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Abstract. Biconcavity is a simple condition on inverse demand that corresponds

to the ordinary concept of concavity after simultaneous parameterized transforma-

tions of price and quantity. The notion is employed here in the framework of the

homogeneous-good Cournot model with potentially heterogeneous firms. The analysis

leads to unified conditions, respectively, for the existence of a pure-strategy equilib-

rium via nonincreasing best-response selections, for existence via quasiconcavity, and

for uniqueness of the equilibrium. The usefulness of the generalizations is illustrated

in cases where inverse demand is either “nearly linear” or isoelastic. It is also shown

that commonly made assumptions regarding large outputs are often redundant.
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1. PRELIMINARIES

1.1. Introduction

This paper employs expanded notions of concavity to review the main conditions

for existence and uniqueness of a pure-strategy Nash equilibrium in Cournot’s (1838)

homogeneous-good oligopoly with potentially heterogeneous firms.1 Central to the

approach is a family of monotone transformations given by ϕα(x) = xα/α if α 6= 0

and by ϕα(x) = ln(x) if α = 0. An inverse demand function P = P (Q) is then

called (α, β)-biconcave if P becomes concave (in the interval where inverse demand is

positive) after transforming the price scale by ϕα and, simultaneously, the quantity

scale by ϕβ, where α, β ∈ R.2

Many of the concavity assumptions used in the literature can be expressed in

terms of biconcavity. Concavity of inverse demand, as assumed by Szidarovszky and

Yakowitz (1977, 1982), corresponds to (1, 1)-biconcavity. Selten (1970) and Mur-

phy et al. (1982), respectively, impose concavity conditions on industry revenues

that correspond to strict and non-strict variants of (1,−1)-biconcavity. Novshek’s

(1985) marginal revenue condition corresponds to (1, 0)-biconcavity. Amir’s (1996)

log-concavity of inverse demand corresponds to (0, 1)-biconcavity. Last but not least,

Deneckere and Kovenock (1999) use a condition on direct demand that corresponds

to a strict variant of 1/P being convex, i.e., to (−1, 1)-biconcavity.

Thus, the notion of biconcavity provides a simple framework for organizing the

main conditions in the literature.3

1Vives (1999) offers an excellent introduction to the Cournot model. Conditions for the existence
and uniqueness of a pure-strategy Nash equilibrium in markets with identical firms have been derived
by McManus (1962, 1964), Roberts and Sonnenschein (1976), and Amir and Lambson (2000).

2Thus, P is (α, β)-biconcave if ϕα ◦ P ◦ ϕ−1β is concave, where ϕ−1β is the inverse of ϕβ .
3Given this perspective, it is natural to seek unified conditions. However, having a well-rounded

theory is desirable also because the Cournot model features prominently in some broader classes of
games, such as games with strategic complementarities (Milgrom and Roberts, 1990; Vives, 1990),
surplus sharing games (Watts, 1996), and aggregative games with strategic substitutes (Dubey et
al., 2006; Jensen, 2010).
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The analysis reviews conditions in three areas. A first topic is equilibrium existence

in the tradition of Novshek’s (1985) landmark fixed-point argument, i.e., via the avail-

ability of nonincreasing best-response selections. Novshek assumed that each firm’s

marginal revenue is declining in the aggregate output of its competitors. However, as

pointed out by Amir (1996), log-concavity of inverse demand is likewise a condition

that guarantees the availability of nonincreasing best-response selections. While a

certain consolidation of these two conditions for existence can be achieved by con-

sidering monotone transformations of the profit functions (Amir, 2005), the present

paper will instead follow Amir’s (1996) initial approach, which considers monotone

transformations of the revenue function. This has some advantages. Specifically, as

we show, cross-partial conditions can be replaced by simpler biconcavity conditions,

and cost functions may be general (i.e., nondecreasing and lower semi-continuous),

rather than linear. Moreover, exploiting the intuitive interpretation of biconcavity,

assumptions for large outputs turn out to be redundant.

The second topic of the paper is equilibrium existence via quasiconcavity or even

concavity of the profit functions, in the tradition of Friedman (1971) and Okuguchi

(1976). In this case, we consider a smooth model with or without capacity constraints.

Quasiconcavity of profits is established then via a simple second-order condition,

where we employ an argument used by Vives (1999) in a related exercise for logconcave

inverse demand.4 While this approach does impose restrictions on costs, it leads to

additional conditions for existence in cases where the availability of monotone best-

response selections cannot be ascertained, i.e., when inverse demand satisfies only

relatively weak forms of biconcavity. We also show that straightforward variants of

such conditions ensure that profit functions are either strictly quasiconcave or strongly

pseudoconcave (in the relevant domains). These ancillary results prove useful both

4See Vives (1999, Ch. 4, Note 16). We adapt the proof by allowing for a wider class of biconcavity
conditions and by using a different second-order condition.
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for the discussion of examples and for the later analysis of uniqueness.

The third and final topic is, consequently, the uniqueness of the pure-strategy

equilibrium, both in games admitting nonincreasing best-response selections and in

games with quasiconcave profit functions. Intuitively, the assumption of biconcavity

is employed here to ensure the famous “necessary and sufficient” conditions that

result from the index approach to uniqueness (Kolstad and Mathiesen, 1987). For

convenience, however, the formal analysis will be based directly upon Selten’s (1970)

“backward mapping” approach and its subsequent developments by Szidarovszky and

Yakowitz (1977) and Gaudet and Salant (1991).5 Extending arguments of Deneckere

and Kovenock (1999), we find a single additional condition,

(α + β)P ′ − C ′′i < 0 (i = 1, ..., N), (1)

that implies the uniqueness of the pure-strategy equilibrium in the smooth model with

or without capacity constraints (here Ci denotes, of course, firm i’s cost function). In

fact, as will become clear, variants of condition (1) allow to consolidate a large variety

of uniqueness conditions.

Quite obviously, the present analysis draws heavily upon a strand of literature

that has emphasized the role of expanded notions of concavity for economic theory

in general, and for the analysis of imperfect competition in particular. Most notably,

Caplin and Nalebuff (1991) defined ρ-concavity via parameterized transformations

of the quantity variable, and thereby introduced the notion of generalized concav-

ity (together with the Prékopa-Borell theorem) to the economics literature. More

closely related to the present analysis is Anderson and Renault (2003), who apply

generalized concavity to derive efficiency and surplus bounds in the Cournot frame-

work. Other related applications include price discrimination (Cowan, 2007, 2012;

5A useful discussion of this approach can be found in Friedman (1982).
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Aguirre et al., 2010) and hazard-rate conditions (Ewerhart, 2013). In contrast to all

those contributions, however, the present analysis employs simultaneous parameter-

ized transformations of price and quantity.

The rest of the paper is structured as follows. The following two subsections

introduce the notion of biconcavity and the set-up. Section 2 derives conditions

for existence via nonincreasing best-response selections. Conditions for quasiconcave

payoffs are stated in Section 3. Section 4 deals with uniqueness. Section 5 concludes.

All proofs can be found in an Appendix.

1.2. Biconcavity

This subsection introduces the notion of biconcavity more formally, and derives

some of its elementary properties.6

Consider the parameterized family of transformations {ϕα}α∈R defined in the In-

troduction. Given arbitrary parameters α, β ∈ R, an (inverse demand) function

P = P (Q) ≥ 0, possibly unbounded at Q = 0, will be called (α, β)-biconcave if the

domain IP = {Q > 0 : P (Q) > 0} is an interval and ϕα(P (Q)) is a concave function

of ϕβ(Q) over the domain where Q ∈ IP . Clearly, the condition that IP is an interval

holds trivially when P is nonincreasing, which will be assumed essentially everywhere

in the paper.

The following useful result extends a well-known ranking property of ρ-concavity

(cf. Caplin and Nalebuff, 1991) to the case of simultaneous parameterized transfor-

mations.

Lemma 1.1. Let α′, β′ ∈ R with α′ ≤ α and β′ ≤ β. If P is nonincreasing and

(α, β)-biconcave, then P is also (α′, β′)-biconcave.

For example, (1, 1)-biconcavity is more stringent than (1, 0)-biconcavity, which in

6The definition given below is based upon an extension briefly mentioned in Avriel (1972).
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turn is more stringent than (0, 0)-biconcavity. The property captured by Lemma 1.1

is intuitive because a lower value of either α or β makes it easier for the transformed

function to be concave. It is essential here, however, that P is nonincreasing. Without

this assumption, the ranking result regarding β would not hold in general.7

The following immediate property of biconcavity translates conditions on direct

demand D = D(p) ≥ 0, possibly unbounded at p = 0, into conditions on inverse

demand (and vice versa), in the spirit of Deneckere and Kovenock (1999).

Lemma 1.2. Let P = P (Q) and D = D(p) be continuous and nonincreasing,

with D(P (Q)) = Q over IP . Then P is (α, β)-biconcave if and only if D is (β, α)-

biconcave.

For example, (0, 1)-biconcavity of direct demand corresponds to (1, 0)-biconcavity of

inverse demand, etc.

Finally, it is often convenient to work with the following second-order characteri-

zation of biconcavity.

Lemma 1.3. Assume that P is nonincreasing, and twice differentiable on IP . Then

P is (α, β)-biconcave if and only if ∆P
α,β ≤ 0 holds on IP , where

∆P
α,β(Q) = (α− 1)QP ′(Q)2 +QP (Q)P ′′(Q) + (1− β)P (Q)P ′(Q). (2)

Intuitively, the criterion captured by Lemma 1.3 puts a bound on a weighted sum of

the elasticity, eP = −QP ′/P , and the curvature, eP ′ = −QP ′′/P ′, of inverse demand.

Indeed, if P ′ < 0, then condition (2) is easily seen to be equivalent to the inequality

(α− 1)eP + eP ′ ≤ 1− β.

The lemma above is straightforward to apply. E.g., linear inverse demand, P (Q) =

max{1−Q; 0}, is (α, β)-biconcave if and only if α ≤ 1 and β ≤ 1. For another example,

7Indeed, if inverse demand were to be upward-sloping, e.g., due to general equilibrium effects,
then applying a concave transformation to the quantity scale would make the transformed function
more convex rather than more concave.
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isoelastic inverse demand, defined through P (Q) = Q−η for η > 0, is (α, β)-biconcave

if and only if αη + β ≤ 0. Further examples will be given in Section 2.

1.3. Set-up

The following set-up will be used throughout the paper. There is an industry

composed of N ≥ 2 firms. Each firm i = 1, ..., N produces a quantity qi ∈ Ti of

the homogeneous good, where Ti ⊆ R+ denotes the set of output levels that are

technologically feasible for firm i. Aggregate output Q =
∑N

i=1 qi determines inverse

demand P (Q) ≥ 0.8 Firm i’s profit is Πi(qi, Q−i) = R(qi, Q−i)− Ci(qi), where Q−i =∑
j 6=i

qj is the joint output of firm i’s competitors, R = R(qi, Q−i) ≡ qiP (qi + Q−i) is

the revenue function, and Ci = Ci(qi) is firm i’s cost function. Firm i’s best-response

correspondence r̂i is given by

r̂i(Q−i) = {qi ∈ Ti : Πi(qi, Q−i) ≥ Πi(q̃i, Q−i) for all q̃i ∈ Ti}, (3)

where Q−i ≥ 0. Should r̂i(Q−i) be a singleton for a range of Q−i ≥ 0, then the best-

response function that maps Q−i to the unique element of r̂i(Q−i) will be denoted by

ri = ri(Q−i). A pure-strategy Nash equilibrium is a vector (q1, ..., qN) ∈ T1 × ...× TN

such that qi ∈ r̂i(Q−i) for i = 1, ..., N .

2. EXISTENCE VIA NONINCREASING BEST-RESPONSE SELECTIONS

2.1. Existence theorem

This section deals with the issue of existence when firms are not necessarily sym-

metric and profit functions are not necessarily quasiconcave. As already mentioned

in the Introduction, Novshek (1985) observed for this case that, if marginal revenues

are nonincreasing in rivals’ aggregate output, then a firm’s best-response correspon-

dence satisfies a downward monotonicity property that can be exploited to prove

8In all what follows, P may be infinite at Q = 0 provided that limQ→0,Q>0QP (Q) = 0.
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existence. Following this route, the first existence result of the present paper provides

conditions ensuring that a firm’s smallest best response is well-defined and nonin-

creasing in rivals’ aggregate output. The monotonicity property is established here

using the ordinal variant of supermodularity (Milgrom and Shannon, 1994). More

specifically, the proof of the theorem below extends Amir’s (1996) intuitive argument

for log-concave inverse demand functions by showing that an entire family of bicon-

cavity conditions implies the crucial dual single-crossing condition for general cost

specifications.

The following theorem is the first main existence result of the present paper.

Theorem 2.1. Assume that P is continuous, nonincreasing, non-constant, and

(α, 1−α)-biconcave for some α ∈ [0, 1]. Assume also that Ti is nonempty and closed,

and that Ci is lower semi-continuous and nondecreasing, for i = 1, ..., N . Then, a

pure-strategy Nash equilibrium exists.

2.2. Discussion

Theorem 2.1 embeds the two main conditions for existence via nonincreasing best-

response selections. Indeed, the second-order characterization of (α, 1−α)-biconcavity

reduces to Novshek’s (1985) marginal revenue condition

P ′(Q) +QP ′′(Q) ≤ 0 (Q ∈ IP ) (4)

at α = 1, and to Amir’s (1996) log-concavity assumption

P (Q)P ′′(Q)− P ′(Q)2 ≤ 0 (Q ∈ IP ) (5)

at α = 0. As discussed in the Introduction, the theorem above may be seen as

convexifying these two conditions.9

9Obviously, Theorem 2.1 also accounts for the fact that convexity of choice sets is not essential
for equilibrium existence via monotone best-response selections (cf. Dubey et al., 2006).
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The additional generality achieved by Theorem 2.1 might even be of some applied

value, as the following example with “nearly linear” demand suggests.

Example 2.2. Consider an inverse demand function P given by P (Q) = (1−Qδ)1/γ

if Q ≤ 1 and by P (Q) = 0 otherwise, where γ ≈ 1 and δ ≈ 1. A straightforward

calculation shows that

∆P
α,β(Q) =

δ

γ2
Qδ−1(1−Qδ)

2−2γ
γ
{

(α− γ)δQδ + (β − δ)γ(1−Qδ)
}
. (6)

Since the expression in the curly brackets is linear in Qδ, it suffices to check the sign

of ∆P
α,β(Q) for Q→ 0 and for Q→ 1. It follows that P is (α, β)-biconcave if and only

if α ≤ γ and β ≤ δ.

The point of this example is that if γ and δ are marginally smaller than unity, then

inverse demand becomes practically indistinguishable from the linear specification,

yet neither (4) nor (5) holds. In contrast, all biconcavity conditions corresponding to

values of α with 1− δ ≤ α ≤ γ are satisfied.

2.3. Large outputs

Theorem 2.1 does away with the commonly made assumption that output levels

above some threshold are suboptimal. For intuition, consider an inverse demand

function P that is (α, β)-biconcave for some α, β ∈ R. If P is nonincreasing and non-

constant, the same is true for the transformed function, so the graph with transformed

scales has a negative slope somewhere. Provided α > 0 and β > 0, concavity implies

that the market price reaches zero at some finite Q0 > 0. Hence, given that costs are

nondecreasing, a firm has never a strict incentive to operate at an output level of Q0

or higher. More generally, as shown in the Appendix, the game is effectively compact

provided α ≥ 0 and β ≥ 0 with α+β > 0, which strictly includes the cases considered

in Theorem 2.1. In particular, assumptions for large outputs made in prior work are

9



seen to be redundant.10

2.4. Other values of α and β

It is immediate that Theorem 2.1 applies more generally when P is (α, β)-biconcave

with α ≥ 0, β ≥ 0, and α + β ≥ 1. However, if any of these three constraints is

marginally relaxed, keeping the respective other two, then best-response correspon-

dences need not allow a nonincreasing selection, and an equilibrium may fail to exist.

The following example establishes these facts for the case in which the constraint

α + β ≥ 1 is relaxed.

Example 2.3. Consider an inverse demand function P given by P (Q) = (1−Qδ)1/γ

if Q ≤ 1 and by P (Q) = 0 otherwise, where γ > 0, δ > 0, and γ + δ < 1. Suppose

initially that costs are zero. Then, because P is (γ, δ)-biconcave and P ′ < 0, profits

are strongly pseudoconcave in the range where qi + Q−i ∈ (0, 1).11 The monopoly

output in this market is given by QM ≡ ri(0) = ( γ
γ+δ

)1/δ. Implicit differentiation of

the first-order condition at Q−i = 0 shows that r′i(0) = 1−γ−δ
γ+δ

> 0, so that ri is indeed

locally upward-sloping. Moreover, QM is a “potentially optimal output” in the sense of

Novshek’s (1985, Theorem 4) necessary conditions for existence, whereas the marginal

revenue condition fails to hold at QM . Therefore, there exists an integer N ≥ 2 as

well as nondecreasing, lower semi-continuous cost functions C1, ..., CN such that the

market with inverse demand P does not possess a pure-strategy Nash equilibrium.

Similar examples of non-existence may be constructed if one of the other two con-

straints is relaxed.12 Thus, for general cost specifications, the parameter restrictions

10Biconcavity has also implications for small output levels. Given the same restrictions on the
values of α and β as before, the biconcavity assumption implies limQ→0,Q>0QP (Q) = 0.

11This can be verified using Theorem 3.4 below.
12Here is a brief outline of these examples. When the constraint α ≥ 0 is relaxed, one considers

a market with P (Q) = (1 + Qδ)1/γ , where γ < 0, |γ| small, and δ ≥ 1. Then, with zero costs,
r′i(Q−i) > 0 for large Q−i. Similarly, when the constraint β ≥ 0 is relaxed, one considers an inverse
demand function P given by P (Q) = (Qδ − 1)1/γ if Q ≤ 1 and by P (Q) = 0 otherwise, where γ ≥ 1,

10



in Theorem 2.1 are indeed just as tight as possible.

3. EXISTENCE VIA QUASICONCAVE PROFITS

3.1. Another existence theorem

This section considers environments in which a firm’s profit function is quasicon-

cave in own output. The property is of interest, in particular, because it ensures

the existence of a pure-strategy equilibrium when profit functions are continuous and

effective choice sets are non-empty compact intervals. However, since quasiconcavity

is neither necessary nor sufficient for the availability of nonincreasing best-response

selections, the analysis leads to conditions for existence that differ from (but overlap

with) the conditions considered in the previous section.

For convenience, the subsequent discussion will focus on the smooth case, as cap-

tured by the following assumption.

Assumption 3.1. P is continuous and nonincreasing on R+, as well as twice con-

tinuously differentiable on IP ; for any i = 1, ..., N , either Ti = R+ or Ti = [0, ki] with

0 ≤ ki <∞, and Ci is nondecreasing and twice continuously differentiable over Ti.
13

The next assumption captures the effective compactness of the Cournot game.

Assumption 3.2. There is a finite Q > 0 such that for any i = 1, ..., N , any Q−i ≥ 0,

and any qi > Q, there is some q̃i ≤ Q such that Πi(q̃i, Q−i) ≥ Πi(qi, Q−i).

Of course, this assumption is required only if at least one firm has unbounded capacity

and inverse demand is everywhere positive. Even then, as explained in Section 2, the

assumption will often be redundant.

δ < 0, and |δ| small. Then, with constant marginal costs ci, one finds that r′i(0) > 0 for sufficiently
large ci. Note also that, as a consequence of Lemma 1.1, there are no other cases to be considered.

13In particular, at qi = 0, the first two directional derivatives of Ci exist and are finite, and
similarly at qi = ki if Ti is bounded. As before, P may be unbounded at Q = 0 provided that
limQ→0,Q>0QP (Q) = 0.

11



The following result provides biconcavity conditions sufficient for a firm’s profit

function to be quasiconcave in own output. Thereby, a second main existence result

is obtained.14

Theorem 3.3. Impose Assumptions 3.1 and 3.2. Let α ≤ 1 and β ≤ 1 be such that

(i) ∆P
α,β ≤ 0, and (ii) (α+ β)P ′ −C ′′i ≤ 0 for any i = 1, ..., N . Then, a pure-strategy

Nash equilibrium exists.

This theorem obviously subsumes a variety of known conditions for quasiconcavity

and existence.

It will also be noted that the inequalities required in Theorem 3.3 are weak, which

is a departure from the strict second-order conditions commonly employed in the

smooth model. Indeed, our proof uses ∂Πi/∂qi > 0 =⇒ ∂2Πi/∂q
2
i ≤ 0 as a condition

sufficient for quasiconcavity over an open interval. While intuitive, this condition

does not appear to be widely known, so that a self-contained proof will be given in

the Appendix.15

3.2. Strong pseudoconcavity

By strengthening the assumptions of Theorem 3.3 somewhat, one may ensure that

profits are strictly quasiconcave over the interval where the market price is positive, or

even strongly pseudoconcave over the interval where both market price and industry

output are positive.16

Theorem 3.4. Under the assumptions of the previous theorem, suppose that either

14Here and in the sequel, obvious constraints on Q, qi, and Q−i will be omitted. E.g., the use of
the derivative of P is meant to indicate a restriction to Q ∈ IP , etc.

15To be sure, we remind the reader that the condition ∂Πi/∂qi = 0 =⇒ ∂2Πi/∂q
2
i ≤ 0 is not

sufficient for quasiconcavity.
16A twice continuously differentiable function f = f(x) is strongly pseudoconcave over an open

interval X if and only if f ′(x) = 0 implies f ′′(x) < 0. When X has a non-empty boundary, then
strong pseudoconcavity requires in addition that, if the directional derivative is zero at a boundary
point, then f decreases quadratically in a neighborhood in the direction of the derivative. See
Diewert et al. (1981) for further details.
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inequality (i) holds strictly with α+β < 2 or that inequality (ii) holds strictly for any

i = 1, ..., N . Then, for any Q−i ≥ 0 with P (Q−i) > 0, the function Πi(., Q−i) is strictly

quasiconcave over the interval where P (Q) > 0, and even strongly pseudoconcave over

the interval where Q ∈ IP .

Thus, under the assumptions of Theorem 3.4, the best-response function ri(Q−i) is

well-defined in the range where P (Q−i) > 0. Moreover, the first-order condition

holding with equality at some qi ∈ Ti with qi + Q−i ∈ IP is sufficient for a unique

global maximum at qi, and the second-order condition is then satisfied at qi with strict

inequality.

4. UNIQUENESS

4.1. Conditions for uniqueness

This section derives biconcavity conditions sufficient for the existence of a unique

pure-strategy Nash equilibrium. The assumptions of smoothness and effective com-

pactness from the previous section will be kept. Note, however, that smoothness is

no longer assumed for convenience only.17 The following additional assumption will

be imposed.

Assumption 4.1. For any (q1, ..., qN) ∈ T1 × ...× TN with P (Q) = 0, there is some

i = 1, ..., N such that Ci(qi) > Ci(0).

The sole purpose of this assumption is it to exclude the possibility of pathological

equilibria in which the market price is zero, yet any individual firm is unable to

generate a positive price by reducing its output.

The following result is the main uniqueness theorem of the present paper.

17Differentiability of inverse demand is needed, in fact, to avoid multiple equilibria. See Szi-
darovszky and Yakowitz (1982).
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Theorem 4.2. Impose Assumptions 3.1, 3.2, and 4.1. Assume that P is (α, β)-

biconcave with 0 ≤ α ≤ 1 and α + β ≤ 1. Assume also that

(α + β)P ′ − C ′′i < 0 (i = 1, ..., N). (7)

Then, there is precisely one pure-strategy Nash equilibrium. Moreover, condition (7)

may be replaced by a weak inequality (simultaneously for all i = 1, ..., N) provided that

∆P
α,β < 0 and α + β < 1.

It is important to acknowledge that, under the conditions of the theorem, necessarily

P ′ − C ′′i < 0.18 In particular, in the range where the market price is positive, best-

response functions have a slope strictly exceeding −1, so that multiple equilibria with

inactive firms indeed cannot occur.

4.2. Discussion

The theorem above offers a unifying perspective on numerous sufficient conditions

for uniqueness that have been used in the literature.19

Theorem 4.2 also adds some flexibility to existing conditions, as the following

example illustrates.

Example 4.3. Consider isoelastic inverse demand P (Q) = Q−η, with 0 < η < 1,

and assume finite capacities ki > 0, for i = 1, ..., N . Note that the condition for small

output levels holds, i.e., limQ→0,Q>0QP (Q) = 0. Given that P is (α, β)-biconcave

if and only if αη + β ≤ 0, the tightest condition available from Theorem 4.2 is

(1 − η)P ′ − C ′′i < 0. Thus, cost functions may be strictly concave within capacity

constraints, whereas existing conditions would all require convex costs.20

18This is obvious if condition (7) holds strictly. Otherwise, i.e., if merely (α+ β)P ′ −C ′′i ≤ 0, one
notes that ∆P

α,β < 0 implies P ′ < 0 over IP , so that P ′ − C ′′i < 0 follows from α+ β < 1.
19Some of those conditions are listed and discussed more thoroughly in the working paper version

of this paper.
20This type of example might prove useful in applications of quantity competition in which the

assumption of strategic substitutes would be too restrictive, as in Bulow et al. (1985), while increasing
returns to scale cannot be ruled out a priori.
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5. CONCLUSION

This paper has used expanded notions of concavity to review conditions for exis-

tence and uniqueness of a pure-strategy Nash equilibrium in the homogeneous-good

Cournot model with potentially heterogeneous firms. While a number of potentially

useful generalizations and simplifications have been obtained, the most immediate

benefit of the approach is probably its unifying character. In particular, conditions

on inverse and direct demand have been integrated in a natural way, which addresses

a concluding request in Deneckere and Kovenock (1999).

Further research is desirable. For example, the theorem of Nishimura and Fried-

man (1981) has not been reviewed here. McLennan et al. (2011) manage to subsume

that result and Novshek’s (1985) existence theorem in the duopoly case, yet the gen-

eral relationship still seems to be unexplored. Further, as the discussion in Section 4

has shown, there is a lack of conditions (on the primitives of the model) that imply

uniqueness even if profit functions are not quasiconcave. Last but not least, fur-

ther applications of biconcavity appear desirable, both within the framework of the

Cournot model and beyond.

APPENDIX: PROOFS

Proof of Lemma 1.1. For x, x̂ > 0, λ ∈ [0, 1], and ρ ∈ R, write Mρ(x, x̂, λ) =

ϕ−1ρ ((1 − λ)ϕρ(x) + λϕρ(x̂)), where ϕ−1ρ is the inverse of ϕρ. Then, by definition,

P is (α, β)-biconcave if and only if Mα(P (Q), P (Q̂), λ) ≤ P (Mβ(Q, Q̂, λ)) for all

Q, Q̂ ∈ IP and all λ ∈ [0, 1]. Since Mρ(x, x̂, λ) is nondecreasing in ρ, the condition of

(α, β)-biconcavity becomes more stringent as α increases, and if P is nonincreasing,

also as β increases. �

Proof of Lemma 1.2. If P is (α, β)-biconcave, then the function that maps ϕβ(Q)

to ϕα(P (Q)) is concave (in the interval where Q ∈ IP ). Since P is necessarily strictly
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declining on IP , also the function that maps ϕα(P (Q)) to ϕβ(Q) is concave. Substi-

tuting P (Q) by p, and Q by D(p), shows that D is (β, α)-biconcave. The converse is

similar. �

Proof of Lemma 1.3. The function that maps ϕβ(Q) to ϕα(P (Q)) is concave over

the interval where Q ∈ IP if and only if

dϕα(P (Q))

dϕβ(Q)
=
ϕ′α(P (Q))P ′(Q)

ϕ′β(Q)
(8)

is nonincreasing over IP . Differentiating (8) with respect to Q leads to (2). �

Proof of Theorem 2.1. By Lemma A.1 below, w.l.o.g., Ti ⊆ [0, Q] for i = 1, ..., N ,

where Q > 0 is finite. Since Πi(., Q−i) is u.s.c. for any Q−i ≥ 0, the minimum best

response, min r̂i, is well-defined. Take Q̂−i > Q−i, and suppose q̂i ≡ min r̂i(Q̂−i) >

min r̂i(Q−i) ≡ qi. Since qi ∈ r̂i(Q−i), it follows that Πi(qi, Q−i) ≥ Πi(q̂i, Q−i). More-

over, P (q̂i + Q̂−i) > 0 because q̂i > 0 is a minimum best response. Thus, by Lemma

A.2, Πi(qi, Q̂−i) ≥ Πi(q̂i, Q̂−i), contradicting qi < q̂i. Thus, min r̂i is nonincreasing.

But r̂i is u.h.c. because Πi(qi, Q−i) is both u.s.c. in qi for any Q−i, and continuous in

Q−i for any qi ∈ Ti. Existence follows now from Kukushkin (1994). �

The lemma below is used to verify the effective compactness of the Cournot game.

Lemma A.1. Assume that P is nonincreasing, non-constant, and (α, β)-biconcave

for some α ≥ 0, β ≥ 0 with α + β > 0. Then there is a finite Q > 0 such that

R(., Q−i) is nonincreasing in the interval [Q;∞) for any Q−i ≥ 0.

Proof. The case where α > 0 and β > 0 has been dealt with in Section 2. The case

where α > 0 and β = 0 is similar. Consider now α = 0. One may clearly assume

w.l.o.g. that P > 0. Then, for almost any Q ≥ 0,

∂ lnR(qi, Q−i)

∂ϕβ(qi)
=
∂ lnP (Q)

∂ϕβ(Q)

∂ϕβ(Q)

∂ϕβ(qi)
+

∂ ln qi
∂ϕβ(qi)

. (9)
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Since P is nonincreasing and non-constant, ∂ lnP (Q)
∂ϕβ(Q)

|Q=Q# ≡ s < 0 for some Q# ≥ 0.

But P is (0, β)-biconcave, hence ∂ lnP (Q)
∂ϕβ(Q)

≤ s for almost any Q ≥ Q#. Note also that

∂ϕβ(Q)

∂ϕβ(qi)
= (1+ Q−i

qi
)β ≥ 1, and that ∂ ln qi

∂ϕβ(qi)
= q−βi < |s| for all sufficiently large qi. Thus,

(9) is negative for almost any sufficiently large qi, regardless of Q−i. �

The following lemma establishes the dual single-crossing property of Cournot profits.

φα(R) 

φα
-1 

φ
α (R

(q
i ,Q

-i )) 

φ
α (R

(q
i ,Q

-i )) 

φ
α (R

(q
i ,Q

-i )) 

φ
α (R

(q
i ,Q

-i )) 
R(qi,Q-i) 

R(qi,Q-i) 

R(qi,Q-i) 

R(qi,Q-i) 
J 

J 

R 

Figure 1: Extending Amir’s (1996) key argument.

Lemma A.2. Let P be nonincreasing and (α, 1 − α)-biconcave for some α ∈ [0, 1].

Assume also that Ci is nondecreasing. Then, for any q̂i > qi and Q̂−i > Q−i such that

P (q̂i+Q̂−i) > 0 and Πi(qi, Q−i) ≥ Πi(q̂i, Q−i), it follows that Πi(qi, Q̂−i) ≥ Πi(q̂i, Q̂−i).

Proof. Suppose Πi(qi, Q̂−i) < Πi(q̂i, Q̂−i). Then, R(qi, Q̂−i) < R(q̂i, Q̂−i), and the

interval Ĵ = [ϕα(R(qi, Q̂−i)), ϕα(R(q̂i, Q̂−i))] is non-degenerate. By Lemma A.3 below,

J = [ϕα(R(qi, Q−i)), ϕα(R(q̂i, Q−i))] is at least as wide as Ĵ . Moreover, the left

endpoint of J weakly exceeds the left endpoint of Ĵ , as in Figure 1. Applying the
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convex inverse ϕ−1α to J and Ĵ yields R(q̂i, Q−i)−R(qi, Q−i) ≥ R(q̂i, Q̂−i)−R(qi, Q̂−i).

Hence, Πi(q̂i, Q−i)− Πi(qi, Q−i) ≥ Πi(q̂i, Q̂−i)− Πi(qi, Q̂−i) > 0, a contradiction. �

The next lemma extends an argument in Novshek (1985) and enters the proof above.

Lemma A.3. Let P be nonincreasing and (α, 1−α)-biconcave for some α ≥ 0. Then

for any q̂i > qi and Q̂−i > Q−i such that P (q̂i + Q̂−i) > 0,

ϕα(R(q̂i, Q−i))− ϕα(R(qi, Q−i)) ≥ ϕα(R(q̂i, Q̂−i))− ϕα(R(qi, Q̂−i)). (10)

Proof. By Lemma A.4 below, P (qi + Q̃−i) is (α, 1 − α)-biconcave in qi, for any

Q̃−i ∈ [Q−i, Q̂−i]. Therefore, for almost any Q̃−i ∈ [Q−i, Q̂−i], the inequality

∂ϕα(P (qi + Q̃−i))

∂ϕ1−α(qi)
≥ ∂ϕα(P (q̂i + Q̃−i))

∂ϕ1−α(q̂i)
(11)

is well-defined and holds. Using (8) and the functional form of ϕα,

∂ϕα(P (qi + Q̃−i))

∂ϕ1−α(qi)
=
ϕ′α(P (qi + Q̃−i))P

′(qi + Q̃−i)

ϕ′1−α(qi)
=
∂ϕα(R(qi, Q̃−i))

∂Q̃−i
. (12)

Integrating over the interval [Q−i, Q̂−i] yields

ϕα(R(qi, Q̂−i))− ϕα(R(qi, Q−i)) =

∫ Q̂−i

Q−i

∂ϕα(R(qi, Q̃−i))

∂Q̃−i
dQ̃−i. (13)

Since (12) and (13) hold likewise with qi replaced by q̂i, inequality (10) follows. �

The next lemma, used in the proof above, generalizes a result in Murphy et al. (1982).

Lemma A.4. Assume that P is (α, 1− α)-biconcave and nonincreasing, for α ≥ 0.

Then P (qi +Q−i) is (α, 1− α)-biconcave in qi, for any Q−i ≥ 0.

Proof. Suppose ϕα(P (Q)) is concave and nonincreasing in ϕ1−α(Q) over the domain

where Q ∈ IP . Using Lemma 1.3, ϕ1−α(Q) ≡ ϕ1−α(qi + Q−i) is easily seen to be

convex in ϕ1−α(qi) if Q−i ≥ 0. Hence, ϕα(P (qi +Q−i)) is concave in ϕ1−α(qi) over the

domain where Q ∈ IP . �
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Proof of Theorem 3.3. To apply Lemma A.5 below, suppose that ∂Πi(qi, Q−i)/∂qi >

0, where Q ∈ IP . Then, qiP
′(Q) + P (Q) > 0 and by Lemma A.6, inequality (14)

holds. Using β ≤ 1 and qi/Q ≤ 1 yields qiP
′′(Q) + P ′(Q)(2 − α − β) ≤ 0. Adding

P ′(Q)(α+β)−C ′′i (qi) ≤ 0, one obtains ∂2Πi(qi, Q−i)/∂q
2
i ≤ 0. Thus, Πi(., Q−i) is qua-

siconcave over the domain where Q ∈ IP . Since C ′i ≥ 0, and by continuity, Πi(., Q−i)

is quasiconcave over the whole of Ti. Existence now follows from Assumptions 3.1

and 3.2. �

The proof of the following lemma is adapted from Diewert et al. (1981).

Lemma A.5. Assume that f = f(x) is twice continuously differentiable on an open

interval X ⊆ R. Then f is quasiconcave over X if f ′(x) > 0 implies f ′′(x) ≤ 0.

Proof. Suppose f is not quasiconcave. Then, there are x1 < x∗ < x2 such that

f(x∗) < min{f(x1), f(x2)}. Take some x̃1 ∈ (x1, x∗) with f ′(x̃1) < 0, and some

x̃2 ∈ (x∗, x2) with f ′(x̃2) > 0. Denote by x0 the largest element in the interval

(x̃1, x̃2) such that f ′(x0) = 0. By Taylor’s theorem, there is some x∗ ∈ (x0, x̃2)

with f(x̃2) = f(x0) + f ′(x0)(x̃2 − x0) + (1/2)f ′′(x∗)(x̃2 − x0)2. Using f ′(x0) = 0 and

f(x̃2) > f(x0) shows f ′′(x∗) > 0. Yet x0 < x∗ < x̃2 implies f ′(x∗) > 0. �

The following lemma is needed for Theorems 3.3, 3.4, and 4.2.

Lemma A.6. Let Q ∈ IP , and assume that ∆P
α,β(Q) ≤ 0, where α ≤ 1 and β ∈ R.

Then, qiP
′(Q) + P (Q) ≥ 0 implies

qiP
′′(Q) + P ′(Q) ≤ (α− qi

Q
(1− β))P ′(Q). (14)

Proof. To obtain (14), one multiplies qiP
′(Q) + P (Q) ≥ 0 through with (1 −

α)P ′(Q) ≤ 0, and subsequently adds (qi/Q)∆P
α,β(Q) ≤ 0. �

Proof of Theorem 3.4. Assume first ∆P
α,β < 0 with α+β < 2. Let qi ∈ Ti such that

Q ∈ IP , and suppose ∂Πi(qi, Q−i)/∂qi = 0. Then, for qi > 0, the proof of Theorem
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3.3 shows that ∂2Πi(qi, Q−i)/∂q
2
i < 0. For qi = 0, the second-order condition is

2P ′(Q−i)−C ′′i (0) < 0, which follows from (α+ β)P ′−C ′′i ≤ 0 and α+ β < 2 because

∆P
α,β < 0 implies P ′ < 0 over IP . Thus, Πi(., Q−i) is strongly pseudoconcave over the

range where Q ∈ IP , and by continuity, strictly quasiconcave over the range where

P (Q) > 0. The case where (α + β)P ′ − C ′′i < 0 is analogous. �

Proof of Theorem 4.2. Existence follows from Theorem 3.3. As for uniqueness,

note first that P (Q) > 0 in any equilibrium, by Assumption 4.1. Assume next

that qi > 0 for some firm i in an equilibrium (q1, ..., qN). Then, by strict quasi-

concavity, Πi(qi, 0) ≥ Πi(qi, Q−i) > Πi(0, Q−i) = Πi(0, 0), so that Q = 0 is not

a second equilibrium. Consider, finally, χ(Q) =
∑N

i=1 χi(Q), where χi(Q) is de-

fined in Lemma A.7 below. Since χ(Q) = Q holds in any equilibrium, it suffices

to show that the right-derivative of χ, denoted by D+χ, satisfies D+χ < 1. Write

B(Q) = {i : D+χi(Q) 6= 0}. Then,

D+χ(Q) =
N∑
i=1

D+χi(Q) =
∑

i∈B(Q)

qiP
′′(Q) + P ′(Q)

C ′′i (qi)− P ′(Q)
. (15)

Note that qiP
′(Q) + P (Q) ≥ 0 for any i = 1, ..., N . Indeed, if qiP

′(Q) + P (Q) < 0,

then χi(Q) = 0, which would imply P (Q) < 0. Hence, by Lemma A.6,

D+χ(Q) ≤
∑

i∈B(Q)

(α− qi
Q

(1− β))P ′(Q)

C ′′i (qi)− P ′(Q)
≤
∑

i∈B̃(Q)

(α− qi
Q

(1− β))P ′(Q)

C ′′i (qi)− P ′(Q)
, (16)

where B̃(Q) = {i ∈ B(Q) : α− qi
Q

(1− β) < 0}. If now either P ′(Q) = 0 or B̃(Q) = ∅,

then (16) implies D+χ(Q) ≤ 0 . Otherwise, i.e., if P ′(Q) < 0 and |B̃(Q)| ≥ 1, then

necessarily α + β < 1, and hence,

D+χ(Q) <
∑

i∈B̃(Q)

−α + qi
Q

(1− β)

1− α− β
≤ 1− α|B̃(Q)| − β

1− α− β
≤ 1. (17)

Moreover, if (7) holds merely as a weak inequality yet ∆P
α,β < 0, then inequality (14)

in Lemma A.6 becomes strict for any i ∈ B̃(Q). Thus, D+χ < 1 in any case, and

there is precisely one equilibrium. �
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Figure 2: The slope of the best-response function strictly exceeds −1.

The following lemma is needed for the argument above. See also Figure 2.

Lemma A.7. Impose the assumptions of Theorem 4.2. Then, for any Q ∈ IP , the

equation qi = ri(Q − qi) has a unique solution qi ≡ χi(Q) ∈ [0;Q] if Q ≥ ri(0), and

no solution if Q < ri(0). Moreover,

D+χi(Q) =
qiP

′′(Q) + P ′(Q)

C ′′i (qi)− P ′(Q)
IMi

(Q), (18)

where IMi
is the indicator function of a measurable set Mi ⊆ IP .

Proof. Let Πi(qi, Q−i) = qiP (qi + Q−i) − Γi(qi), where Γi is twice continuously dif-

ferentiable over R, and Γi(qi) = Ci(qi) over Ti. By Theorem 3.4, for any Q−i ∈ IP ,

the function Πi(., Q−i) is strongly pseudoconcave over the subinterval of Ti where

P (qi+Q−i) > 0. Hence, for any Q0
−i ∈ IP , there is some ε > 0, and a neighborhood U

of Q0
−i such that Πi(., Q−i) is strongly pseudoconcave over the corresponding subin-

terval of T εi = [−ε,∞) if ki =∞, and of T εi = [−ε, ki + ε] if ki <∞, for any Q−i ∈ U .

By making ε > 0 sufficiently small, ri(Q−i) = arg maxqi∈T εi Πi(qi, Q−i) is well-defined

on any given compact subset of IP . Since, locally, either ri(Q−i) = max{0; ri(Q−i)}
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or ri(Q−i) = min{ri(Q−i); ki},

D+ri(Q−i) = − P ′(Q) + qiP
′′(Q)

2P ′(Q) + qiP ′′(Q)− C ′′i (qi)
IM0

i
(Q−i) (19)

for some measurable set M0
i ⊆ IP . Now P ′ − C ′′i < 0 implies D+ri > −1. Thus,

ψi(Q−i) ≡ Q−i + ri(Q−i) is continuous and strictly increasing, with ψi(0) = ri(0) and

ψi(Q) ≥ Q, proving the first assertion. As D+ψi = 1 + D+ri > 0, the directional

version of the inverse function theorem implies D+(ψ−1i ) = 1/(1 + D+ri). Hence,

D+χi(Q) = D+ri(Q)/(1 +D+ri(Q)), and (18) holds with Mi = ψi(M
0
i ). �
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