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Abstract

We introduce intention-based social preferences into a mechanism design framework with

independent private values and quasilinear payoffs. For the case where the designer has no

information about the intensity of social preferences, we provide conditions under which

mechanisms which have been designed under the assumption that agents are selfish can still

be implemented. For the case where precise information about social preferences is available,

we show that any tension between efficiency, incentive-compatibility, and voluntary partici-

pation may disappear. Impossibility results such as the one by Myerson and Satterthwaite

(1983) are then turned into possibility results. We also provide a systematic account of the

welfare implications of kindness sensations.
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1 Introduction

Agents with intention-based social preferences are willing to give up own material payoffs in order

to either reward behavior by others that they attribute to good intentions, or to punish behavior

that they attribute to bad intentions (Rabin, 1993; Dufwenberg and Kirchsteiger, 2004). The

behavioral relevance of such preferences is well established (e.g. Andreoni et al., 2002; Falk et al.,

2003, 2008). In this paper, we explore their implications for the theory of mechanism design.

The procedural nature of intention-based social preferences has a profound impact on the

analysis. For an assessment of intentions, it does not only matter what agents do, but also what

they could have done instead. Hence, a first contribution of the paper is to develop a theory of

mechanism design in which the interpretation of behavior is crucial. In our model, a truth-telling

strategy may appear selfish in a direct mechanism, but it may appear kind in the context of

a mechanism in which the set of actions is larger than the set of conceivable payoff functions.

This implies, in particular, that the revelation principle does not hold. A second contribution

of the paper is to allow for a discussion of procedural questions. We show that two mechanisms

which induce the same economic outcome can be compared according to the attitudes that they

induce among the agents. Specifically, we formalize the problem to implement a given outcome

with a maximal degree of kindness, and we clarify the conditions under which such an ideal

mechanism exists. A third contribution of the paper is to introduce the idea of mechanisms that

are robust in the sense that they implement an economic outcome irrespective of whether or

not the agents are motivated by social preferences. We call such social choice functions strongly

implementable, so as to distinguish them from those which can be implemented only with prior

information about the weight that kindness sensations have in the agents’ utility functions. The

latter are termed weakly implementable social choice functions.

For clarity of exposition, our analysis is based on one particular model of intention-based

social preferences. Specifically, we adapt the model by Rabin (1993) to games of incomplete

information and work with the solution concept of a Bayes-Nash fairness equilibrium, in the

context of an otherwise conventional independent private values model of mechanism design.

Rabin’s analysis has focussed on environments with two agents. We follow the same route, but

we show that many of our results hold for an arbitrary number of agents.

We begin with an investigation of strongly implementable social choice functions. Suppose

that, for some social choice function, the expected payoff of agent i does not depend on the type

of agent j, so that each agent is insured against the randomness of the other agent’s type. If

this insurance property holds, then the agents cannot affect each other’s payoff by unilateral

deviations from truth-telling in the direct mechanism. If truth-telling is an equilibrium with

selfish preferences, then it continues to be an equilibrium for a large class of interdependent

preference models, including the intention-based model among many others. The insurance

property renders these preferences behaviorally irrelevant. Thus, our Theorem 1 asserts that if

a social choice function has the insurance property and is incentive-compatible under the as-

sumption of selfish preferences, then it is strongly implementable. Propositions 1 and 2 describe

classes of social choice functions that are incentive-compatible and have the insurance property.

Proposition 1 establishes the existence of strongly implementable social choice functions that

are surplus-maximizing and ex post budget balanced. It is based on the observation that the
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expected externality mechanism due to d’Aspremont and Gerard-Varet (1979) and Arrow (1979)

satisfies the insurance property. This follows by construction of the mechanism, which requires

each agent to compensate the other for the expected implications of a change in her type. Propo-

sition 2 states that to any social choice function that is incentive-compatible if agents are selfish,

there exists an essentially equivalent one that also has the insurance property. Equivalence holds

with respect to the decision rule, the interim expected payoffs, and the expected deficit or sur-

plus of the mechanism. The proof is constructive and shows how an incentive-compatible social

choice function can be modified so as to make it strongly implementable. The proposition covers

essentially any application of the independent private values model that has been studied in the

literature, ranging from bilateral trade problems and auctions to the provision of public-goods.

In particular, it also covers the study of optimal mechanisms with participation constraints,

because interim payoffs are preserved by our construction.

We then turn to a characterization of weakly implementable social choice functions. We first

show that the revelation principle does not hold in our framework. There exist social choice

functions that cannot be implemented by direct mechanisms with a truth-telling Bayes-Nash

fairness equilibrium, but that can be implemented by means of a non-direct mechanism. With a

direct mechanism, every available message is used in a truth-telling equilibrium. Put differently,

this class of mechanism-equilibrium-pairs excludes unused actions, which restricts the set of im-

plementable social choice functions. We can show, by contrast, that an augmented revelation

principle (Mookherjee and Reichelstein, 1990) holds. Accordingly, it is without loss of generality

to focus on mechanisms where each agent’s action set includes the set of possible types, and

which possess truth-telling equilibria. Hence, while the restriction that every action must be

used in equilibrium would involve a loss of generality, the restriction that every used action is a

truthfully communicated type is without loss of generality.1 Theorem 2 then provides conditions

under which any efficient social choice function can be implemented by an appropriately chosen

augmented mechanism. When intentions matter, the interpretation of equilibrium play can be

influenced by adding actions to the mechanism that, if taken, would trigger redistribution among

the agents. The challenge in the design of such actions is that they must be tempting to the

agents but nevertheless remain unused. Our proof of Theorem 2 makes use of the possibility to

engineer kindness sensations in such a way that every agent’s utility function is turned into a util-

itarian welfare function. The construction is akin to a Groves mechanism (Clarke, 1971; Groves,

1973), in that it aligns private and social interests. The key difference is that it is not based on a

suitable choice of payments that the agents have to make in equilibrium, but on a suitable choice

of payments that the agents refuse to make in equilibrium. The mechanism that we construct in

order to prove Theorem 2 also satisfies voluntary participation constraints, and hence eliminates

the tension between efficiency, incentive-compatibility and voluntary participation.

The analysis up to here focussed on social choice functions that are in a conventional sense

efficient, treating kindness sensations and psychological payoffs as relevant from a behavioral

1The empirical relevance of unchosen actions for kindness judgements has been illustrated by Andreoni et al.
(2002) and Falk and Fischbacher (2006), among others. For instance, Falk and Fischbacher (2006) report on how
individuals assess the kindness of proposals for the division of a cake of fixed size. They show that this assessment
depends on the choice set that is available to the proposer. An offer of 20 percent of the cake, for instance, is
considered very unfair if better offers such as 50 percent or 80 percent were also possible. It is considered less
unfair if it was the only admissible offer, and even less unfair if only worse offers were possible otherwise.
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but not from a welfare perspective. We next turn to the possibility of defining efficiency and

welfare based on the agents’ overall utility, which aggregates material and pychological payoffs.

Proposition 4 provides sufficient conditions under which material surplus-maximizing outcomes

can be implemented with maximal kindness levels. Thus, we show that there is generally no

conflict between the desire to achieve large material payoffs and the desire to generate intense

kindness sensations.

Our results on strongly implementable social choice functions are reassuring from the per-

spective of conventional mechanism design theory. Even if individuals are inclined to respond

to the behavior of others in a reciprocal way, this will in many cases not upset implementability

of the outcomes that have been the focus of this literature. For many applications of interest,

there is a way to design mechanisms so that the transmission channel for reciprocal behavior

is simply shut down. By contrast, our analysis of weakly implementable social choice functions

shows the potential of exploiting the reciprocity channel, rather than shutting it down. This

enlarges the set of social choice functions that are implementable, and also alleviates the tension

between efficiency and voluntary participation that is a key concern in the traditional mechanism

design literature. Moreover, the question whether there exists a best mechanism to implement

a given social choice function becomes meaningful. With an analysis that is based exclusively

on consequentialist preferences, it would be impossible to even ask this question.

The remainder is organized as follows. The next section contains a more detailed discussion of

the related literature. Section 3 states the mechanism design problem and introduces the solution

concept of a Bayes-Nash fairness equilibrium. Section 4 deals with the analysis of strongly

implementable social choice functions, and Section 5 covers weakly implementable social choice

functions. Throughout, we illustrate our results with a bilateral trade application. Section 6 then

discusses the concept of utility efficiency. Section 7 contains extensions to an arbitrary number

of agents and to a case where the mechanism designer is a player with its own intentions. The

last section contains concluding remarks. Proofs and some additional extensions are relegated

to the Appendix.

2 Literature

Models of social preferences are usually distinguished according to whether they are outcome-

based or intention-based. Prominent examples for outcome-based models are Fehr and Schmidt

(1999) and Bolton and Ockenfels (2000), while Rabin (1993) and Dufwenberg and Kirchsteiger

(2004) are intention-based. An extensive experimental literature (e.g. Andreoni et al., 2002;

Falk et al., 2003, 2008) has concluded that behavior is most likely influenced by both types of

considerations. The theoretical models proposed by Levine (1998), Charness and Rabin (2002),

Falk and Fischbacher (2006) and Cox et al. (2007) combine outcomes and intentions as joint

motivations for social behavior. In this paper, we consider intention-based social preferences only.

We do this for a methodological reason. The distinguishing feature of intention-based preferences

is their procedural nature, i.e., sensations of kindness are endogenous to the game form. This is

a challenge for mechanism design theory, which is concerned with finding optimal game forms.

With outcome-based social preferences, this methodological issue would not arise. The formal
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framework for modelling intentions is provided by psychological game theory (Geanakoplos et al.,

1989; Battigalli and Dufwenberg, 2009), which allows payoffs to depend on higher-order beliefs.

The literature does not yet contain a general treatment of intention-based social preferences for

games of incomplete information.2 Our mechanism design approach requires a general theory of

intentions for Bayesian games, and we will outline such a theory in Section 3.3.

Experimental and theoretical studies have shown that the design of incentive contracts can

be facilitated in environments with reciprocal agents (e.g. Fehr et al., 1997; Fehr and Falk, 2002;

Englmaier and Leider, 2012; Hoppe and Schmitz, 2013; Benjamin, 2014). However, reciprocity is

not necessarily a beneficial force. In Hart and Moore (2008) and Netzer and Schmutzler (2014),

for instance, negative reciprocal reactions can be inevitable and generate inefficient contract

outcomes.

Several authors have investigated mechanism design problems with outcome-based social

preferences.3 Jehiel and Moldovanu (2006) provide a survey of papers that deal with a general

structure of externalities, some of which might be viewed as resulting from interdependent

or social preferences. Desiraju and Sappington (2007) and von Siemens (2011) study models

in which agents are inequality-averse. Tang and Sandholm (2012) solve the optimal auction

problem with spiteful agents. Kucuksenel (2012) investigates a mechanism design problem under

the assumption that agents are altruistic, i.e., they attach a positive weight to the utility of others

irrespective of their behavior.

Several papers study mechanism design with other behaviorally motivated assumptions. Here

we focus only on models that exhibit a procedural component.4 One of the first contributions is

Glazer and Rubinstein (1998), who study the problem of aggregating information across experts.

Experts may not only care about consequences, but might want their own recommendation to

be accepted. As in our model, this introduces procedural aspects into the mechanism design

problem. In Alger and Renault (2006), procedural issues arise because the mechanism and

its equilibrium influence the agents’ propensity to lie. Intrinsically honest agents may become

willing to misrepresent their private information when other agents also benefit from lying. In

some situations this makes non-direct mechanisms optimal. The possibility that institutions

affect preferences has generally received some attention (see Bowles and Polanía-Reyes, 2012).

Antler (2012) investigates a matching problem where the agents’ preferences are affected by

the stated preferences of their potential partners. de Clippel (2014) studies the problem of full

2Rabin (1993) and Dufwenberg and Kirchsteiger (2004) assume complete information. Segal and Sobel (2007)
generalize the model of Rabin (1993) and provide an axiomatic foundation. They also illustrate that deleting
unused actions can affect the equilibrium structure. Some contributions (e.g. Sebald, 2010; Aldashev et al., 2010)
introduce randomization devices into psychological games, but still under the assumption of perfect observability.
von Siemens (2009, 2013) contain models of intentions for two-stage games with incomplete information about
the second-mover’s social type.

3There also exist applications of outcome-based social preferences to moral hazard problems (e.g. Englmaier
and Wambach, 2010; Bartling, 2011) and to labor market sceening problems (e.g. Cabrales et al., 2007; Cabrales
and Calvó-Armengol, 2008; Kosfeld and von Siemens, 2011). Reciprocity is introduced into moral hazard problems
by De Marco and Immordino (2012, 2013) and into a screening problem by Bassi et al. (2014). These contributions
work with adaptations of the models by Rabin (1993) and Levine (1998), respectively, which effectively transform
them into outcome-based models.

4Frey et al. (2004) provide a general discussion of procedural preferences and their role for the design of
institutions. Gaspart (2003) follows an axiomatic approach to procedural fairness in implementation problems.
Other important contributions to behavioral mechanism design theory include Eliaz (2002), Caplin and Eliaz
(2003) and Cabrales and Serrano (2011).
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implementation under complete information with agents whose behavior is described by arbitrary

choice functions instead of preferences. Augmented revelation mechanisms play a role also in

this context, due to the possibility of menu-dependence. Saran (2011), in contrast, provides

conditions for the revelation principle to hold in a Bayesian framework even in such cases.

Three recent contributions build upon and extend the present paper. Bartling and Netzer

(2013) apply our results on strongly implementable social choice functions to an auction setting

and test them experimentally. Bierbrauer et al. (2014) combine the requirement of strong imple-

mentability with a robustness requirement on the agents’ probabilistic beliefs (see Bergemann

and Morris, 2005). Their main application is a bilateral trade problem, and they also provide

an experimental test of the resulting mechanism. Netzer and Volk (2014) propose a notion of

ex post implementation for the intention-based framework developed here.

3 The Model

3.1 Environment and Mechanisms

We focus on the conventional textbook environment with quasi-linear payoffs and independent

private values (see Mas-Colell et al., 1995, ch. 23). For simplicity we consider the case of only

two agents, but we comment on the extension to any finite number of agents in Section 7.2.

The environment is described by E = [A,Θ1,Θ2, p1, p2, π1, π2]. A denotes the set of feasible

allocations, where an allocation is a list a = (q1, q2, t1, t2). Depending on the application, qi

may stand for agent i’s consumption of a public or private good, or it may denote her effort or

output. We will simply refer to qi as agent i’s consumption level. The monetary transfer to agent

i is denoted by ti. Formally, the set of allocations is given by A = Q × R
2 for some Q ⊆ R

2.

We assume that pairs of consumption levels (q1, q2) do not come with an explicit resource

requirement. Resource costs can be captured in the payoff functions for most applications of

interest. An allocation is said to achieve budget-balance if t1 + t2 = 0. The type of agent i

is the realization θi of a random variable θ̃i that takes values in a finite set Θi. The realized

type is privately observed by the agent. Types are independently distributed and pi denotes

the probability distribution of θ̃i. We also write θ̃ = (θ̃1, θ̃2) and denote realizations of θ̃ by

θ = (θ1, θ2) ∈ Θ = Θ1 ×Θ2. We write Ei for the expectation with respect to θ̃i based on pi. We

write E, without subscript, for the expectation with respect to θ̃ based on the joint distribution

p = p1× p2. Finally, πi : A×Θi → R is the material payoff function of agent i. If allocation a is

selected and type θi has realized, then agent i obtains the material payoff πi(a, θi) = vi(qi, θi)+ti.

The material surplus that is generated by consumption levels (q1, q2) if types are given

by θ = (θ1, θ2) equals v1(q1, θ1) + v2(q2, θ2). An allocation a = (q1, q2, t1, t2) is said to be

materially surplus-maximizing for type profile θ if v1(q1, θ1)+ v2(q2, θ2) ≥ v1(q
′
1, θ1)+ v2(q

′
2, θ2),

for all (q′1, q
′
2) ∈ Q. An allocation a is said to be materially Pareto-efficient for type profile

θ if it is materially surplus-maximizing and achieves budget-balance. A social choice function

(SCF) f : Θ → A specifies an allocation as a function of both agents’ types. We also write

f = (qf1 , q
f
2 , t

f
1 , t

f
2). A social choice function f is said to be materially Pareto-efficient if the

allocation f(θ) is materially Pareto-efficient for every type profile θ ∈ Θ.

A mechanism Φ = [M1,M2, g] contains a message set Mi for each agent and an outcome
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function g : M → A, which specifies an allocation for each profile m = (m1,m2) ∈ M = M1×M2.

We also write g = (qg1 , q
g
2 , t

g
1, t

g
2). A pure strategy for agent i in mechanism Φ is a function

si : Θi → Mi. The set of all such strategies of agent i is denoted Si, and we write S = S1 × S2.

We denote by g(s(θ)) the allocation that is induced if types are given by θ and individuals follow

the strategies s = (s1, s2). For later reference, we also introduce notation for first- and second-

order beliefs about strategies. Since we will focus on pure strategy equilibria in which beliefs are

correct, we can without loss of generality assume that agent i’s belief about j’s strategy puts

unit mass on one particular element of Sj, which we will denote by sbi (we assume j 6= i here

and throughout the paper). Analogously, we denote by sbbi ∈ Si agent i’s (second-order) belief

about j’s belief about i’s own strategy.

3.2 Bayes-Nash Equilibrium

Given an environment E and a mechanism Φ, agent i’s ex ante expected material payoff from

following strategy si, given her belief sbi about the other agent’s strategy, is given by

Πi(si, s
b
i) = E[vi(q

g
i (si(θ̃i), s

b
i (θ̃j)), θ̃i) + tgi (si(θ̃i), s

b
i (θ̃j))].

Before turning to the model of intention-based social preferences, we remind ourselves of the

solution concept of a Bayes-Nash equilibrium (BNE).

Definition 1. A BNE is a strategy profile s∗ = (s∗1, s
∗
2) such that, for both i = 1, 2,

(a) s∗i ∈ argmaxsi∈Si
Πi(si, s

b
i), and

(b) sbi = s∗j .

We say that a social choice function f can be implemented in BNE if there exists a mechanism

Φ that has a BNE s∗ so that, for all θ ∈ Θ, g(s∗(θ)) = f(θ). The characterization of social choice

functions that are implementable in BNE is facilitated by the well-known revelation principle.

To state this principle, we consider the direct mechanism for a given social choice function f , i.e.,

the mechanism with M1 = Θ1, M2 = Θ2, and g = f . Given such a mechanism, truth-telling for

agent i is the strategy sTi that prescribes sTi (θi) = θi, for all θi ∈ Θi. According to the revelation

principle, a social choice function f is implementable in BNE if and only if truth-telling by all

agents is a BNE in the corresponding direct mechanism. Equivalently, a social choice function

is implementable in BNE if and only if it satisfies the following inequalities, which are known as

Bayesian incentive-compatibility (BIC) constraints:

Ej[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)] ≥ Ej[vi(q

f
i (θ̂i, θ̃j), θi) + tfi (θ̂i, θ̃j)], (1)

for both i = 1, 2 and all θi, θ̂i ∈ Θi. In many applications, in addition to the requirement of

BIC, participation constraints (PC) have to be respected:

Ej[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)] ≥ 0, (2)

for both i = 1, 2 and all θi ∈ Θi. The interpretation is that participation in the mechanism is

voluntary and that agents take their participation decision after having learned their own type,
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but prior to learning the other agent’s type. They will participate only if the payoff they expect

from participation in the mechanism is non-negative.

3.3 Bayes-Nash Fairness Equilibrium

We now adapt the model of intention-based social preferences due to Rabin (1993) to normal

form games of incomplete information. The resulting solution concept will be referred to as a

Bayes-Nash fairness equilibrium (BNFE). Specifically, we follow the literature on intention-based

social preferences and assume that individuals have a utility function of the form

Ui(si, s
b
i , s

bb
i ) = Πi(si, s

b
i) + yi κi(si, s

b
i)κj(s

b
i , s

bb
i ). (3)

The first source of utility is the expected material payoff Πi(si, s
b
i). The second source of utility

is a psychological payoff κi(si, s
b
i )κj(s

b
i , s

bb
i ), which is added with an exogenous weight of yi ≥ 0.

The term κi(si, s
b
i) captures the kindness that agent i intends to achieve toward agent j by

choosing strategy si, given her belief sbi about j’s strategy. The term κj(s
b
i , s

bb
i ) captures the belief

of agent i about the analogously defined kindness κj(sj, s
b
j) intended by j toward i. Forming this

belief requires agent i to reason about agent j’s first-order belief, which explains why second-

order beliefs become relevant. The sign of κj is important for i’s attitude towards j. If i expects

to be treated kindly, κj > 0, then her utility is increasing in her own kindness. The opposite

holds if i expects to be treated unkindly, κj < 0, in which case she wants to be unkind in return.

Kindness is determined as follows. There is an equitable reference payoff Πe
j(s

b
i) for agent

j, which describes what agent i considers as the payoff that j deserves. If i’s strategy choice

yields an intended payoff for j that exceeds this norm, then i is kind, otherwise she is unkind.

Specifically, we postulate that

κi(si, s
b
i) = h(Πj(si, s

b
i )−Πe

j(s
b
i )),

where

h(x) =











κ̄ if κ̄ < x,

x if −κ̄ ≤ x ≤ κ̄,

−κ̄ if x < −κ̄.

The kindness bound κ̄ > 0 allows us to restrict the importance of psychological payoffs relative to

material payoffs, but it can also be set to κ̄ = ∞.5 The crucial feature of models with intention-

based social preferences is that equitable payoffs are menu-dependent. Following Rabin (1993),

we assume that, from agent i’s perspective, the relevant menu is the set of Pareto-efficient own

strategies, conditional on the other agent choosing strategy sbi . This set is henceforth denoted

Ei(s
b
i ).

6 To be specific, we assume that the payoff deserved by j is the average of the payoff she

5Dufwenberg and Kirchsteiger (2004) do not have a bound on kindness, which corresponds to κ̄ = ∞. Rabin
(1993) imposes a bound, although in a somewhat different functional form. Whenever our bound is not binding,
we can rewrite utility as Ui(si, s

b
i , s

bb
i ) = Πi(si, s

b
i )+yiκj(s

b
i , s

bb
i )Πj(si, s

b
i )−yiκj(s

b
i , s

bb
i )Πe

j(s
b
i), which shows that

agent i maximizes a weighted sum of both agents’ material payoffs. The weight on the other agent’s payoff is
endogenously determined by her kindness toward i and can be negative (see Segal and Sobel, 2007).

6Conditional on sbi , a strategy si ∈ Si is Pareto-dominated by a strategy s′i ∈ Si if Πk(s
′

i, s
b
i ) ≥ Πk(si, s

b
i)
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would get if i was completely selfish and the payoff she would get if i cared exclusively for j:

Πe
j(s

b
i ) =

1

2

[

max
si∈Ei(sbi )

Πj(si, s
b
i) + min

si∈Ei(sbi )
Πj(si, s

b
i)

]

.

The restriction of the relevant menu to efficient strategies ensures that kindness is generated

only by choices that involve a non-trivial trade-off between the agents.7 Different specifications

of the reference point have been explored in the literature (e.g. Dufwenberg and Kirchsteiger,

2004; Falk and Fischbacher, 2006). We do not wish to argue that our assumptions are the

only reasonable ones. What is crucial for the analysis that follows is the menu-dependence of

the equitable reference payoff. The menus that are made available by the mechanism designer

affect the interpretation of behavior. This feature of the model makes our analysis conceptually

different from one in which preferences are purely outcome-based.8

Definition 2. A BNFE is a strategy profile s∗ = (s∗1, s
∗
2) such that, for both i = 1, 2,

(a) s∗i ∈ argmaxsi∈Si
Ui(si, s

b
i , s

bb
i ),

(b) sbi = s∗j , and

(c) sbbi = s∗i .

The definition of BNFE becomes equivalent to the definition of BNE whenever y1 = y2 = 0,

so that concerns for reciprocity are absent. Our definitions of both BNE and BNFE are based

on the ex ante perspective, that is, on the perspective of agents who have not yet discovered

their types but plan to behave in a type-contingent way. As is well-known, for the case of BNE

there is an equivalent definition which evaluates actions from an ex interim perspective, where

agents have learned their own type but lack information about the types of the other agents. In

Appendix B, we develop an analogous ex interim version of BNFE and provide conditions on the

relation between ex ante and ex interim kindness under which the two versions are equivalent.

The solution concept of a BNFE relies on two sources of utility, material payoffs and kindness

sensations. This raises the question how to treat them from a welfare perspective. The question

can be formulated using the notions of decision utility and experienced utility (Kahneman et al.,

1997). Our analysis is based on the assumption that behavior is as if individuals were maximizing

the decision utility function Ui, but it leaves open the question whether sensations of kindness

should be counted as an own source of experienced well-being. We will investigate welfare based

on the entire utility function (3) in Section 6. First, however, we work with the conventional

notion of material Pareto-efficiency introduced above, i.e., we investigate how the behavioral

for both k = 1, 2, with strict inequality for at least one k. A strategy is Pareto-efficient and hence contained in
Ei(s

b
i) if it is not Pareto-dominated by any other strategy in Si.

7This property is important for mechanism design, as it implies that kindness cannot be manipulated by
merely adding non-tempting punishment options to a mechanism. For an assessment of i’s kindness, however, it
does not matter how costly it is to generate the best outcome for j, nor does it matter how much i would gain
from generating the worst outcome for j. To avoid implausible implications of this property, we will, for most of
our results, impose the additional requirement of budget-balance on and off the equilibrium path, which makes
it impossible to take a lot from one agent without giving it to the other agent.

8In Appendix D, we go through all our bilateral trade examples so as to demonstrate that the logic of our
analysis does not depend upon whether we model equitable payoffs as in Rabin (1993) or as in Dufwenberg and
Kirchsteiger (2004).
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implications of reciprocity affect the possibility to achieve materially efficiency outcomes. We

explore different notions of implementability, which differ by how much a priori information on

the weights y = (y1, y2) in the agents’ utility functions can be used for mechanism design.

Definition 3.

(a) An SCF f is strongly implementable in BNFE on Y ⊆ R
2
+ if there exists a mechanism Φ

and a profile s∗ such that s∗ is a BNFE for all y ∈ Y and g(s∗(θ)) = f(θ) for all θ ∈ Θ.

(b) An SCF f is weakly implementable in BNFE on Y ⊆ R
2
+ if, for every y ∈ Y , there exists

a mechanism Φ and a profile s∗ such that s∗ is a BNFE and g(s∗(θ)) = f(θ) for all θ ∈ Θ.

If f is strongly implementable on Y , then there exists a mechanism that implements f for all

weights y ∈ Y . In particular, strong implementability on the complete set Y = R
2
+, also simply

referred to as strong implementability, is relevant for a mechanism designer who acknowledges

the possibility that the agents’ strategy choices may be influenced by intention-based social

preferences but who has no information whatsoever on the strength of this influence. Strong im-

plementability in BNFE clearly implies implementability in BNE. With a weakly implementable

SCF, by contrast, the mechanism that is used for implementation can be made dependent on the

weights y ∈ Y in the agents’ utility functions. Obviously, strong implementability on Y implies

weak implementability on Y . Given the information requirements for weak implementability,

the set of SCFs which are weakly implementable may be too large for many practical applica-

tions. However, since at least some information about the intensity of social preferences will be

available in many applications, the set of SCFs which are strongly implementable may be too

small. In the following, we use the notion of strong implementability to get a lower bound and

the notion of weak implementability to get an an upper bound on what can be achieved in the

presence of intention-based social preferences.

3.4 The Bilateral Trade Problem

A simplified version of the classical bilateral trade problem due to Myerson and Satterthwaite

(1983) will be used repeatedly to illustrate key concepts and our main results. There is a buyer b

and a seller s. The seller produces q ∈ [0, 1] units of a good that the buyer consumes. The buyer’s

material payoff is given by vb(q, θb) = θbq, so that θb is her marginal valuation of the good. The

seller’s material payoff is given by vs(q, θs) = −θsq, so that θs is her marginal cost of production.

Each agent’s type takes one of two values from Θi = {θi, θ̄i} with equal probability. We assume

that 0 ≤ θs < θb < θ̄s < θ̄b, so that (maximal) production is optimal except if the valuation is

low and the cost is high. An SCF f specifies the amount of the good to be traded qf (θb, θs) and

the accompanying payments tfb (θb, θs) and tfs (θb, θs). It is materially Pareto-efficient if and only

if

qf (θb, θs) =

{

0 if (θb, θs) = (θb, θ̄s),

1 if (θb, θs) 6= (θb, θ̄s),
(4)

and tfs (θb, θs) = −tfb (θb, θs) for all (θb, θs) ∈ Θ. For particular parameter constellations, e.g.

θs = 0, θb = 20, θ̄s = 80, θ̄b = 100, (5)
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this setup gives rise to a discrete-type version of the famous impossibility result by Myerson and

Satterthwaite (1983): There is no SCF which is materially Pareto-efficient and satisfies both

BIC and PC.

In this case, a mechanism design problem of interest is to choose an SCF f that minimizes

E[tfb (θ̃) + tfs (θ̃)] subject to the constraints that f has to satisfy BIC, PC, and trade has to

be surplus-maximizing, i.e., qf has to satisfy (4), but the transfers do not have to be budget-

balanced. Myerson and Satterthwaite (1983) study this problem under the assumption that

types are drawn from intervals. The solution to the problem provides a measure of how severe

the impossibility result is: It gives the minimal subsidy that is required in order to make efficient

trade compatible with the BIC and PC constraints. For our parameter constellation in (5), a

solution f∗ is given in Table 1, which provides the triple (qf
∗

, tf
∗

s , tf
∗

b ) for each possible type

profile. Trade takes place whenever efficient, at prices 75, 50, or 25, depending on marginal

cost and marginal valuation. These prices are chosen so as to guarantee BIC. The incentive-

compatibility constraint (1) is binding for type θ̄b of the buyer and for type θs of the seller.

Respecting PC now requires a lump sum subsidy of 5/2 to be paid to each agent. Below, we will

use f∗ to illustrate that an SCF may be BIC but fail to be (strongly) implementable in BNFE,

i.e., to show that mechanisms which are designed for selfish agents may fail to be robust to the

introduction of (arbitrarily small) intention-based concerns.

θs θ̄s

θb (1, 5/2 + 25, 5/2 − 25) (0, 5/2, 5/2)

θ̄b (1, 5/2 + 50, 5/2 − 50) (1, 5/2 + 75, 5/2 − 75)

Table 1: Minimal Subsidy SCF f∗

Another SCF of interest is the one which is materially Pareto-efficient and splits the gains

from trade equally between the buyer and the seller. It is denoted f∗∗ and given in Table 2

for general parameter configurations. Since the transfers of f∗∗ are budget-balanced, Table 2

provides only the pair (qf
∗∗

, tf
∗∗

s ) for each type profile. The resulting payoffs

πb(f
∗∗(θb, θs), θb) = πs(f

∗∗(θb, θs), θs) =

(

θb − θs
2

)

qf
∗∗

(θb, θs)

are always non-negative, so that PC is satisfied. It is easily verified, however, that f∗∗ is not

BIC. It gives a high type buyer an incentive to understate her willingness to pay, and a low type

seller an incentive to exaggerate her cost. Below, we will use f∗∗ to illustrate that an SCF may

fail to be BIC but still be (weakly) implementable in BNFE.

θs θ̄s

θb (1, (θb + θs)/2) (0, 0)

θ̄b (1, (θ̄b + θs)/2) (1, (θ̄b + θ̄s)/2)

Table 2: Equal Split SCF f∗∗
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4 Strongly Implementable Social Choice Functions

4.1 Example

To motivate our analysis of strongly implementable social choice functions, we begin with the

example of an SCF that can be implemented if agents are selfish but not if there are arbitrarily

small concerns for reciprocity (provided that the kindness bound κ̄ is not too stringent). Consider

the bilateral trade example with parameters as given in (5). We know that the SCF f∗ solves

the minimal subsidy problem, so truth-telling sT = (sTb , s
T
s ) is a BNE in the direct mechanism.

The following observation asserts that truth-telling is not a BNFE as soon as at least one agent

puts a positive weight on kindness.

Observation 1. Consider the direct mechanism for f∗ in the bilateral trade example, assuming

(5) and κ̄ > 5/2. For every y with yb > 0 and/or ys > 0, the strategy profile sT is not a BNFE.

The proof of this observation (and of all other observations) can be found in Appendix C. It

rests on two arguments. First, the structure of binding incentive constraints in f∗ implies that

the buyer obtains the same material payoff from truth-telling as from always declaring a low

willingness to pay. The downward lie reduces the seller’s material payoff, however, and thus gives

the buyer a costless option to punish the seller. Second, the seller’s kindness in a hypothetical

truth-telling equilibrium is negative: truth-telling maximizes her own payoff, while she could

make the buyer better off by always announcing a low cost. The buyer therefore benefits from

reducing the seller’s payoff and deviates from truth-telling to understatement whenever yb > 0

(and κ̄ is large enough for her to still experience this payoff reduction). The symmetric reasoning

applies to the seller.

The example illustrates a more general insight. The combination of two properties, both

of which are satisfied by many optimal mechanisms for selfish agents, can make a mechanism

vulnerable to intention-based reciprocity. First, binding incentive constraints provide costless

opportunities to manipulate the other agents’ payoffs. Second, BIC implies that truthful agents

act selfish and therefore unkind. As a consequence, a reciprocal agent wants to use the manip-

ulation opportunities to retaliate the other agents’ unkindness.9 The results that follow show

that these situations can be avoided if an appropriate mechanism is chosen.

4.2 Possibility Results

We will provide sufficient conditions for the strong implementability of social choice functions in

BNFE. Specifically, we provide conditions under which a direct mechanism strongly implements

f on Y = R
2
+, i.e., for all conceivable reciprocity weights. Our analysis makes use of a measure

9Bierbrauer et al. (2014) generalize this argument to an even larger class of social preference models. Fehr
et al. (2011) indeed report on the behavioral non-robustness of the Moore-Repullo mechanism for subgame-
perfect implementation, and Bierbrauer et al. (2014) demonstrate systematic deviations from truth-telling in a
mechanism that would be ex post incentive-compatible for selfish agents. These theoretical and experimental
findings confirm the conjecture by Baliga and Sjöström (2011) that mechanisms in which agents can influence
their opponents’ payoffs without own sacrifice “may have little hope of practical success if agents are inclined to
manipulate each others’ payoffs due to feelings of spite or kindness.”
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of payoff interdependence among the agents. Given an SCF f , we define

∆i = max
θj∈Θj

Ei[vi(q
f
i (θ̃i, θj), θ̃i) + tfi (θ̃i, θj)]− min

θj∈Θj

Ei[vi(q
f
i (θ̃i, θj), θ̃i) + tfi (θ̃i, θj)], (6)

so that ∆i measures the maximal impact that varying j’s type has on i’s expected payoff. If ∆i =

0, then the SCF f insures agent i against the randomness in agent j’s type. Accordingly, we will

say that f has the insurance property in the particular case where ∆1 = ∆2 = 0. The literature

on mechanism design with risk-averse or ambiguity-averse agents (e.g. Maskin and Riley, 1984;

Bose et al., 2006; Bodoh-Creed, 2012) has explored various different insurance properties. As

the following result shows, an insurance property is also useful for a characterization of economic

outcomes that can be implemented if agents care about intentions.

Theorem 1. If f is BIC and has the insurance property, it is strongly implementable in BNFE.

Proof. See Appendix A.1.

In the proof, we consider the direct mechanism and verify that truth-telling is a BNFE for

all y ∈ R
2
+. We first show that the insurance property is equivalent to the following property:

no agent can affect the other agent’s expected material payoff by a unilateral deviation from

truth-telling. In the hypothetical truth-telling equilibrium, kindness is therefore equal to zero,

so that the agents focus only on their own material payoffs. If the given SCF is BIC, then the

own payoff is maximized if the agents behave truthfully. Hence, truth-telling is in fact a BNFE.

The theorem raises the question how restrictive the insurance property is. Proposition 1

below shows that there exist materially Pareto-efficient SCFs that are both BIC and have the

insurance property. Proposition 2 provides an extension to environments in which, in addition,

participation constraints have to be respected, but budget-balance can be dispensed with.

We first consider a class of direct mechanisms which are known as expected externality

mechanisms or AGV mechanisms, and which have been introduced by d’Aspremont and Gerard-

Varet (1979) and Arrow (1979). An AGV mechanism is an SCF f with surplus-maximizing

consumption levels (qf1 , q
f
2 ) and transfers that are given by

tfi (θi, θj) = Ej[vj(q
f
j (θi, θ̃j), θ̃j)]− Ei[vi(q

f
i (θ̃i, θj), θ̃i)]

for all (θi, θj). These transfers achieve budget-balance and hence guarantee Pareto-efficiency.

They also ensure that the AGV mechanism is BIC (see e.g. Mas-Colell et al., 1995, for a proof).

Proposition 1. The AGV mechanism has the insurance property.

Proof. See Appendix A.2.

The expected externality mechanism derives its name from the fact that each agent pays for

the expected impact that her strategy choice has on the other agents’ payoffs, assuming that

the other agents tell the truth. If there are only two agents, each of them obtains the payment

made by the other, which implies that a truth-telling agent is protected against changes of the

other agent’s strategy.10

10Mathevet (2010) states that the AGV “has no interdependencies between agents” (p. 414).
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It is well-known that AGV mechanisms may not be admissible if participation constraints

have to be respected. More generally, in many situations there does not exist any SCF which is

Pareto-efficient and satisfies both BIC and PC. This generates an interest in second-best social

choice functions, which satisfy BIC and PC but give up on the goal of achieving full Pareto-

efficiency. They specify consumption levels that are not surplus-maximizing and/or abandon

the requirement of budget-balance (as e.g. the SCF f∗ in our bilateral trade example). An

implication of the following proposition is that any such SCF can be modified so as to make sure

that the insurance property holds.

Proposition 2. Let f be an SCF that is BIC. Then there exists an SCF f̄ with the following

properties:

(a) The consumption levels are the same as under f : qf̄i (θ) = qfi (θ) for i = 1, 2 and all θ ∈ Θ.

(b) The expected budget is the same as under f : E[tf̄1(θ̃) + tf̄2(θ̃)] = E[tf1 (θ̃) + tf2(θ̃)].

(c) The interim payoff of every agent i = 1, 2 and type θi ∈ Θi is the same as under f :

Ej[vi(q
f̄
i (θi, θ̃j), θi) + tf̄i (θi, θ̃j)] = Ej [vi(q

f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)].

(d) f̄ is BIC and has the insurance property.

Proof. See Appendix A.3.

The proof is constructive and shows that the following new transfer scheme guarantees the

properties stated in the proposition:

tf̄i (θi, θj) = Ej[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)]− vi(q

f
i (θi, θj), θi), (7)

for all (θi, θj) ∈ Θ. Note that, by this construction, SCF f̄ may depend on the prior p even

if this was not the case for f . An example is the application to the second-price auction in

Bartling and Netzer (2013). Also, if the initial SCF f satisfies budget-balance (in the ex post

sense), this property will not be preserved by the construction. The two SCFs have the same

budgetary implications only if evaluated from an ex ante perspective. If the mechanism designer

is interested in expected revenues, this is not a problem. For instance, Bose et al. (2006) and

Bodoh-Creed (2012) use the same construction for models with ambiguity-averse agents, in which

the agents and the designer act on the basis of different prior distributions. The construction

then has the potential to increase expected revenues without hurting the agents, which can make

mechanisms with insurance optimal.

Proposition 2 is particularly useful for problems with participation constraints, because all

interim expected payoffs remain unchanged by property (c). Possible applications include the

problem of partnership dissolution (Cramton et al., 1987), public-goods provision (Güth and

Hellwig, 1986; Hellwig, 2003; Norman, 2004), the control of externalities (Rob, 1989), or auctions

(Myerson, 1981; Bartling and Netzer, 2013). In Section 4.3 below we apply the result in the

context of the bilateral trade problem.
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The insurance property implies robustness even beyond the class of intention-based social

preferences. The proof of Theorem 1 exploits only one feature of these preferences: the agents

are selfish when they lack the ability to influence the others’ payoffs. This property of “self-

ishness in the absence of externalities” also holds in many models with outcome-based social

preferences, such as altruism, spitefulness, or inequality aversion.11 Within the class of these

models, the insurance property in combination with BIC remains a sufficient condition for imple-

mentability of a social choice function. This robustness property is attractive in the light of the

empirically well-documented individual heterogeneity in social preferences (Fehr and Schmidt,

1999; Engelmann and Strobel, 2004; Falk et al., 2008; Dohmen et al., 2009). In many cases,

direct observation of these preferences will be difficult. An alternative approach in that case is

to solve a multi-dimensional design problem, where the agents also have to report their private

information about their social type. With the insurance property, there is no need to worry

about the details of multi-dimensional design. Instead, there is an easy solution which makes

it possible to achieve prespecified material outcomes without much knowledge of the correct

behavioral model.

4.3 Example Continued

We have shown in Section 4.1 that the SCF f∗, which minimizes the subsidy that is needed to

achieve efficient trade subject to BIC and PC, cannot be implemented in BNFE of the direct

mechanism. We can now use Proposition 2 to construct an SCF f̄∗ which is similar to f∗ but

can be strongly implemented in BNFE. Applying formula (7) we obtain f̄∗ as given in Table 3.

Trade takes place whenever efficient, at prices 60, 40, or 20, depending on marginal cost and

marginal valuation. The subsidy now depends on the types and differs between the agents. The

seller obtains a subsidy of 20 if both types are high or if both types are low, and a tax of 20

is collected from the buyer if costs are low and valuation is high. The expected net subsidy

amounts to 5, exactly as for SCF f∗. Proposition 2 in fact implies that f̄∗ is an alternative

solution to the second-best problem from Section 3.4, which additionally satisfies the insurance

property.

θs θ̄s

θb (1, 20 + 20,−20) (0, 0, 0)

θ̄b (1,+40,−20 − 40) (1, 20 + 60,−60)

Table 3: Robust Minimal Subsidy SCF f̄∗

11See Bierbrauer et al. (2014) for a formal definition of selfishness in the absence of externalities and for an
investigation of the social preference models by Fehr and Schmidt (1999) and Falk and Fischbacher (2006).
Similar observations, albeit not in mechanism design frameworks, have been made by Levine (1998), Fehr and
Schmidt (1999), Bolton and Ockenfels (2000) or Segal and Sobel (2007). Dufwenberg et al. (2011) demonstrate
the behavioral irrelevance of interdependent preferences in general equilibrium under a separability condition
that is essentially equivalent to selfishness in the absence of externalities.
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5 Weakly Implementable Social Choice Functions

5.1 Example

We begin with an example that illustrates several conceptual issues that arise in the context

of weak implementation, i.e., when the designer has precise information on the weights that

kindness has in the agents’ utility functions. We will discuss to what extent standard insights

from mechanism design theory have to be qualified, such as (i) the revelation principle, or (ii) the

tension between material Pareto-efficiency, incentive-compatibility and voluntary participation.

Consider again the bilateral trade example, for general parameters, not necessarily those

given in (5). We argued before that the SCF f∗∗, which stipulates efficient trade and splits the

gains from trade equally, is not BIC and hence not implementable in BNE. We first show that it

is also not implementable in BNFE when the designer is restricted to using a direct mechanism.

Observation 2. Consider the direct mechanism for f∗∗ in the bilateral trade example. For every

yb and ys, the truth-telling strategy profile sT is not a BNFE.

The logic is as follows: One can show that in a hypothetical truth-telling equilibrium both

the buyer and the seller realize their equitable payoffs. This implies that all kindness terms

are zero and the agents focus solely on their material payoffs. Lack of BIC then implies that

truth-telling is not a BNFE. Efficient trade with an equal sharing of the surplus is thus out of

reach in the direct mechanism, with or without intention-based social preferences.

Now consider a non-direct mechanism Φ′ = [M ′
b,M

′
s, g

′] in which the buyer has the extended

message set M ′
b = {θ

b
, θb, θ̄b} and the seller has the extended message set M ′

s = {θs, θ̄s,
¯̄θs}. The

outcome of the mechanism is, for every pair of messages (mb,ms) ∈ M ′
b × M ′

s, a decision on

trade qg
′

(mb,ms) and budget-balanced transfers tg
′

s (mb,ms) = −tg
′

b (mb,ms), i.e., the price to

be paid by the buyer. Table 4 gives the pair (qg
′

, tg
′

s ) for every possible profile of messages.

ms

mb

θs θ̄s
¯̄θs

θ
b

(1, (θb + θs)/2− δb) (0, 0) (0, 0)

θb (1, (θb + θs)/2) (0, 0) (0, 0)

θ̄b (1, (θ̄b + θs)/2) (1, (θ̄b + θ̄s)/2) (1, (θ̄b + θ̄s)/2 + δs)

Table 4: Non-Direct Mechanism Φ′

The mechanism works like a direct mechanism for f∗∗ as long as the message profile is in

{θb, θ̄b} × {θs, θ̄s}. If the buyer chooses the message θ
b
, the consequence is the same as when

announcing a low valuation θb, except that she gets an additional discount of δb whenever there

is trade. Intuitively, announcing θ
b

amounts to the claim that the valuation is even lower than

θb. If the seller chooses the message ¯̄θs, the consequence is the same as when announcing a high

cost θ̄s, except that the price she receives is increased by δs whenever there is trade. Intuitively,

announcing ¯̄θs amounts to the claim that the cost is even higher than θ̄s. Agent i’s set of

strategies in mechanism Φ′ is S′
i = M ′

i × M ′
i . A generic element s′i of S′

i is a pair in which
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the first entry is the message chosen in case of having a low type, and the second entry is the

message chosen in case of having a high type. For both agents, the strategy set of the direct

mechanism, Si = Θi ×Θi, is a subset of the extended strategy set S′
i. The outcome of Φ′ under

the truth-telling strategy profile sT is still the outcome stipulated by the SCF f∗∗. The following

observation asserts that truth-telling is a BNFE for particular parameter constellations.

Observation 3. Consider the non-direct mechanism Φ′ for f∗∗ in the bilateral trade example.

For yb, ys and κ̄ large enough, there exist numbers δb, δs > 0 so that sT is a BNFE.

If the buyer believes the seller to behave according to sTs , the best she can do for the seller

is to exaggerate her willingness to pay, which leads to more trade and to trade at a higher price.

The worst (but still Pareto-efficient) outcome for the seller is obtained if the buyer behaves

according to (θ
b
, θ

b
), i.e., if she insists on the discount of δb. Suppose for simplicity that κ̄ = ∞,

so that the kindness bound can be safely ignored (the statement that yb, ys and κ̄ must be

“large enough” is made precise in Theorem 2 below). Straightforward computations then show

that the buyer’s kindness in the hypothetical truth-telling equilibrium sT , where she does not

insist on the discount, becomes positive: κb(s
T ) = δb/4. A symmetric argument implies that

the seller is kind when she does not use the action ¯̄θs and does not ask for the very high price:

κs(s
T ) = δs/4. Whenever yb > 0 and ys > 0, we can now calibrate the numbers δb and δs so as

to turn both agents’ utility maximization problems into problems of welfare maximization. The

buyer, for instance, chooses sb in order to maximize

Πb(sb, s
T
s ) + ybκs(s

T )Πs(sb, s
T
s ).

For δs = 4/yb we obtain κs(s
T ) = 1/yb, and the problem becomes to choose sb in order to max-

imize the sum of expected material payoffs Πb(sb, s
T
s ) + Πs(sb, s

T
s ). Strategy sTb is a solution to

this problem, because the outcome under truth-telling is the efficient SCF f∗∗, which maximizes

the sum of material payoffs for every θ ∈ Θ. Similarly, truth-telling is a best response for the

seller when δb = 4/ys.

Observations 2 and 3 together show that (i) a revelation principle is not available for the

solution concept BNFE, because the actions that remain unused in the non-direct mechanism

affect the interpretation of equilibrium behavior. Truth-telling becomes kind when both agents

refrain from enriching themselves at the expense of the other agent. Hence outcomes can no

longer be separated from the procedures according to which they are obtained. Since f∗∗ ensures

non-negative material payoffs for both agents and types, the analysis also shows that (ii) volun-

tary participation can be guaranteed, provided that material payoffs are considered as relevant

for participation considerations. We will now discuss these issues more generally.

5.2 An Augmented Revelation Principle

The non-direct mechanism Φ′ that is used to implement f∗∗ in the previous section resembles a

truthful direct mechanism: The set of messages includes the set of types and truth-telling is an

equilibrium. This is not a coincidence. In the following, we show that if implementation of an

SCF in BNFE is possible at all, then it is also possible truthfully in the class of augmented rev-

elation mechanisms. A mechanism is called an augmented revelation mechanism for f whenever
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Θi ⊆ Mi for i = 1, 2 and g(m) = f(m) for all m ∈ Θ, i.e., whenever the message sets include

the type sets and the SCF f is realized in the event that all messages are possible types. An

augmented revelation mechanism Φ truthfully implements f in BNFE if the truth-telling profile

sT is a BNFE of Φ. The difference between truthful direct and augmented revelation mecha-

nisms is the existence of unused actions in the latter. Augmented revelation mechanisms have

first been introduced by Mookherjee and Reichelstein (1990). They play an important role for

implementation with the additional requirement that there is a unique equilibrium or a unique

equilibrium outcome.

We first state explicitly the property of strategic equivalence of arbitrary and augmented

revelation mechanisms. We start from an arbitrary mechanism Φ = (M1,M2, g) and a strategy

profile s̃ = (s̃1, s̃2), interpreted as an equilibrium of some type. We then construct an augmented

revelation mechanism Φ′(Φ, s̃) based on Φ and s̃, with the property that the outcome of Φ′ under

truth-telling is the same as the outcome of Φ under s̃.12 We then establish that Φ and Φ′ are

strategically equivalent, in the sense that any outcome that can be induced by some action under

Φ can be induced by some action under Φ′ and vice versa. Formally, consider an arbitrary pair

(Φ, s̃) and let f be the social choice function induced by s̃ in Φ, i.e., f(θ) = g(s̃(θ)) for all θ ∈ Θ.

We now construct new message sets M ′
i for every agent. Any action from Mi that is used by

s̃i is relabelled according to the type θi that uses it, and any unused action from Mi is kept

unchanged: M ′
i = Θi ∪ (Mi\s̃i(Θi)) . To define the outcome function g′ of Φ′, we first construct

for every agent a surjective function ηi : M
′
i → Mi that maps actions from M ′

i back into Mi:

ηi(m
′
i) =

{

s̃i(m
′
i) if m′

i ∈ Θi ,

m′
i if m′

i ∈ Mi \ s̃i(Θi) .

For all message profiles m′ = (m′
1,m

′
2) we then define

g′(m′) = g(η1(m
′
1), η2(m

′
2)). (8)

In words, announcing a type θi ∈ Θi in Φ′ has the same consequences as choosing the action

s̃i(θi) in Φ, and choosing an action from Mi\s̃i(Θi) in Φ′ has the same consequences as choosing

that same action in Φ. Observe that Φ′ is in fact an augmented revelation mechanism for f ,

because g′(sT (θ)) = g′(θ) = g(s̃(θ)) = f(θ) for all θ ∈ Θ.

Proposition 3. The mechanisms Φ and Φ′(Φ, s̃) are strategically equivalent, in the sense that,

for i = 1, 2 and any mj ∈ Mj and m′
j ∈ M ′

j with mj = ηj(m
′
j), it holds that Gi(mj) = G′

i(m
′
j),

where

Gi(mj) = {a ∈ A | ∃mi ∈ Mi so that g(mi,mj) = a}

and

G′
i(m

′
j) = {a ∈ A | ∃m′

i ∈ M ′
i so that g′(m′

i,m
′
j) = a}.

Proof. See Appendix A.4.

The sets Gi(mj) and G′
i(m

′
j) contain all allocations that agent i can induce by varying

12Mookherjee and Reichelstein (1990) use the same construction, albeit for a different purpose. Unused actions
enable them to destroy unwanted equilibria and to attain equilibrium uniqueness.
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her message, holding fixed agent j’s message. According to the proposition, these sets are

the same in both mechanisms, for any pair of messages with mj = ηj(m
′
j). Proposition 3

has the following implication: If we start from an arbitrary mechanism Φ with BNFE s∗ that

implements an SCF f , the above construction yields an augmented revelation mechanism Φ′ in

which truth-telling induces f and is a BNFE as well. This conclusion follows from the observation

that unilateral deviations from sT in Φ′ can achieve exactly the same outcomes as unilateral

deviations from s∗ in Φ. The equivalence of achievable outcomes implies, in particular, that the

kindness terms associated to s∗ and all unilateral deviations in Φ are identical to those of sT

and all corresponding deviations in Φ′.

Corollary 1. Suppose a mechanism Φ implements an SCF f in BNFE. Then there exists an

augmented revelation mechanism Φ′ that truthfully implements f in BNFE.

5.3 A Possibility Result

The following theorem is a generalization of Observation 3. It provides sufficient conditions for

the weak implementability of materially Pareto-efficient social choice functions in BNFE. The

following notation will make it possible to state the theorem in a concise way. For a given SCF

f , define

Y f = {(y1, y2) ∈ R
2
+ | yi > 0 and 1/yi ≤ κ̄−∆i for both i = 1, 2},

where ∆i is given by (6). The set Y f of reciprocity weights is non-empty if and only if κ̄ > ∆i for

both agents, i.e., the kindness bound κ̄ has to be large enough compared to the interdependence

measure ∆i. If κ̄ = ∞, then Y f contains all pairs of strictly positive reciprocity weights.

Theorem 2. If f is materially Pareto-efficient, it is weakly implementable in BNFE on Y f .

Proof. See Appendix A.5.

In the proof, we start from a direct mechanism for f and introduce additional messages that

would trigger budget-balanced redistribution among the agents. Specifically, we work with a

mechanism in which agent i’s message set is Mi = Θi × {0, 1}, so that a message consists of a

type report and a decision whether or not to “press a button” (see also Netzer and Volk, 2014,

for an application of such mechanisms). The outcome of the mechanism is the one stipulated by

f for the given profile of reported types, plus possible redistributive payments initiated by an

agent who presses her button. These payments are used to manipulate the kindness associated to

truth-telling, and we calibrate them to generate a degree of kindness that effectively turns each

agent’s best response problem into a problem of surplus-maximization, as already illustrated

by Observation 3. This can require increasing or decreasing the kindness of truth-telling in the

direct mechanism, so that the redistribution triggered by i’s button might have to go in either

direction. Ultimately, since the SCF to be implemented is materially Pareto-efficient, truth-

telling is a solution to the surplus-maximization problem, and the buttons remain unpressed.13

13Mookherjee and Reichelstein (1990) also maintain out-of-equilibrium budget-balance, but their construction
of “flags” and “counterflags” is otherwise very different from our “buttons”. Our approach amounts to introducing
|Θi| unused messages for agent i. More parsimonious constructions are possible, as the bilateral trade example
illustrates, but come at the cost of more complicated notation.
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Our construction resembles a Groves mechanism, where transfers between agents are designed

so as to align individual interests with the social objective. Here, however, out-of-equilibrium

payments are used for that purpose.

A difficulty in the proof of Theorem 2 arises from the kindness bound κ̄. The crucial step

for the alignment of incentives is that we can generate kindness equal to κj(s
T ) = 1/yi. The

requirement 1/yi ≤ κ̄ is a necessary condition for this to be possible. The condition 1/yi ≤ κ̄−∆i

in the definition of Y f is even more stringent. The larger is ∆i, the larger need to be the kindness

bound κ̄ and/or the reciprocity weight yi in order to guarantee implementability of f . Intuitively,

while no deviation of agent j can increase the sum of payoffs over and above truth-telling, some

strategy of j might increase j’s own payoff and decrease i’s payoff into the region where κj = −κ̄

holds. Agent j no longer internalizes all payoff consequences of such a deviation. If ∆i is

sufficiently small relative to κ̄, this possibility can be excluded. If κ̄ = ∞, i.e., if there is no a

priori bound on the intensity of kindness sensations, then every materially Pareto-efficient SCF

can be implemented as soon as y1 and y2 are strictly positive, i.e., as soon as both agents show

some concern for reciprocity.

Theorem 2 also speaks to the issue of voluntary participation. Classical papers such as

Myerson and Satterthwaite (1983) and Mailath and Postlewaite (1990) have noted that, when

we consider an SCF that is materially Pareto-efficient and BIC, then for some types of some

agents the expected material payoff will typically be lower than under a given status quo outcome.

Since BIC is no longer a constraint by Theorem 2, we can, for instance, implement an efficient

SCF that gives both agents an equal share of the material surplus (provided that y1, y2, and

κ̄ are sufficiently large). More generally, with the solution concept of weak implementability

in BNFE, we may be able to achieve SCFs that are surplus-maximizing and satisfy PC but

violate BIC. This solves the participation problem based on the criterion of material payoffs.

However, the requirement of non-negative material payoffs may be questionable if agents have

social preferences. It may seem more plausible that they agree to play a mechanism if their

overall utility, including kindness sensations, is larger than under the status quo. Theorem 2

can be adapted to guarantee voluntary participation also with this criterion. Instead of adding

unused messages to the direct mechanism, where Mi = Θi, we can as well start out from a

direct mechanism with veto rights, where Mv
i = Θi ∪ {v} and which stipulates some status quo

allocation av ∈ A if any one agent sends the veto v. We can add messages to Mv
i in exactly

the same way as in the proof of Theorem 2 and align individual interests with the objective of

surplus-maximization. Both the veto rights and the additional messages then remain unused

in equilibrium, which implies that all types of both agents participate voluntarily. The only

modification required to extend the proof of Theorem 2 is to replace each value ∆i by the

(weakly larger) value ∆v
i that takes into account agent j’s impact on agent i’s expected payoff

by means of the veto:

∆v
i = max

mj∈Mv
j

Ei[vi(q
g
i (θ̃i,mj), θ̃i) + tgi (θ̃i,mj)]− min

mj∈Mv
j

Ei[vi(q
g
i (θ̃i,mj), θ̃i) + tgi (θ̃i,mj)].

We add a word of caution: Our proof of Theorem 2 relies on the use of a direct mechanism

with a button, which is of course an artificial construction. It should be interpreted as a tool
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for the characterization of feasible outcomes, in the same way augmented or direct mechanisms

are typically interpreted in the literature. Still, the logic may be related to mechanisms which

are empirically more plausible. For instance, Herold (2010) considers an incomplete contracting

relationship where one party refrains from including provisions against misbehavior of the other

party into the contract, for fear of signalling a lack of trust. Not taking an opportunistic action

in such an incomplete contract is akin to not pressing the button in our augmented mechanism.

6 Utility Pareto-Efficiency

When Rabin (1993) introduced his model of intention-based social preferences, he argued that

“welfare economics should be concerned not only with the efficient allocation of material goods,

but also with designing institutions such that people are happy about the way they interact with

others” (p. 1283). In the following, we provide a formalization of this idea. As a first step, we

fix an SCF f that is implementable in BNFE and look for a mechanism that implements f with

maximal psychological utility. The following proposition asserts that any SCF which satisfies the

prerequisites of either Theorem 1 or 2 can in fact be implemented so that both agents’ kindness

reaches the upper bound κ̄.

Proposition 4. Suppose κ̄ < ∞ and yi > 0 for both i = 1, 2. Let f be an SCF for which one of

the following two conditions holds:

(a) f is BIC and has the insurance property, or

(b) f is materially Pareto-efficient and y ∈ Y f .

Then, there exists a mechanism that implements f in a BNFE s with κ1(s) = κ2(s) = κ̄.

Proof. See Appendix A.6.

The proof relies on an augmentation of the mechanisms used in the proofs of Theorems 1

and 2. The forgone redistribution now has to be specified so that the resulting kindness equals

the upper bound κ̄. The crucial step in the proof is to show that, even in the face of this larger

temptation, no agent prefers to deviate from truth-telling.14

Proposition 4 is of its own interest, as it provides a result on how to achieve a given material

outcome with maximal kindness. In addition, it now allows us to turn to a notion of efficiency

that is based on the entire utility functions Ui, as opposed to the agents’ material payoffs only.

The concept of utility Pareto-efficiency gives rise to a conceptual difficulty. In a consequential-

istic approach, the definition of efficiency of an SCF is independent from the investigation of

the mechanisms that implement it. This separation is not possible in our approach, because

utilities are procedural and depend on the mechanism and its equilibrium. Hence utility Pareto-

efficiency needs to be defined as a property of mechanism-equilibrium pairs rather than of social

14For instance, case (a) of Proposition 4 allows yiκ̄ < 1. Even with maximal kindness, both agents then still
place a larger weight on their own than on the other agent’s payoff, and would thus prefer to press a button
that triggers budget-balanced redistribution. As a consequence, off-equilibrium budget-balance can no longer be
guaranteed in the proof of Proposition 4.
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choice functions.15 We can, however, apply Proposition 4 to construct utility Pareto-efficient

mechanism-equilibrium pairs. The first step is to fix an SCF f that is materially Pareto-efficient

and for which (a) or (b) in Proposition 4 applies. The second step is to implement f in a

BNFE s∗ of a mechanism Φ such that κ1(s) = κ2(s) = κ̄ holds, which is possible according to

Proposition 4. Then the mechanism-equilibrium pair (Φ, s) is utility Pareto-efficient, i.e., there

cannot be any other pair (Φ′, s′) that yields a strictly larger utility for one agent without giving

a strictly smaller utility to the other agent. This holds irrespective of the material outcome of

(Φ′, s′), due to material Pareto-efficiency of f and the fact that (Φ, s) achieves maximal kindness

for both agents.

7 Extensions

7.1 The Designer as a Player

So far we have assumed that the agents treat the mechanism as exogenous. However, they

may think of the mechanism designer as an own player, and their behavior may be affected

by the intentions that they attribute to the designer’s choice of the mechanism. For instance,

they may have a desire to sabotage the mechanism if they believe that it was chosen with the

intention to extract an excessive share of their rents. As a first extension, we briefly explore this

idea in a simplified model framework. We show that the perception of the designer as a player

may drastically reduce the set of implementable outcomes, even if the designer does not have

a genuine own interest in the allocation but attempts to maximize a weighted average of the

agents’ material payoffs.

For any SCF f , denote by Πi(f) = E[vi(q
f
i (θ̃), θ̃i) + tfi (θ̃)] the ex ante expected material

payoff of agent i. We assume that the mechanism designer cares about welfare

W (f) = γΠ1(f) + (1− γ)Π2(f),

where 0 < γ < 1 determines the relative weights of the agents in the objective. For instance, in

the bilateral trade example we think of the mechanism designer as a benevolent regulator who

cares about a weighted average of consumer and producer surplus. To keep the analysis tractable,

we impose a constraint on the designer’s strategy set, i.e., on the set of available mechanisms.

We assume that the mechanism has to be an AGV mechanism as described in Section 4.2, with

an additional (possibly negative) upfront transfer t̄ from agent 1 to agent 2. Note that the

entire ex ante material payoff frontier can be traced out this way. The insurance property and

BIC are unaffected by t̄, so that we can safely ignore intention-based social preferences between

the agents: By Theorem 1, any such mechanism is strongly implementable in BNFE when the

agents treat it as exogenous. Hence the endogeneity of the mechanism is the only conceivable

impediment for implementation. Formally, the designer’s problem reduces to a choice of t̄, and

we write

Π1(t̄) = ΠAGV
1 − t̄, Π2(t̄) = ΠAGV

2 + t̄,

15See Ruffle (1999) for similar welfare arguments in the context of psychological gift-giving games. In a model
of outcome-based social preferences, Benjamin (2014) also distinguishes between material and utility efficiency.
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where ΠAGV
i = E[vj(q

∗
j (θ̃), θ̃j)] is agent i’s expected payoff in the AGV mechanism with surplus-

maximizing consumption levels (q∗1 , q
∗
2) and no upfront payment. We require −Π2(0) ≤ t̄ ≤ Π1(0)

to guarantee that no agent’s material ex ante payoff becomes negative.

We now introduce an equitable reference payoff for each agent. If, for a proposed mechanism-

equilibrium-pair, agent i’s expected payoff fell short of this reference, this would indicate that

the mechanism designer has treated i in an unfair way. In the spirit of our earlier assumptions,

let agent i’s equitable payoff be defined as the average between her best and her worst payoff on

the material payoff frontier. For both i = 1, 2, this yields

Πe
i =

1

2

[

max
t̄

Πi(t̄) + min
t̄

Πi(t̄)

]

=
1

2
(ΠAGV

1 +ΠAGV
2 ).

In words, the agents consider as equitable an equal split of the expected surplus. Consider agent

1 first, and assume κ̄ = ∞ for simplicity. The kindness of a designer who proposes t̄ then is

κd1(t̄) = Π1(t̄)−Πe
1 =

1

2
(ΠAGV

1 −ΠAGV
2 )− t̄,

and agent 1’s best response problem, given truth-telling of agent 2, becomes to maximize

Π1(s1, s
T
2 ) + y1 κd1(t̄) γΠ1(s1, s

T
j ),

where all terms that do not depend on s1 have been omitted.16 Suppose that the offered

mechanism yields less than half of the surplus for agent 1, i.e., t̄ > (ΠAGV
1 − ΠAGV

2 )/2. In the

bilateral trade example, when agent 1 is the seller, this could correspond to a regulator who

puts more weight on consumer surplus than on producer surplus (γ < 1/2) and hence would

like to make t̄ as large as possible. We obtain κd1(t̄) < 0, because agent 1 is disappointed by

a designer who does not come up with a mechanism that generates an appropriate payoff for

herself. Hence, she would like to sabotage the designer. Since the proposed mechanism has

the insurance property, she can influence the designer’s objective only through her own well-

being, and, for a sufficiently large value of y1, will attempt to minimize Π1(s1, s
T
j ). Truth-telling

maximizes Π1(s1, s
T
j ) by BIC and is not a solution to this problem. In the opposite case, when

t̄ < (ΠAGV
1 −ΠAGV

2 )/2, the same logic implies that agent 2 will deviate from truth-telling when

y2 is large enough. The only AGV mechanism that remains strongly implementable in BNFE is

the one with t̄ = (ΠAGV
1 − ΠAGV

2 )/2. In this case we obtain κdi(t̄) = 0 for both i = 1, 2, such

that the agents care only about their own material payoffs and truth-telling is an equilibrium

for all y ∈ R
2
+.

This simple example demonstrates that reciprocity towards the (benevolent) designer can

have a substantial impact on the set of implementable outcomes. While the AGV mechanism

with any lump sum redistribution is strongly implementable in BNFE if the agents treat the

mechanism as exogenous, only the equal split distribution can be strongly implemented when

the mechanism is treated as endogenous, and thus conveys the designer’s intentions.

16Both agent 2’s payoff (1 − γ)Π2(s1, s
T
2 ) and the designer’s equitable payoff can be omitted in the kindness

of agent 1 toward the designer, the former due to the insurance property, the latter because it is an additive
constant.
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7.2 Arbitrary Number of Agents

Extending the basic mechanism design framework to an arbitrary number n of agents is straight-

forward. We can then denote by sbij agent i’s belief about j’s strategy, and write sbi = (sbij)j 6=i.

Analogously, sbbijk is agent i’s belief about j’s belief about k’s strategy, and we also write

sbbij = (sbbijk)k 6=j and sbbi = (sbbij )j 6=i. The psychological externalities between n agents could po-

tentially be multilateral, but we follow the literature (e.g. Dufwenberg and Kirchsteiger, 2004)

and assume for simplicity that kindness sensations arise only bilaterally. Hence the kindness

that agent i experiences in her relation with agent j does not depend on the implications of j’s

behavior for some third agent k. Agent i’s expected utility can then be stated as

Ui(si, s
b
i , s

bb
i ) = Πi(si, s

b
i) +

∑

j 6=i

yij κij(si, s
b
i )κji(s

b
i , s

bb
i ).

Here, yij are (possibly relation-specific) kindness weights, κij(si, s
b
i ) = h(Πj(si, s

b
i) − Πe

j(s
b
i))

measures how kind i intends to be to j, and κji(s
b
ij , s

bb
ij ) = h(Πi(s

b
ij , s

bb
ij ) − Πe

i (s
bb
ij )) is i’s belief

about the kindness intended by j. Equitable payoffs are determined according to

Πe
j(s

b
i ) =

1

2

[

max
si∈Eij(sbi )

Πj(si, s
b
i ) + min

si∈Eij(sbi )
Πj(si, s

b
i )

]

,

where Eij(s
b
i ) is the set of bilaterally Pareto-efficient strategies of agent i. We define a BNFE

as a strategy profile s∗ so that, for all agents i, (a) s∗i ∈ argmaxsi∈Si
U(si, s

b
i , s

bb
i ), (b) s

b
i = s∗−i,

and (c) sbbi = (s∗−j)j 6=i.

We first discuss how our results on strong implementability (Section 4) extend to this setting.

Given an SCF f , let

∆ij = max
θj∈Θj

E−j[vi(q
f
i (θ̃−j , θj), θ̃i) + tfi (θ̃−j, θj)]− min

θj∈Θj

E−j[vi(q
f
i (θ̃−j, θj), θ̃i) + tfi (θ̃−j, θj)]

be a measure of the maximal impact that j’s type has on i’s expected payoff. If the insurance

property holds, which now requires ∆ij = 0 for all i and j, then no agent can unilaterally affect

the expected payoff of any other agent in the direct mechanism. From the arguments developed

earlier, it then follows that Theorem 1 can be extended: If f is BIC and satisfies the insurance

property, then f is strongly implementable in BNFE.

For the case of two agents, Proposition 1 shows that the AGV mechanism satisfies the

insurance property. This result does not generally extend to the case of n agents. It extends,

however, under symmetry of expected externalities, which requires that, for each i and θi,

E−i[vj(q
f
j (θi, θ̃−i), θ̃j)] = E−i[vk(q

f
k (θi, θ̃−i), θ̃k)]

holds for all j, k 6= i. If all agents’ expected consumption utilities are affected equally by agent

i’s type, so that the expected externalities are evenly distributed, then the AGV transfers once

more guarantee the insurance property. Symmetry arises naturally if the environment is such

that all agents have identical payoff functions, their types are identically distributed, and the

consumption rule (qf1 , ..., q
f
n) treats them all equally. Proposition 2, by contrast, extends to the
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n agent setting with no further qualification. The construction of the strongly implementable

version f̄ of f is given by

tf̄i (θi, θ−i) = E−i[vi(q
f
i (θi, θ̃−i), θi) + tfi (θi, θ̃−i)]− vi(q

f
i (θi, θ−i), θi).

Some of our results on weak implementability (Section 5) carry over to the n agent case in

a straightforward way, others would require a more elaborate analysis that is beyond the scope

of this paper. Our proof of the augmented revelation principle did not make use of arguments

that are specific to the case of two agents, and hence continues to apply. Theorem 2 provides

the sufficient condition y ∈ Y f for implementability of a materially Pareto-efficient SCF f in

BNFE, where

Y f = {(y1, y2) ∈ R
2
+ | yi > 0 and 1/yi ≤ κ̄−∆i for both i = 1, 2}.

If κ̄ = ∞, so that there are no exogenous bounds on the intensity of kindness sensations, the

sufficient condition reduces to the requirement that both y1 and y2 are strictly positive. This

statement continues to hold in the setting with n agents. If all kindness weights yij are strictly

positive, then the proof of Theorem 2 can be generalized by introducing bilateral redistribution

possibilities and calibrating them to support a truth-telling equilibrium. We conjecture that this

logic extends to the case in which κ̄ < ∞, but we have to leave this question for future research.

An extension would require a general characterization of the set Y f for an environment with n

agents. For this paper, this would lead us astray.

Proposition 4 provides two sufficient conditions for the possibility to implement an SCF f

so that both agents experience a maximal kindness of κ̄. The first one is that f is BIC and

has the insurance property. This finding extends to the n agent case without complications.

If ∆ij = 0 for all i and j, then we can, as in case (a) of the proof of Proposition 4, engineer

kindness sensations of κ̄ by means of side-transfers that will not take place in equilibrium. The

second sufficient condition is that f is materially Pareto-efficient and y ∈ Y f . An extension of

this condition is more involved, because it would, again, require a general characterization of

the set Y f for an environment with n agents.

8 Conclusion

Economists have become increasingly more aware of the fact that preferences are often context-

dependent. A mechanism designer who creates the rules of a game is thus confronted with the

possibility that the game has an impact on behavior beyond the usually considered incentive

effects, by influencing preferences through context. The theory of intention-based social pref-

erences is one of the few well-established models that admit context-dependence, which makes

it an ideal starting point for the investigation the problem. Our results in the first part of the

paper show how to eliminate a potential impact of the context on preferences. This is relevant

for a designer who wishes to refrain from calibrating the mechanism to the details of a specific

behavioral model. We have shown that such a designer can still rely on many results that have

been provided by the rich literature on mechanism design under the (possibly misspecified) as-
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sumption of selfish behavior. Our results in the second part of the paper show how to exploit

a potential impact of the context on preferences. The design of choice sets then becomes a

non-trivial part of mechanism design, and efficient outcomes that are out of reach with selfish

agents become implementable.

There are several open questions for future research already within our specific framework

of intention-based social preferences. First, the focus on normal form mechanisms is typically

justified by the argument that any equilibrium in an extensive form mechanism remains an

equilibrium in the corresponding normal form, so that moving from normal to extensive form

mechanisms can only reduce the set of implementable social choice functions. It is unclear

whether this is also true with intention-based social preferences. It is also unclear which social

choice functions can be implemented as a unique fairness equilibrium outcome of some extensive

form mechanism. A major obstacle to answering these questions is the lack of a general theory

of intentions for extensive form games with incomplete information. Second, several of our

results lend themselves to experimental testing. This concerns, for instance, the role of unused

actions as a design instrument, or the problem whether differences in kindness perceptions across

outcome-equivalent mechanisms can be identified empirically. Of course, the more general field

of context-dependent mechanism design offers an even wider range of important and fascinating

open questions.
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A Proofs of General Results

A.1 Proof of Theorem 1

Step 1. Consider the direct mechanism for a given SCF f . As a first step, we show that ∆i = 0

if and only if Πi(s
T
i , s

′
j) = Πi(s

T
i , s

′′
j ) for any two strategies s′j, s

′′
j ∈ Sj of agent j.

Suppose Πi(s
T
i , s

′
j) = Πi(s

T
i , s

′′
j ) for any s′j, s

′′
j ∈ Sj. We show that this implies ∆i = 0. For

arbitrary types θ′j, θ
′′
j ∈ Θj, let s̄′j be the strategy to always announce θ′j and s̄′′j the strategy

to always announce θ′′j , whatever agent j’s true type. Then Πi(s
T
i , s̄

′
j) = Πi(s

T
i , s̄

′′
j ) holds.

Equivalently,

Ei[vi(q
f
i (θ̃i, θ

′
j), θ̃i) + tfi (θ̃i, θ

′
j)] = E

i
[vi(q

f
i (θ̃i, θ

′′
j ), θ̃i) + tfi (θ̃i, θ

′′
j )] .

Since our choice of θ′j , θ
′′
j ∈ Θj was arbitrary, this implies that ∆i = 0.

Now suppose that ∆i = 0. For all strategies sj ∈ Sj and all types θj ∈ Θj , define

Λ(θj |sj) = {θ′j ∈ Θj | sj(θ
′
j) = θj}.

For any sj ∈ Sj, observe that

Πi(s
T
i , sj) = E[vi(q

f
i (θ̃i, sj(θ̃j)), θ̃i) + tfi (θ̃i, sj(θ̃j))]

= Ej[Ei[vi(q
f
i (θ̃i, sj(θ̃j)), θ̃i) + tfi (θ̃i, sj(θ̃j))]]

= Êj[Ei[vi(q
f
i (θ̃i, θ̃j), θ̃i) + tfi (θ̃i, θ̃j)]],

where the expectations operator Êj is based on the probability distribution p̂j given by

p̂(θj) =
∑

θ′j∈Λ(θj |sj)

p(θ′j)

for all θj ∈ Θj, instead of pj as for Ej. From ∆i = 0 it follows that there exists a number ρ so

that Ei[vi(q
f
i (θ̃i, θj), θ̃i) + tfi (θ̃i, θj)] = ρ for all θj ∈ Θj, and hence Πi(s

T
i , sj) = Êj[ρ] = ρ. Since

our choice of sj was arbitrary, this implies Πi(s
T
i , s

′
j) = ρ = Πi(s

T
i , s

′′
j ) for any two s′j, s

′′
j ∈ Sj.

Step 2. Now assume that f is BIC and satisfies ∆1 = ∆2 = 0. Consider the truthful strategy

profile sT = (sT1 , s
T
2 ) in the direct mechanism, and suppose all first- and second-order beliefs are

correct. For both i = 1, 2 we then obtain Πe
i (s

b
j) = Πe

i (s
T
i ) = Πi(s

T ) according to step 1, which

implies that κj(s
b
i , s

bb
i ) = κj(s

T ) = 0. Hence agent i’s problem maxsi∈Si
Ui(si, s

b
i , s

bb
i ) becomes

maxsi∈Si
Πi(si, s

T
j ). Truth-telling sTi is a solution to this problem by BIC, so sT is a BNFE.

A.2 Proof of Proposition 1

Consider any AGV f . For both i = 1, 2 and any type realization θj ∈ Θj it holds that

Ei[vi(q
f
i (θ̃i, θj), θ̃i) + tfi (θ̃i, θj)]

= Ei[vi(q
f
i (θ̃i, θj), θ̃i)] + Ei[Ej [vj(q

f
j (θ̃i, θ̃j), θ̃j)]]− Ei[Ei[vi(q

f
i (θ̃i, θj), θ̃i)]]

= E[vj(q
f
j (θ̃i, θ̃j), θ̃j)],
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which is independent of θj. Therefore ∆i = 0.

A.3 Proof of Proposition 2

Let f = (qf1 , q
f
2 , t

f
1 , t

f
2) be an SCF that is BIC. We construct a new payment rule (tf̄1 , t

f̄
2) as

follows. For every i = 1, 2 and (θi, θj) ∈ Θ, let

tf̄i (θi, θj) = Ej[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)]− vi(q

f
i (θi, θj), θi). (9)

We verify that f̄ = (qf̄1 , q
f̄
2 , t

f̄
1 , t

f̄
2 ), with qf̄i = qfi for both i = 1, 2, satisfies properties (a) - (d).

Property (a). This property is satisfied by construction.

Property (b). This property follows after an application of the law of iterated expectations:

∑

i=1,2

E[tf̄i (θ̃)] =
∑

i=1,2

E[Ej[vi(q
f
i (θ̃i, θ̃j), θ̃i) + tfi (θ̃i, θ̃j)]− vi(q

f
i (θ̃i, θ̃j), θ̃i)]

=
∑

i=1,2

E[vi(q
f
i (θ̃i, θ̃j), θ̃i) + tfi (θ̃i, θ̃j)− vi(q

f
i (θ̃i, θ̃j), θ̃i)]

=
∑

i=1,2

E[tfi (θ̃)].

Property (c). This property follows since

Ej[vi(q
f̄
i (θi, θ̃j), θi) + tf̄i (θi, θ̃j)] = Ej[vi(q

f
i (θi, θ̃j), θi) + tf̄i (θi, θ̃j)]

= Ej[Ej [vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)]]

= Ej[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)].

Property (d). We first show that f̄ has the insurance property. From (9) it follows that for

any (θi, θj) ∈ Θ we have that

vi(q
f̄
i (θi, θj), θi) + tf̄i (θi, θj) = Ej[vi(q

f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)],

which is independent of θj. Hence the ex post payoff of any type θi of agent i does not depend

on agent j’s type, which implies that the insurance property holds. It remains to be shown that

f̄ is BIC. Since f is BIC, it holds that

Ej[vi(q
f
i (θi, θ̃j), θi)] + Ej[t

f
i (θi, θ̃j)] ≥ Ej[vi(q

f
i (θ̂i, θ̃j), θi)] + Ej[t

f
i (θ̂i, θ̃j)]

for i = 1, 2 and all θi, θ̂i ∈ Θi. Since qfi = qf̄i and

Ej[t
f
i (θi, θ̃j)] = Ej [vi(q

f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)− vi(q

f
i (θi, θ̃j), θi)]

= Ej [Ej[vi(q
f
i (θi, θ̃j), θi) + tfi (θi, θ̃j)]− vi(q

f
i (θi, θ̃j), θi)]

= Ej [t
f̄
i (θi, θ̃j)]
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for i = 1, 2 and all θi ∈ Θi, this implies

Ej[vi(q
f̄
i (θi, θ̃j), θi)] + Ej[t

f̄
i (θi, θ̃j)] ≥ Ej[vi(q

f̄
i (θ̂i, θ̃j), θi)] + Ej[t

f̄
i (θ̂i, θ̃j)],

for all θi, θ̂i ∈ Θi, so that f̄ is also BIC.

A.4 Proof of Proposition 3

We first show that G′
i(m

′
j) ⊆ Gi(ηj(m

′
j)). Let a ∈ G′

i(m
′
j), so that there exists m′

i so that

g′(m′
i,m

′
j) = a. By (8), this implies that g(ηi(m

′
i), ηj(m

′
j)) = a, and hence a ∈ Gi(ηj(m

′
j)).

We now show that Gi(ηj(m
′
j)) ⊆ G′

i(m
′
j). Let a ∈ Gi(ηj(m

′
j)), so that there exists mi ∈ Mi

so that g(mi, ηj(m
′
j)) = a. Since ηi is surjective, there exists m′

i with ηi(m
′
i) = mi. Then (8)

implies that g′(m′
i,m

′
j) = a. Hence, a ∈ G′

i(m
′
j).

A.5 Proof of Theorem 2

We prove the theorem in two steps. First, we augment the direct mechanism for any SCF f

by additional actions and show that the equitable payoffs associated to truth-telling can be

increased or decreased to arbitrary values. Second, we use the result of the first step to show

that an SCF f can be implemented in BNFE when the conditions in the theorem are satisfied,

i.e., when f is materially Pareto-efficient and yi > 0 and 1/yi ≤ κ̄−∆i holds for both i = 1, 2.

Step 1. Fix any SCF f and consider a mechanism Φ(δ) for f that is parameterized by

δ = (δ11, δ12, δ21, δ22) ∈ R
4. The message sets are Mi = Θi × {0, 1} for both i = 1, 2, so that a

message mi = (m1
i ,m

2
i ) ∈ Mi of agent i consists of a type m1

i ∈ Θi and a number m2
i ∈ {0, 1}.

The outcome function g = (qg1 , q
g
2 , t

g
1, t

g
2) of Φ(δ) is defined by

qgi (m) = qfi (m
1
1,m

1
2)

and

tgi (m) = tfi (m
1
1,m

1
2) +m2

i δii −m2
jδji

for both i = 1, 2 and all m = (m1,m2) ∈ M1 × M2. Parameter δik, which can be positive

or negative, describes the effect that agent i = 1, 2 has on the transfer of agent k = 1, 2

through the second message component. We require δii ≤ δij to ensure that the transfers are

always admissible. Mechanism Φ(δ) becomes equivalent to the direct mechanism for f when

δ = (0, 0, 0, 0), or δ = 0 in short, because the second message components are payoff irrelevant

in this case. Let sTi be agent i’s strategy that announces sTi (θi) = (θi, 0) for all types θi ∈ Θi.

The outcome of strategy profile sT = (sT1 , s
T
2 ) is the SCF f , independent of δ.

We use the expressions Πi(si, s
b
i |δ), Ei(s

b
i |δ), and Πe

i (s
b
j|δ) to denote expected payoffs, efficient

strategies, and equitable payoffs in Φ(δ). We also write si = (s1i , s
2
i ) ∈ Si for strategies, so that

s1i (θi) ∈ Θi and s2i (θi) ∈ {0, 1} are the two message components announced by type θi under
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strategy si. Let

xi(si) =
∑

θi∈Θi

p(θi)s
2
i (θi)

be the probability with which a strategy si announces m2
i = 1, for both i = 1, 2. Then we obtain

Πi(si, s
b
i |δ) = Πi(si, s

b
i |0) + xi(si)δii − xj(s

b
i)δji. (10)

Lemma 1. If sgn δjj = sgn δji, then

max
sj∈Ej(sTi |δ)

Πi(s
T
i , sj|δ) = max

sj∈Ej(sTi |0)
Πi(s

T
i , sj|0) −min{δji, 0} (11)

and

min
sj∈Ej(sTi |δ)

Πi(s
T
i , sj|δ) = min

sj∈Ej(sTi |0)
Πi(s

T
i , sj|0) −max{δji, 0}. (12)

Proof. We first claim that Ej(s
T
i |δ) ⊆ Ej(s

T
i |0) holds. If sj /∈ Ej(s

T
i |0), then there exists a

strategy ŝj such that

Πi(s
T
i , ŝj|0) ≥ Πi(s

T
i , sj|0),

Πj(s
T
i , ŝj |0) ≥ Πj(s

T
i , sj |0),

with at least one inequality being strict. Now consider strategy s̃j constructed by

s̃1j(θj) = ŝ1j(θj) and s̃2j(θj) = s2j (θj)

for all θj ∈ Θj. Using (10) and the above inequalities, we obtain

Πi(s
T
i , s̃j|δ) = Πi(s

T
i , s̃j |0)− xj(s̃j)δji

= Πi(s
T
i , ŝj |0)− xj(sj)δji

≥ Πi(s
T
i , sj |0)− xj(sj)δji

= Πi(s
T
i , sj |δ),

and analogously for agent j (with at least one strict inequality). Hence sj /∈ Ej(s
T
i |δ), which

establishes the claim.

We now go through the three possible cases in which sgn δjj = sgn δji holds (given δjj ≤ δji).

Case (a): δjj = δji = 0. The statement in the lemma follows immediately in this case.

Case (b): 0 < δjj ≤ δji. Observe that Ej(s
T
i |δ) and Ej(s

T
i |0) can be replaced by Sj in the

maximization problems in (11), because at least one of j’s strategies that maximize i’s expected

payoff on the (finite) set Sj must be Pareto-efficient. Using (10), statement (11) then follows

because any strategy sj that maximizes Πi(s
T
i , sj |δ) on the set Sj must clearly satisfy xj(sj) = 0.

To establish statement (12), consider a minimizing strategy smin
j ∈ argminsj∈Ej(sTi |0)Πi(s

T
i , sj |0)

that satisfies xj(s
min
j ) = 1, which exists because m2

j is payoff irrelevant in Φ(0). We claim that
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smin
j ∈ Ej(s

T
i |δ), which then implies, again using (10), that

min
sj∈Ej(sTi |δ)

Πi(s
T
i , sj|δ) ≤ Πi(s

T
i , s

min
j |δ) = Πi(s

T
i , s

min
j |0)− δji, (13)

and hence a weak inequality version of (12). To establish the claim, suppose to the contrary

that there exists s′j ∈ Ej(s
T
i |δ) such that

Πi(s
T
i , s

′
j|δ) ≥ Πi(s

T
i , s

min
j |δ),

Πj(s
T
i , s

′
j |δ) ≥ Πj(s

T
i , s

min
j |δ),

with a least one inequality being strict. Assuming s′j ∈ Ej(s
T
i |δ) is w.l.o.g. because Sj is finite,

so that at least one strategy that Pareto-dominates smin
j must itself be Pareto-efficient. Using

(10), these inequalities can be rearranged to

Πi(s
T
i , s

′
j|0) + [1− xj(s

′
j)]δji ≥ Πi(s

T
i , s

min
j |0),

Πj(s
T
i , s

′
j |0)− [1− xj(s

′
j)]δjj ≥ Πj(s

T
i , s

min
j |0).

If xj(s
′
j) = 1 this contradicts smin

j ∈ Ej(s
T
i |0). Hence xj(s

′
j) < 1 must hold, which implies

Πi(s
T
i , s

′
j|0) < Πi(s

T
i , s

min
j |0),

Πj(s
T
i , s

′
j |0) > Πj(s

T
i , s

min
j |0),

where the first inequality follows from the second one due to smin
j ∈ Ej(s

T
i |0). But now we

must have s′j /∈ Ej(s
T
i |0), as otherwise smin

j would not minimize i’s payoff on Ej(s
T
i |0). This

contradicts s′j ∈ Ej(s
T
i |δ) because Ej(s

T
i |δ) ⊆ Ej(s

T
i |0), and hence establishes the claim. The

opposite weak inequality of (13) follows from

min
sj∈Ej(sTi |δ)

Πi(s
T
i , sj|δ) ≥ min

sj∈Ej(sTi |0)
Πi(s

T
i , sj|δ)

= min
sj∈Ej(sTi |0)

[

Πi(s
T
i , sj|0) − xj(sj)δji

]

≥ min
sj∈Ej(sTi |0)

[

Πi(s
T
i , sj|0)

]

− δji

= Πi(s
T
i , s

min
j |0)− δji,

where the first inequality is again due to Ej(s
T
i |δ) ⊆ Ej(s

T
i |0).

Case (c): δjj ≤ δji < 0. Statement (11) again follows after replacing Ej(s
T
i |δ) and Ej(s

T
i |0)

by Sj, observing that any sj that maximizes Πi(s
T
i , sj |δ) on Sj must satisfy xj(sj) = 1. To

establish statement (12), consider a strategy smin
j ∈ argminsj∈Ej(sTi |0)Πi(s

T
i , sj|0) that satisfies

xj(s
min
j ) = 0. We claim that smin

j ∈ Ej(s
T
i |δ), which implies the weak inequality

min
sj∈Ej(sTi |δ)

Πi(s
T
i , sj|δ) ≤ Πi(s

T
i , s

min
j |δ) = Πi(s

T
i , s

min
j |0). (14)
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Suppose to the contrary that there exists s′j ∈ Ej(s
T
i |δ) such that

Πi(s
T
i , s

′
j|δ) ≥ Πi(s

T
i , s

min
j |δ),

Πj(s
T
i , s

′
j |δ) ≥ Πj(s

T
i , s

min
j |δ),

with a least one inequality being strict, which can be rearranged to

Πi(s
T
i , s

′
j|0)− xj(s

′
j)δji ≥ Πi(s

T
i , s

min
j |0),

Πj(s
T
i , s

′
j |0) + xj(s

′
j)δjj ≥ Πj(s

T
i , s

min
j |0).

If xj(s
′
j) = 0 this contradicts smin

j ∈ Ej(s
T
i |0). Hence xj(s

′
j) > 0 must hold, which implies

Πi(s
T
i , s

′
j|0) < Πi(s

T
i , s

min
j |0),

Πj(s
T
i , s

′
j |0) > Πj(s

T
i , s

min
j |0),

where the first inequality follows from the second one due to smin
j ∈ Ej(s

T
i |0). Now we obtain

the same contradiction as for case (b) above. The opposite weak inequality of (14) follows from

min
sj∈Ej(sTi |δ)

Πi(s
T
i , sj|δ) ≥ min

sj∈Ej(sTi |0)
Πi(s

T
i , sj|δ)

= min
sj∈Ej(sTi |0)

[

Πi(s
T
i , sj|0) − xj(sj)δji

]

≥ min
sj∈Ej(sTi |0)

[

Πi(s
T
i , sj|0)

]

= Πi(s
T
i , s

min
j |0).

This completes the proof of the lemma.

The following statement is an immediate corollary of Lemma 1.

Corollary 2. If sgn δjj = sgn δji, then Πe
i (s

T
i |δ) = Πe

i (s
T
i |0)− δji/2.

Step 2. Fix a materially Pareto-efficient SCF f and assume yi > 0 and 1/yi ≤ κ̄ − ∆i for

both i = 1, 2. Consider the BNFE candidate sT in mechanism Φ(δ∗), where δ∗ is given by

δ∗ii = δ∗ij = 2

[

1

yj
−Πj(s

T |0) + Πe
j(s

T
j |0)

]

(15)

for both i = 1, 2. Agent i’s correct belief about j’s kindness is then given by

κj(s
T |δ∗) = h(Πi(s

T |δ∗)−Πe
i (s

T
i |δ

∗))

= h(Πi(s
T |0) −Πe

i (s
T
i |δ

∗))

= h(Πi(s
T |0) −Πe

i (s
T
i |0) + δ∗ji/2)

= h(1/yi)

= 1/yi,
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where the third equality follows from Corollary 2 and the last equality holds due to 1/yi ≤ κ̄.

In the equilibrium candidate, agent i = 1, 2 therefore chooses si so as to maximize

Πi(si, s
T
j |δ

∗) + h(Πj(si, s
T
j |δ

∗)−Πe
j(s

T
j |δ

∗)).

For si = sTi , this term becomes Πi(s
T
i , s

T
j |δ

∗)+Πj(s
T
i , s

T
j |δ

∗)−Πe
j(s

T
j |δ

∗), because Πj(s
T
i , s

T
j |δ

∗)−

Πe
j(s

T
j |δ

∗) = 1/yj ≤ κ̄ by our construction. To exclude that there are any profitable deviations

from sTi , we can restrict attention to conditionally efficient strategies s′i ∈ Ei(s
T
j |δ

∗). We consider

three possible cases.

Case (a). A strategy s′i ∈ Ei(s
T
j |δ

∗) with −κ̄ ≤ Πj(s
′
i, s

T
j |δ

∗) − Πe
j(s

T
j |δ

∗) ≤ κ̄ cannot be

profitable, because in that case

Πi(s
′
i, s

T
j |δ

∗) + h(Πj(s
′
i, s

T
j |δ

∗)−Πe
j(s

T
j |δ

∗)) = Πi(s
′
i, s

T
j |δ

∗) + Πj(s
′
i, s

T
j |δ

∗)−Πe
j(s

T
j |δ

∗)

≤ Πi(s
T
i , s

T
j |δ

∗) + Πj(s
T
i , s

T
j |δ

∗)−Πe
j(s

T
j |δ

∗),

where the inequality follows from material Pareto-efficiency of f (and δ∗ii = δ∗ij).

Case (b). A strategy s′i ∈ Ei(s
T
j |δ

∗) with κ̄ < Πj(s
′
i, s

T
j |δ

∗)−Πe
j(s

T
j |δ

∗) cannot be profitable,

because in that case

Πi(s
′
i, s

T
j |δ

∗) + h(Πj(s
′
i, s

T
j |δ

∗)−Πe
j(s

T
j |δ

∗)) = Πi(s
′
i, s

T
j |δ

∗) + κ̄

< Πi(s
′
i, s

T
j |δ

∗) + Πj(s
′
i, s

T
j |δ

∗)−Πe
j(s

T
j |δ

∗)

≤ Πi(s
T
i , s

T
j |δ

∗) + Πj(s
T
i , s

T
j |δ

∗)−Πe
j(s

T
j |δ

∗).

Case (c). We finally show that a strategy s′i ∈ Ei(s
T
j |δ

∗) with Πj(s
′
i, s

T
j |δ

∗)−Πe
j(s

T
j |δ

∗) < −κ̄

does not exist. By contradiction, if such a strategy existed, then

min
si∈Ei(sTj |δ∗)

Πj(si, s
T
j |δ

∗)−Πe
j(s

T
j |δ

∗) < −κ̄

would have to hold as well. Using the definition of Πe
j(s

T
j |δ

∗), this can be rearranged to

1

2

[

max
si∈Ei(sTj |δ∗)

Πj(si, s
T
j |δ

∗)− min
si∈Ei(sTj |δ∗)

Πj(si, s
T
j |δ

∗)

]

> κ̄,

and, using Lemma 1, can be rewritten as

1

2

[

max
si∈Ei(sTj |0)

Πj(si, s
T
j |0)− min

si∈Ei(sTj |0)
Πj(si, s

T
j |0)

]

+
1

2
|δ∗ij | > κ̄. (16)

If δ∗ij ≥ 0, using (15) and the definition of Πe
j(s

T
j |0), inequality (16) can be rewritten as

max
si∈Ei(sTj |0)

Πj(si, s
T
j |0) −Πj(s

T
i , s

T
j |0) +

1

yj
> κ̄.

Since ∆j ≥ maxsi∈Ei(sTj |0)Πj(si, s
T
j |0) − Πj(s

T
i , s

T
j |0), this further implies 1/yj > κ̄ − ∆j and

contradicts 1/yj ≤ κ̄−∆j. If δ∗ij < 0, using (15) and the definition of Πe
j(s

T
j |0), inequality (16)
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can be rewritten as

Πj(s
T
i , s

T
j |0)− min

si∈Ei(sTj |0)
Πj(si, s

T
j |0) −

1

yj
> κ̄.

Since ∆j ≥ Πj(s
T
i , s

T
j |0) −minsi∈Ei(sTj |0)Πj(si, s

T
j |0), this further implies −1/yj > κ̄−∆j and,

by yj > 0, again contradicts 1/yj ≤ κ̄−∆j .

A.6 Proof of Proposition 4

Let Φ = [M1,M2, g] be an arbitrary mechanism with a BNFE s that results in an SCF f . We

can then construct a mechanism Φ′(δ) based on Φ in the same way as we did in the proof of

Theorem 2 based on the direct mechanism (see Step 1 in Appendix A.5 for the details). In short,

Φ′(δ) has message sets M ′
i = Mi × {0, 1}, so any mi = (m1

i ,m
2
i ) ∈ M ′

i consists of a message

m1
i ∈ Mi from Φ and a number m2

i ∈ {0, 1}. The outcome function g′ of Φ′(δ) is

qg
′

i (m) = qgi (m
1
1,m

1
2)

and

tg
′

i (m) = tgi (m
1
1,m

1
2) +m2

i δii −m2
jδji.

Mechanism Φ′(0) is equivalent to Φ. Observe, however, that Φ might already be an augmented

revelation mechanism, possibly constructed from a direct mechanism in the exact same manner.

We denote by sTi agent i’s strategy in Φ′(δ) given by sTi (θi) = (si(θi), 0) for all θi ∈ Θi. The truth-

telling interpretation becomes apparent if Φ is a (possibly augmented) revelation mechanism and

s is the truth-telling strategy profile in Φ. Profile sT = (sT1 , s
T
2 ) is a BNFE of Φ′(0) because s is

a BNFE of Φ. The outcome of sT in Φ′(δ) is SCF f . Proceeding as in the proof of Theorem 2,

we obtain

Πi(si, s
b
i |δ) = Πi(si, s

b
i |0) + xi(si)δii − xj(s

b
i)δji (17)

and

Πe
i (s

T
i |δ) = Πe

i (s
T
i |0)− δji/2 (18)

for both i = 1, 2, provided that sgn δjj = sgn δji.

From now on suppose, for both i = 1, 2, that

0 ≤ Πi(s
T |0) −Πe

i (s
T
i |0) < κ̄, (19)

which will be verified later, and let

δ∗ij = 2
(

κ̄−Πj(s
T |0) + Πe

j(s
T
j |0)

)

, (20)

such that 0 < δ∗ij ≤ 2κ̄. Let δ∗ii by any value that satisfies 0 < δ∗ii ≤ δ∗ij , and consider the BNFE
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candidate sT in Φ′(δ∗). Agent i’s correct belief about j’s kindness is then

κj(s
T |δ∗) = h(Πi(s

T |δ∗)−Πe
i (s

T
i |δ

∗)) = h(Πi(s
T |0)−Πe

i (s
T
i |0) + δ∗ji/2) = κ̄,

where (17), (18) and (20) have been used. Agent i therefore chooses si so as to maximize

Πi(si, s
T
j |δ

∗) + yi κ̄ h(Πj(si, s
T
j |δ

∗)−Πe
j(s

T
j |δ

∗)).

Based on (17) and (18) this can be rewritten as

Πi(si, s
T
j |0) + xi(si)δ

∗
ii + yi κ̄ h(Πj(si, s

T
j |0) − xi(si)δ

∗
ij −Πe

j(s
T
j |0) + δ∗ij/2). (21)

We now show that, for the two different cases in the proposition and appropriate choices of Φ

and s, strategy si = sTi maximizes (21) and thus sT is a BNFE of Φ′(δ∗) that implements f

with mutual kindness of κ̄.

Case (a). Suppose f is BIC and satisfies ∆1 = ∆2 = 0. Let Φ from above be the direct

mechanism and s the truth-telling strategy profile, which is a BNFE of Φ as shown in the proof

of Theorem 1. Also, Πi(s
T |0)−Πe

i (s
T
i |0) = 0 holds, which verifies (19) and implies δ∗ij = 2κ̄, for

both i = 1, 2. Then (21) can be further simplified to

Πi(si, s
T
j |0) + xi(si)δ

∗
ii + yi κ̄ (κ̄− xi(si)2κ̄), (22)

because Πj(si, s
T
j |0) = Πe

j(s
T
j |0) for all si ∈ Si due to ∆j = 0 as shown in the proof of Theorem

1, and the bounding function h can be omitted because xi(si) ∈ [0, 1]. The first term in (22) is

maximized by si = sTi since f is BIC. The remainder of (22) is non-increasing in xi(si) whenever

δ∗ii ≤ 2yiκ̄
2. (23)

Strategy si = sTi , for which xi(s
T
i ) = 0, therefore maximizes (22) whenever δ∗ii is chosen to also

satisfy (23). Off-equilibrium budget balance δ∗ii = δ∗ij = 2κ̄ is possible if and only if κ̄ ≥ 1/yi.

Case (b). Suppose f is materially Pareto-efficient and y ∈ Y f . Let Φ from above be the

augmented revelation mechanism constructed in the proof of Theorem 2 and s the truth-telling

strategy profile, which is a BNFE of Φ as shown in the proof of Theorem 2 (to avoid confusion,

observe that δ now describes the additional redistribution in the twice augmented mechanism

Φ′(δ), not the redistribution already possible in the once augmented mechanism Φ). Also,

Πi(s
T |0) − Πe

i (s
T
i |0) = 1/yi holds. From y ∈ Y f it follows that 1/yi ≤ κ̄. Assume that in fact

1/yi < κ̄ for both i = 1, 2, since otherwise Φ does not have to be further augmented for the

respective agent to achieve the desired kindness κ̄. This verifies (19) and implies δ∗ij = 2(κ̄−1/yj),

for both i = 1, 2.

For strategy si = sTi , (21) becomes

Πi(s
T |0) + yi κ̄ κ̄.

To exclude profitable deviations, we can restrict attention to conditionally efficient strategies

s′i ∈ Ei(s
T
j |δ

∗). Note that Ei(s
T
j |δ

∗) ⊆ Ei(s
T
j |0), as shown in the proof of Theorem 2. We will
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verify that there are no profitable deviations in Ei(s
T
j |0). Any s′i ∈ Ei(s

T
j |0) satisfies

−κ̄ < Πj(s
′
i, s

T
j |0) −Πe

j(s
T
j |0) + δ∗ij/2 (24)

for the given value of δ∗ij > 0, because −κ̄ ≤ Πj(s
′
i, s

T
j |0)−Πe

j(s
T
j |0) according to Case (c) in the

proof of Theorem 2. Deviations s′i ∈ Ei(s
T
j |0) such that Πi(s

′
i, s

T
j |0) + xi(s

′
i)δ

∗
ii ≤ Πi(s

T |0) can

clearly never be profitable. Deviations s′i ∈ Ei(s
T
j |0) with

Πi(s
′
i, s

T
j |0) + xi(s

′
i)δ

∗
ii > Πi(s

T |0),

Πj(s
′
i, s

T
j |0)− xi(s

′
i)δ

∗
ij ≥ Πj(s

T |0),

do not exist by efficiency of f . Hence denote by Σi(δ
∗) the remaining set of s′i ∈ Ei(s

T
j |0) with

Πi(s
′
i, s

T
j |0) + xi(s

′
i)δ

∗
ii > Πi(s

T |0),

Πj(s
′
i, s

T
j |0)− xi(s

′
i)δ

∗
ij < Πj(s

T |0).

Any s′i ∈ Σi(δ
∗) satisfies

Πj(s
′
i, s

T
j |0)− xi(s

′
i)δ

∗
ij −Πe

j(s
T
j |0) + δ∗ij/2 < κ̄ (25)

for the given value of δ∗ij , because Πj(s
′
i, s

T
j |0)−xi(s

′
i)δ

∗
ij−Πe

j(s
T
j |0) < Πj(s

T |0)−Πe
j(s

T
j |0) = 1/yj

by definition, so that the upper kindness bound can henceforth be ignored. We now treat the

subsets Σ0
i (δ

∗) = {si ∈ Σi(δ
∗) | xi(si) = 0} and Σ+

i (δ
∗) = {si ∈ Σi(δ

∗) | xi(si) > 0} separately.

For any s′i ∈ Σ0
i (δ

∗), the lower kindness bound can also be ignored by (24). We claim that a

deviation to any s′i ∈ Σ0
i (δ

∗) cannot make agent i better off. By contradiction, assume that

Πi(s
′
i, s

T
j |0) + yi κ̄ (Πj(s

′
i, s

T
j |0)−Πe

j(s
T
j |0) + δ∗ij/2) > Πi(s

T |0) + yi κ̄ κ̄.

This can be rearranged to

Πi(s
′
i, s

T
j |0)−Πi(s

T |0) + yi κ̄ (Πj(s
′
i, s

T
j |0) −Πe

j(s
T
j |0)− 1/yj) > 0.

The last term in brackets is negative, as argued before. Hence yi κ̄ > 1 implies

Πi(s
′
i, s

T
j |0)−Πi(s

T |0) + (Πj(s
′
i, s

T
j |0)−Πe

j(s
T
j |0)− 1/yj) > 0.

Substituting 1/yj by Πj(s
T |0)−Πe

j(s
T
j |0) and rearranging yields

Πi(s
′
i, s

T
j |0) + Πj(s

′
i, s

T
j |0) > Πi(s

T |0) + Πj(s
T |0),

which is a contradiction to efficiency of f .

For any s′i ∈ Σ+
i (δ

∗), so that xi(s
′
i) > 0, observe that

h(Πj(s
′
i, s

T
j |0)− xi(s

′
i)δ

∗
ij −Πe

j(s
T
j |0) + δ∗ij/2) < h(Πj(s

′
i, s

T
j |0)−Πe

j(s
T
j |0) + δ∗ij/2),
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because the upper bound κ̄ is not binding on the LHS by (25), and the lower bound −κ̄ is not

binding on the RHS by (24). Let s̄i be the strategy with s̄1i (θi) = s′i(θi) and s̄2i (θi) = 0 for all

θi ∈ Θi. For sufficiently small but strictly positive values of δ∗ii it then follows that

Πi(s
′
i, s

T
j |0) + xi(s

′
i)δ

∗
ii + yi κ̄ h(Πj(s

′
i, s

T
j |0) − xi(s

′
i)δ

∗
ij −Πe

j(s
T
j |0) + δ∗ij/2)

≤ Πi(s
′
i, s

T
j |0) + yi κ̄ h(Πj(s

′
i, s

T
j |0) −Πe

j(s
T
j |0) + δ∗ij/2)

= Πi(s̄i, s
T
j |0) + yi κ̄ h(Πj(s̄i, s

T
j |0) −Πe

j(s
T
j |0) + δ∗ij/2).

Observe that s̄i ∈ Ei(s
T
j |0), because s̄i and s′i are payoff equivalent in Φ′(0) and s′i ∈ Ei(s

T
j |0).

Observe also that s̄i /∈ Σ+
i (δ

∗), because xi(s̄i) > 0. Hence s̄i cannot be a profitable deviation

by our previous arguments, so that s′i cannot be a profitable deviation either. Since Σ+
i (δ

∗) is

finite and weakly shrinking (in the set inclusion sense) as δ∗ii comes smaller, δ∗ii can be chosen

small enough to render all deviations unprofitable.

B Interim Fairness Equilibrium

Consider an environment E and a mechanism Φ. In this appendix, we develop the notion of an

interim fairness equilibrium (IFE) and provide conditions under which a strategy profile s∗ is

an IFE if and only if it is a BNFE. We assume throughout that first- and second-order beliefs

about strategies are not type-dependent. Since we require that beliefs are correct in IFE, this

assumption is without loss of generality.

If type θi of agent i has belief sbi and chooses message mi, this yields an expected material

payoff which we denote by

Πint
i (mi, s

b
i |θi) = Ej[vi(q

g
i (mi, s

b
i(θ̃j)), θi) + tgi (mi, s

b
i (θ̃j))].

We denote by κinti (mi, s
b
i |θi) the kindness intended by type θi of agent i ex interim. Also, agent

i forms a belief κintj (sbi(θj), s
bb
i |θj) about the interim kindness of any one type θj of the other

agent. However, the type θj is privately observed by agent j. We therefore assume that i assesses

the kindness intended by j according to the expected value of κintj (sbi (θj), s
bb
i |θj),

κ̄intj (sbi , s
bb
i ) = Ej[κ

int
j (sbi(θ̃j), s

bb
i |θ̃j)].

Interim utility of type θi of agent i is then given by

U int
i (mi, s

b
i , s

bb
i |θi) = Πint

i (mi, s
b
i |θi) + yi κ

int
i (mi, s

b
i |θi) κ̄

int
j (sbi , s

bb
i ).

Definition 4. An IFE is a strategy profile s∗ = (s∗1, s
∗
2) such that, for both i = 1, 2,

(a) s∗i (θi) ∈ argmaxmi∈Mi
U int
i (mi, s

b
i , s

bb
i |θi) for all θi ∈ Θi,

(b) sbi = s∗j , and

(c) sbbi = s∗i .
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The following proposition states that, if kindness at the ex ante stage is equal to the expected

value of kindness at the ex interim stage, then the concepts of IFE and BNFE are equivalent.

Proposition 5. Suppose that, for both i = 1, 2, all si ∈ Si, and all sbi ∈ Sj ,

κi(si, s
b
i) = Ei[κ

int
i (si(θ̃i), s

b
i |θ̃i)]. (26)

Then, s∗ is an IFE if and only if it is a BNFE.

Proof. (26) implies that κ̄intj (sbi , s
bb
i ) = Ej[κ

int
j (sbi(θ̃j), s

bb
i |θ̃j)] = κj(s

b
i , s

bb
i ) and hence

U int
i (mi, s

b
i , s

bb
i |θi) = Πint

i (mi, s
b
i |θi) + yi κ

int
i (mi, s

b
i |θi)κj(s

b
i , s

bb
i ).

Thus,

Ei[U
int
i (si(θ̃i), s

b
i , s

bb
i |θ̃i)] = Ei[Π

int
i (si(θ̃i), s

b
i |θ̃i)] + yi Ei[κ

int
i (si(θ̃i), s

b
i |θ̃i)]κj(s

b
i , s

bb
i )

= Πi(si, s
b
i) + yi κi(si, s

b
i )κj(s

b
i , s

bb
i ),

and hence Ui(si, s
b
i , s

bb
i ) = Ei[U

int
i (si(θ̃i), s

b
i , s

bb
i |θ̃i)]. By standard arguments, since all types of

agent i occur with positive probability, it then follows that s∗i ∈ argmaxsi∈Si
Ui(si, s

b
i , s

bb
i ) if and

only if s∗i (θi) ∈ argmaxmi∈Mi
U int
i (mi, s

b
i , s

bb
i |θi) for all θi ∈ Θi.

We have not made assumptions on how the interim kindness intentions are determined. A

conceivable way of modeling them is to proceed as in the body of the text, replacing all ex

ante notions by their ex interim analogues. Then, there are two potential obstacles to verifying

condition (26), i.e., to expressing κi as an expectation over the terms κinti . First, the ex ante

equitable payoff might not correspond to an expectation over the ex interim equitable payoffs, for

instance because they are defined based on different sets of Pareto-efficient strategies/messages.

Second, a tight kindness bound κ̄ might become binding for some ex interim but not for the ex

ante kindness term. In any case, the condition in Proposition 5 allows us to verify whether or

not IFE and BNFE are equivalent.

C Proofs of Observations

C.1 Proof of Observation 1

Consider the bilateral trade example with parameters (5) and 5/2 < κ̄. In the direct mechanism

for f∗, the set of strategies for agent i is Si = {sTi , s
H
i , sLi , s

−T
i }, where sTi is truth-telling, sHi

prescribes to announce the high type θ̄i whatever the true type, sLi prescribes to always announce

the low type θi, and s−T
i is the strategy of always lying, i.e., s−T

i (θi) = θ̄i and s−T
i (θ̄i) = θi. We

seek to show that (sTb , s
T
s ) is not a BNFE, for any y with yb > 0 and/or ys > 0. We proceed by

contradiction and suppose that (sTb , s
T
s ) is a BNFE for some such y. Beliefs are correct in the

hypothetical equilibrium, which implies that sbb = sbbs = sTs and sbs = sbbb = sTb .

The seller’s equitable payoff. Given sTs , varying the buyer’s strategies yields payoffs

Πb(s
T
b , s

T
s ) = 20, Πs(s

T
b , s

T
s ) = 20,
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Πb(s
L
b , s

T
s ) = 20, Πs(s

L
b , s

T
s ) = 15,

Πb(s
H
b , sTs ) = 0, Πs(s

H
b , sTs ) = 25,

Πb(s
−T
b , sTs ) = 0, Πs(s

−T
b , sTs ) = 20.

Inspection of these expressions reveals that s−T
b is not conditionally Pareto-efficient, because a

switch to sTb makes the buyer better off and leaves the seller unaffected. Similarly, sLb is not

efficient, because a switch to sTb makes the seller better off and leaves the buyer unaffected. The

remaining two strategies are efficient, so that the equitable payoff for the seller from the buyer’s

perspective is Πe
s(s

T
s ) = 45/2.

The buyer’s equitable payoff. Given sTb , varying the seller’s strategies yields

Πb(s
T
b , s

T
s ) = 20, Πs(s

T
b , s

T
s ) = 20,

Πb(s
T
b , s

L
s ) = 25, Πs(s

T
b , s

L
s ) = 0,

Πb(s
T
b , s

H
s ) = 15, Πs(s

T
b , s

H
s ) = 20,

Πb(s
T
b , s

−T
s ) = 20, Πs(s

T
b , s

−T
s ) = 0.

Both s−T
s and sHs are Pareto-dominated by sTs , while the other strategies are efficient. The

equitable payoff for the buyer is therefore also Πe
b(s

T
b ) = 45/2.

Truth-telling is not a BNFE. In the hypothetical BNFE (sTb , s
T
s ), we have κb(s

b
s, s

bb
s ) =

κs(s
b
b, s

bb
b ) = h(−5/2) = −5/2. The buyer then prefers a deviation from sTb to sLb if and only if

Πb(s
L
b , s

T
s )−

(

5yb
2

)

h

(

Πs(s
L
b , s

T
s )−

45

2

)

> Πb(s
T
b , s

T
s )−

(

5yb
2

)

h

(

Πs(s
T
b , s

T
s )−

45

2

)

.

If yb > 0, this can be simplified to h(−15/2) < h(−5/2), which is satisfied because 5/2 < κ̄.

Hence (sTb , s
T
s ) is not a BNFE. The analogous argument applies to the seller if ys > 0.

C.2 Proof of Observation 2

We seek to show that (sTb , s
T
s ) is not a BNFE in the direct mechanism for f∗∗. We again proceed

by contradiction. Fix (yb, ys) ∈ [0,∞[2 and suppose that (sTb , s
T
s ) is a BNFE. Beliefs are correct

in the hypothetical equilibrium, which implies that sbb = sbbs = sTs and sbs = sbbb = sTb .

The seller’s equitable payoff. Given sTs , varying the buyer’s strategies yields

Πb(s
T
b , s

T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s),

Πs(s
T
b , s

T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s),

Πb(s
L
b , s

T
s ) =

1

4
(θ̄b − θs),

Πs(s
L
b , s

T
s ) =

1

4
(θb − θs),

Πb(s
H
b , sTs ) =

1

4
(θb − θs) +

1

4
(θb − θ̄s),

Πs(s
H
b , sTs ) =

1

4
(θ̄b − θs) +

1

4
(θ̄b − θ̄s),

42



Πb(s
−T
b , sTs ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s)−

1

4
(θ̄b − θb),

Πs(s
−T
b , sTs ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s).

Inspection of these expressions reveals that s−T
b is not conditionally Pareto-efficient, because a

switch to sTb makes the buyer better off and leaves the seller unaffected. All other strategies are

efficient since

Πb(s
L
b , s

T
s ) > Πb(s

T
b , s

T
s ) > Πb(s

H
b , sTs ),

Πs(s
L
b , s

T
s ) < Πs(s

T
b , s

T
s ) < Πs(s

H
b , sTs ).

Now we can easily compute that, from the buyer’s perspective, the equitable payoff for the seller

is her payoff under truth-telling: Πe
s(s

T
s ) = Πs(s

T
b , s

T
s ).

The buyer’s equitable payoff. Given sTb , varying the seller’s strategies yields

Πb(s
T
b , s

T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s),

Πs(s
T
b , s

T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s),

Πb(s
T
b , s

L
s ) =

1

4
(θb − θs) +

1

4
(θ̄b − θs),

Πs(s
T
b , s

L
s ) =

1

4
(θ̄b − θ̄s) +

1

4
(θb − θ̄s),

Πb(s
T
b , s

H
s ) =

1

4
(θ̄b − θ̄s),

Πs(s
T
b , s

H
s ) =

1

4
(θ̄b − θs),

Πb(s
T
b , s

−T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s),

Πs(s
T
b , s

−T
s ) =

1

8
(θb − θs) +

1

8
(θ̄b − θs) +

1

8
(θ̄b − θ̄s)−

1

4
(θ̄s − θs).

Again, s−T
s is Pareto-dominated by sTs , while all other strategies are efficient due to

Πb(s
T
b , s

L
s ) > Πb(s

T
b , s

T
s ) > Πb(s

T
b , s

H
s ),

Πs(s
T
b , s

L
s ) < Πs(s

T
b , s

T
s ) < Πs(s

T
b , s

H
s ).

The equitable payoff for the buyer is then also Πe
b(s

T
b ) = Πb(s

T
b , s

T
s ).

Truth-telling is not a BNFE. In the hypothetical BNFE (sTb , s
T
s ) we have κb(s

b
s, s

bb
s ) = 0.

This implies that the seller chooses ss ∈ Ss in order to maximize Πs(s
T
b , ss). But sTs is not a

solution to this problem, since sHs yields a strictly larger payoff as shown above. Hence (sTb , s
T
s )

is not a BNFE.

C.3 Proof of Observation 3

Consider the hypothetical truth-telling BNFE sT = (sTb , s
T
s ) of Φ′, in which beliefs are correct.

Equitable payoffs. Given sTs , any strategy sb that announces θ
b
yields the same payoff pairs as

the strategy that announces θb instead, except for the additional redistribution from the seller to

43



the buyer. Since sLb maximizes Πb(sb, s
T
s ) and minimizes Πs(sb, s

T
s ) in the direct mechanism (see

Appendix C.2), strategy s
b

with s
b
(θb) = θ

b
for all θb now maximizes Πb(sb, s

T
s ) and minimizes

Πs(sb, s
T
s ) in Φ′, and hence is efficient. It yields the payoffs

Πb(sb, s
T
s ) =

1

4
(θ̄b − θs) +

1

2
δb,

Πs(sb, s
T
s ) =

1

4
(θb − θs)−

1

2
δb.

The efficient strategy which yields the highest payoff for the seller remains sHb . We can now

immediately compute the equitable payoff Πe
s(s

T
s ) = Πs(s

T
b , s

T
s )− δb/4. A symmetric argument

implies Πe
b(s

T
b ) = Πb(s

T
b , s

T
s )− δs/4.

Truth-telling becomes a BNFE. We now have κb(s
b
s, s

bb
s ) = h(δb/4) and κs(s

b
b, s

bb
b ) = h(δs/4)

in the hypothetical truth-telling equilibrium. Suppose yb > 0, ys > 0 and κ̄ ≥ max{1/yb, 1/ys}.

Setting δb = 4/ys and δs = 4/yb then yields κb(s
b
s, s

bb
s ) = 1/ys and κs(s

b
b, s

bb
b ) = 1/yb, so that the

buyer maximizes

Πb(sb, s
T
s ) + h(Πs(sb, s

T
s )−Πe

s(s
T
s ))

and the seller maximizes

Πs(s
T
b , ss) + h(Πb(s

T
b , ss)−Πe

b(s
T
b )).

Suppose furthermore that

κ̄ ≥ max

{

max
sb∈S

′

b

|Πs(sb, s
T
s )−Πe

s(s
T
s )|, max

ss∈S′

s

|Πb(s
T
b , ss)−Πe

b(s
T
b )|

}

.

Then the bound κ̄ can be ignored in these problems, and both agents are maximizing the sum of

expected material payoffs (given truth-telling of the other agent). Own truth-telling is a solution

to these problems, because the SCF f∗∗ that is realized in this case is efficient, i.e., it maximizes

the sum of material payoffs for any (θb, θs). Hence sT is a BNFE.

D Unconditional Efficiency

D.1 The Unconditional Efficiency Concept

In the body of the text we define equitable payoffs as in Rabin (1993). Dufwenberg and Kirch-

steiger (2004) have proposed an alternative definition. In this appendix, we show how our

observations are affected by this alternative definition. For the Dufwenberg-Kirchsteiger equi-

table payoff, we replace the set of conditionally Pareto-efficient strategies Ei(s
b
i) ⊆ Si by a set of

unconditionally Pareto-efficient strategies Ei ⊆ Si. Strategy si belongs to Ei unless there exists

s′i ∈ Si such that Πi(s
′
i, s

b
i) ≥ Πi(si, s

b
i ) and Πj(s

′
i, s

b
i) ≥ Πj(si, s

b
i) for all sbi ∈ Sj, with strict in-

equality for at least one agent and belief sbi . Note that the maximization part in the definition of

equitable payoffs does not depend on whether we use Rabin’s or Dufwenberg-Kirchsteiger’s def-

inition, as the maximum of Πj(si, s
b
i ) on both Ei(s

b
i ) and Ei always coincides with its maximum
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on the whole strategy set Si.

D.2 Observation 1

We first show that Eb = {sTb , s
H
b , sLb } and Es = {sTs , s

H
s , sLs }. Consider the buyer (the case for

the seller is analogous). The fact that sTb and sHb belong to Eb follows because both strategies

are efficient conditional on sbb = sTs , as shown in Appendix C.1. Clearly, strategy sLb uniquely

maximizes the buyer’s payoff conditional on sbb = sLs , hence sLb belongs to Eb as well. Finally,

one can easily verify that strategy s−T
b does not belong to Eb: For any belief sbb of the buyer,

strategy s−T
b yields the same payoff as sTb for the seller, while it always yields a weakly lower

payoff than sTb for the buyer, and a strictly lower payoff if sbb = sTs , as shown in Appendix C.1.

The equitable payoff for the seller from the buyer’s perspective is therefore Πe
s(s

T
s ) = 20. By an

analogous argument we also obtain Πe
b(s

T
b ) = 20. We therefore have κb(s

b
s, s

bb
s ) = κs(s

b
b, s

bb
b ) = 0

in the hypothetical BNFE (sTb , s
T
s ). Hence both agents focus on their own material payoffs,

and truth-telling is indeed a BNFE because f∗ is BIC. Observation 1 thus does not hold with

Dufwenberg-Kirchsteiger equitable payoffs.

However, this is in some sense a knife-edge case. If we choose parameters differently, then we

can again show that the minimal subsidy SCF f∗ is not strongly implementable in BNFE. For

ease of exposition, we assume again that κ̄ is sufficiently large, so that it can be ignored. We also

retain all other assumptions, except that now the buyer has a low valuation with probability

0.6 and a high valuation with probability 0.4. In this case, one can compute that the minimal

subsidy takes a value of 1 and that trade takes place at prices of 22, 44.5, or 77.5, depending on

marginal cost and marginal valuation, as illustrated in Table 5. After computing Πb(sb, ss) and

Πs(sb, ss) for all strategy profiles of the direct mechanism, we find that Eb = {sTb , s
H
b , sLb , s

−T
b }

and Es = {sTs , s
H
s , sLs }. Moreover, we find that both agents’ kindness would be negative in a

hypothetical truth-telling equilibrium. Specifically, the buyer’s kindness would be equal to −1

and the seller’s kindness would be equal to −0.3. Now, as soon as the weights yb and/or ys are

positive, the agents want to deviate from truth-telling because of the desire to generate a lower

payoff for the other agent. Specifically, the buyer would prefer to understate her valuation and

to choose sb = sLb , whereas the seller would prefer to exaggerate her costs and to choose ss = sHs .

θs θ̄s

θb (1, 1 + 22, 1 − 22) (0, 1, 1)

θ̄b (1, 1 + 44.5, 1 − 44, 5) (1, 1 + 77.5, 1 − 77.5)

Table 5: Minimal Subsidy SCF f∗ under Asymmetry

D.3 Observation 2

One can easily verify that for both i = b, s the strategy s−T
i does not belong to Ei. For any

strategy sj of agent j, strategy s−T
i yields the same payoff as sTi for j. It always yields a weakly

lower payoff than sTi for agent i, and a strictly lower payoff if agent j chooses sTj (see the payoffs

derived in Appendix C.2). It is also shown in Appendix C.2 that all other strategies from Si are
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efficient conditional on sTj . Consequently, Eb = Eb(s
T
s ) and Es = Es(s

T
b ), so that the remaining

analysis is exactly as in the proof of Observation 2 in Appendix C.2.

D.4 Observation 3

As argued in the proof of Observation 3 in Appendix C.3, strategy s
b

uniquely minimizes the

seller’s and maximizes the buyer’s expected material payoff, conditional on the seller playing sTs .

Hence s
b
∈ Eb. Likewise, ¯̄ss uniquely minimizes the buyer’s and maximizes the seller’s expected

material payoff, conditional on the buyer playing sTb . Hence ¯̄ss ∈ Es. The remaining analysis is

thus exactly as in the proof of Observation 3 in Appendix C.3.
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