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Hyperfinite Construction of G-expectation∗

Tolulope Fadina†, Frederik Herzberg‡

March 31, 2015

Abstract

We prove a lifting theorem, in the sense of Robinsonian nonstan-
dard analysis, for the G-expectation. Herein, we use an existing
discretization theorem for the G-expectation by T. Fadina and F.
Herzberg (Bielefeld University, Center for Mathematical Economics
in its series Working Papers, 503, (2014)).

Mathematics Subject Classification: 03H05; 28E05; 91B25
Keywords: G-expectation; Volatility uncertainty; Lifting theorem; Robinso-
nian Nonstandard analysis; Hyperfinite discretization.

1 Introduction

The hyperfinite G-expectation is a nonstandard discrete analogue of G-
expectation (in the sense of Robinsonian nonstandard analysis) which is
infinitely close to the continuous time G-expectation. We develop the basic
theory for the hyperfinite G-expectation. We prove a lifting theorem for
the G-expectation. For the proof of the lifting theorem, we use an exist-
ing discretization theorem for the G-expectation from Fadina and Herzberg
[8, Theorem 6]. Very roughly speaking, we extend the discrete time ana-
logue of the G-expectation to a hyperfinite time analogue. Then, we use the
characterization of convergence in nonstandard analysis to prove that the
hyperfinite discrete-time analogue of the G-expectation is infinitely close to
the (standard) G-expectation.

Nonstandard analysis makes consistent use of infinitesimals in mathe-
matical analysis based on techniques from mathematical logic. This ap-
proach is very promising because it also allows, for instance, to study
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continuous-time stochastic processes as formally finite objects. Many au-
thors have applied nonstandard analysis to problems in measure theory,
probability theory and mathematical economics (see for example, Anderson
and Raimondo [3] and the references therein or the contribution in Berg and
Neves [4]), especially after Loeb [12] converted nonstandard measures (i.e.
the images of standard measures under the nonstandard embedding ∗) into
real-valued, countably additive measures, by means of the standard part op-
erator and Caratheodory ’s extension theorem. One of the main ideas behind
these applications is the extension of the notion of a finite set known as hy-
perfinite set or more causally, a formally finite set. Very roughly speaking,
hyperfinite sets are sets that can be formally enumerated with both stan-
dard and nonstandard natural numbers up to a (standard or nonstandard,
i.e. unlimited) natural number.

Anderson [2], Hoover and Perkins [9], Keisler [10], Lindstrøm [11], a few
to mention, used Loeb’s [12] approach to develop basic nonstandard stochas-
tic analysis and in particular, the nonstandard Itô calculus. Loeb [12] also
presents the construction of a Poisson processes using nonstandard analysis.
Anderson [2] showed that Brownian motion can be constructed from a hy-
perfinite number of coin tosses, and provides a detailed proof using a special
case of Donsker’s theorem. Anderson [2] also gave a nonstandard construc-
tion of stochastic integration with respect to his construction of Brownian
motion. Keisler [10] uses Anderson’s [2] result to obtain some results on
stochastic differential equations. Lindstrøm [11] gave the hyperfinite con-
struction (lifting) of L2 standard martingales. Using nonstandard stochastic
analysis, Perkins [15] proved a global characterization of (standard) Brow-
nian local time. In this paper, we do not work on the Loeb space because
the G-expectation and its corresponding G-Brownian motion are not based
on a classical probability measure, but on a set of martingale laws.

Dolinsky et al. [7] and Fadina and Herzberg [8] showed the (standard)
weak approximation of the G-expectation. Dolinsky et al. [7] introduced a
notion of volatility uncertainty in discrete time and defined a discrete version
of Peng’s G-expectation. In the continuous-time limit, it turns out that
the resulting sublinear expectation converges weakly to the G-expectation.
To allow for the hyperfinite construction of G-expectation which require a
discretization of the state space, in Fadina and Herzberg [8, Theorem 6] we
refine the discretization by Dolinsky et al. [7] and obtain a discretization
where the martingale laws are defined on a finite lattice rather than the
whole set of reals.

The aim of this paper is to give an alternative, combinatorially inspired
construction of the G-expectation based on the aforementioned Theorem
6. We hope that this result may eventually become useful for applications
in financial economics (especially existence of equilibrium on continuous-
time financial markets with volatility uncertainty) and provides additional
intuition for Peng’s G-stochastic calculus. We begin the nonstandard treat-
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ment of the G-expectation by defining a notion of S-continuity, a standard
part operator, and proving a corresponding lifting (and pushing down) theo-
rem. Thereby, we show that our hyperfinite construction is the appropriate
nonstandard analogue of the G-expectation. For details on nonstandard
analysis, we refer the reader to Albeverio et al. [1], Cutland [5], Loeb and
Wolff [13] and Stroyan and Luxemburg [16].

The rest of this paper is organised as follows: in Section 2, we introduce
the G-expectation, the continuous-time setting of the sublinear expectation
and the hyperfinite-time setting needed for our construction. In Section 3,
we introduce the notion of S-continuity and also define the appropriate lift-
ing notion needed for our construction. Finally, we prove that the hyperfinite
G-expectation is infinitely close to the (standard) G-expectation.

2 Framework

The G-expectation ξ 7→ EG(ξ) is a sublinear function that takes random
variables on the canonical space Ω to the real numbers. The symbol G is a
function G : R→ R of the form

G(γ) :=
1

2
sup
c∈D

cγ, (1)

where D = [rD, RD] and 0 ≤ rD ≤ RD < ∞. Let PG be the set of
probabilities on Ω such that for any P ∈ PG, B is a martingale with volatility
d 〈B〉t /dt ∈ D in P ⊗ dt a.e. Then, the dual view of the G-expectation via
volatility uncertainty (cf. Denis et al. [6]) can be denoted as

EG(ξ) = sup
P∈PG

EP [ξ].

The canonical process B under the G-expectation EG(ξ) is called G-
Brownian motion (cf. Peng [14]).

2.1 Continuous-time construction of sublinear expectation

Let Ω = {ω ∈ C([0, T ];R) : ω0 = 0} be the canonical space of continuous
paths on [0, T ] endowed with the maximum norm ‖ω‖∞ = sup0≤t≤T |ωt|,
where | · | is the Euclidean norm on R. B is the canonical process defined
by Bt(ω) = ωt and Ft = σ(Bs, 0 ≤ s ≤ t) is the filtration generated by
B. PD is the set of all martingale laws on Ω such that under any P ∈ PD,
the coordinate process B is a martingale with respect to Ft with volatility
d 〈B〉t /dt taking values in D, P ⊗ dt a.e., for D = [rD, RD] and 0 ≤ rD ≤
RD <∞.

PD = {P martingale law on Ω; d 〈B〉t /dt ∈ D, P ⊗ dt a.e.} .
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Thus, the sublinear expectation is given by

ED(ξ) = sup
P∈PD

EP [ξ], (2)

for any ξ : Ω → R, ξ is FT -measurable and integrable for all P ∈ PD.
EP denotes the expectation under P . It is important to note that the
continuous-time sublinear expectation (2) can be considered as the classical
G-expectation (for every ξ ∈ L1

G where L1
G is defined as the E[| · |]−norm

completion of Cb(Ω;R)) provided (1) is satisfied (cf. Dolinsky et al. [7]).

2.2 Hyperfinite-time setting

Here we present the nonstandard version of the discrete-time setting of the
sublinear expectation and the strong formulation of volatility uncertainty on
the hyperfinite timeline. For the (standard) strong formulation of volatility
uncertainty in the discrete-time see Fadina and Herzberg [8], and for the
continuous-time see Dolinsky et al. [7] and Fadina and Herzberg [8].

Definition 2.1. ∗Ω is the ∗-image of Ω endowed with the ∗-extension of the
maximum norm ∗‖ · ‖∞.

∗D = ∗[rD, RD] is the ∗-image of D, and as such it is internal.
It is important to note that st : ∗Ω → Ω is the standard part map, and
st(ω) will be referred to as the standard part of ω, for every ω ∈ ∗Ω. ◦z
denotes the standard part of a hyperreal z.

Definition 2.2. For every ω ∈ Ω, if there exists ω̃ ∈ ∗Ω such that
‖ω̃ − ∗ω‖∞ ' 0, then ω̃ is a nearstandard point in ∗Ω. This will be denoted
as ns(ω̃) ∈ ∗Ω.

For all hypernatural N, let

LN =

{
K

N
√
N
, −N2

√
RD ≤ K ≤ N2

√
RD, K ∈ ∗Z

}
(3)

and the hyperfinite timelime

T =

{
0,
T

N
, · · · ,− T

N
+ T, T

}
. (4)

We consider LTN as the canonical space of paths on the hyperfinite timeline,

and XN = (XN
k )

N

k=0 as the canonical process denoted by XN
k (ω̄) = ω̄k

for ω̄ ∈ LTN . FN is the internal filtration generated by XN . The linear
interpolation operator can be written as

˜ : ·̂ ◦ ι−1 → ∗Ω, for L̃TN ⊆
∗Ω,

4



where

ω̂(t) := (bNt/T c+ 1−Nt/T )ωbNt/T c + (Nt/T − bNt/T c)ωbNt/T c+1,

for ω ∈ LN+1
N and for all t ∈ ∗[0, T ]. byc denotes the greatest integer less

than or equal to y and ι : T→ {0, · · · , N} for ι : t 7→ Nt/T .

For the hyperfinite strong formulation of the volatility uncertainty, fix

N ∈ ∗N \N. Consider
{
± 1√

N

}T
, and let PN be the uniform counting mea-

sure on
{
± 1√

N

}T
. PN can also be seen as a measure on LTN , concentrated on{

± 1√
N

}T
. Let ΩN = {ω = (ω1, · · · , ωN );ωi = {±1}, i = 1, · · · , N}, and let

Ξ1, · · · ,ΞN be a ∗-independent sequence of {±1}-valued random variables
on ΩN and the components of Ξk are orthonormal in L2(PN ). We denote
the hyperfinite random walk by

Xt =
1√
N

Nt/T∑
l=1

Ξl for all t ∈ T.

The hyperfinite-time stochastic integral of some F : T × LTN → ∗R with
respect to the hyperfinite random walk is given by

t∑
s=0

F (s,X)∆Xs : ΩN → ∗R, ω ∈ ΩN 7→
t∑

s=0

F (s,X(ω))∆Xs(ω).

Thus, the hyperfinite set of martingale laws can be defined by

Q̄N
D′N

=
{
PN ◦ (MF,X)−1; F : T× LTN →

√
D′N

}
where

D′N = ∗D ∩
(

1

N
∗N
)2

and

MF,X =

(
t∑

s=0

F (s,X)∆Xs

)
t∈T

.

Remark 2.3. Up to scaling, Q̄N
D′N

= Qn
D′n

.

3 Results and proofs

Definition 3.1 (Uniform lifting of ξ). Let Ξ : LTN → ∗R be an internal
function, and let ξ : Ω → R be a continuous function. Ξ is said to be a
uniform lifting of ξ if and only if

∀ω̄ ∈ LTN
(˜̄ω ∈ ns(∗Ω)⇒ ◦Ξ(ω̄) = ξ(st(˜̄ω))

)
,
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where st(˜̄ω) is defined with respect to the topology of uniform convergence
on Ω.

In order to construct the hyperfinite version of the G-expectation, we
need to show that the ∗-image of ξ, ∗ξ, with respect to ˜̄ω ∈ ns(∗Ω), is the
canonical lifting of ξ with respect to st(˜̄ω) ∈ Ω. i.e., for every ˜̄ω ∈ ns(∗Ω),
◦ (∗ξ(˜̄ω)

)
= ξ(st(˜̄ω)). To do this, we need to show that ∗ξ is S-continuous in

every nearstandard point ˜̄ω.
It is easy to prove that there are two equivalent characterizations of

S-continuity on ∗Ω.

Remark 3.2. The following are equivalent for an internal function
Φ : ∗Ω→ ∗R:

(1) ∀ω′ ∈ ∗Ω
(
∗‖ω − ω′‖∞ ' 0⇒ ∗|Φ(ω)− Φ(ω

′
)| ' 0

)
.

(2) ∀ε� 0,∃δ � 0 : ∀ω′ ∈ ∗Ω
(
∗‖ω − ω′‖∞ < δ ⇒ ∗|Φ(ω)− Φ(ω

′
)| < ε

)
.

(The case of Remark 3.2 where Ω = R is well known and proved in
Stroyan and Luxemburg [16, Theorem 5.1.1])

Definition 3.3. Let Φ : ∗Ω→ ∗R be an internal function. We say Φ is S-
continuous in ω ∈ ∗Ω, if and only if it satisfies one of the two equivalent
conditions of Remark 3.2.

Proposition 3.4. If ξ : Ω→ R is a continuous function satisfying
|ξ(ω)| ≤ a(1 + ‖ω‖∞)b, for a, b > 0, then, Ξ = ∗ξ ◦ ·̃ is a uniform lifting
of ξ.

Proof. Fix ω ∈ Ω. By definition, ξ is continuous on Ω. i.e., for all ω ∈ Ω,
and for every ε� 0, there is a δ � 0, such that for every ω

′ ∈ Ω, if

‖ω − ω′‖∞ < δ, then |ξ(ω)− ξ(ω′)| < ε. (5)

By the Transfer Principle: For all ω ∈ Ω, and for every ε � 0, there is a
δ � 0, such that for every ω

′ ∈ ∗Ω, (5) becomes,

∗‖∗ω − ω′‖∞ < δ, and ∗|∗ξ(∗ω)− ∗ξ(ω′)| < ε. (6)

So, ∗ξ is S-continuous in ∗ω for all ω ∈ Ω. Applying the equivalent charac-
terization of S-continuity, Remark 3.2, (6) can be written as

∗‖∗ω − ω′‖∞ ' 0, and ∗|∗ξ(∗ω)− ∗ξ(ω′)| ' 0.

We assume ˜̄ω to be a nearstandard point. By Definition 2.2, this simply
implies,

∀˜̄ω ∈ ns(∗Ω), ∃ω ∈ Ω : ∗‖˜̄ω − ∗ω‖∞ ' 0. (7)
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Thus, by S-continuity of ∗ξ in ∗ω,

∗|∗ξ(˜̄ω)− ∗ξ(∗ω)| ' 0.

Using the triangle inequality, if ω
′ ∈ ∗Ω with ∗‖˜̄ω − ω′‖∞ ' 0,

∗‖∗ω − ω′‖∞ ≤ ∗‖∗ω − ˜̄ω‖∞ + ∗‖˜̄ω − ω′‖∞ ' 0

and therefore again by the S-continuity of ∗ξ in ∗ω,

∗|∗ξ(∗ω)− ∗ξ(ω′)| ' 0.

And so,

∗|∗ξ(˜̄ω)− ∗ξ(ω′)| ≤ ∗|∗ξ(˜̄ω)− ∗ξ(∗ω)|+ ∗|∗ξ(∗ω)− ∗ξ(ω′)| ' 0.

Thus, for all ˜̄ω ∈ ns(∗Ω) and ω
′ ∈ ∗Ω, if ∗‖˜̄ω − ω′‖∞ ' 0, then,

∗|∗ξ(˜̄ω)− ∗ξ(ω′)| ' 0.

Hence, ∗ξ is S-continuous in ˜̄ω. Equation (7) also implies

˜̄ω ∈ m(ω)
(
m(ω) =

⋂
{∗O;O is an open neighbourhood of ω}

)
such that ω is unique, and in this case st(˜̄ω) = ω.
Therefore,

◦
(
∗ξ(˜̄ω)

)
= ξ(st(˜̄ω)).

Definition 3.5. Let Ē : ∗RL
T
N → ∗R. We say that Ē lifts EG if and only if

for every ξ : Ω→ R that satisfies |ξ(ω)| ≤ a(1 + ‖ω‖∞)b for some a, b > 0,

Ē(∗ξ ◦ ·̃) ' EG(ξ).

Theorem 3.6.
max

Q̄∈Q̄N
D′

N

EQ̄[·] lifts EG(ξ). (8)

Proof. From the standard approximation in Fadina and Herzberg [8, Theo-
rem 6],

max
Q∈Qn

D′n

EQ[ξ(X̂n)]→ EG(ξ), as n→∞. (9)

For all N ∈ ∗N \ N, we know that (9) holds if and only if

max
Q∈∗QN

D′
N

EQ[∗ξ(X̂N )] ' EG(ξ), (10)
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(see Albeverio et al. [1], Proposition 1.3.1). Now, we want to express (10)
in term of Q̄N

D′N
. i.e., to show that

max
Q̄∈Q̄N

D′
N

EQ̄[∗ξ ◦ ·̃] ' EG(ξ).

To do this, use
EQ[∗ξ ◦ ·̂] = EQ[∗ξ ◦ ·̂ ◦ ι−1 ◦ ι]

and

EQ[∗ξ ◦ ·̂ ◦ ι−1 ◦ ι] = EQ[∗ξ ◦ ·̃ ◦ ι]

=

∫
∗RN+1

∗ξ ◦ ·̃ ◦ ιdQ, (transforming measure)

=

∫
∗RT

∗ξ ◦ ·̃d(Q ◦ j),

= EQ◦j [∗ξ ◦ ·̃]

for j : ∗RT → ∗RN+1, (xt)t∈T 7→
(
xNt
T

)
t∈RN+1 .

Thus,
Q̄N

D′N
= {Q ◦ j : Q ∈ ∗QN

D′N
}.

This implies,
max

Q̄∈Q̄N
D′

N

EQ̄[∗ξ ◦ ·̃] = max
Q∈∗QN

D′
N

EQ[∗ξ ◦ ·̂].
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Appendix

Proof of Remark 3.2. Let Φ be an internal function such that condition (1)
holds. To show that (1)⇒ (2), fix ε� 0. We shall show there exists a δ for
this ε as in condition (2). Since Φ is internal, the set

I =
{
δ ∈ ∗R>0 : ∀ω′ ∈ ∗Ω (∗‖ω − ω′‖∞ < δ ⇒ ∗|Φ(ω)− Φ(ω

′
)| < ε)

}
,

9



is internal by the Internal Definition Principle and also contains every posi-
tive infinitesimal. By Overspill (cf. Albeverio et al. [1, Proposition 1.27]) I
must then contain some positive δ ∈ R.
Conversely, suppose condition (1) does not hold, that is, there exists some
ω
′ ∈ ∗Ω such that

∗‖ω − ω′‖∞ ' 0 and ∗|Φ(ω)− Φ(ω
′
)| is not infinitesimal.

If ε = min(1, ∗|Φ(ω) − Φ(ω
′
)|/2), we know that for each standard δ > 0,

there is a point ω
′

within δ of ω at which Φ(ω
′
) is farther than ε from Φ(ω).

This shows that condition (2) cannot hold either.
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