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1 Introduction

The concept of stochastic stability was introduced in game theory in a series of sem-

inal papers by Blume (1993), Kandori, Mailath, and Rob (1993), Young (1993), and

Ellison (1993). A large number of applications have since been developed, a series of

theoretical improvements have ensued, and several striking results have been proven

relying on this concept. Among the best known results, we single out three which have

had a lasting impact in the literature. First, the selection of risk-dominant equilibria

(even in the presence of alternative, Pareto-efficient ones) in coordination games un-

der best-reply or imitation dynamics (Kandori, Mailath, and Rob, 1993; Kandori and

Rob, 1995; Sandholm, 1998). Second, the selection of potential maximizers in exact

potential games in logit-response dynamics (Blume, 1993, 1997). Third, the selec-

tion of Walrasian equilibria in oligopolies with imitating firms (Vega-Redondo, 1997),

which has been shown to generalize to the class of aggregative games (Alós-Ferrer and

Ania, 2005). These are all important insights which have shaped our understanding of

equilibrium (and non-equilibrium) selection and stability.

The literature has also made a number of weaknesses apparent, some of which have

the status of unwritten “folk wisdom”. The main weakness of the stochastic stability

literature as a whole is probably the fact that many results might depend, or might be

perceived to depend on modeling details, thereby casting doubt on the main insights

gained from this approach. A number of failed robustness checks have demonstrated

this issue. We would like to argue that, while some of these checks are substantial and

have further sharpened our intuition, others have in fact arisen due to a fundamental

lack of robustness in the very concept of stochastic stability.

Among the substantial results we count the analysis in Robson and Vega-Redondo

(1996), which showed that the selection of risk-dominant equilibria under the imitation

dynamics of Kandori, Mailath, and Rob (1993) depends on the postulated interaction

structure, with round-robin interaction leading to risk-dominant equilibria but true

random matching favoring Pareto-efficient ones (this distinction would not exist if

myopic best-reply is assumed). In our opinion, this result does not correspond to a

weakness in the general approach. On the contrary, it is a substantial contribution

that points at the importance of the interaction structure, and it should not be consid-

ered a robustness check. Indeed, the importance of both the interaction structure and

the behavioral rule for equilibrium selection has been made apparent in the closely

related literature on games in networks (see Weidenholzer, 2010 for a review). For

instance, Morris (2000) shows that best-reply dynamics lead to risk-dominant equilib-

ria in quite general networks, while Alós-Ferrer and Weidenholzer (2008) show that

imitation favors Pareto-efficient outcomes under comparatively mild conditions on the

network.
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Among the worrying failed robustness tests we count the fact that changing the

specification of either revision opportunities or tie-breaking assumptions might some-

times influence the long-run outcomes in a given dynamics. This affects, for instance,

the well-known result that the original logit dynamics of Blume (1993, 1997) selects

potential maximizers in exact potential games. Alós-Ferrer and Netzer (2010) have

shown that this result depends crucially on the assumption of asynchronous learning,

that is, a dynamic specification in which every period one and only one agent is se-

lected and allowed to revise his or her strategy, while all other players are required to

stay put. The result vanishes if more general revision processes are allowed for.

Tie-breaking assumptions are also not always harmless. Suppose that a behavioral

rule fully specifies the set of strategies that a player might choose from, e.g. the set of

payoff maximizers given other players’ strategies (as in the case of myopic best-reply)

or the set of strategies leading to currently maximal, observed payoffs (as in the case of

imitation). Even abstracting from revision opportunities, this still does not fully spec-

ify the dynamics. One might for instance require that all optimal strategies be chosen

with positive (maybe equal) probability; it might, however, be equally reasonable to

postulate that players who are already employing one of the optimal strategies do not

switch away. These are all reasonable choices, which sometimes have consequences

for the dynamic analysis (contrast e.g. Oechssler, 1997 and Alós-Ferrer, 2003; see also

Sandholm, 1998).

The possible dependence of long-run predictions on the specification of revision

opportunities and tie-breaking assumptions is an important consideration. A result

which depends on such modeling details, which can be argued to be orthogonal to the

behavioral rule and the interaction structure, should not be considered to be on equal

grounds with a result which is immune to the specification thereof. In the present

research, we aim to provide and apply a simple result which helps establish when

a long-run prediction is robust to the specification of revision opportunities and/or

tie-breaking assumptions.

We concentrate on these modeling specification issues because they are the ones

which “should not matter”, and hence robustness failures are particularly worrying.

The issue of robustness, however, is more general. One of the early criticisms on the

literature, due to Bergin and Lipman (1996), was that results might change if the per-

turbations (mistakes or mutations) which are used to define stochastic stability can be

defined in a state-dependent way. By specifying arbitrary asymmetric perturbations

it is possible to stabilize any outcome. The question is then rather whether results

are robust to the specification of perturbations within a reasonable class. An excellent

example of such a robustness analysis is van Damme and Weibull (2002), which showed

the robustness of the results of Kandori, Mailath, and Rob (1993) if mutation rates are

endogenously determined, assuming that players can effortfully control the probability

of implementing their intended strategies. Further, for specific dynamics, additional
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dimensions not considered here might be natural candidates for a robustness analysis.

Consider the case of imitation with memory (e.g. Alós-Ferrer, 2004, 2008; Bergin and

Bernhardt, 2009; Alós-Ferrer and Shi, 2012). A nice example of robustness analysis

within this category is Josephson and Matros (2004) which considers imitation dynam-

ics for multiple populations analogous to Young (1993) and derives selection results

which are robust to the specification of memory length and information sample size.

The paper is structured as follows. Section 2 describes the general framework for

the analysis. Section 3 introduces the robustness concept and presents the main result.

Section 4 analyzes symmetric binary-action games both for the logit-response dynamics

and for the popular best-reply mistakes model. Section 5 investigates evolutionary

stability and aggregate-taking behavior for perturbed imitation dynamics. Section 6

concludes.

2 Learning in Games: A General Framework

2.1 Stage Model

Consider a finite population of N agents who repeatedly interact in discrete time

t = 1, 2, . . . according to a pre-specified stage model, formalized as a finite, normal-

form game Γ = (I, (Si, ui)i∈I), where I = {1, 2, ..., N} is the set of players, Si are

the pure strategy sets, and ui : S → R are payoff functions, where S =
∏

i∈I Si. We

let S−i =
∏

j 6=i Sj be the set of strategy profiles of all players except i, and write

s = (si, s−i) and ui(si, s−i). The strategies chosen and the stage model determine

the payoffs agents receive at the end of the period t. The stage model can simply be

taken to be an arbitrary, asymmetric N -player game, as in Blume (1993) or Alós-Ferrer

and Netzer (2010), or it can incorporate additional structure. For example, it might

specify that agents play a bilateral finite game sequentially against each other agent

in the population (round robin tournament), as in Kandori, Mailath, and Rob (1993)

(hereafter KMR), where the bilateral game is a symmetric 2× 2 coordination game.

2.2 Behavioral Rules and Correspondences, and Tie-Breaking

The game is played by boundedly rational players whose behavior is summarized by

behavioral rules. At the beginning of each period, a certain subset of agents is chosen

to update their actions. Each of them then chooses a pure strategy according to a

pre-specified behavioral rule Bi : S 7→ ∆Si. That is, Bi(s)(s
′
i) is the probability with

which player i will choose strategy s′i ∈ Si after the profile s ∈ S has been played. A

simple behavioral rule which has been extensively studied in the literature of learning

in games is the myopic best-reply rule, where players are assumed to be able to compute

best-replies to the current profile of strategies of their opponents, and choose one of

them. In games with alternative best-replies, the need for tie-breaking gives rise to a
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family of rules. That is, a rule BBR
i is a best-reply rule if

BBR
i (s)(s′i) > 0 =⇒ ui(s

′
i, s−i) ≥ ui(s

′′
i , s−i) ∀ s′′i ∈ Si. (1)

Let us call Γ a symmetric game if Si = Sj = S0 for all i, j ∈ I and payoffs are given by a

symmetric mapping, i.e., the payoff of a player choosing strategy si against the profile

of strategies s−i is ui(si, s−i) = u(si|s−i), where the latter is invariant to permutations

of s−i. For symmetric games, a second prominent example of behavioral rule (or,

rather, family thereof) is given by imitate-the-best rules as in KMR, Vega-Redondo

(1997), or Alós-Ferrer and Ania (2005), where players just adopt one of the strategies

leading to the highest, currently observed payoff. That is, again taking into account

the need for tie-breaking assumptions, a rule BIB
i is an imitate-the-best rule if

BIB
i (s)(s′i) > 0 =⇒

s′i = sj for some j ∈ I with

uj(s) ≥ uk(s) ∀ k ∈ I.
(2)

The description of both the best-reply and the imitation rules allows for different

tie-breaking assumptions. We will now provide a formal approach to their specifica-

tion.1 A behavioral correspondence for player i is a correspondence B̂i : S ։ Si. That

is, B̂i(s) is the set of strategies s′i ∈ Si which player i might choose after the profile

s ∈ S has been played.2 A behavioral rule Bi is said to agree with correspondence B̂i

if

Bi(s)(s
′
i) > 0 =⇒ s′i ∈ B̂i(s) (3)

for all s′i ∈ Si and all s ∈ S. For instance, myopic best-reply rules as in (1) are those

agreeing with the best-reply correspondence

B̂BR
i (s) = {s′i ∈ Si | ui(s

′
i, s−i) ≥ ui(s

′′
i , s−i) ∀s

′′
i ∈ Si}.

Imitate-the-best rules as in (2) are those agreeing with the imitate-the-best correspon-

dence

B̂IB
i (s) = {s′i ∈ Si | s

′
i = sj for some j ∈ I with uj(s) ≥ uk(s) ∀k ∈ I}.

Given a behavioral correspondence B̂i, we say that a behavioral rule Bi agreeing with

1Note that a rule’s definition might formally rely on the payoff functions, but the interpretation of
the actual knowledge of the game that players have might be very different. Under best-reply, players
do know the payoff function and can use it to (myopically) optimize their behavior. For imitation
rules, the use of the payoff function is just a modeling device capturing the informational assumption
that players observe realized payoffs, but do not necessarily know the game or are able to perform
optimizing computations.

2Ritzberger and Weibull (1995) introduce the term behavior correspondence in a different context.
Apart from technical issues (as e.g. whether they are defined on profiles of pure or mixed strategies),
the main difference is that we do not require behavioral correspondences to be extensions of the
best-reply correspondence.
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B̂i is balanced if Bi(s)(si) > 0 whenever si ∈ B̂i(s), where si is player i’s strategy

in the profile s, and Bi(s)(s
′
i) > 0 for all s′i ∈ B̂i(s) whenever si /∈ B̂i(s). With a

balanced behavioral rule, players who find their current behavior optimal according to

the behavioral correspondence will not abandon it for sure (although they might also

not stick to it for sure). If the current behavior is not optimal, then balanced rules

respect anonymity of the strategies in the sense that they place positive (although not

necessarily identical) probability on all optimal strategies.3 Let Ti denote the set of

all balanced behavioral rules that agree with a given correspondence B̂i. (We suppress

dependency of Ti on B̂i for notational convenience.)

Now consider two balanced behavioral rules Bi and B′
i from Ti. We say that B′

i is

(weakly) swifter than Bi, written Bi � B′
i, if Bi(s)(s

′
i) > 0 implies B′

i(s)(s
′
i) > 0, for

all s′i ∈ Si and all s ∈ S. That is, the support of B′
i is always weakly larger than the

support of Bi. We say that the two rules are equally swift, written Bi ≃ B′
i, if Bi � B′

i

and B′
i � Bi, so that the sets {s′i ∈ Si | Bi(s)(s

′
i) > 0} and {s′i ∈ Si | B

′
i(s)(s

′
i) > 0}

always coincide. By construction, the relation ≃ is a binary equivalence relation on

Ti. In the following, we will informally identify two behavioral rules if they are equally

swift, i.e., if they differ in specific probabilities assigned to strategies, but not in their

support. Formally, we work in the quotient set Ti/ ≃, on which the swiftness relation

� becomes a partial order.

Among all rules in Ti, we consider two distinguished rules (modulo equal swift-

ness). The cautious tie-breaking rule B0
i is the balanced rule specifying B0

i (s)(si) = 1

whenever si ∈ B̂i(s). That is, under the cautious rule a player always sticks to his or

her current action if it is one of the optimal ones according to the behavioral corre-

spondence B̂i. The random tie-breaking rule BX
i is the rule given by BX

i (s)(s′i) > 0

for all s′i ∈ B̂i(s), that is, all strategies that are optimal according to B̂i are always

chosen with strictly positive probability. The following observation is now immediate.

Lemma 1. Any balanced behavioral rule Bi satisfies B0
i � Bi � BX

i .

That is, the poset Ti/ ≃ has a top and a bottom element. It is straightforward to

show that it is actually a complete lattice. We denote profiles of balanced behavioral

rules for all players by B = (Bi)i∈I ∈ T :=
∏

i∈I Ti. Consider the product order on

T , i.e., B � B′ if and only if B′
i is weakly swifter than Bi for all i ∈ I. Then we

also obtain B0 � B � BX for any balanced profile B and the two extreme profiles

B0 = (B0
i )i∈I and BX = (BX

i )i∈I .

3Lexicographic tie-breaking conditions as e.g. choosing the most popular action in case of ties would
violate balancedness. They could, however, also be built into the behavioral correspondence, and the
modified rules would then be balanced by virtue of a “tie” meaning then both equal payoffs and
identical popularity.
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2.3 Revision Opportunities

A learning dynamics for a game Γ is made of a behavioral rule for each player, which

includes tie-breaking assumptions, and a specification of revision opportunities, i.e.,

a way of determining which players receive the opportunity to update their actions

in a given period. Intuitively, revision opportunities are closely related to the speed

of the dynamics. A dynamics where only one agent is allowed to revise per period is

more gradual than one where the whole population might switch away simultaneously,

enabling abrupt transition phenomena. Following Alós-Ferrer and Netzer (2010), a

revision process is a probability measure q on the set of all subsets of I, with the

property that

∀ i ∈ I, ∃J ⊆ I such that i ∈ J and q(J) > 0, (4)

where q(J) (also written qJ) is interpreted as the probability that exactly the players in

J receive a revision opportunity (independently across periods). Condition (4) implies

that each player gets the opportunity to revise with strictly positive probability. A

revision process is called regular if qi = q{i} > 0 for all i ∈ I, so that for each player

there is a strictly positive probability of being the only player who is allowed to revise.

Let Q denote the set of all regular revision processes.

Analogously to the previous subsection, we can define a binary relation � on Q as

follows.4 For any q, q′ ∈ Q we say that q′ is (weakly) quicker than q, written q � q′,

if qJ > 0 implies q′J > 0, for all J ⊆ I. That is, the revision process q′ includes more

possibilities than q. We say that q and q′ have the same speed, written q ≃ q′, if q � q′

and q′ � q. By construction, the relation ≃ is a binary equivalence relation. Consider

again the quotient set Q/ ≃, where two revision processes belong to the same class if

and only if they have the same speed, i.e., they differ in specific probabilities assigned

to player subsets but not in their support. We will again identify two processes that

have the same speed and treat � as a partial order.

Among all processes in Q, we again consider two distinguished elements (modulo

equal speed). The asynchronous learning process qAL satisfies qAL
J = 0 whenever

|J | ≥ 2. The independent learning process qIL satisfies qILJ > 0 for all J ⊆ I.5 The

following observation is now again immediate.

Lemma 2. Any regular revision process q satisfies qAL � q � qIL.

Therefore the poset Q/ ≃ has a top and a bottom element as well. It is again a

simple exercise to show that it is actually a complete lattice.

4We use the same symbol for the binary relations on T and on Q for convenience.
5These concepts are again taken from Alós-Ferrer and Netzer (2010). The model of Blume (1993)

postulates qi = 1/N and is therefore an instance of asynchronous learning. Independent inertia as

in Sandholm (1998), where qJ = p|J| (1− p)N−|J| for some 0 < p < 1, is an instance of independent
learning. The simultaneous learning process, where qI = 1, is the simplest example of a process which
is not regular.
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2.4 Stochastic Stability

Given a profile of behavioral rules B and a revision process q, the unperturbed dynamics

(B, q) induces a Markov chain on the state space S. An absorbing set of (B, q) is a

minimal set of states with respect to the property that it cannot be left with positive

probability under (B, q). An absorbing state is a state s ∈ S such that the singleton

set {s} is absorbing. The fact that unperturbed learning dynamics will typically have

multiple absorbing sets or states motivates the introduction of noise to select between

them.

We can apply a noise process to B to derive associated profiles of behavioral rules

with noise Bε = (Bε
i )i∈I , where ε ∈ (0, 1) measures how strongly the players’ behavior

is perturbed from B.6 For the first noise process that we consider, the mistakes model,

we fix a noise rule Ei : S 7→ ∆Si for every player i ∈ I, where Ei(s)(s
′
i) is independent

of s and satisfies Ei(s)(s
′
i) > 0 for all s′i ∈ Si. Then each player’s behavioral rule Bi is

perturbed to BM,ε
i by

BM,ε
i (s)(s′i) = (1− ε)Bi(s)(s

′
i) + εEi(s)(s

′
i). (5)

For instance, the best-reply version of the well-known KMRmodel, first studied in Kan-

dori and Rob (1995), proceeds exactly like this to derive the best-reply with mistakes

BBR,M,ε
i from an unperturbed best-reply rule BBR

i . As ε → 0, behavior converges to

the best-reply rule. The noisy version BIB,M,ε
i of an imitate-the-best rule BIB

i can be

constructed analogously.7 Importantly, the tie-breaking assumptions implicit in BBR
i

or BIB
i carry over to the noisy rules when the mistakes approach is used. When we

start from a behavioral correspondence such as B̂BR
i or B̂IB

i , for instance, the mistakes

model associates to every behavioral rule Bi ∈ Ti a distinct behavioral rule with noise

Bε
i , which converges to Bi as ε → 0. We say that noise processes with this property

respect tie-breaking. The second noise process that we will consider is the logit choice

function, which has been used in the literature to obtain noisy versions of the best-

reply dynamics (see e.g. Blume, 1993 or Alós-Ferrer and Netzer, 2010). Formally, the

probability of player i choosing s′i is given by

BBR,L,ε
i (s)(s′i) =

e(1/ε)ui(s′i,s−i)

∑
s′′i ∈Si

e(1/ε)ui(s′′i ,s−i)
. (6)

Again, all actions are chosen with strictly positive probability whenever ε > 0 and

choice concentrates on myopic best-replies as ε → 0. The logit perturbation, however,

leaves no freedom in tie-breaking assumptions. As ε → 0, the behavioral rule BBR,L,ε
i

6See Bergin and Lipman (1996) for a general treatment of noise processes.
7The original KMR model can be readily interpreted as a model of imitation (see KMR p. 31,

Rhode and Stegeman, 1996, and Sandholm, 1998) where agents mimic the actions which led to the
highest payoffs in the last period.
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converges to the specific best-reply rule that breaks ties with equal probabilities. The

logit approach is therefore not suited to associate a distinct noisy rule to every Bi ∈ Ti

for a given behavioral correspondence B̂i. By using logit choice, we rather select

a specific Bi ∈ Ti, the one with equal tie-breaking.8 We say that noise processes

with this property impose tie-breaking. Other particular examples of noise processes

could also be considered. For instance, Myatt and Wallace (2003) and Dokumaci

and Sandholm (2008) consider dynamics based on probit choice functions, which, as

in the case of logit, impose tie-breaking. Sandholm (2010) considers general “noisy

revision protocols” (where the word revision is used in a different sense than in this

paper) including the mistakes model and logit and probit choice. The two prominent

examples presented above are those for which we develop specific applications later.

Now consider any perturbed dynamics (Bε, q) derived from an unperturbed dy-

namics (B, q) according to some noise process. Suppose that all Bε
i have full support

whenever 0 < ε < 1, as in the examples above. Then, the perturbed dynamics in-

duces an irreducible and aperiodic Markov chain on the state space S with transition

probabilities

P ε
s,s′ =

∑

J⊆I|sk=s′
k
∀k∈I\J

qJ
∏

i∈J

Bε
i (s)(s

′
i), (7)

and it has a unique invariant distribution, denoted µε. A strategy profile or state

s ∈ S is stochastically stable for (Bǫ, q) if limε→0 µ
ε(s) > 0. Stochastic stability for

the mistakes model can be characterized along the lines introduced in KMR or Young

(1993), with a useful “radius-coradius” sufficient condition developed by Ellison (2000).

Alós-Ferrer and Netzer (2010) provide an analogous general characterization for the

logit-response dynamics, and a similar radius-coradius result.9

3 Robustness

3.1 Definitions

We are interested in the following two concepts of robustness. First, suppose we

consider a given profile of behavioral rules with noise Bε, based on some underlying

profile of unperturbed behavioral rules B. Hence we treat as fixed a specification of

tie-breaking assumptions. This is always the case when the noise process imposes tie-

breaking, as with the logit-response dynamics, but it can be done for any behavioral

rule and noise process as detailed above. Robustness now refers to the specification of

revision opportunities alone.

8One could also study the logit perturbation BIB,L,ε
i of an imitate-the-best dynamics BIB

i , which
would converge to the equal tie-breaking imitation rule as noise vanishes.

9Several earlier contributions have studied logit behavior for special classes of games or dynamics
(e.g. Blume, 1993, 1997; Maruta, 2002; Myatt and Wallace, 2008a,b). See Beggs (2005) for radius-
coradius results with a focus on waiting times.

9



Definition 1. Fix a profile of behavioral rules with noise Bε. A state s ∈ S is robustly

stochastically stable with respect to revision processes (RSS-R) if it is stochastically

stable for (Bε, q) for any regular revision process q ∈ Q.

Second, suppose we consider a profile of behavioral correspondences B̂ = (B̂i)i∈I ,

with T being the set of profiles of balanced behavioral rules that agree player-wise

with B̂. For each B ∈ T we then apply a noise process that respects tie-breaking to

associate a profile with noise Bε. Robustness then refers to the specification of both

tie-breaking assumptions and revision opportunities.

Definition 2. Fix a profile of behavioral correspondences B̂ and a noise process that

respects tie-breaking. A state s ∈ S is robustly stochastically stable with respect to

revision processes and tie-breaking (RSS-RT) if it is stochastically stable for (Bε, q) for

any q ∈ Q and any Bε that the noise process associates to some element of T .

We aim to provide a method allowing us to identify RSS-R and RSS-RT states

based on the concepts of radius and coradius. We first introduce the following auxiliary

concept.

Definition 3. An operator on revision processes is a mapping

T : Q × S 7→ R

(q, s) 7→ T q(s).

Given some s ∈ S, the operator T is monotone for s if T q(s) ≥ T q′(s) whenever q � q′.

It is monotone if it is monotone for all s ∈ S.

In contrast to the usual approach, we will not define radius and coradius from a

primitive such as cost (Ellison, 2000) or waste (Alós-Ferrer and Netzer, 2010). The only

property of the different radius and coradius concepts that we need in the following is

that they are monotone operators (for the candidate prediction) that yield sufficient

conditions for stochastic stability.

Definition 4. Fix a profile of behavioral rules with noise Bε. A radius-coradius

pair (R,CR) for Bε is a pair of operators on revision processes such that, whenever

Rq(s) > CRq(s) for some absorbing state s ∈ S of the unperturbed dynamics (B, q),

it follows that s is the unique stochastically stable state for (Bε, q). Given some s ∈ S,

a radius-coradius pair is monotone for s if both operators are monotone for s.

As we will show below, the existing radius and coradius concepts of Ellison (2000)

and Alós-Ferrer and Netzer (2010) are monotone operators under minimal conditions.

Once monotonicity is established, the fact that the property embodied in the definition

above is fulfilled follows from the radius-coradius theorems in Ellison (2000) and Alós-

Ferrer and Netzer (2010).
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Analogously, we can define (monotone) operators and radius-coradius pairs with

respect to both revision opportunities and tie-breaking rules as follows. Fix a profile

of behavioral correspondences B̂, which induces the set T , and consider the product

order on T × Q, i.e., (B, q) � (B′, q′) if and only if B � B′ and q � q′.

Definition 5. An operator on revision processes and tie-breaking rules is a mapping

T : T × Q × S 7→ R

(B, q, s) 7→ TB,q(s).

Given some s ∈ S, the operator T is monotone for s if TB,q(s) ≥ TB′,q′(s) whenever

(B, q) � (B′, q′). It is monotone if it is monotone for all s ∈ S.

Definition 6. Fix a profile of behavioral correspondences B̂ and a noise process that

respects tie-breaking. A radius-coradius pair (R,CR) for B̂ and the noise process is

a pair of operators on revision processes and tie-breaking rules such that, whenever

RB,q(s) > CRB,q(s) for some absorbing state s ∈ S of the unperturbed dynamics

(B, q), it follows that s is the unique stochastically stable state for (Bǫ, q). Given some

s ∈ S, a radius-coradius pair is monotone for s if both operators are monotone for s.

3.2 Results

The following proposition embodies the main idea behind our results.

Proposition 1. (i) Fix a profile of behavioral rules with noise Bε. Let (R,CR) be a

radius-coradius pair for Bε. Let q1, q2 ∈ Q with q1 � q2. If there exists an absorbing

state s ∈ S of (B, q2) such that (R,CR) is monotone for s and

Rq2(s) > CRq1(s),

then s is the unique stochastically stable state for any (Bǫ, q) with q1 � q � q2.

(ii) Fix a profile of behavioral correspondences B̂ and a noise process that respects

tie-breaking. Let (R,CR) be a radius-coradius pair for B̂ and the noise process. Let

(B1, q1), (B2, q2) ∈ T × Q with (B1, q1) � (B2, q2). If there exists an absorbing state

s ∈ S of (B2, q2) such that (R,CR) is monotone for s and

RB2,q2(s) > CRB1,q1(s),

then s is the unique stochastically stable state for any (Bǫ, q) with (B1, q1) � (B, q) �

(B2, q2).

Proof. We prove statement (ii). Statement (i) is proven analogously. Consider an

arbitrary (B, q) ∈ T × Q with (B1, q1) � (B, q) � (B2, q2). Since s is an absorbing

state of (B2, q2), it is also an absorbing state of (B, q), because the latter (unperturbed)
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dynamics enables fewer positive-probability transitions than (B2, q2). It then suffices

to notice that, by monotonicity,

RB,q(s) ≥ RB2,q2(s) > CRB1,q1(s) ≥ CRB,q(s),

which implies the statement by definition of radius-coradius pair.

Using part (i) of this result and Lemma 2, we obtain an immediate corollary which

delivers a simple condition for RSS-R.

Corollary 1. Fix a profile of behavioral rules with noise Bε. Let (R,CR) be a radius-

coradius pair for Bε. If there exists an absorbing state s ∈ S of (B, qIL) such that

(R,CR) is monotone for s and

RqIL(s) > CRqAL

(s),

then s is the unique RSS-R state.

This corollary applies directly to the logit-response dynamics or to any mistakes

model for pre-specified tie-breaking assumptions. The result states that establishing

robust stochastic stability is just as simple (or just as complex) as establishing stochas-

tic stability with the help of a radius-coradius result. The only difference is that one

must focus on asynchronous learning for computing the coradius and on independent

learning for computing the radius.

Using part (ii) of Proposition 1 and Lemmata 1 and 2, we also obtain an immediate

corollary about robustness with respect to tie-breaking rules in addition to revision

processes.

Corollary 2. Fix a profile of behavioral correspondences B̂ and a noise process that

respects tie-breaking. Let (R,CR) be a radius-coradius pair for B̂ and the noise process.

If there exists an absorbing state s ∈ S of (BX , qIL) such that (R,CR) is monotone

for s and

RBX ,qIL(s) > CRB0,qAL

(s),

then s is the unique RSS-RT state.

Hence, even when we require robustness to cover both revision processes and tie-

breaking assumptions, a radius-coradius result applies. Again we need to focus on

two different, focal dynamic specifications only: independent learning with random

tie-breaking, and asynchronous learning with cautious tie-breaking.

3.3 Applying the Results

In order to apply the results, one needs to identify a radius-coradius pair and guarantee

monotonicity. This is easy to do for the existing concepts of Ellison (2000) for the
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mistakes model and Alós-Ferrer and Netzer (2010) for the logit-response dynamics.

The coradius of a state s due to Ellison (2000) is the maximum across states s′ 6= s

of the minimum number of mistakes required to enable a positive-probability transition

from s′ to s in the unperturbed dynamics (B, q).10 A mistake here is a strategy choice

of agent i that has zero probability under rule Bi. If an unperturbed dynamics includes

more positive-probability transitions, then the minima can only weakly decrease and

the maximum among all the minima can only be weakly smaller than before. The

reasoning for logit-response is analogous, with the number of mistakes replaced by the

utility differences between the chosen actions and the myopically optimal ones. This

shows the following.

Proposition 2. The coradius concept of Ellison (2000) is a monotone operator on

revision processes and tie-breaking rules. The coradius concept of Alós-Ferrer and

Netzer (2010) is a monotone operator on revision processes.

The radius of a state s due to Ellison (2000) is the minimal number of mistakes

needed to enable a positive-probability transition from s to some absorbing set not

containing s. Again, the concept for logit-response is analogous, with the number

of mistakes replaced by the appropriate utility differences. In general, the radius

will also be a monotone operator. The intuition is again that, if one considers an

unperturbed dynamics that includes more positive-probability transitions, then the

path which previously realized the radius is still feasible and associated with a weakly

smaller number of mistakes (or utility losses). Hence the minimum can only become

weakly smaller. The only problem with this argument is that the absorbing set reached

under the initial dynamics might cease to be absorbing under a dynamics enabling more

transitions. In some cases, this might create difficulties. Hence, we provide a result

delivering a sufficient condition for monotonicity. We formulate it only for the radius

of Ellison (2000). The analogous result also holds for the radius of the logit-response

dynamics (where only revision opportunities can be varied).

Proposition 3. Fix a profile of behavioral correspondences B̂ and let (B1, q1), (B2, q2) ∈

T × Q with (B1, q1) � (B2, q2). Suppose there exists an absorbing state s ∈ S of

(B2, q2) such that

(α) in every absorbing set S′ 6= {s} of (B1, q1) there exists a state s′ such that the

probability of reaching s from s′ under (B2, q2) is zero.

Then the radius concept of Ellison (2000) is a monotone operator for s on the set of

all (B, q) with (B1, q1) � (B, q) � (B2, q2).

Proof. Say that s′′ ∈ S is (B, q)-reachable from s′ ∈ S if there exists a positive-

probability path from s′ to s′′ in dynamics (B, q). Note that if (B, q) � (B′, q′) and s′′

10Radius and coradius are often defined only for (the elements of) absorbing sets. The difference is
inconsequential for our purposes.
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is (B, q)-reachable from s′, then s′′ is also (B′, q′)-reachable from s′, because the latter

dynamics allows for more positive-probability paths. As an immediate consequence, s

is an absorbing state of any dynamics (B, q) with (B, q) � (B2, q2).

Fix any (B, q), (B′, q′) ∈ T × Q with (B1, q1) � (B, q) � (B′, q′) � (B2, q2). Let

RB,q(s) = m. We aim to prove that RB′,q′(s) ≤ m. Consider a path for (B, q) that

realizes the radius, starting at s and reaching some s′ in an absorbing set S′ of (B, q)

with s /∈ S′. For (B′, q′), this path is still feasible and associated with a number of

mistakes weakly smaller than m. The set S′, however, is not necessarily an absorbing

set of (B′, q′). However, since states outside of S′ are not (B, q)-reachable from states

in S′, they are also not (B1, q1)-reachable from states in S′. It follows that there

exists an absorbing set S′′ of (B1, q1) with S′′ ⊆ S′ and an s′′ ∈ S′′ which is (B1, q1)-

reachable, hence (B′, q′)-reachable, from s′. By (α), there is an s′′′ ∈ S′′ such that s is

not (B2, q2)-reachable, and hence not (B′, q′)-reachable, from s′′′. Since s′′, s′′′ ∈ S′′,

which is an absorbing set of (B1, q1), s′′′ is (B1, q1)-reachable, hence (B′, q′)-reachable,

from s′′. Since s is not (B′, q′)-reachable from s′′′ (and the state space is finite) it

follows that there exists some absorbing set S∗ of (B′, q′) with s /∈ S∗ which is (B′, q′)-

reachable from s′′′. Connecting the paths from s to s′, from the latter to s′′, from the

latter to s′′′, and from the latter to S∗, we obtain a path from s to an absorbing set of

(B′, q′) not containing s, with a number of mistakes weakly smaller than m for (B′, q′).

Hence, RB′,q′(s) ≤ m.

Condition (α) in the proposition merely captures the idea that absorbing sets

should not become fully embodied in the “basin of attraction” of s as one moves

from the less quick/swift dynamics to the quickest/swiftest one. A sufficient condi-

tion fulfilled in many applications is simply that absorbing sets do not change across

dynamics.

Remark 1. Monotonicity of the radius and coradius operators, either in general or

just for the appropriate state, is of course just a sufficient condition for our results

to hold. One could replace them by even weaker conditions. For instance, as can

be seen from its proof, Proposition 1 also holds if we replace the requirement that

the radius be a monotone operator by the condition that the radius of s under the

upper bound dynamics should be weakly smaller than the radius of s under any of

the other dynamics. For Corollary 1, this translates into Rq(s) ≥ RqIL(s) for all q

with qAL � q � qIL. For Corollary 2, the condition becomes RB,q(s) ≥ RBX ,qIL(s)

for all (B, q) with (B0, qAL) � (B, q) � (BX , qIL). These weaker conditions are harder

to verify in general. As we will see, however, for some particular cases they are still

applicable.
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4 Symmetric Binary Action Games

4.1 Notation and Definitions

Let Γ be a symmetric binary action game (see e.g. Kim, 1996; Maruta, 2002; Blume,

2003) with strategy set S0 = {A,B}. Symmetry implies that each player’s payoff

depends only on the own action and on the number of opponents choosing each action.11

Given a strategy profile s ∈ S, denote by m(s) the number of players choosing A in

s. Let πA(n) be the payoff of an A-player if n players choose action A (including

the respective player herself) and let πB(n) be the payoff of a B-player if n players

choose A. We can then write the payoff functions as ui(si, s−i) = πsi(m(si, s−i)).

Furthermore, we define ∆(n) = πA(n)−πB(n− 1) for 1 ≤ n ≤ N as the payoff change

of a player who switches from action B to action A, given that n− 1 of the opponents

choose action A so that the overall number of A-players is n after the switch. We

consider two examples.

Example 1. Consider a unanimity game (e.g. Young, 1998a, Section 9) where πB(0) > 0

and πA(N) > 0, but πA(n) = 0 if n < N and πB(n) = 0 if n > 0. The game has

two strict Nash equilibria, A = (A, . . . , A) and B = (B, . . . , B). In addition, every

profile s ∈ S with 2 ≤ m(s) ≤ N − 2 is a non-strict Nash equilibrium. The difference

function ∆(n) of the unanimity game is given by ∆(1) = −πB(0), ∆(n) = 0 for all

2 ≤ n ≤ N − 1, and ∆(N) = πA(N).

Example 2. The unanimity game can be generalized in different ways. As a particularly

interesting example for our purpose, consider a team project game with two projects,

A and B, where each of the N players must participate in exactly one of the projects.

Participation is costless, but the success of project A requires the participation of at

least 1 ≤ nA ≤ N players, while project B is successful if at least 1 ≤ nB ≤ N

players participate. Assume further that nA+nB > N +1, which implies that the two

projects cannot be realized jointly and that there is the possibility that none of them

is successful. If project A (B) is successful, it generates an overall benefit of size a > 0

(b > 0), which is distributed equally among all participating players. Players who do

not participate in a successful project obtain a payoff of zero. Hence payoffs are

πA(n) =

{
a/n if n ≥ nA,

0 if n < nA,
πB(n) =

{
0 if n > N − nB,

b/(N − n) if n ≤ N − nB.

The two monomorphic profiles A and B are again strict Nash equilibria, and profiles

s ∈ S with N −nB +2 ≤ m(s) ≤ nA− 2 are non-strict Nash equilibria. We obtain the

11Sandholm (2010) also considers symmetric binary action games, concentrating on the asymptotics
as noise vanishes and population size goes to infinity. Staudigl (2012) follows the same approach for
asymmetric binary action games.
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difference function

∆(n) =





a/n if nA ≤ n ≤ N,

0 if N − nB + 2 ≤ n ≤ nA − 1,

−b/(N − n+ 1) if 1 ≤ n ≤ N − nB + 1.

The team project game becomes the unanimity game if nA = nB = N .12

As shown by Hofbauer and Sorger (2002, p. 27), every symmetric binary action

game is an exact potential game in the sense of Monderer and Shapley (1996). It is

straightforward to verify that

ρ(s) =





m(s)∑

j=1

∆(j) if m(s) ≥ 1,

0 if m(s) = 0.

(8)

is a potential function for these games.13 Potential games are relevant for the logit-

response dynamics, which, as mentioned in the introduction, selects the potential-

maximizing states as stochastically stable under certain assumptions.

We now introduce two additional properties that are crucial for robust stochastic

stability, supermodularity and strategic complementarity (Topkis, 1998; Vives, 2005).

For symmetric binary action games, the usual definition of supermodularity based on

increasing differences of the payoff function is equivalent to the requirement that the

difference function ∆(n) is weakly increasing in n.14 Figure 1 depicts an exemplary

difference function of a supermodular game. The unanimity game is supermodular.

Another example would be a population game where N players are matched pairwise

in a round-robin tournament to play a symmetric 2× 2 coordination game.

The team project game is not supermodular (except if nA = nB = N) because ∆(n)

is decreasing from 1 to N − nB + 1 and from nA to N . Still, the game has monotonic

best-responses and hence satisfies the weaker condition of strategic complementarity.

For symmetric binary action games, strategic complementarity is equivalent to the

existence of two values n and n with the property that ∆(n) < 0 if and only if

n ≤ n and ∆(n) > 0 if and only if n > n. Thus any supermodular game exhibits

12Maruta (2002) and Maruta and Okada (2009) generalize unanimity games to the different class
of “binary coordination games” (see our discussion below). Our team project game is also related
to the collective-action games studied by Myatt and Wallace (2008a,b) for general quantal response
dynamics under asynchronous learning (and also simultaneous learning in Myatt and Wallace, 2008b).
The games in Myatt and Wallace (2008a,b) are not necessarily symmetric, they exhibit a single project
only, and all players obtain a positive payoff if the project is successful.

13Maruta (2002) shows that symmetric binary coordination games are exact potential games, with a
potential function as given in (8). Myatt and Wallace (2008b) show that their collective-action games
are potential games under a symmetry condition, again with a potential function similar to (8).

14Such games are called binary coordination games by Maruta (2002) and Maruta and Okada
(2009). Technically speaking, Maruta (2002) requires the difference function ∆ to be strictly in-
creasing. Maruta and Okada (2009) allow for games that are not necessarily symmetric.
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Figure 1: Supermodularity

strategic complementarity but the converse is not true. Figure 2 illustrates the case of

a game that exhibits strategic complementarity but is not supermodular. We assume

throughout that n > 0 and n < N , to render the problem of equilibrium selection

meaningful. If Γ exhibits strategic complementarity, only A or B can maximize the

potential function ρ given in (8), which adds the values ∆(n) up to m(s) for any s.

Figure 2: Strategic Complementarity

4.2 Logit-Response

We first study the logit-response dynamics based on myopic best-response. An earlier

result by Blume (1993, 1997) for the class of exact potential games implies that the

potential maximizing strategy profile will be stochastically stable under asynchronous

learning. With the potential function (8), the difference in potential between two states

s and s′ corresponds to the accumulated utility changes of moving asynchronously from

s to s′. Moving towards a profile with larger potential is thus always easier under logit

response if only one player can update at a time. Consider the unanimity game, for

instance. We only need to compare the value of the potential between A and B.

Straightforward calculations reveal that ρ(B) = 0 and ρ(A) = (a − b)/N , so that

a project is stochastically stable with asynchronous logit-response if and only if it is
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Pareto efficient. We now want to examine under which conditions the selection of the

potential maximizers by the logit-response dynamics is robust with respect to revision

processes.

Theorem 1. Let Γ be a supermodular symmetric binary action game. Consider the

logit-response dynamics. Then, the potential maximizers are RSS-R.

Proof. Let Γ be a supermodular symmetric binary action game, with critical values

n > 0 and n < N as defined above. We will rely on Corollary 1 and the radius-coradius

from Alós-Ferrer and Netzer (2010). The coradius is always monotone, by Proposition

2. For any process q ∈ Q, the unperturbed myopic best-reply dynamics with random

(equal probability) tie-breaking has two absorbing sets, the singletons {A} and {B}.

Hence the radius is also monotone for both absorbing states, by Proposition 3.

Consider asynchronous learning. The waste caused by a single player switching

from B to A in the presence of n − 1 other A-players is max{−∆(n), 0} and hence

non-zero if and only if n ≤ n. Analogously, the waste that is generated if one of n

A-players switches to B is max{∆(n), 0} and non-zero if and only if n > n. Fix any

s′ 6= B. Construct a minimal waste path P = (s′, ...,B) by letting A-players switch to

B sequentially. We obtain the waste

W (P ) =

m(s′)∑

j=1

max{∆(j), 0}.

It is maximal if s′ = A so that m(s′) = N , which yields

CRqAL

(B) =
N∑

j=1

max{∆(j), 0} =
N∑

j=n+1

∆(j),

and, from analogous arguments,

CRqAL

(A) =
N∑

j=1

max{−∆(j), 0} = −

n∑

j=1

∆(j).

Consider independent learning. Since ∆(n) is increasing in n by supermodularity,

the waste caused by a B-player switching to A in the presence of n − 1 A-players,

max{−∆(n), 0}, is decreasing in n. Analogously, the waste of an A-player switching to

B, max{∆(n), 0}, is increasing in n. Hence the waste caused by several players switch-

ing simultaneously is weakly larger than the waste caused by sequential switching, so

that among minimal waste paths between A and B there are always paths that make

use of sequential revisions only. This implies

RqIL(B) = −

n∑

j=1

∆(j), RqIL(A) =
N∑

j=n+1

∆(j).

18



Now suppose B is the unique potential maximizer, i.e.,
∑N

j=1∆(j) < 0. This can

be rearranged to

−

n∑

j=1

∆(j) >
N∑

j=n+1

∆(j),

because ∆(n) = 0 for n < n ≤ n. This is equivalent to RqIL(B) > CRqAL

(B) and

implies that B is the unique RSS-R state by Corollary 1. The argument for A is

analogous. If both A and B maximize the potential, i.e.,
∑N

j=1∆(j) = 0, Corollary

1 is not applicable. From the above arguments about supermodularity it is still true

that minimal waste revision trees (Alós-Ferrer and Netzer, 2010) can be constructed

using singleton revising sets only, so the stochastically stable states for any regular

revision process must be the potential maximizers as for asynchronous learning.

The selection of potential maximizers in exact potential games (Blume, 1993, 1997)

has been shown to be knife-edge by Alós-Ferrer and Netzer (2010), in the sense that it

neither holds for general revision processes beyond asynchronous learning even for exact

potential games, nor for generalized potential games even for asynchronous learning.15

Theorem 1 shows that potential maximizers do become a robust prediction for the

particular class of supermodular symmetric binary action games. Hence, the relevance

of potential maximizers does extend beyond asynchronous learning, at the price of

considering a smaller class of games. The above mentioned selection of the Pareto

efficient equilibrium in the unanimity game is robust by its supermodularity property.

The result that the risk-dominant equilibrium of a symmetric 2× 2 coordination game

played in a round-robin tournament or on a (weighted) network (Young, 1998b) will

be selected by the logit dynamics is also robust due to supermodularity. The same

is true for the results that Maruta (2002) obtains for binary coordination and hence

supermodular games under asynchronous logit response.

Theorem 1 has a straightforward intuition. With a logit choice rule, the likelihood

of a player choosing a non-best-reply is decreasing in the size of the associated payoff

loss. In supermodular games, this payoff loss becomes smaller the more players have

already switched to the non-optimal action. Hence a mistake becomes more likely the

more players have already made that mistake before. The minimal resistance paths

between absorbing states that are relevant for stochastic stability are therefore con-

structed by letting players switch sequentially as under asynchronous learning, so that

the stochastically stable states under asynchronous learning are stochastically stable

15Interestingly, however, Okada and Tercieux (2008) show that, under supermodularity, the asyn-
chronous version of the logit-response dynamics selects local potential maximizers, a generalization of
potential maximizers. Marden and Shamma (2012) describe different ways to restore the selection of
potential maximizers for more general revision processes, including updating probabilities that depend
on the level of noise and restrictions on actions sets or information available to the players. Marden
and Shamma (2012) and Candogan, Ozdaglar, and Parrilo (2013) also investigate games that are
approximately potential games.
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for any regular revision process. The team project game is not supermodular. The

mistake of leaving a successful project becomes (myopically) more expensive and hence

less likely under logit choice the more players have already made that mistake before,

because the project benefit is then shared among a smaller number of people. With

independent learning, for instance, minimal resistance paths between the absorbing

states are constructed by letting players switch simultaneously. Hence the selection

result of logit-response in the team project game will depend on the revision process,

and an RSS-R state does not generally exist. This illustrates that Theorem 1 cannot

be generalized from supermodular games to the broader class of games with strategic

complements.

4.3 Mistakes Model

In this section, we apply the myopic best-response based mistakes model. We proceed

in parallel to the previous section and first investigate robustness with respect to

revision processes, given random tie-breaking.

Theorem 2. Let Γ be a symmetric binary action game with strategic complementarity.

Consider the profile of random tie-breaking best-reply rules and the mistakes model.

Then, the following states are the unique RSS-R states:

A if and only if n+ n ≤ N, B if and only if n+ n ≥ N.

Proof. Let Γ be a symmetric binary action game with strategic complementarity, with

critical values n > 0 and n < N . We will rely on Corollary 1 and radius-coradius

from Ellison (2000). The coradius is monotone by Proposition 2. For any q ∈ Q, the

unperturbed myopic best-reply dynamics with random tie-breaking has two absorbing

sets, the singletons {A} and {B}. Hence the radius is monotone for both absorbing

states, by Proposition 3.

Consider asynchronous learning. Since ∆(n) < 0 if and only if n ≤ n and ∆(n) > 0

if and only of n > n, by strategic complementarity, switching from B to A in the

presence of n − 1 other A-players is a mistake if and only if n ≤ n. Analogously,

switching to B is a mistake for any of the n A-players if and only if n > n. Fix any

s′ 6= B. Construct a minimal cost path P = (s′, ...,B) by letting A-players switch to

B sequentially. The cost of this path is C(P ) = max{m(s′) − n, 0}. It is maximal if

s′ = A so that m(s′) = N , which yields

CRqAL

(B) = N − n,

and, from analogous arguments,

CRqAL

(A) = n.
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Consider independent learning. By the previous arguments, at least n mistakes are

necessary to enable a transition from B to A, for any regular revision process. With

random tie-breaking, states withm(s) ≥ n can be connected toA without mistakes (by

letting indifferent B-players switch to A until A becomes a best response). Together

with the analogous arguments for A, this implies

RqIL(B) = n, RqIL(A) = N − n.

Now suppose n + n > N . This is identical to RqIL(B) > CRqAL

(B) and implies

that B is the unique RSS-R state by Corollary 1. The same applies to A if n+n < N .

If n + n = N , Corollary 1 is not applicable. The above arguments, however, imply

that in this case both (and only) A and B have minimal stochastic potential (Kandori

and Rob, 1995) for any regular revision process, so that they are the unique RSS-R

states.

Compared to the logit-response dynamics, the mistakes model requires only the

weaker property of strategic complementarity for robustness of its selection result in

symmetric binary action games. In this sense, the mistakes model is more robust than

the logit-response dynamics. The reason is, of course, that it makes use of the payoff

structure of the game to a lesser extent. Strategic complementarity implies that the

basin of attraction of each monomorphic state contains in its interior no area where

the unperturbed dynamics would lead away from the monomorphic state, and thus it

suffices to compare the size of the basins, irrespective of the specific regular revision

process. If a basin encompassed an area from which the unperturbed dynamics no

longer gravitates back to the absorbing state, then a simultaneous strategy change

by several players might allow for cost-saving jumps away from the absorbing state,

generating a dependence of the selection result on the revision process. This illustrates

the role of strategic complementarity for Theorem 2.

For the team project game, where n = N − nB + 1 and n = nA − 1, Theorem 2

implies that the project with smaller participation requirement is RSS-R, i.e., A if and

only if nA ≤ nB and B if and only if nB ≤ nA.
16 As another immediate application,

we again obtain the robustness of the selection of the risk-dominant equilibrium of a

symmetric 2 × 2 coordination game played in a round-robin tournament. Similarly,

the comparable results of Maruta and Okada (2009) for the symmetric case are robust

due to strategic complementarity of their binary coordination games.

Since the mistakes model is a noise process that respects tie-breaking, we can

additionally investigate robustness with respect to tie-breaking assumptions.

16Specifically, both projects are stochastically stable in the unanimity game, as already pointed
out by Young (1998a). See Maruta and Okada (2009) for a treatment of generalized, asymmetric
unanimity games under perturbed adaptive play as in Young (1993).
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Proposition 4. Let Γ be a symmetric binary action game with strategic complementar-

ity. Consider the profile of best-reply correspondences and the mistakes model. Then,

the following states are the unique RSS-RT states:

A if n < N/2, B if n > N/2.

Proof. We will rely on Corollary 2 together with Remark 1 (as a substitute for mono-

tonicity of the radius). Observe that {A} and {B} are absorbing sets of any unper-

turbed myopic best-reply dynamics (B, q) ∈ T × Q (albeit not necessarily the only

ones). From the arguments in the proof of Theorem 2, we have RB,q(B) ≥ n for any

(B, q) ∈ T × Q. With random tie-breaking and independent learning, states with

m(s) ≥ n can again be connected to A without mistakes. Hence we have

RB,q(B) ≥ RBX ,qIL(B) = n, ∀(B, q) ∈ T × Q,

and, from analogous arguments,

RB,q(A) ≥ RBX ,qIL(A) = N − n, ∀(B, q) ∈ T × Q.

Consider cautious tie-breaking and asynchronous learning. Fix any s′ 6= B. Con-

struct a minimal cost path P = (s′, ...,B) by letting A-players switch to B sequentially.

The cost of this path is C(P ) = max{m(s′)−n, 0}, because the switch of an indifferent

A-player to B is a mistake with cautious tie-breaking. It is maximal for s′ = A, which

yields

CRB0,qAL

(B) = N − n,

and, from analogous arguments,

CRB0,qAL

(A) = n.

The statement of the proposition now follows immediately from Corollary 2.

Observe that our approach delivers only sufficient conditions for RSS-RT, hence we

cannot conclude that there are no RSS-RT states if the conditions in the proposition

are not satisfied. It shares this limitation with the older radius-coradius results.17

The relatively strict conditions in Proposition 4 arise because the absorbing sets of

the unperturbed dynamics depend on tie-breaking assumptions. With random tie-

breaking, only the monomorphic states are absorbing, as both are reached with positive

probability from any state s with n ≤ m(s) ≤ n after indifferent players change their

strategy. With cautious tie-breaking, states with n < m(s) < n become absorbing as

17We were able to state necessary and sufficient conditions for RSS-R in Theorem 2, because there
our radius-coradius approach was always able to identify the unique stable state (except for the case
where both monomorphic states are stable, for which a direct argument was made in the proof).
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well, as no indifferent player will switch. More complicated non-singleton absorbing

sets emerge for intermediate tie-breaking assumptions, such as when some players

break ties cautiously and others randomly. Our approach requires to calculate the

radius for the quickest/swiftest and the coradius for the least quick/swift dynamics,

giving rise to a relatively small radius and relatively large coradius, and hence the

sufficient conditions in Proposition 4.

5 Symmetric Games and Globally Stable ESS

Consider a symmetric game Γ as defined earlier. Relevant examples include Cournot

oligopolies, rent-seeking games, and other classes of games (see Alós-Ferrer and Ania,

2005 for details). Following Schaffer (1988, 1989), a strategy s∗ ∈ S0 is a strict globally

stable ESS (where ESS stands for evolutionarily stable strategy) if for all s′ ∈ S0,

s′ 6= s∗,

u(s∗|s′, m. . ., s′, s∗, . . . , s∗) > u(s′|s′,m−1. . . , s′, s∗, . . . , s∗) (9)

for all m ∈ {1, . . . , N − 1} . In words, s∗ earns larger payoffs than any alternative

strategy in any profile where only those two strategies are present.

In Cournot oligopolies, the Walrasian quantity has been shown by Vega-Redondo

(1997) to be a strict globally stable ESS, and stochastically stable in imitation-based

dynamics with mistakes. Alós-Ferrer and Ania (2005) extended this result, showing

that any strict globally stable ESS in any symmetric game is stochastically stable

in a mistakes dynamics with imitate-the-best and independent inertia (see also Alós-

Ferrer and Schlag, 2009). Bergin and Bernhardt (2004) provide further results for

convergence of imitative dynamics to “relative equilibria” (a closely related concept)

in general games. Alós-Ferrer and Ania (2005) also generalize Vega-Redondo (1997)

to show that strict global stability includes a family of outcomes of special interest

(see also Bergin and Bernhardt, 2004 for related results). Informally, an aggregative

game is a symmetric game such that players’ payoffs depend only on the own strategy

and an aggregate of all strategies. If the own strategy and the aggregate exhibit an

ordinal substitutability (quasisubmodularity), as is the case e.g. in Cournot oligopolies

and rent-seeking games, strict global stability follows from a more economic concept,

aggregate-taking-strategy, i.e., a generalization of Walrasian equilibrium where each

player maximizes payoffs taking the aggregate of all strategies as given.

For any unperturbed imitate-the-best dynamics, the singletons of monomorphic

states (s, . . . , s) are absorbing. Consider the dynamics with random tie-breaking and

independent learning. If one mutant appears at state (s∗, . . . , s∗), inequality (9) with

m = 1 indicates that s∗-players earn strictly more than the mutant. Hence, one muta-

tion is not enough to move from (s∗, . . . , s∗) to a different absorbing set. We conclude

that RBX ,qIL(s∗, . . . , s∗) > 1. Consider now the dynamics with asynchronous learn-
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ing and cautious tie-breaking. For any monomorphic state (s, . . . , s) with s 6= s∗, if

a single mutation to s∗ occurs, by inequality (9) with m = N − 1, we obtain that

the mutant earns strictly more than the incumbents, and hence eventually an incum-

bent will be selected and switch to s∗. By (9) with m = N − 2, the next incumbent

to be selected will also switch to s∗. Iterating, the dynamics will reach the state

(s∗, . . . , s∗). We might thus be tempted to conclude that CRB0,qAL
(s∗, . . . , s∗) = 1,

and, by virtue of Corollary 2, that (s∗, . . . , s∗) is an RSS-RT state. This tempting con-

clusion, however, is incorrect. The problem is that, with the specified behavioral rule,

both asynchronous learning and cautious tie-breaking create additional absorbing sets

which do not correspond to monomorphic states, and the above coradius computation

fails. The following example shows a failure of robustness with respect to tie-breaking

assumptions, showing that a strict globally stable ESS needs not be RSS-RT.

Example 3. Let N be even, N ≥ 6, and consider a symmetric game with strategies

S0 = {A,B,C}. Let mA(s) be the number of players choosing A and πA(s) the

payoff of an A-player in profile s, and analogously for B and C. Hence we can write

ui(si, s−i) = πsi(si, s−i). Let C(s) ⊆ S0 be the set of strategies actually played in s.

Payoffs are either 1 (win) or 0 (lose) and given as follows. First, πA(A) = πB(B) =

πC(C) = 1. Second, πA(s) = 1 and πB(s) = 0 whenever C(s) = {A,B}, and πA(s) = 1

and πC(s) = 0 whenever C(s) = {A,C}. Third, πA(s) = 0 and πB(s) = πC(s) = 1

whenever C(s) = {A,B,C}. Last, whenever C(s) = {B,C}, πB(s) = 1 if mB(s) ≤

mC(s) and πB(s) = 0 otherwise, and symmetrically for C, i.e., in this case the weak

minority wins. Note that A is a strict globally stable ESS of this game.

Now consider imitate-the-best with cautious tie-breaking and asynchronous learn-

ing. Analyze the dynamics on the reduced state space where states with the same

number of players for each strategy are identified. There are four absorbing sets, all

of them singletons. They correspond to the three monomorphic states plus the state

ŝ with equal number of B- and C-players, and no A-player. A single mutation to B

suffices for a transition from C to ŝ and symmetrically for B, and two mutations (one

to B, one to C) suffice for a transition from A to ŝ. Hence CRB0,qAL

(ŝ) = 2. However,

at least N/2 ≥ 3 mutations are needed to leave ŝ for a different absorbing set, so

RB0,qAL
(ŝ) > CRB0,qAL

(ŝ) and it follows that ŝ is the only stochastically stable state.

The last example relies crucially on the combination of cautious tie-breaking (which

renders ŝ absorbing) and asynchronous learning (which implies that more than one

mutation is necessary to destabilize ŝ). It raises the natural question of whether a

strict globally stable ESS would at least be RSS-R if one maintains the assumption

of random tie-breaking. The answer is negative. The next example shows a failure of

robustness with respect to revision opportunities.

Example 4. Let N be even, N ≥ 8, and consider a symmetric game with strategies

S0 = {A,B,C}. Let the notation be as in the previous example. Payoffs are as follows.
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First, πA(A) = πB(B) = πC(C) = 1. Second, πA(s) = 1 and πB(s) = 0 whenever

C(s) = {A,B}, and πA(s) = 1 and πC(s) = 0 whenever C(s) = {A,C}. Third,

whenever C(s) = {A,B,C} or C(s) = {B,C}, πA(s) = 0 (if A ∈ C(s)), πB(s) = 1

if mB(s) ≤ mC(s) and πB(s) = 0 otherwise, and symmetrically for C, i.e., the weak

minority between B and C wins even if A is present. Again, A is a strict globally

stable ESS of this game.

Now consider imitate-the-best with random tie-breaking and asynchronous learn-

ing. It is easy to see that there is a non-singleton absorbing set S′ = {s=, s−, s+},

with mB(s=) = mC(s=) = N/2, mB(s+) = mC(s−) = (N/2) + 1, and mB(s−) =

mC(s+) = (N/2) − 1. The unperturbed dynamics transitions into S′ from all states

with C(s) = {A,B,C} or C(s) = {B,C}. A single mutation suffices to reach one of

these states from B, C, and any state with C(s) = {A,B} or C(s) = {A,C}. It takes

two mutations to reach one of these states from A. To leave S′ for a different absorbing

set, at least (N/2)− 1 ≥ 3 mutations are necessary. It follows that the states in S′ are

the only stochastically stable states.

The examples above are, admittedly, rather extreme. They give, however, an ex-

ample of a well-established stochastic stability result which fails the robustness test(s).

This robustness failure arises from a conceptual problem with the definition of finite-

population ESS. That definition is based on payoff differences between mutant and

incumbents when only two strategies are present, which allows wild specifications of

payoffs when more than two strategies are part of the strategy profile. A concept

based on pairwise comparisons, while yielding stochastic stability for a reasonable set

of dynamics, can be “tricked” by exploiting the freedom of specification left by the

concept when more than two strategies are present. This kind of problem is precisely

what our robustness test was meant to identify.

6 Conclusion

Stochastic stability is and remains an important concept in game theory. In our view,

it is well suited to analyze questions of outcome selection in noisy environments, as

long as the different ingredients of the model are clearly differentiated. Ideally, a

strong, clear-cut result is one linking a particular behavioral assumption (captured

by a behavioral rule or correspondence) under a particular interaction structure (as a

proxy for the socioeconomic setting, e.g. the network structure) to the selection of a

particular outcome. Failing that, it is still important to understand how more subtle

elements of the model have an influence on long-run outcomes. Our concept of robust

stochastic stability aims to differentiate clear-cut predictions from more subtle ones.

For noisy behavioral rules where specific tie-breaking assumptions are built into the

rule, as in the case of logit choice, robust stochastic stability requires robustness with

respect to the specification of revision opportunities. For noisy rules which remain

25



silent (or are less vocal) on the issue of tie-breaking, as in the case of the mistakes

model, robustness also includes the latter.

We have provided an easy-to-use sufficient condition for robust stochastic stability,

and have illustrated its application for different games and dynamics. The condition

makes use of an order structure of the space of dynamics, by observing that the radius

and coradius concepts introduced in the literature are typically monotone operators in

this space. Our result itself reduces to a radius-coradius approach, with the difference

that the radius is taken with respect to the “quickest” dynamics (independent learning

and random tie-breaking) and the coradius is taken with respect to the “slowest” one

(asynchronous learning and cautious tie-breaking). Hence in the quest to obtain results

which are independent of certain parts of the specification of the dynamics, we are led

to concentrate on two particular, extreme dynamics.

In our illustrations, we have focused on two important classes of behavioral rules,

myopic best reply and imitate-the-best. Our results can of course be applied to other

rules. For instance, suppose once wishes to consider robustness within the class of

rules that focus on strategies delivering better payoffs than the current one, either in

a forward-looking sense (“better-reply dynamics”, as in e.g. Friedman and Mezzetti,

2001) or in an observational sense (“imitate if better”, as in e.g. Ellison and Fudenberg,

1995). If one defines the behavioral correspondence in the natural way, the question

reduces to robustness with respect to tie-breaking rules within the class of behavioral

rules agreeing with that correspondence.

We conclude by emphasizing that working with radius and coradius of two different

dynamics is not the same as establishing stochastic stability for these two dynamics,

i.e., as checking conventional radius-coradius conditions for the two. Robustness is

stronger, as it requires stochastic stability also for all intermediate (balanced and

regular) dynamics. The following logit-response based example shows that a state

can be stochastically stable for both independent and asynchronous learning, but fail

to be stochastically stable for all regular revision processes. Consider a symmetric

binary action game with N = 7 and a difference function ∆(n) as depicted in Figure

3. If learning is asynchronous and −[∆(1) + ∆(2) + ∆(3)] < [∆(5) + ∆(6) + ∆(7)],

then A is stochastically stable because the utility losses of moving from A to B are

strictly larger than those of moving from B to A. If learning is independent and

−∆(1) < ∆(7), then the same is true because optimal transitions between A and B

involve simultaneous strategy changes by 3 players, generating minimal utility losses of

3∆(7) and −3∆(1), respectively. Now consider a regular revision process q ∈ Q where

q{1,2} > 0 and qJ = 0 for all other J ⊆ I with |J | ≥ 2. Under the assumption that

−∆(2) < −[∆(1) + ∆(3)]/2, a minimal utility loss transition from B to A involves

a single player switching to A first, followed by a simultaneous switch of players 1

and 2. The associated utility losses are −[∆(1) + 2∆(2)]. An analogous argument

shows that moving from A to B generates minimal utility losses of [∆(7) + 2∆(6)] if
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Figure 3: Non-Robustness

∆(6) < [∆(5) +∆(7)]/2. Now consider a game where

∆(1) = −1,∆(2) = −10,∆(3) = −20,∆(5) = 20,∆(6) = 7,∆(7) = 5.

These parameters satisfy all above assumptions, and they imply thatB is stochastically

stable under q because −[∆(1) + 2∆(2)] > [∆(7) + 2∆(6)].
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