0,1) Hy 53 5.1 4.9 53 50 5.1 5.8 5.9 5.6
Two-Step N(0,1)  Hp 50 4.8 45 51 49 5.0 5.3 5.2 5.4
One-Step N(0,1)  Hy 52 51 4.9 49 50 5.1 5.2 4.9 5.3
AB-Rec ts Ho 6.2 6.2 59 57 59 5.7 5.4 5.5 5.3
Two-Step 13 Hy 56 5.7 5.6 53 5.7 5.4 5.7 5.6 5.6
One-Step ts Ho 52 6.1 5.7 47 53 5T 5.3 5.2 5.7
AB-Rec X3 Ho 52 49 5.1 53 48 49 5.8 59 6.0
Two-Step X3 Hy 4.8 44 48 51 47 48 5.6 5.3 5.7
One-Step X3 Hy 46 49 5.1 49 50 5.0 5.3 4.9 5.5
AB-Rec  N(0, H; 641 681 714 59.1 66.6 77.5 54.7  63.6 78.9
Two-Step N(0, H; 620 651 66.4 56.1 60.6 74.4 51.0 54.8 75.6
One-Step  N(0, H; 527 61.1 642 41.3 504 726 239 326 684
AB-Rec ts H; 681 724 752 63.9 715 79.5 58.9 68.2 80.4
Two-Step 13 H; 66.0 69.1 710 61.1 66.1 76.6 54.9 589 77.4
One-Step ts H; 617 66.2 68.8 46.7 57.2 74.9 27.6 377 715
AB-Rec X3 H; 693 764 779 63.1 745 82.4 57.8  69.8 82.6
Two-Step X3 H, 676 73.7 743 61.0 70.8 80.1 55.5  63.7  80.7
One-Step X3 H; 637 701 717 46.9 59.5 77.9 26.1 372 735
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Table 2: Empirical average powers of the AB-recommended procedure and the two-step procedure
and empirical “size-corrected” average powers of the two-step procedure. The nominal level is
a = 5% and the sample size is n = 100. Empirical (size-corrected) average powers are based on
10,000 repetitions.

k=2 k=4
Test Dist HO/Hl QNeg Qzero Qpos QNeg Qzero QPos

AB-Rec N(0,1) Hy 64.1 681 714 99.1 66.6 77.5
Two-Stepse N (0,1) H, 63.3 66.3 67.8 56.7 62.1 75.2
Two-Step  N(0,1) Hy 62.0 65.1 664 56.1 60.6 74.4

AB-Rec t3 H, 681 724 752 639 715 795
Two-Stepse 13 H, 675 702 724 617 670 77.3
Two-Step ts H, 660 69.1 710 61.1 66.1 76.6
AB-Rec X3 H, 693 764 77.9 63.1 745 824
Two-Stepse X3 Hy 69.0 748 756  61.8 718 80.6
Two-Step X3 H, 676 737 743  61.0 70.8 80.1

Table 3: Empirical maximum null rejection probabilities of the two-step procedure and the one-step
procedure based on various test statistics. The nominal level is a = 5% and the covariance matrix

is Qzero. All results are based on 5,000 repetitions.

k = 50,n =100 k = 50,n = 500
Test Dist Ho/H; T TMMM Tmax A TMMM Tmax
Two-Step N(0,1) Hy NA 4.9 5.1 4.9 4.8 5.1
One-Step N(0,1) Hy NA 4.5 4.9 5.2 5.1 5.2
Two-Step  t3 Hy NA 4.3 44 44 4.7 4.9
One-Step t3 Hy NA 2.9 2.1 4.7 4.5 4.0
Two-Step X3 Hy NA 4.5 4.7 5.2 5.2 5.1
One-Step X3 Hy NA 3.0 4.3 4.9 5.0 5.2
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S.1 The Gaussian Problem

In this section, we assume that W = (Wy,..., W) ~ P € P = {N(u,%) : p € R¥} for a known
covariance matrix . In this setting, we may equivalently describe the problem of testing (1) as
the problem of testing

Hy:peQpversus Hy : € Qy (S.1)

where
Qo={p: pj<0forl<j<k} (S5.2)

and Q; = RF \ o. Here, it is possible to obtain some exact results, so we focus on tests ¢, =
Gn(Wh,...,W,) of (S.1) that satisfy

sup Ep[p,] < « (S.3)
HEQQ

for some pre-specified value of o € (0,1) rather than (3). In Section S.1 below, we first establish
an upper bound on the power function of any test of (S.1) that satisfies (S.3) by deriving the
most powerful test against any fixed alternative. We then describe our two-step procedure for

testing (S.1) in Section S.2. Proofs of all results can be found in the Appendix.

Before proceeding, note that by sufficiency we may assume without loss of generality that n = 1.
Hence, the data consists of a single random variable W distributed according to the multivariate
Gaussian distribution with unknown mean vector u € R* and known covariance matrix 3. For
1 < j <k, we will denote by W; the jth component of W and by p; the jth component of u.
Note further that, because ¥ is assumed known, we may assume without loss of generality that
its diagonal consists of ones; otherwise, we can simply replace W; by W; divided by its standard

deviation.

S.1 Power Envelope

In this subsection only, we assume further that > is invertible.

Below we calculate the most powerful (MP) test of u € € satisfying (S.3) against a fixed
alternative yu = a, where a € ;. The power of such a test, as a function of a, provides an upper
bound on the power function of any test of (S.1) satisfying (S.3) and is, therefore, referred to as
the power envelope function. In Andrews and Barwick (2012a,b), numerical evidence is given to
justify their conjecture of how to calculate the MP test of u € Qq satisfying (S.3) against y = a and
hence how to calculate the power envelope function. Theorem S.1.1 below verifies the claim made
by Andrews and Barwick (2012a). Note that the power of the MP test of u € Qq satisfying (S.3)

against 4 = a depends on a through its “distance” from )y in terms of the Mahanolobis metric
d(z,y) = /(z = y)E" 1z —y), ic,

inf \/{(u—ays (u—a)} . (S4)

HEQ




Theorem S.1.1. Let W be multivariate normal with unknown mean vector p and known covariance
matriz 3. For testing u € Qo against the fived alternative up = a, where a € 1, the MP test
satisfying (S.3) rejects for large values of T = W'S~Y(a — ji), where

f=argmin(p — a)’S 7 (- a) .
HEQ

In fact, the distribution which puts mass one at the point [ is least favorable, and the critical value

at level o can be determined so that

Pi{T >ci_a}=a .

Under p = [,
E[T] = @Y '(a-p)
VarlT] = (p—a)X ' (a—a),
s0
loa=AYYa-p)+21-aV(i—a)S @ —a),

where z1_q 15 the 1 — a quantile of the standard normal distribution. Moreover, the power of this

test is given by

1-0 (21— VE—a)S 1 (a—0)) |

where ®(-) denotes the standard normal c.d.f.

Since the most powerful tests vary as a function of the vector a, it follows that there is no
uniformly most powerful test. Furthermore, as argued in Lehmann (1952), the only unbiased test
is the trivial test whose power function is constant and equal to «. Invariance considerations do
not appear to lead to any useful simplification of the problem either; also see Andrews (2012) for

some negative results concerning similarity.

Remark S.1.1. Note that T = WS~ !(a—f) in Theorem S.1.1 is a linear combination di<j<k GWi
of the Wy,...,Wy. Even if all components of a are positive, depending on ¥, i may not equal
zero. One might, therefore, suspect that the test described in Theorem S.1.1 does not satisfy (S.3).
However, the proof of the theorem shows that if i has any components that are negative, then the
corresponding coefficient of W; in T" must be zero; components of fi that are zero have corresponding

coefficient of W; in T' that are nonnegative. m

S.2 A Two-Step Procedure

There are, of course, many ways in which to construct a test of (S.1) that controls size at level a. For
instance, given any test statistic 7' = T (W71, ..., W) that is nondecreasing in each of its arguments,

we may consider a test that rejects Hy for large values of T'. Note that, for any given fixed critical



value ¢, P,{T(W1,...,Wy) > c} is a nondecreasing function of j. Therefore, if ¢ = ¢1_, is chosen
to satisfy
PO{T(WL s aWk) > Cl—a} <a,

then the test that rejects Hy when T' > ¢1_ is a level « test. A reasonable choice of test statistic T
is the likelihood ratio statistic, which is given by

T = inf (W= p)/S7 (W - )} . (S.5)
nello

By analogy with (S.4) and Theorem S.1.1, rejecting for large values of the “distance” of W to Qg
is intuitively appealing. It is easy to see that such a test statistic 7' is nondecreasing in each of its

arguments.

A second choice of monotone test statistic is the “modified method of moments” test statistic

k
T=> W 1{W; >0} .

j=1
A further choice of monotone test statistic is the maximal order statistic 7' = max{W1,..., Wy}.
For any given choice of monotone test statistic, a critical value ¢;_, may be determined as the
1 — a quantile of the distribution of 7' when (W1, ..., W)’ is multivariate normal with mean 0 and
covariance matrix Y. Unfortunately, as k increases, so does the critical value, which can make it
difficult to have any reasonable power against alternatives. The main idea of our procedure, as well
as that of Andrews and Barwick (2012a), is to essentially remove from consideration those f; that
are “negative.” If we can eliminate such p; from consideration, then we may use a smaller critical

value with the hopes of increased power against alternatives.

Using this reasoning as a motivation, we may use a confidence region to help determine which p;
are “negative.” To this end, let M (1 — ) denote an upper confidence rectangle for all the p;
simultaneously at level 1 — . Specifically, let

M(1-p) = {peR": max (uj = Wy) <K (1-B)} (S.6)
= {peRF:ip; <W;+ K Y1-8) forall 1 <j <k},

where K~1(1 — j3) is the 1 — 3 quantile of the distribution

- W) <
K(2) = P { max (n; — W) <}

Note that K(-) depends only on the dimension k£ and the underlying covariance matrix X. In
particular, it does not depend on the pj, so it can be computed under the assumption that all

w; = 0. By construction, we have for any u € R* that
PAne M1-8)}=1-5.

The idea is that with probability at least 1 — 5, we may assume that under the null hypothesis,
w in fact will lie in Q¢ N M (1 — B) rather than just Q. Instead of computing the critical value



under p = 0, the largest value of p in €, we may, therefore, compute the critical value under i, the
“largest” value of p in the (data-dependent) set Qo N M (1— ). It is straightforward to determine [

explicitly. In particular, & has jth component equal to
fij = min{W; + K~'(1 - 3),0} . (S.7)

But, to account for the fact that g may not lie in M (1— /) with probability at most 3, we reject Hy
when T' (W1, ..., W) exceeds the 1 — « +  quantile of the distribution of 7" under fi rather than
the 1 — « quantile of the distribution of 7" under fi. Such an adjustment is in the same spirit as the
“size correction factor” in Andrews and Barwick (2012a), but requires no computation to determine;
see Remark S.1.5 for further discussion. The following theorem establishes that this test of (S.1)
satisfies (S.3).

Theorem S.1.2. Let T(W1,...,Wy) denote any test statistic that is nondecreasing in each of its
arguments. For i € R¥ and v € (0,1), define

b(y,p) = inf{x e R: P,{T(Wy,...,Wy) <} >~} .
Fiz 0 < B < . The test of (S.1) that rejects Hy if T > b(1 — o + B3, i) satisfies (S.3).

Remark S.1.2. Although we are unable to establish that the left-hand side of (S.3) equals a, we
are able to establish that the left-hand side of (S.3) is at least a — 3. To see this, simply note that
b(]' _a+B7ﬂ) S b(]' —05+5,0), S0

sup PAT >b(1—a+B,0)} > P{T>b(1-a+5,0)}=a—-5.m

HEQ
Remark S.1.3. As emphasized above, an attractive feature of our procedure is that the “largest”
value of 1 in QpN M (1— /) may be determined explicitly. This follows from our particular choice of
initial confidence region for u, namely, from its rectangular shape. If, for example, we had instead
chosen M (1— ) to be the usual confidence ellipsoid, then there might not even be a “largest” value

of pin Qo N M(1 — B), and one would have to compute

sup b(l—a+p,u) .
HEQONM (1-1)

This problem persists even if the initial confidence region is chosen by inverting tests based on the
likelihood ratio statistic (S.5) despite the resulting confidence region being monotone decreasing in

the sense that if = lies in the region, then so does y whenever y; < x; forall 1 <j <k. m
Remark S.1.4. In some cases, it may be desired to test the null hypothesis that p € Qg, where
Qoz{uz,uj:OforjEJl,ujSOforjEJz}

and J; and Jy form a partition of {1,...,k}. Such a situation may be accommodated in the

framework described above simply by writing p; = 0 as p;j < 0 and —pu; < 0, but the resulting



procedure may be improved upon by exploiting the additional structure of the null hypothesis.
In particular, Theorem S.1.2 remains valid if 7' is only required to be nondecreasing in its |Js]
arguments with j € Jo and i is replaced by the vector whose jth component is equal to 0 for j € J;
and min{W, + K (1 — 3),0} for j € Ja, where K~'(1— ) is the 1 — 3 quantile of the distribution
K(z) = Pu{max(,uj - W;) < x} .;
JjeJ2

Remark S.1.5. In the context of the Gaussian model considered in this section, it is instructive
for comparison purposes to consider a parametric counterpart to the nonparametric method of
Andrews and Barwick (2012a). To describe their approach, fix £ < 0. Let fi be the k-dimensional
vector whose jth component equals zero if W; > k and —oo otherwise (or, for practical purposes,
some very large negative number). Define the “size correction factor”

N = inf{n >0: sup P{T >b(1 —a,f1) +n} < a} . (S.8)
HEQ0

The proposed test of (S.1) then rejects Hy if T > b(1—«, f1)+7. The addition of 7 is required because,
in order to allow the asymptotic framework to better reflect the finite-sample situation, the authors
do not allow k to tend to zero with the sample size n. Note that the computation of 77 as defined in
(S.8) is complicated by the fact that there is no explicit solution to the supremum in (S.8). One must,
therefore, resort to approximating the supremum in (S.8) in some fashion. Andrews and Barwick
(2012a) propose to approximate sup,cq, Pu{T" > b(1 — o, i) + n} with sup o P {T > b(1 —
a, fi) + 1}, where Qy = {—o0,0}*. Andrews and Barwick (2012a) provide an extensive simulation
study, but no proof, in favor of this approximation. Even so, the problem remains computationally
demanding and, as a result, the authors only consider situations in which £ < 10 and a = .05. In
contrast, our two-step procedure is simple to implement even when k is large, as it does not require
optimization over g, and has proven size control for any value of a (thereby allowing, among other
things, one to compute a p-value as the smallest value of « for which the null hypothesis is rejected).
In the nonparametric setting considered below, where the underlying covariance matrix is also
unknown, further approximations are required to implement the method of Andrews and Barwick
(2012a). See Remark 2.6 for related discussion. m

Remark S.1.6. Let ¢, 3 be the test as described in Theorem S.1.2. Similar to the approach of
Andrews and Barwick (2012a), one can determine /5 to maximize (weighted) average power. In
the parametric context considered in this section, one can achieve this exactly modulo simulation
error. To describe how, let u1,. .., ug be alternative values in €2y, and let wy, . .., wqy be nonnegative

weights that add up to one. Then, 5 can be chosen to maximize

d
> Wik, [das]
=1

This can be accomplished by standard simulation from N (u;,3) and discretizing 8 between 0 and «.
The drawback here is the specification of the u; and w;. In our simulations, we have found that a

reasonable choice is simply § = «/10. =



A Appendix

PrRoOOF OF THEOREM S5.1.1. For 1 < j <k, let e; be the jth unit basis vector having a 1 in the

jth coordinate. To determine fi for the given a, we must minimize

over u € y. Note that
Of(p)

— =2 —a)S e, .
8ﬂj J

First of all, we claim that the minimizing i cannot have all of its components negative. This
follows because, if it did, the line joining the claimed solution and a itself would intersect the
boundary of Qy at a point with a smaller value of f(u). Therefore, the solution i must have at

least one zero entry.

Suppose that fi is the solution and that fi; = 0 for j € J, where J is some nonempty subset of
{1,...,k}. Let f;(p) = f(p) viewed as a function of p; with j ¢ J and with p; = 0 for j € J.
Then, the solution to the components fi; with j ¢ J (if there are any) must be obtained by setting

partial derivatives equal to zero, leading to the solution of the equations
(n—a)Sle;=0Vj¢J

with p; fixed at 0 for j € J. Now, the MP test for testing @ against a rejects for large values
of W'$~1(a — u), which is a linear combination of Wy,..., Wy. The coefficient multiplying W; is

632*1(a —u). But for j ¢ J, this coefficient is zero by the gradient calculation above.

Next we claim that for j = 1,..., k, the coefficient of W} is nonnegative. Fix j. Consider f(1u)
as a function of u; alone with the other components fixed at the claimed solution for j. If the

derivative with respect to p; at 0 were positive, i.e.,
(i—a)¥7te; >0,

then the value of ;1; could decrease and result in a smaller minimizing value for f(u). Therefore, it
must be the case that

(a—p)sle; >0
the left-hand side is precisely the coefficient of W;.

Thus, the solution i has the property that, for testing i1 against a, the MP test rejects for large
Zl<j<k ¢jWj such that fi; = 0 implies ¢; > 0 and fi; < 0 implies ¢; = 0. This property allows us
to prove that [ is least favorable. Indeed, if the critical value ¢ is determined so that the test is

level o under fi, then for u € Q,

PM{Z ciW; > c} < PO{Z c;iW; > c} = Pﬂ{z ciW; > c}.

Jj€J jeJ j€J



The first inequality follows by monotonicity and the second one by the fact that fi; = 0 for j € J.
The least favorable property now follows byLehmann and Romano (2005, Theorem 3.8.1).

The remainder of the proof is obvious. m

PROOF OF THEOREM S.1.2 First note that b(~y, u) is nondecreasing in p, since 7" is nondecreasing
in its arguments. Fix any p with p; < 0. Let E be the event that 4 € M (1 — ). Then, the Type I

error satisfies
P, {reject Hyo} < P,{E°} + P,{E N {reject Ho}} = B+ P,{E N {reject Hy}} .

But when the event E occurs and Hj is rejected — so that 7' > b(1 — a + 3, i) — then the event
T > b(1—a+ B, u) must occur, since b(1 —a+ 3, u) is nondecreasing in p and p < ft when E occurs.
Hence, the Type I error is bounded above by

B+PAT>b(1-—a+B,p)}<B+(1-(1-a+p)=a.m
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