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Abstract

This paper considers the problem of testing a finite number of moment inequalities. We

propose a two-step approach. In the first step, a confidence region for the moments is constructed.

In the second step, this set is used to provide information about which moments are “negative.”

A Bonferonni-type correction is used to account for the fact that with some probability the

moments may not lie in the confidence region. It is shown that the test controls size uniformly

over a large class of distributions for the observed data. An important feature of the proposal is

that it remains computationally feasible, even when the number of moments is large. The finite-

sample properties of the procedure are examined via a simulation study, which demonstrates,

among other things, that the proposal remains competitive with existing procedures while being

computationally more attractive.
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1 Introduction

Let Wi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distribution P ∈ P on R
k and

consider the problem of testing

H0 : P ∈ P0 versus H1 : P ∈ P1 , (1)

where

P0 = {P ∈ P : EP [Wi] ≤ 0} (2)

and P1 = P \ P0. Here, the inequality in (2) is intended to be interpreted component-wise and

P is a “large” class of possible distributions for the observed data. Indeed, we will only impose

below a mild (standardized) uniform integrability requirement on P. Our goal is to construct tests

φn = φn(W1, . . . ,Wn) of (1) that are uniformly consistent in level, i.e.,

lim sup
n→∞

sup
P∈P0

EP [φn] ≤ α (3)

for some pre-specified value of α ∈ (0, 1).

In the interest of constructing tests of (1) that not only satisfy (3), but also have good power

properties, it may be desirable to incorporate information about which components of EP [Wi]

are “negative.” Examples of tests that incorporate such information implicitly using subsampling

include Romano and Shaikh (2008) and Andrews and Guggenberger (2009), whereas examples of

tests that incorporate such information more explicitly include the “generalized moment selec-

tion” procedures put forward by Andrews and Soares (2010), Canay (2010), and Bugni (2011).

Andrews and Barwick (2012a) propose a refinement of “generalized moment selection” termed

“recommended moment selection” and discuss four reasons why such an approach is preferable.

Therefore, our theoretical and numerical comparisons will be mainly restricted to the method of

Andrews and Barwick (2012a); extensive comparisons with previous methods are already available

in that paper.

Our two-step solution to this problem is similar in spirit to the recommended moment selection

approach. In the first step, we construct a confidence region for EP [Wi] at some “small” significance

level β ∈ [0, α]. In the second step, we then use this set to provide information about which

components of EP [Wi] are “negative” when constructing tests of (1). Importantly, similar to the

approach of Andrews and Barwick (2012a), we account in our asymptotic framework for the fact

that with some probability, EP [Wi] may not lie in the confidence region, using a Bonferonni-type

correction; see Remark 2.4 for further discussion.

Our testing procedure and those just cited are related to Hansen (2005), who uses a similar two-

stage approach for the same problem, but does not account for the fact that with some probability,

EP [Wi] may not lie in the confidence region. He instead assumes that β tends to zero as n tends
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to infinity and only establishes that his test is pointwise consistent in level instead of the stronger

requirement (3). The importance of the distinction between (3) and this weaker requirement has

been emphasized in the recent literature on inference in partially identified models; for exam-

ple, see Imbens and Manski (2004), Romano and Shaikh (2008), and Andrews and Guggenberger

(2010). Another important feature of our approach stems from our choice of confidence region

for EP [Wi]. Through an appropriate choice of confidence region for EP [Wi], our approach remains

computationally feasible even when the number of components of EP [Wi], denoted by k, is large.

In particular, unlike Hansen (2005), we are able to avoid having to optimize over the confidence

region numerically.

As described in Remark 2.6, similar computational problems are also present in the approach put

forward by Andrews and Barwick (2012a). As a result, they employ computational shortcuts whose

validity is only justified using simulation. Even using these shortcuts, they must restrict attention

to situations in which k ≤ 10, which precludes many economic applications, including entry models,

as in Ciliberto and Tamer (2009), where k = 2m+1 when there are m firms, or dynamic models

of imperfect competition, as in Bajari et al. (2007), where k may even be as large as 500. For

situations in which k ≤ 10 and α = .05, both procedures are equally easy to implement; however,

for situations in which α 6= .05, our procedure is considerably easier to implement even when k ≤ 10.

This feature allows us, for example, to construct p-values more easily than Andrews and Barwick

(2012a). On the other hand, in contrast to Andrews and Barwick (2012a), we are unable to establish

that the lefthand-side of (3) equals α and expect that it is strictly less that α, though we can argue

it is not much less than α; see Remark 2.2. Even so, for the situations when both procedures are

available, we find in a simulation study that our procedure is nearly as powerful as the one proposed

by Andrews and Barwick (2012a).

Other related literature includes Loh (1985), who also uses a similar two-stage approach in the

context of some parametric hypothesis testing problems, but, like Hansen (2005), does not account

for the fact that with some probability the nuisance parameter may not lie in the confidence

region. It is also related to Berger and Boos (1994) and Silvapulle (1996), who improve upon Loh

(1985) by introducing a Bonferonni-type correction similar to ours. This idea has been used by

Stock and Staiger (1997) to construct a confidence region for the parameters of a linear regression

with possibly “weak” instrumental variables. It has also been used in a nonparametric context by

Romano and Wolf (2000) to construct a confidence interval for a univariate mean that has finite-

sample validity and is “efficient” in a precise sense. Finally, this idea is introduced in a general

setting by McCloskey (2012), though the assumptions there technically preclude moment inequality

problems; see McCloskey (2012, Section 2.1.3) for further discussion.

The remainder of the paper is organized as follows. In Section S.1 of the online supplement to this

paper, we first consider the testing problem in the simplified setting where P = {N(µ,Σ) : µ ∈ R
k}

for a known covariance matrix Σ. Here, it is possible to illustrate the main idea behind our
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construction more clearly and also to obtain some exact results. In particular, we establish an upper

bound on the power function of any level-α test of (1) by deriving the most powerful test against any

fixed alternative. This result confirms the bound suggested by simulation in Andrews and Barwick

(2012b, Section 7.3). We consider the more general, nonparametric setting in Section 2. We apply

our main results to the problem of constructing confidence regions in partially identified models

defined by a finite number of moment inequalities in Section 3. Section 4 sheds some light on

the behavior of our procedures in finite samples via a simulation study, including an extensive

comparison of our procedure with the one proposed recently by Andrews and Barwick (2012a).

Proofs of all results can be found in the Appendix.

2 The Nonparametric Multi-Sided Testing Problem

Let Wi, i = 1, . . . , n, be an i.i.d. sequence of random vectors with distribution P ∈ P on R
k and

consider the problem of testing (1). The unknown family of distributions P will be a nonparametric

class of distributions defined by a mild (standardized) uniform integrability condition, as described

in the main results below. Before proceeding, we introduce some useful notation. Below, P̂n denotes

the empirical distribution of the Wi, i = 1, . . . , n. The notation µ(P ) denotes the mean of P and

µj(P ) denotes the jth component of µ(P ). Let W̄n = µ(P̂n) and W̄j,n = µj(P̂n). The notation Σ(P )

denotes the covariance matrix of P and σ2
j (P ) denotes the variance of the jth component of P . The

notation Ω(P ) denotes the correlation matrix of P . Let Ω̂n = Ω(P̂n) and S2
j,n = σ2

j (P̂n). Finally,

let S2
n = diag(S2

1,n, . . . , S
2
k,n).

Our methodology incorporates information about which components of µ(P ) are “negative” by

first constructing a (nonparametric) upper confidence rectangle for µ at nominal level 1 − β. Our

bootstrap confidence region for this purpose is given by

Mn(1− β) =

{
µ ∈ R

k : max
1≤j≤k

√
n(µj − W̄j,n)

Sj,n
≤ K−1

n (1− β, P̂n)

}
, (4)

where

Kn(x, P ) = P

{
max
1≤j≤k

√
n(µj(P )− W̄j,n)

Sj,n
≤ x

}
. (5)

Next, a test statistic Tn is required such that large values of Tn provide evidence against H0.

For simplicity, below we consider several different test statistics of the form

Tn = T
(
S−1
n

√
nW̄n, Ω̂n

)

for some function T : Rk × (Rk)2 → R that is continuous in both arguments and weakly increasing

in each component of its first argument. As in Andrews and Barwick (2012a), other test statistics
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may be considered as well. In particular, we consider

Tmax
n = max

1≤j≤k

√
nW̄j,n

Sj,n
(6)

T qlr
n = inf

t∈Rk:t<0
Zn(t)

′Ω̂−1
n Zn(t) , (7)

where

Zn(t) =

(√
n(W̄1,n − t)

S1,n
, . . . ,

√
n(W̄k,n − t)

Sk,n

)

and the inequality in the infimum is interpreted component-wise. Following Andrews and Barwick

(2012a), we also consider an “adjusted” version of T qlr
n in which Ω̂n is replaced with

Ω̃n = max{ǫ− det(Ω̂n), 0} · Ik + Ω̂n ,

for some fixed ǫ > 0, with Ik denoting the k-dimensional identity matrix, i.e.,

T qlr,ad
n = inf

t∈Rk:t<0
Zn(t)

′Ω̃−1
n Zn(t) . (8)

This modification accommodates situations in which Ω(P ) may be singular. Finally, we also consider

the “modified method of moments” test statistic of Andrews and Soares (2010) defined as

Tmmm
n =

k∑

j=1

(√
nW̄j,n

Sj,n

)2

· 1{W̄j,n > 0} . (9)

We also require a critical value with which to compare Tn. For x ∈ R and λ ∈ R
k, let

Jn(x, λ, P ) = P
{
T
(
S−1
n

(√
n(W̄n − µ(P )

)
+ S−1

n

√
nλ, Ω̂n

)
≤ x

}
. (10)

Note that

P{Tn ≤ x} = Jn
(
x, µ(P ), P

)
. (11)

Importantly, for any x and P , Jn(x, λ, P ) is nonincreasing in each component of λ. It is natural to

replace P in the righthand-side of (11) with P̂n, but this approximation to the distribution of Tn

fails when P is on the “boundary” of the null hypothesis; for example, see Andrews (2000). On

the other hand, if µ(P ) were known exactly, then one could plug in this value for µ(P ) and replace

the final P in the right-hand side of (11) with P̂n. Obviously, µ(P ) is not known exactly, but we

may use the confidence region for µ(P ) defined in (4) to limit the possible values for µ(P ). This

idea leads us to consider the critical value defined by

ĉn(1− α+ β) = sup
λ∈Mn(1−β)∩Rk

−

J−1
n (1− α+ β, λ, P̂n) , (12)

where R− = (−∞, 0]. The addition of β to the quantile is necessary to account for the possibility

that µ(P ) may not lie in Mn(1 − β). It may be removed by allowing β to tend to zero with the
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sample size. However, the spirit of this paper, as well as Andrews and Barwick (2012a), is to

account for the selection of moments in order to achieve better finite-sample size performance; see

Remark 2.4 below for further discussion.

The calculation of ĉn(·) in (12) is straightforward because J−1
n (1−α+β, λ, P̂n) is nondecreasing

in each component of λ. It follows that the supremum in (12) is attained when λ = λ∗ has jth

component equal to the minimum of zero and the upper confidence bound for the µj , i.e.,

λ∗
j = min

{
W̄j,n +

Sj,nK
−1
n (1− β, P̂n)√

n
, 0

}
. (13)

Then,

ĉn(1− α+ β) = J−1
n (1− α+ β, λ∗, P̂n) . (14)

Since β ∈ (0, α), we define our test so that it fails to reject the null hypothesis not only whenever

Tn is less than or equal to the critical value defined above, but also whenever Mn(1− β) ⊆ R
k
−.

Formally, our test is, therefore, given by

φn = φn(α, β) = 1− 1

{{
Mn(1− β) ⊆ R

k
−
}
∪
{
Tn ≤ ĉn(1− α+ β)

}}
, (15)

where 1{·} denotes the indicator function. The following theorem shows that this test controls the

probability of a Type I error uniformly over P in the sense that (3) holds, as long as P satisfies a

mild (standardized) uniform integrability condition.

Theorem 2.1. Let Wi, i = 1, . . . , n, be an i.i.d. sequence of random vectors with distribution P ∈ P

on R
k. Suppose P is such that, for all 1 ≤ j ≤ k,

lim
λ→∞

sup
P∈P

EP

[(
Wj,1 − µj(P )

σj(P )

)2

1

{∣∣∣∣
Wj,1 − µj(P )

σj(P )

∣∣∣∣ > λ

}]
= 0 . (16)

Fix 0 ≤ β ≤ α. The test φn of (1) defined by (15) with Tn given by (6), (8) or (9) satisfies (3).

Remark 2.1. If, in addition to satisfying the requirements of Theorem 2.1, P is required to satisfy

infP∈P det(Ω(P )) > 0, then the conclusion of Theorem 2.1 holds when Tn is given by (7).

Remark 2.2. By arguing as in Remark S.1.2 in the online supplement to this paper, it is in fact

possible to show that the left-hand side of (3) is at least α− β, so that for small β, the test is not

overly conservative.

Remark 2.3. In some cases, the null hypothesis may be such that some components of EP [Wi] are

equal to zero rather than less than or equal to zero. That is, rather than testing that P belongs in

P0 given by (2), the problem is to test that P belongs to P̃0 given by

P̃0 = {P ∈ P : EP [Wj,1] = 0 for j ∈ J1, EP [Wj,1] ≤ 0 for j ∈ J2} ,
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where J1 and J2 form a partition of {1, . . . , k}. Such a situation may be accommodated in the frame-

work described above by writing EP [Wj,1] = 0 as two inequalities EP [Wj,1] ≤ 0 and −EP [Wj,1] ≤ 0.

Note that it may be possible to improve upon this approach by exploiting the additional structure

of the null hypotheses, as is done in Remark S.1.4 in the online supplement to this paper.

Remark 2.4. For β = βn tending to zero, it follows from our analysis that the test φ∗
n(βn), where

φ∗
n(β) = 1− 1

{{
Mn(1− β) ⊆ R

k
−
}
∪
{
Tn ≤ ĉn(1− α)

}}
,

satisfies

lim sup
n→∞

sup
P∈P0

EP

[
φ∗
n(βn)

]
≤ α

under the assumptions of Theorem 2.1. To see this, suppose that the assumptions of Theorem 2.1

hold. Let φn = φn(α, β) be defined as in (15). Fix any ǫ > 0. By monotonicity, we have for all

large enough n that Mn(1− βn) ⊆ Mn(1− ǫ). Hence, for all such n, we have that φ∗
n(βn) ≤ φ∗

n(ǫ).

Moreover, φn(α+ ǫ, ǫ) = φ∗
n(ǫ). It, therefore, follows from Theorem 2.1 that

lim sup
n→∞

sup
P∈P0

EP

[
φ∗
n(βn)

]
≤ lim sup

n→∞
sup
P∈P0

EP

[
φn(α+ ǫ, ǫ)

]
≤ α+ ǫ .

Since the choice of ǫ > 0 was arbitrary, the desired result follows. The test φ∗
n(βn) defined in this

way is similar to the “generalized moment selection” procedures of Andrews and Soares (2010),

Canay (2010), and Bugni (2011). On the other hand, the test φn defined by (15), which accounts

for the impact of the choice of β on the finite-sample behavior of the testing procedure, is more

similar to the procedure of Andrews and Barwick (2012a).

Remark 2.5. An “optimal” approach to choosing β is described in Remark S.1.6. We have found

that a reasonable simple choice is β = α/10. Further discussion is given in Section 4.

Remark 2.6. For the hypothesis testing problem considered in this section, Andrews and Barwick

(2012a) consider an alternative testing procedure that they term “recommended moment selection.”

In order to describe a version of their method based on the bootstrap, fix κ < 0. Let λ̂n be the

k-dimensional vector whose jth component equals zero if
√
nW̄j,n/Sj,n > κ and −∞ otherwise (or,

for practical purposes, some very large negative number). Define the “size correction factor”

η̂n = inf

{
η > 0 : sup

λ∈Rk:λ≤0

Jn(J
−1
n (1− α, λ̂n, P̂n) + η, λ, P̂n) ≥ α

}
. (17)

The proposed test is then given by

φn(α) = 1{Tn > J−1
n (1− α, λ̂n, P̂n) + η̂n} ,

where Tn is given by T qlr
n or T qlr,ad

n ; see (7) and (8). The addition of η̂n is required because, in

order to allow the asymptotic framework to better reflect the finite-sample situation, the authors

do not allow κ to tend to zero with the sample size n. As explained in Remark S.1.5 in the online
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supplement to this paper, determination of η̂n defined in (17) is computationally prohibitive, even

in a parametric setting. This remains true here, so the authors resort to an approximation to

the supremum in (17) analogous to the one described in Remark S.1.5. The authors provide an

extensive simulation study, but no proof, in favor of this approximation and restrict attention to

situations in which k ≤ 10 and α = .05. The authors also provide simulation-based evidence

to support a further approximation to η̂n that only depends on k and the smallest off-diagonal

element of Ω̂n. A data-dependent way of choosing κ similar to the way of choosing β described in

Remark S.1.6 is described as well.

3 Confidence Regions for Partially Identified Models

In this section, we consider the related problem of constructing a confidence region for identifiable

parameters that is uniformly consistent in level. Concretely, let Xi, i = 1, . . . , n, be an i.i.d. se-

quence of random variables with distribution P ∈ P on some general sample space S, where P is

again a nonparametric class of distributions defined by a mild (standardized) uniform integrability

requirement on P. We consider the class of partially identified models in which the identified set,

Θ0(P ), is given by

Θ0(P ) = {θ ∈ Θ : EP [g(Xi, θ)] ≤ 0} , (18)

where Θ is some parameter space (usually some subset of Euclidean space) and g : S × Θ → R
k.

Here, for each θ, g(·, θ) is a vector of k real-valued functions, and the inequality in (18) is intended to

be interpreted component-wise. We wish to construct random sets Cn = Cn(X1, . . . , Xn) satisfying

lim inf
n→∞

inf
P∈P

inf
θ∈Θ0(P )

P{θ ∈ Cn} ≥ 1− α (19)

for some pre-specified α ∈ (0, 1). As in Romano and Shaikh (2008), we refer to such sets as

confidence regions for identifiable parameters that are uniformly consistent in level. Note that in

this paper we will not consider the construction of confidence regions for the identified set itself; see

Chernozhukov et al. (2007), Bugni (2010), and Romano and Shaikh (2010) for further discussion

of such confidence regions.

As in Romano and Shaikh (2008), our construction will be based upon the duality between

constructing confidence regions and hypothesis tests. Specifically, we will consider tests of the null

hypotheses

Hθ : EP [g(Xi, θ)] ≤ 0 (20)

for each θ ∈ Θ that control the usual probability of a Type I error at level α. To this end, for each

θ ∈ Θ, let φn(θ) be the test of (20) given by the following algorithm.
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Algorithm 3.1.

(a) Set Wi = g(Xi, θ).

(b) Compute the bootstrap quantile K−1
n (1− β, P̂n), where Kn(x, P ) is given by (5).

(c) Using K−1
n (1− β, P̂n) from (b), compute Mn(1− β) via equation (4).

(d) Using K−1
n (1− β, P̂n) from (b), compute λ∗ via equation (13).

(e) Compute the bootstrap quantile ĉn(1 − α + β) = J−1
n (1 − α + β, λ∗, P̂n), where Jn(x, λ, P ) is

given by (10).

(f) Compute φn(θ) = φn, where φn is given by (15).

Consider

Cn = {θ ∈ Θ : φn(θ) = 0} . (21)

The following theorem shows that Cn satisfies (19). In the statement of the theorem, we denote by

µj(θ, P ) and σ2
j (θ, P ) the mean and variance, respectively, of gj(Xi, θ) under P .

Theorem 3.1. Let Xi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distribution

P ∈ P. Suppose P is such that, for all 1 ≤ j ≤ k,

lim
λ→∞

sup
P∈P

sup
θ∈Θ0(P )

EP

[(
gj(Xi, θ)− µj(θ, P )

σj(θ, P )

)2

1

{∣∣∣∣
gj(Xi, θ)− µj(θ, P )

σj(θ, P )

∣∣∣∣ > λ

}]
= 0 .

Then, Cn defined by (21) with Tn given by (6), (8) or (9) satisfies (19).

4 Simulation Study

The goal of this section is to study the finite-sample performance of our two-step procedure. For

the reasons mentioned in the introduction, the comparison with other procedures is reserved to the

newly-recommended procedure of Andrews and Barwick (2012a) (henceforth abbreviated as AB)

with certain details provided in Andrews and Barwick (2012b). In their notation, the preferred

procedure is the “recommended moment selection” (RMS) test based on
(
S2, ϕ

(1)
)
with data-

dependent tuning parameters κ̂ and η̂ and it is termed “qlr, ad/t-Test/κAuto”.

We compare finite-sample performance both in terms of maximum null rejection probability

(MNRP) and average power for a nominal level of α = 0.05. The design of the simulation study is

equal to the one used by AB for their Table III.

We focus on results for k = 2, 4, and 10. For each value of k, we consider three correlation

matrices: ΩNeg,ΩZero, and ΩPos. The matrix ΩZero equals Ik (that is, the identity matrix). The

matrices ΩNeg and ΩPos are Toeplitz matrices with correlations on the diagonals (as they go away

from the main diagonal) given by the following. For k = 2: ρ = −0.9 for ΩNeg and ρ = 0.5

for ΩPos. For k = 4: ρ = (−0.9, 0.7,−0.5) for ΩNeg and ρ = (0.9, 0.7, 0.5) for ΩPos. For k = 10:
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ρ = (−0.9, 0.8,−0.7, 0.6,−0.5, 0.4,−0.3, 0.2,−0.1) for ΩNeg and ρ = (0.9, 0.8, 0.7, 0.6, 0.5, . . . , 0.5)

for ΩPos.

For k = 2, the set of µ vectors M2(Ω) for which asymptotic average power is computed in-

cludes seven elements: M2(Ω) = {(µ1, 0), (µ2, 1), (µ3, 2), (µ4, 3), (µ5, 4), (µ6, 7), (µ7, µ7)}, where µj

depends on Ω. For brevity, the values of µj in M2(Ω) and the sets Mk(Ω) for k = 4, 10 are given

in Section 7.1 of Andrews and Barwick (2012b). We point out, however, that we reverse the signs

of the mean vectors used by AB, since in our framework the inequality signs are reversed in the

null and alternative hypotheses.

To showcase the value, in terms of power properties, of incorporating information about which

components of EP [Wi] are “negative”, we also include a one-step procedure which ignores such

information. This one-step procedure simply uses J−1
n (1−α, λ, P̂n) with the “least favorable” value

of λ, i.e., λ = 0, as the critical value for the test statistic. Equivalently, it can be described as

our two-step procedure using β = 0. Such an approach is expected to have higher power when

all non-positive moments are equal to zero (or at least very close to zero) but is expected to have

reduced power when some non-positive moments are far away from zero.

AB find that a bootstrap version of their test has better finite-sample size properties than a

version based on asymptotic (normal) critical values. Therefore, we only implement bootstrap

versions, both for the qlr, ad/t-Test/κAuto test and our two-step and one-step procedures. All

bootstraps use B = 499 resamples; this is also the case for the first step of our two-step procedure.

The two-step procedure uses β = 0.005 for the construction of the confidence region in the first

step. Using larger values of β leads to somewhat reduced average power in general. Lower values

of β do not make a noticeable difference in terms of average power, but require a larger number of

bootstrap resamples in the first step. (The reason is that the number of bootstrap samples needed

to accurately estimate a β quantile is inversely related to β, for small values of β).

Unlike Andrews and Barwick (2012b), we do not consider any singular covariance matrices Ω.

Therefore, the qlr, ad/t-Test/κAuto test as well as our two-step and one-step procedures use, for sim-

plicity and reduced computational burden, the “unadjusted” quasi-likelihood ratio test statistic (7)

rather than the “adjusted” version (8). For the scenarios that we consider, this does not make any

difference.

4.1 Maximum Null Rejection Probabilities

Following AB, to ensure computational feasibility, empirical MNRPs are simulated as the maximum

rejection probability over all µ vectors that are composed only of zero and −∞ entries, containing

at least one zero entry. So for dimension k, there are a total of 2k − 1 null vectors to consider. It is
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worth emphasizing, however, that it has not been proven that the maximum over these 2k − 1 null

vectors equals the maximum over all µ vectors satisfying the null.

For each scenario, we use 10,000 repetitions to compute empirical MNRPs. The results are

presented in the upper half of Table 1 and can be summarized as follows; from here on, we use the

term AB-Rec to denote the recommended procedure of AB, i.e., the qlr, ad/t-Test/κAuto test.

• All procedures achieve a satisfactory performance.

• The empirical MNRP of the AB-Rec procedure is generally somewhat higher compared to

the two-step and one-step procedures.

• The empirical MNRPs are somewhat higher when the distribution of the elements is heavy-

tailed (i.e., t3) or skewed (i.e., χ2
3) versus standard normal.

4.2 Average Powers

Empirical average powers are computed over a set of m different alternative µ vectors, with m = 7

when k = 2, m = 24 when k = 4, and m = 40 when k = 10. For a fixed k, the specific set of

µ vectors depends on the correlation matrix Ω ∈ {ΩNeg,ΩZero,ΩPos}; see Andrews and Barwick

(2012b, Subsection 7.2) for the details. For each scenario, we use 10,000 repetitions to compute

empirical average powers when k = 2 and k = 4, and 5,000 repetitions to compute empirical average

powers when k = 10. Unlike AB, we first report “raw” empirical average powers instead of size-

corrected empirical average powers. If anything, this slightly favors the recommended procedure

of AB, since our two-step and one-step procedures were seen to have (somewhat) lower empirical

MNRPs in general. The results are presented in the lower half of Table 1 and can be summarized

as follows.

• For every scenario, the AB-Rec procedure has the highest empirical average power and the

one-step procedure has the lowest empirical average power. However, this does not mean

that the AB-Rec procedure is uniformly more powerful than the other two procedures. For

individual alternative µ vectors, even the one-step procedure can have higher empirical power

than the AB-Rec procedure; for example, this happens when all non-positive moments are

equal to zero.

• The two-step procedure generally picks up most of the difference in empirical average powers

between AB-Rec and the one-step procedure; across the 27 scenarios, the average pickup

is 74.1% and the median pickup is 76.4%. In particular, the relative improvement of the two-

step procedure over the one-step procedure tends to be largest when it is needed most, i.e.,

when the differences between AB-Rec and the one-step procedure are the largest. Such cases

correspond to ΩNeg; across these 9 scenarios, the average pickup of the two-step procedure

is 82.2% and the median pickup is 83.7%.
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As mentioned before, reporting “raw” empirical average powers slightly favors the recommended

procedure of AB, so we also compute “size-corrected” average powers for the two-step procedure. Be-

cause of the extremely high computational burden when k = 10, we are only able to do this for k = 2

and k = 4, however, as follows. For a given combination of k ∈ {2, 4}, Ω ∈ {ΩNeg,ΩZero,ΩPos}, and
Dist ∈ {N(0, 1), t3, χ

2
3}, we vary the nominal level α for the two-step procedure, keeping β = 0.005

fixed, until the resulting MNRP matches that of the AB-Rec procedure with α = 0.05. Denote

the corresponding nominal level α for the two-step procedure by αsc; for the 18 different combina-

tions of (k,Ω,Dist) considered, we find that αsc ∈ [0.051, 0.055]. We then use αsc to compute the

“size-corrected” average empirical power for the given combination of (k,Ω,Dist). The results are

presented in Table 2. The “fair” comparison is the one between AB-Rec and Two-Stepsc. It can be

seen that the difference is always smaller than for the “unfair” comparison between AB-Rec and

Two-Step.

4.3 Maximum Null Rejection Probabilities for a Large Number of Moment

Inequalities

We finally turn attention to a case with a large number of inequalities, i.e., a case with k > 10, for

which the procedures of AB are no longer available.

We feel that it is most informative to compute MNRPs. Since a comparison to AB-Rec (or any

other of the procedures suggested by AB) is no longer possible, it is not clear what useful information

could be taken away from computing empirical average powers.

As discussed before, computing MNRPs, in principle, involves the evaluation of 2k − 1 NRPs.

Given current computational powers, this is infeasible for any value of k much larger than 10.

However, for the special case of Ω = ΩZero, the problem is reduced to the evaluation of k NRPs

only. This is because, under the identity covariance matrix, for a given number of zero entries, the

position of these entries does not matter. So if there are p zero entries, say, one only has to evaluate

a single NRP rather than
(
k
p

)
NRPs; and without loss of generality, the corresponding single null

vector can be chosen as (0, . . . , 0,−∞, . . . ,−∞)′.

We use k = 50, which corresponds to roughly the limit of our computational capabilities. The

sample sizes considered are n = 100, 500. It turns out that for n = 100, in many instances, the

qlr test statistic cannot be computed because of numerical difficulties. We suspect that the reason

is that for (k = 50, n = 100), the sample covariance matrix is ill-conditioned; this problem is

exacerbated in the bootstrap world where, in a given data set, there are always some repeated

observations.

Therefore, in addition to the qlr test statistic, we also consider the following two alternative test

statistics: first, the “modified method of moments” (MMM) test statistic TMMM
n defined in (9) and

second, the maximum test statistic Tmax
n defined in (6).
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For each scenario, we use 5,000 repetitions to compute empirical MNRPs. The results are

presented in Tables 3 and can be summarized as follows.

• For n = 100, the results for the qlr test statistic are not available due to the numerical difficul-

ties described above. The other two test statistics yield satisfactory performance throughout,

though the one-step procedure is somewhat conservative when the distribution of the elements

is heavy-tailed (i.e., t3) or skewed (i.e., χ2
3).

• For n = 500, both the two-step method and the one-step procedure yield satisfactory perfor-

mance for all test statistics and all distributions of the elements considered.
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A Appendix

In Appendix A.1, we establish a series of results that will be used in the proof of Theorem 2.1 in

Appendix A.2. The proof of Theorem 3.1 is then provided in Appendix A.3.

A.1 Auxiliary Results

Lemma A.1. Suppose µn is a sequence in R
k
− such that µn → µ with µ ∈ R

k
− = (R− ∪ {−∞})k.

For τ ∈ R
k and Γ a positive definite k × k real matrix, define

fn(τ,Γ) = inf
t∈Rk:t<−µn

||τ − t||Γ ,

where ||x||Γ = (x′Γx)
1
2 for x ∈ R

k. (Below, we may simply write ||x|| for ||x||Ik .) Suppose

(τn,Γn) → (τ,Γ), where Γ is positive definite. Then, fn(τn,Γn) → f(τ,Γ), where

f(τ,Γ) = inf
t∈Rk:t<−µ

||τ − t||Γ .

Proof: We first argue that fn(τn,Γn) − fn(τ,Γ) → 0. To see this, first note, by strict convexity

and continuity of ||Γ 1
2 (τ − t)|| as a function of t ∈ R

k, that there exists t∗n ≤ −µn such that

inf
t∈Rk:t<−µn

||Γ 1
2 (τ − t)|| = min

t∈Rk:t≤−µn

||Γ 1
2 (τ − t)|| = ||Γ 1

2 (τ − t∗n)|| .

Next, since 0 ≤ −µn, note that

||Γ 1
2 (τ − t∗n)|| ≤ ||Γ 1

2 τ || . (22)

Finally, observe that

fn(τn,Γn)− fn(τ,Γ) = inf
t∈Rk:t<−µn

||Γ
1
2
n (τn − t)|| − inf

t∈Rk:t<−µn

||Γ 1
2 (τ − t)||

= min
t∈Rk:t≤−µn

||Γ
1
2
n (τn − t)|| − min

t∈Rk:t≤−µn

||Γ 1
2 (τ − t)||

≤ ||Γ
1
2
n (τn − t∗n)|| − ||Γ 1

2 (τ − t∗n)||
≤ ||Γ

1
2
n (τn − t∗n)− Γ

1
2 (τ − t∗n)||

= ||Γ
1
2
n (τn − τ) + Γ

1
2
n (τ − t∗n)− Γ

1
2 (τ − t∗n)||

= ||Γ
1
2
n (τn − τ) + Γ

1
2
nΓ

− 1
2Γ

1
2 (τ − t∗n)− Γ

1
2 (τ − t∗n)||

≤ ||Γ
1
2
n (τn − τ)||+ ||Γ

1
2
nΓ

− 1
2 − Ik||op||Γ

1
2 (τ − t∗n)||

≤ ||Γ
1
2
n (τn − τ)||+ ||Γ

1
2
nΓ

− 1
2 − Ik||op||Γ

1
2 τ ||

→ 0 ,

where the first equality follows from the definition of the relevant norms, the second equality follows

from strict convexity and continuity, the first inequality follows from the definition of t∗n and the
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fact that t∗n ≤ −µn, the second inequality follows from the reverse triangle inequality, the third and

fourth equalities follow by inspection, the third inequality follows form the triangle inequality and

the definition of the operator norm, the fourth inequality follows from (22), and the convergence

to zero follows from the assumed convergences of τn and Γn.

Next, we argue that fn(τ,Γ) → f(τ,Γ). For this purpose, it is useful to assume, without loss of

generality, that µn = (µ
(1)
n , µ

(2)
n ) and µ = (µ(1), µ(2)), where all components of µ(1) are finite and

all components of µ(2) are infinite. Define ι(1) to be a vector of ones with the same length as µ(1);

define ι(2) similarly. First note for 0 < ǫn → 0 sufficiently slowly and n sufficiently large that

inf
t∈Rk:t<−µn

||τ − t||Γ ≥ inf
t∈Rk:t<−(µ(1),µ

(2)
n )+(ǫnι(1),0ι(2))

||τ − t||Γ

= inf
t∈Rk:t<−(µ(1),µ

(2)
n )

||τ − (ǫnι
(1), 0ι(2))− t||Γ .

But, by identifying τn in the preceding paragraph with τ − (ǫnι
(1), 0ι(2)) here, we see that the final

expression equals

inf
t∈Rk:t<−(µ(1),µ

(2)
n )

||τ − t||Γ + o(1) . (23)

The same argument with ǫ < 0 establishes that inft∈Rk:t<−µn
||τ − t||Γ in fact equals (23). To

complete the argument, we argue that

inf
t∈Rk:t<−(µ(1),µ

(2)
n )

||τ − t||Γ → inf
t∈Rk:t<−µ

||τ − t||Γ . (24)

To establish this fact, given any subsequence nk, consider a further subsequence nkℓ such that µ
(2)
nkℓ

is strictly increasing. By the monotone convergence theorem, we see that

inf
t∈Rk:t<−(µ(1),µ

(2)
nkℓ

)

||τ − t||Γ → inf
t∈Rk:t<−µ

||τ − t||Γ .

Hence, (24) holds.

Lemma A.2. Let Wi, i = 1, . . . , n, be an i.i.d. sequence of random variables with distribution

P ∈ P on R
k, where P satisfies (16). Then, Mn(1− β) defined by (4) satisfies

lim inf
n→∞

inf
P∈P

P
{
µ(P ) ∈ Mn(1− β)

}
≥ 1− β . (25)

Proof: Follows immediately from Theorem 3.7 in Romano and Shaikh (2012).

Lemma A.3. Consider a sequence {Pn ∈ P : n ≥ 1} where P is a set of distributions on R
k

satisfying (16). Let Wi, , i = 1, . . . , n, be an i.i.d. sequence of random variables with distribution Pn.

Suppose √
nµj(Pn)

σj(Pn)
→ −∞ ,

for all 1 ≤ j ≤ k. Then,

Pn

{
Mn(1− β) ⊆ R

k
−
}
→ 1 .
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Proof: Note that we may write Mn(1− β) as the set of all µ ∈ R
k such that

µj ≤
σj(Pn)√

n

[√
n
(
X̄j,n − µj(Pn)

)

σj(Pn)
+

√
nµj(Pn)

σj(Pn)
+

K−1
n (1− β, P̂n)

σj(Pn)
Sj,n

]

for all 1 ≤ j ≤ k. From Lemma 11.4.1 of Lehmann and Romano (2005), we see that

√
n
(
W̄j,n − µj(Pn)

)

σj(Pn)
= OPn

(1) .

By assumption, √
nµj(Pn)

σj(Pn)
→ −∞ .

From Lemma 4.8 in Romano and Shaikh (2012), we see that

Sj,n

σj(Pn)

Pn→ 1 .

Finally, note that

K−1
n (1− β, P̂n) = OPn

(1)

because, using the Bonferroni inequality, it is asymptotically bounded above by Φ−1(1−β/k), from

which the desired result follows.

Lemma A.4. Let P′ be the set of all distributions on R
k and let P be a set of distributions on R

k

satisfying (16). For (P,Q) ∈ P′ ×P, define

ρ(Q,P ) = max

{
max
1≤j≤k

{∫ ∞

0
|rj(λ,Q)− rj(λ, P )| exp(−λ)dλ

}
, max
1≤j≤k

∣∣∣∣
σj(P )

σj(Q)
− 1

∣∣∣∣ , ||Ω(Q)− Ω(P )||
}

,

where

rj(λ, P ) = EP

[(
Xj − µj(P )

σj(P )

)2

1

{∣∣∣∣
Xj − µj(P )

σj(P )

∣∣∣∣ > λ

}]
, (26)

and the norm || · || is the component-wise maximum of the absolute value of all elements. Let {Qn ∈
P′ : n ≥ 1} and {Pn ∈ P : n ≥ 1} be such that ρ(Pn, Qn) → 0 and for some ∅ 6= I ⊆ {1, . . . k},

√
nλj,n

σj(Pn)
→ −δj for all j ∈ I and some δj ≥ 0

and √
nλj,n

σj(Pn)
→ −∞ for all j /∈ I .

Then, for Tn given by (6), (8) or (9), we have

lim sup
n→∞

sup
x∈Rk

∣∣Jn(x, λn, Pn)− Jn(x, λn, Qn)
∣∣ = 0 . (27)
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Proof: Consider first the case where Tn is given by (6). Note that

√
nλj,n

Sj,n
=

σj(Pn)

Sj,n

√
nλj,n

σj(Pn)
.

From Lemma 4.8 in Romano and Shaikh (2012), we see that

Sj,n

σj(Pn)

Pn→ 1 .

Hence, √
nλj,n

Sj,n

Pn→ −δj for all j ∈ I (28)

and √
nλj,n

Sj,n

Pn→ −∞ for all j /∈ I . (29)

It follows that

max
1≤j≤k

(√
n
(
W̄j,n − µj(Pn)

)

Sj,n
+

√
nλj,n

Sj,n

)
= max

j∈I

(√
n
(
W̄j,n − µj(Pn)

)

Sj,n
+

√
nλj,n

Sj,n

)
+ oPn

(1) . (30)

Next, we argue that

max
1≤j≤k

(√
n
(
W̄j,n − µj(Qn)

)

Sj,n
+

√
nλj,n

Sj,n

)
= max

j∈I

(√
n
(
W̄j,n − µj(Qn)

)

Sj,n
+

√
nλj,n

Sj,n

)
+ oQn

(1) .

(31)

For this purpose, it suffices to show that the convergences in (28) and (29) also hold with Pn replaced

by Qn. To see this, first note that by arguing as in the proof of Lemma 4.11 in Romano and Shaikh

(2012) we have that

lim
λ→∞

lim sup
n→∞

rj(λ,Qn) = 0 .

The convergence ρ(Pn, Qn) → 0 implies further that

σj(Pn)

σj(Qn)
→ 1 for all 1 ≤ j ≤ k .

Since √
nλj,n

Sj,n
=

σj(Qn)

Sj,n

σj(Pn)

σj(Qn)

√
nλj,n

σj(Pn)
,

the desired conclusion follows. Finally, (27) now follows from (30) and (31) and by arguing as in

the proof of Lemma 4.11 in Romano and Shaikh (2012).

Now consider the case where Tn is given by (8). Note that

T qlr,ad
n = inf

t∈Rk:t<−
√
nD−1(Pn)λn

Z̃n(t)
′Ω̃nD

2(Pn)S
−2
n Z̃n(t) ,
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where

Z̃n(t) =

(√
n(W̄1,n − µ1(Pn))

σ1(Pn)
− t1, . . . ,

√
n(W̄k,n − µk(Pn))

σk(Pn)
− tk

)′

D2(Pn) = diag
(
σ2
1(Pn), . . . , σ

2
k(Pn)

)
.

Now suppose by way of contradiction that (27) fails. It follows that there exists a subsequence nk

along which the left-hand side of (27) converges to a non-zero constant and

Ω(Pnk
) → Ω∗ , as well as (32)

(
W̄1,nk

− µ1(Pnk
))

σ1(Pnk
)

, . . . ,
W̄k,nk

− µk(Pnk
))

σk(Pnk
)

)′
d→ Z ∼ N(0,Ω∗) under Pnk

. (33)

Since

D2(Pnk
)S−2

nk
→ Ik ,

we have further that

Ω̃nk
D2(Pnk

)S−2
nk

Pnk→ max{ǫ− det(Ω∗), 0}Ik +Ω∗ = Ω̄ . (34)

Note that along such a subsequence nk we also have that
√
nkλj,nk

σj(Pnk
)

→ −δj for all j ∈ I (35)

and √
nkλj,nk

σj(Pnk
)

→ −∞ for all j /∈ I . (36)

Hence, by Lemma A.1 and the extended continuous mapping theorem (van der Vaart and Wellner,

1996; Theorem 1.11.1), we have that

T qlr,ad
nk

d→ inf
t∈Rk:t<−δ

(Z − t)′Ω̄−1(Z − t) under Pnk
. (37)

Note that a similar result under slightly stronger assumptions could be established using, for exam-

ple, Lemma S.1 in Bugni et al. (2012). Moreover, by Chow and Teicher (1978, Lemma 3, p.260),

we have that

sup
x∈R

∣∣∣∣Pnk
{T qlr,ad

nk
≤ x} − P

{
inf

t∈Rk:t<−δ
(Z − t)′Ω̄−1(Z − t) ≤ x

}∣∣∣∣→ 0 ,

since the distribution of inft∈Rk:t<−δ(Z− t)′Ω̄−1(Z− t) is continuous everywhere except possibly at

zero and

Pnk
{T qlr,ad

nk
≤ 0} → P{Z ≤ −δ} = P

{
inf

t∈Rk:t<−δ
(Z − t)′Ω̄−1(Z − t) ≤ 0

}
.

Next, note that by arguing as above it follows from the assumed convergence ρ(Pnk
, Qnk

) → 0 that

(32) – (36) all hold when Pnk
is replaced by Qnk

. Hence, by the triangle inequality, we see that

along nk, the lefthand-side of (27) must converge to zero, from which the desired result follows.
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Finally, consider the test statistic (9), for which the argument is easier. For example, the above

argument for (8) can be used with Ω̃n replaced by the identity, so that the convergence (37) holds

with Ω̄ replaced by the identity.

Lemma A.5. Consider a sequence {Pn ∈ P : n ≥ 1} where P is a set of distributions on R
k

satisfying (16). Let Wn,i, i = 1, . . . , n, be an i.i.d. sequence of random variables with distribution Pn.

Suppose that for some ∅ 6= I ⊆ {1, . . . k},
√
nµj(Pn)

σj(Pn)
→ −δj for all j ∈ I and some δj ≥ 0

and √
nµj(Pn)

σj(Pn)
→ −∞ for all j /∈ I .

Then,

Pn

{
Tn > J−1

n

(
1− α+ β, µ(Pn), P̂n

)}
→ α− β .

Proof: Let P′ and ρ(P,Q) be defined as in Lemma A.4. Trivially,

Pn{P̂n ∈ P′} → 1 .

From Lemma 4.8 in Romano and Shaikh (2012), we see that

max
1≤j≤k

∣∣∣ Sj,n

σj(Pn)
− 1
∣∣∣Pn→ 0 .

From Lemma 4.9 in Romano and Shaikh (2012), we see that

||Ω(P̂n)− Ω(Pn)|| Pn→ 0 .

It follows from Lemma 4.12 in Romano and Shaikh (2012) that

ρ(P̂n, Pn)
Pn→ 0 .

The desired result now follows by applying Lemma A.4 with λn = µ(Pn) and Theorem 2.4 in

Romano and Shaikh (2012).

A.2 Proof of Theorem 2.1

Suppose by way of contradiction that (3) fails. It follows that there exist a subsequence nk and

η > α such that

EPnk
[φnk

] → η . (38)

There are two cases to consider.
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First, consider the case where there exists a further subsequence (which, by an abuse of notation,

we continue to denote by nk) such that

√
nkµj(Pnk

)

σj(Pnk
)

→ −∞

for all 1 ≤ j ≤ k. Then, by Lemma A.3, we see that

Pnk

{
Mnk

(1− β) ⊆ R
k
−
}
→ 1 .

Hence,

EPnk
[φnk

] → 0 ,

contradicting (38).

Second, consider the case where there exists a further subsequence (which, by an abuse of

notation, we continue to denote by nk) and ∅ 6= I ⊆ {1, . . . k} such that

√
nkµj(Pnk

)

σj(Pnk
)

→ −δj for all j ∈ I and some δj ≥ 0

and √
nkµj(Pnk

)

σj(Pnk
)

→ −∞ for all j /∈ I .

Next, recall the definition of ĉn(1− α+ β) in (14) and note that

EPnk
[φnk

] ≤ Pnk

{
Tnk

> ĉnk
(1− α+ β)

}

≤ Pnk

{
Tnk

> J−1
nk

(1− α+ β, µ(Pnk
), P̂nk

)
}
+ Pnk

{
µ(Pnk

) /∈ Mnk
(1− β)

}
.

Then, by Lemmas A.2 and A.5, we have that

lim sup
k→∞

EPnk
[φnk

] ≤ α ,

contradicting (38).

A.3 Proof of Theorem 3.1

Follows immediately from Theorem 2.1 by identifying the distribution of g(Xi, θ) under P ∈ P and

θ ∈ Θ0(P ) in the present context with the distribution of Wi under P in Theorem 2.1.
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Table 1: Empirical maximum null rejection probabilities (MNRPs), upper half, and empirical

average powers, lower half, of the AB-recommended procedure, the two-step procedure, and the

one-step procedure. The nominal level is α = 5% and the sample size is n = 100. All results are

based on 10,000 repetitions when k = 2, 4 and on 5,000 repetitions when k = 10.

k = 2 k = 4 k = 10

Test Dist H0/H1 ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

AB-Rec N(0, 1) H0 5.3 5.1 4.9 5.3 5.0 5.1 5.8 5.9 5.6

Two-Step N(0, 1) H0 5.0 4.8 4.5 5.1 4.9 5.0 5.3 5.2 5.4

One-Step N(0, 1) H0 5.2 5.1 4.9 4.9 5.0 5.1 5.2 4.9 5.3

AB-Rec t3 H0 6.2 6.2 5.9 5.7 5.9 5.7 5.4 5.5 5.3

Two-Step t3 H0 5.6 5.7 5.6 5.3 5.7 5.4 5.7 5.6 5.6

One-Step t3 H0 5.2 6.1 5.7 4.7 5.3 5.7 5.3 5.2 5.7

AB-Rec χ2
3 H0 5.2 4.9 5.1 5.3 4.8 4.9 5.8 5.9 6.0

Two-Step χ2
3 H0 4.8 4.4 4.8 5.1 4.7 4.8 5.6 5.3 5.7

One-Step χ2
3 H0 4.6 4.9 5.1 4.9 5.0 5.0 5.3 4.9 5.5

AB-Rec N(0, 1) H1 64.1 68.1 71.4 59.1 66.6 77.5 54.7 63.6 78.9

Two-Step N(0, 1) H1 62.0 65.1 66.4 56.1 60.6 74.4 51.0 54.8 75.6

One-Step N(0, 1) H1 52.7 61.1 64.2 41.3 50.4 72.6 23.9 32.6 68.4

AB-Rec t3 H1 68.1 72.4 75.2 63.9 71.5 79.5 58.9 68.2 80.4

Two-Step t3 H1 66.0 69.1 71.0 61.1 66.1 76.6 54.9 58.9 77.4

One-Step t3 H1 61.7 66.2 68.8 46.7 57.2 74.9 27.6 37.7 71.5

AB-Rec χ2
3 H1 69.3 76.4 77.9 63.1 74.5 82.4 57.8 69.8 82.6

Two-Step χ2
3 H1 67.6 73.7 74.3 61.0 70.8 80.1 55.5 63.7 80.7

One-Step χ2
3 H1 63.7 70.1 71.7 46.9 59.5 77.9 26.1 37.2 73.5
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Table 2: Empirical average powers of the AB-recommended procedure and the two-step procedure

and empirical “size-corrected” average powers of the two-step procedure. The nominal level is

α = 5% and the sample size is n = 100. Empirical (size-corrected) average powers are based on

10,000 repetitions.

k = 2 k = 4

Test Dist H0/H1 ΩNeg ΩZero ΩPos ΩNeg ΩZero ΩPos

AB-Rec N(0, 1) H1 64.1 68.1 71.4 59.1 66.6 77.5

Two-Stepsc N(0, 1) H1 63.3 66.3 67.8 56.7 62.1 75.2

Two-Step N(0, 1) H1 62.0 65.1 66.4 56.1 60.6 74.4

AB-Rec t3 H1 68.1 72.4 75.2 63.9 71.5 79.5

Two-Stepsc t3 H1 67.5 70.2 72.4 61.7 67.0 77.3

Two-Step t3 H1 66.0 69.1 71.0 61.1 66.1 76.6

AB-Rec χ2
3 H1 69.3 76.4 77.9 63.1 74.5 82.4

Two-Stepsc χ2
3 H1 69.0 74.8 75.6 61.8 71.8 80.6

Two-Step χ2
3 H1 67.6 73.7 74.3 61.0 70.8 80.1

Table 3: Empirical maximum null rejection probabilities of the two-step procedure and the one-step

procedure based on various test statistics. The nominal level is α = 5% and the covariance matrix

is ΩZero. All results are based on 5,000 repetitions.

k = 50, n = 100 k = 50, n = 500

Test Dist H0/H1 T qlr
n TMMM

n Tmax
n T qlr

n TMMM
n Tmax

n

Two-Step N(0, 1) H0 NA 4.9 5.1 4.9 4.8 5.1

One-Step N(0, 1) H0 NA 4.5 4.9 5.2 5.1 5.2

Two-Step t3 H0 NA 4.3 4.4 4.4 4.7 4.9

One-Step t3 H0 NA 2.9 2.1 4.7 4.5 4.0

Two-Step χ2
3 H0 NA 4.5 4.7 5.2 5.2 5.1

One-Step χ2
3 H0 NA 3.0 4.3 4.9 5.0 5.2
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S.1 The Gaussian Problem

In this section, we assume that W = (W1, . . . ,Wk)
′ ∼ P ∈ P = {N(µ,Σ) : µ ∈ R

k} for a known

covariance matrix Σ. In this setting, we may equivalently describe the problem of testing (1) as

the problem of testing

H0 : µ ∈ Ω0 versus H1 : µ ∈ Ω1 , (S.1)

where

Ω0 = {µ : µj ≤ 0 for 1 ≤ j ≤ k} (S.2)

and Ω1 = R
k \ Ω0. Here, it is possible to obtain some exact results, so we focus on tests φn =

φn(W1, . . . ,Wn) of (S.1) that satisfy

sup
µ∈Ω0

EP [φn] ≤ α (S.3)

for some pre-specified value of α ∈ (0, 1) rather than (3). In Section S.1 below, we first establish

an upper bound on the power function of any test of (S.1) that satisfies (S.3) by deriving the

most powerful test against any fixed alternative. We then describe our two-step procedure for

testing (S.1) in Section S.2. Proofs of all results can be found in the Appendix.

Before proceeding, note that by sufficiency we may assume without loss of generality that n = 1.

Hence, the data consists of a single random variable W distributed according to the multivariate

Gaussian distribution with unknown mean vector µ ∈ R
k and known covariance matrix Σ. For

1 ≤ j ≤ k, we will denote by Wj the jth component of W and by µj the jth component of µ.

Note further that, because Σ is assumed known, we may assume without loss of generality that

its diagonal consists of ones; otherwise, we can simply replace Wj by Wj divided by its standard

deviation.

S.1 Power Envelope

In this subsection only, we assume further that Σ is invertible.

Below we calculate the most powerful (MP) test of µ ∈ Ω0 satisfying (S.3) against a fixed

alternative µ = a, where a ∈ Ω1. The power of such a test, as a function of a, provides an upper

bound on the power function of any test of (S.1) satisfying (S.3) and is, therefore, referred to as

the power envelope function. In Andrews and Barwick (2012a,b), numerical evidence is given to

justify their conjecture of how to calculate the MP test of µ ∈ Ω0 satisfying (S.3) against µ = a and

hence how to calculate the power envelope function. Theorem S.1.1 below verifies the claim made

by Andrews and Barwick (2012a). Note that the power of the MP test of µ ∈ Ω0 satisfying (S.3)

against µ = a depends on a through its “distance” from Ω0 in terms of the Mahanolobis metric

d(x, y) =
√
(x− y)′Σ−1(x− y), i.e.,

inf
µ∈Ω0

√
{(µ− a)′Σ−1(µ− a)} . (S.4)
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Theorem S.1.1. Let W be multivariate normal with unknown mean vector µ and known covariance

matrix Σ. For testing µ ∈ Ω0 against the fixed alternative µ = a, where a ∈ Ω1, the MP test

satisfying (S.3) rejects for large values of T = W ′Σ−1(a− µ̄), where

µ̄ = argmin
µ∈Ω0

(µ− a)′Σ−1(µ− a) .

In fact, the distribution which puts mass one at the point µ̄ is least favorable, and the critical value

at level α can be determined so that

Pµ̄{T > c1−α} = α .

Under µ = µ̄,

E[T ] = µ̄′Σ−1(a− µ̄)

Var[T ] = (µ̄− a)′Σ−1(µ̄− a) ,

so

c1−α = µ̄′Σ−1(a− µ̄) + z1−α

√
(µ̄− a)′Σ−1(µ̄− a) ,

where z1−α is the 1 − α quantile of the standard normal distribution. Moreover, the power of this

test is given by

1− Φ
(
z1−α −

√
(µ̄− a)′Σ−1(µ̄− a)

)
,

where Φ(·) denotes the standard normal c.d.f.

Since the most powerful tests vary as a function of the vector a, it follows that there is no

uniformly most powerful test. Furthermore, as argued in Lehmann (1952), the only unbiased test

is the trivial test whose power function is constant and equal to α. Invariance considerations do

not appear to lead to any useful simplification of the problem either; also see Andrews (2012) for

some negative results concerning similarity.

Remark S.1.1. Note that T = W ′Σ−1(a−µ̄) in Theorem S.1.1 is a linear combination
∑

1≤j≤k cjWj

of the W1, . . . ,Wk. Even if all components of a are positive, depending on Σ, µ̄ may not equal

zero. One might, therefore, suspect that the test described in Theorem S.1.1 does not satisfy (S.3).

However, the proof of the theorem shows that if µ̄ has any components that are negative, then the

corresponding coefficient ofWj in T must be zero; components of µ̄ that are zero have corresponding

coefficient of Wj in T that are nonnegative.

S.2 A Two-Step Procedure

There are, of course, many ways in which to construct a test of (S.1) that controls size at level α. For

instance, given any test statistic T = T (W1, . . . ,Wk) that is nondecreasing in each of its arguments,

we may consider a test that rejects H0 for large values of T . Note that, for any given fixed critical

3



value c, Pµ{T (W1, . . . ,Wk) > c} is a nondecreasing function of µ. Therefore, if c = c1−α is chosen

to satisfy

P0

{
T (W1, . . . ,Wk) > c1−α

}
≤ α ,

then the test that rejects H0 when T > c1−α is a level α test. A reasonable choice of test statistic T

is the likelihood ratio statistic, which is given by

T = inf
µ∈Ω0

{(W − µ)′Σ−1(W − µ)} . (S.5)

By analogy with (S.4) and Theorem S.1.1, rejecting for large values of the “distance” of W to Ω0

is intuitively appealing. It is easy to see that such a test statistic T is nondecreasing in each of its

arguments.

A second choice of monotone test statistic is the “modified method of moments” test statistic

T =
k∑

j=1

W 2
j · 1{Wj > 0} .

A further choice of monotone test statistic is the maximal order statistic T = max{W1, . . . ,Wk}.
For any given choice of monotone test statistic, a critical value c1−α may be determined as the

1−α quantile of the distribution of T when (W1, . . . ,Wk)
′ is multivariate normal with mean 0 and

covariance matrix Σ. Unfortunately, as k increases, so does the critical value, which can make it

difficult to have any reasonable power against alternatives. The main idea of our procedure, as well

as that of Andrews and Barwick (2012a), is to essentially remove from consideration those µj that

are “negative.” If we can eliminate such µj from consideration, then we may use a smaller critical

value with the hopes of increased power against alternatives.

Using this reasoning as a motivation, we may use a confidence region to help determine which µj

are “negative.” To this end, let M(1 − β) denote an upper confidence rectangle for all the µj

simultaneously at level 1− β. Specifically, let

M(1− β) =
{
µ ∈ R

k : max
1≤j≤k

(µj −Wj) ≤ K−1(1− β)
}

(S.6)

=
{
µ ∈ R

k : µj ≤ Wj +K−1(1− β) for all 1 ≤ j ≤ k
}
,

where K−1(1− β) is the 1− β quantile of the distribution

K(x) = Pµ

{
max
1≤j≤k

(µj −Wj) ≤ x
}
.

Note that K(·) depends only on the dimension k and the underlying covariance matrix Σ. In

particular, it does not depend on the µj , so it can be computed under the assumption that all

µj = 0. By construction, we have for any µ ∈ R
k that

Pµ{µ ∈ M(1− β)} = 1− β .

The idea is that with probability at least 1− β, we may assume that under the null hypothesis,

µ in fact will lie in Ω0 ∩ M(1 − β) rather than just Ω0. Instead of computing the critical value
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under µ = 0, the largest value of µ in Ω0, we may, therefore, compute the critical value under µ̃, the

“largest” value of µ in the (data-dependent) set Ω0∩M(1−β). It is straightforward to determine µ̃

explicitly. In particular, µ̃ has jth component equal to

µ̃j = min{Wj +K−1(1− β), 0} . (S.7)

But, to account for the fact that µ may not lie in M(1−β) with probability at most β, we reject H0

when T (W1, . . . ,Wk) exceeds the 1 − α + β quantile of the distribution of T under µ̃ rather than

the 1−α quantile of the distribution of T under µ̃. Such an adjustment is in the same spirit as the

“size correction factor” in Andrews and Barwick (2012a), but requires no computation to determine;

see Remark S.1.5 for further discussion. The following theorem establishes that this test of (S.1)

satisfies (S.3).

Theorem S.1.2. Let T (W1, . . . ,Wk) denote any test statistic that is nondecreasing in each of its

arguments. For µ ∈ R
k and γ ∈ (0, 1), define

b(γ, µ) = inf{x ∈ R : Pµ{T (W1, . . . ,Wk) ≤ x} ≥ γ} .

Fix 0 ≤ β ≤ α. The test of (S.1) that rejects H0 if T > b(1− α+ β, µ̃) satisfies (S.3).

Remark S.1.2. Although we are unable to establish that the left-hand side of (S.3) equals α, we

are able to establish that the left-hand side of (S.3) is at least α− β. To see this, simply note that

b(1− α+ β, µ̃) ≤ b(1− α+ β, 0), so

sup
µ∈Ω0

Pµ{T > b(1− α+ β, µ̃)} ≥ P0{T > b(1− α+ β, 0)} = α− β .

Remark S.1.3. As emphasized above, an attractive feature of our procedure is that the “largest”

value of µ in Ω0∩M(1−β) may be determined explicitly. This follows from our particular choice of

initial confidence region for µ, namely, from its rectangular shape. If, for example, we had instead

chosen M(1−β) to be the usual confidence ellipsoid, then there might not even be a “largest” value

of µ in Ω0 ∩M(1− β), and one would have to compute

sup
µ∈Ω0∩M(1−β)

b(1− α+ β, µ) .

This problem persists even if the initial confidence region is chosen by inverting tests based on the

likelihood ratio statistic (S.5) despite the resulting confidence region being monotone decreasing in

the sense that if x lies in the region, then so does y whenever yj ≤ xj for all 1 ≤ j ≤ k.

Remark S.1.4. In some cases, it may be desired to test the null hypothesis that µ ∈ Ω̃0, where

Ω̃0 = {µ : µj = 0 for j ∈ J1, µj ≤ 0 for j ∈ J2}

and J1 and J2 form a partition of {1, . . . , k}. Such a situation may be accommodated in the

framework described above simply by writing µj = 0 as µj ≤ 0 and −µj ≤ 0, but the resulting
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procedure may be improved upon by exploiting the additional structure of the null hypothesis.

In particular, Theorem S.1.2 remains valid if T is only required to be nondecreasing in its |J2|
arguments with j ∈ J2 and µ̃ is replaced by the vector whose jth component is equal to 0 for j ∈ J1

and min{Wj + K̃−1(1−β), 0} for j ∈ J2, where K̃
−1(1−β) is the 1−β quantile of the distribution

K̃(x) = Pµ

{
max
j∈J2

(µj −Wj) ≤ x
}
.

Remark S.1.5. In the context of the Gaussian model considered in this section, it is instructive

for comparison purposes to consider a parametric counterpart to the nonparametric method of

Andrews and Barwick (2012a). To describe their approach, fix κ < 0. Let µ̂ be the k-dimensional

vector whose jth component equals zero if Wj > κ and −∞ otherwise (or, for practical purposes,

some very large negative number). Define the “size correction factor”

η̂ = inf
{
η > 0 : sup

µ∈Ω0

Pµ{T > b(1− α, µ̂) + η} ≤ α
}

. (S.8)

The proposed test of (S.1) then rejectsH0 if T > b(1−α, µ̂)+η̂. The addition of η̂ is required because,

in order to allow the asymptotic framework to better reflect the finite-sample situation, the authors

do not allow κ to tend to zero with the sample size n. Note that the computation of η̂ as defined in

(S.8) is complicated by the fact that there is no explicit solution to the supremum in (S.8). One must,

therefore, resort to approximating the supremum in (S.8) in some fashion. Andrews and Barwick

(2012a) propose to approximate supµ∈Ω0
Pµ{T > b(1 − α, µ̂) + η} with supµ∈Ω̃0

Pµ{T > b(1 −
α, µ̂) + η}, where Ω̃0 = {−∞, 0}k. Andrews and Barwick (2012a) provide an extensive simulation

study, but no proof, in favor of this approximation. Even so, the problem remains computationally

demanding and, as a result, the authors only consider situations in which k ≤ 10 and α = .05. In

contrast, our two-step procedure is simple to implement even when k is large, as it does not require

optimization over Ω0, and has proven size control for any value of α (thereby allowing, among other

things, one to compute a p-value as the smallest value of α for which the null hypothesis is rejected).

In the nonparametric setting considered below, where the underlying covariance matrix is also

unknown, further approximations are required to implement the method of Andrews and Barwick

(2012a). See Remark 2.6 for related discussion.

Remark S.1.6. Let φα,β be the test as described in Theorem S.1.2. Similar to the approach of

Andrews and Barwick (2012a), one can determine β to maximize (weighted) average power. In

the parametric context considered in this section, one can achieve this exactly modulo simulation

error. To describe how, let µ1, . . . , µd be alternative values in Ω1, and let w1, . . . , wd be nonnegative

weights that add up to one. Then, β can be chosen to maximize

d∑

i=1

wiEµi
[φα,β ] .

This can be accomplished by standard simulation from N(µi,Σ) and discretizing β between 0 and α.

The drawback here is the specification of the µi and wi. In our simulations, we have found that a

reasonable choice is simply β = α/10.
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A Appendix

Proof of Theorem S.1.1. For 1 ≤ j ≤ k, let ej be the jth unit basis vector having a 1 in the

jth coordinate. To determine µ̄ for the given a, we must minimize

f(µ) = (µ− a)′Σ−1(µ− a)

over µ ∈ Ω0. Note that
∂f(µ)

∂µj
= 2(µ− a)′Σ−1ej .

First of all, we claim that the minimizing µ̄ cannot have all of its components negative. This

follows because, if it did, the line joining the claimed solution and a itself would intersect the

boundary of Ω0 at a point with a smaller value of f(µ). Therefore, the solution µ̄ must have at

least one zero entry.

Suppose that µ̄ is the solution and that µ̄j = 0 for j ∈ J , where J is some nonempty subset of

{1, . . . , k}. Let fJ(µ) = f(µ) viewed as a function of µj with j /∈ J and with µj = 0 for j ∈ J .

Then, the solution to the components µ̄j with j /∈ J (if there are any) must be obtained by setting

partial derivatives equal to zero, leading to the solution of the equations

(µ− a)′Σ−1ej = 0 ∀j /∈ J

with µj fixed at 0 for j ∈ J . Now, the MP test for testing ū against a rejects for large values

of W ′Σ−1(a − ū), which is a linear combination of W1, . . . ,Wk. The coefficient multiplying Wj is

e′jΣ
−1(a− ū). But for j /∈ J , this coefficient is zero by the gradient calculation above.

Next we claim that for j = 1, . . . , k, the coefficient of Wj is nonnegative. Fix j. Consider f(µ)

as a function of µj alone with the other components fixed at the claimed solution for µ̄. If the

derivative with respect to µj at 0 were positive, i.e.,

(µ̄− a)′Σ−1ej > 0 ,

then the value of µj could decrease and result in a smaller minimizing value for f(µ). Therefore, it

must be the case that

(a− µ̄)′Σ−1ej ≥ 0 ;

the left-hand side is precisely the coefficient of Wj .

Thus, the solution µ̄ has the property that, for testing µ̄ against a, the MP test rejects for large∑
1≤j≤k cjWj such that µ̄j = 0 implies cj ≥ 0 and µ̄j < 0 implies cj = 0. This property allows us

to prove that µ̄ is least favorable. Indeed, if the critical value c is determined so that the test is

level α under µ̄, then for µ ∈ Ω0,

Pµ

{∑

j∈J
cjWj > c

}
≤ P0

{∑

j∈J
cjWj > c

}
= Pµ̄

{∑

j∈J
cjWj > c

}
.

7



The first inequality follows by monotonicity and the second one by the fact that µ̄j = 0 for j ∈ J .

The least favorable property now follows byLehmann and Romano (2005, Theorem 3.8.1).

The remainder of the proof is obvious.

Proof of Theorem S.1.2 First note that b(γ, µ) is nondecreasing in µ, since T is nondecreasing

in its arguments. Fix any µ with µi ≤ 0. Let E be the event that µ ∈ M(1− β). Then, the Type I

error satisfies

Pµ{reject H0} ≤ Pµ

{
Ec

}
+ Pµ

{
E ∩ {reject H0}

}
= β + Pµ

{
E ∩ {reject H0}

}
.

But when the event E occurs and H0 is rejected — so that T > b(1− α + β, µ̃) — then the event

T > b(1−α+β, µ) must occur, since b(1−α+β, µ) is nondecreasing in µ and µ ≤ µ̃ when E occurs.

Hence, the Type I error is bounded above by

β + Pµ

{
T > b(1− α+ β, µ)

}
≤ β +

(
1− (1− α+ β)

)
= α .
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