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Ambiguity in a Real Option Game∗

Tobias Hellmann† and Jacco J.J. Thijssen‡

January 12, 2015

Abstract

In this paper we study a two-player investment game with a first mover advantage in continuous time

with stochastic payoffs, driven by a geometric Brownian motion. One of the players is assumed to be

ambiguous with maxmin preferences over a strongly rectangular set of priors. We develop a strategy and

equilibrium concept allowing for ambiguity and show that equilibira can be preemptive (a player invests

at a point where investment is Pareto dominated by waiting) or sequential (one player invests as if she

were the exogenously appointed leader). Following the standard literature, the worst case prior for the

ambiguous player if she is the second mover is obtained by setting the lowest possible trend in the set

of priors. However, if the ambiguous player is the first mover, then the worst case prior can be given by

either the lowest or the highest trend in the set of priors. This novel result shows that “worst case prior”

in a setting with geometric Brownian motion and κ-ambiguity does not equate to “lowest trend”.

Keywords: Real Options, Knightian Uncertainty, Worst Case Prior, Optimal Stopping, Timing Game

JEL classification: C61, C73, D81, L13

1 Introduction

Since the seminal contribution of Chen and Epstein (2002), there has been a solid framework for dealing with

Gilboa and Schmeidler (1989) maxmin preferences in a continuous time multiple prior model of ambiguity.

This model has been applied to several problems in economics and finance to gain valuable insights in the

consequences of a form of Knightian uncertainty, as opposed to risk, on economic decisions. The main

insight of Chen and Epstein (2002) is that in order to find the maxmin value of a payoff stream under a
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particular kind of ambiguity (called strongly rectangular) we need to identify the upper-rim generator of

the set of multiple priors, and value the payoff stream as if this is the true process governing the payoffs.

In the literature this process has become known as the worst case prior, because it identifies the prior that

at any given time t gives the lowest expected discounted payoff from time t. In the literature on investment

under uncertainty (so-called “real options”) the approach has been used to value investment projects when

the decision maker is not sure about the stochastic process governing the cash-flows resulting from the

project. Typically, this literature models cash-flows as geometric Brownian motions and ambiguity takes the

form of κ ambiguity over the true trend of the diffusion. In that case it has been shown by Nishimura and

Ozaki (2007) that the worst case at any time t corresponds to the lowest possible trend that is considered

under κ-ambiguity.

In this paper we extend the Nishimura and Ozaki model to a timing game between two firms, which both

have the option to invest in a project, where one firm is ambiguous about the process governing cash-flows,

and the other firm (potentially) has a cost disadvantage. In such timing games, players typically have to

balance the expected future payoffs of being the first or second firm to invest; the leader and follower roles,

respectively.

The purpose of our paper is threefold. Firstly, we want to explore the effects of ambiguity on the leader

and follower payoffs to players. Secondly, we wish to extend the equilibrium concepts for stochastic timing

games1 to include ambiguous players. Thirdly, we want to investigate the interaction of ambiguity and cost

(dis-) advantages on equilibrium investment scenarios.

Our main conclusions are as follows. First, contrary to all of the literature on ambiguity in the real options

literature, the worst case prior is not always the lowest possible trend under κ ambiguity. As in any timing

game, an ambiguous player has to consider the payoffs of the leader and follower roles. The payoffs of

the latter role follow along very similar lines as in Nishimura and Ozaki (2007), i.e. the worst case payoff

corresponds to valuing the follower’s payoff stream as if the payoffs are driven by the diffusion with the

lowest admissible trend under κ ambiguity. For the leader’s payoff, however, the situation is different,

because of the interplay between two opposing forces. On the one hand, the leader’s payoff consists of

current payoffs of being the leader. The worst case for these payoffs is represented by the lowest admissible

trend, like in the follower payoff. There is, however, another force at work: the risk that the other player

invests as well, which reduces the firm’s monopoly payoff to a duopoly payoff. This event has a downward

1Since the seminal contribution of Fudenberg and Tirole (1985) for deterministic timing games, many attempts to defining

equilibria in stochastic timing games has been made such as Thijssen (2010), Thijssen et al. (2012), de Villemeur et al. (2014),

Boyarchenko and Levendorski (2014), Azevedo and Paxson (2014), Huisman and Kort (2014).
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effect on the leader’s payoff and is discounted using the expected time it takes until the other firm enters the

market. This expected time is reached faster for higher values of the trend of the stochastic process, so that

the worst case for this part of the leader’s payoffs is represented by the highest admissible trend. We use an

analysis based on backward stochastic differential equations and “g-expectations”, as introduced by Peng

(1997), to study which effect dominates. It turns out that for small values of the stochastic process, the worst

case always corresponds to the lowest admissible trend, whereas for higher values the highest admissible

trend may represent the worst case, depending on the underlying parameters.

Secondly, we show that equilibria can be of two types. First, there may be preemptive equilibria in which

one of the firms invests at a time where it is not optimal for either firm to do so. This type of equilibrium is

familiar from the literature ( e.g. Fudenberg and Tirole (1985), Weeds (2002), Pawlina and Kort (2006)) but

we use a technique recently developed by Riedel and Steg (2014) to rigorously prove existence of this type

of equilibrium rather than relying on fairly ad hoc arguments that are often used in the existing literature.

It should be pointed out here that in a preemptive equilibrium it is known a.s. ex ante which firm is going

to invest first. This firm will invest at a point in time where its leader value exceeds its follower value, but

where its competitor is indifferent between the two roles. A second type of equilibrium that can exist is a

sequential equilibrium, in which one firm invests at a time where it is optimal for them to do so. By that

we mean that the firm would choose the same time to invest even if it knew that the other firm could not

preempt. Each game always has at least an equilibrium of one of these two types, which can not co-exist.

These two types of equilibrium each lead to a clear prediction, a.s., as to which firm invests first. The role of

first mover depends crucially on the levels of ambiguity and cost (dis-) advantage, as we show in a numerical

analysis.

As mentioned above we obtain our equilibrium results by using techniques developed by Riedel and

Steg (2014). It should be pointed out that we cannot simply adopt their strategies to our setting due to the

presence of an ambiguous player. In fact, the notion of extended mixed strategy as introduced in Riedel

and Steg (2014) presents a conceptual problem here. An extended mixed strategy consists, in essence, of a

distribution over stopping times as well as a coordination device that allows players to coordinate in cases

where equilibrium considerations require one and only one firm to invest and it is not clear a priori which

firm this should be. In our model we need this coordination device as well, but we do not want ambiguity to

extend to the uncertainty created by this coordination mechanism, i.e. ambiguity is over payoffs exclusively.

This presents problems if we want to define payoffs to the ambiguous firm if it plays a mixture over stopping

times. For equilibrium existence, however, such mixtures are not needed, so we choose to restrict attention

to what we call extended pure strategies, which consist of a stopping time and an element related to the
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coordination mechanism mentioned above. By making this simplifying assumption, together with strong

rectangularity of the set of priors, we can write the worst case payoff of a pair of extended pure strategies as

a sum of worst cases of leader and follower payoffs.

2 The Model

We follow Pawlina and Kort (2006) in considering two firms who are competing to implement a new tech-

nology. Uncertainty in the market is modeled on a filtered probability space (Ω,F , (Ft)t≥0 ,P) using a

geometric Brownian motion
dX

X
= µdt+ σdB,

where (Bt)t≥0 is a Wiener process. The sunk costs of investment are I > 0 for Firm 1 and αI , α ≥ 1, for

Firm 2. So, Firm 1 has a cost advantage.

The payoff streams are given by processes (Dk`Xt)t≥0, whereDk`, k, ` = 0, 1, denotes the scaling factor

if the firm’s investment status is k (k = 0 if the firm has not invested and k = 1 if the firm has invested) and

the investment status of the competitor is `. It is assumed that D00 = 0 (wlog), that D10 > D11 ≥ 0 ≥ D01,

and that there is a first mover advantage, i.e. D10 > D11 −D01.

We assume that Firm 1 may have a cost advantage, but also that it is ambiguous about the trend µ.

Following the recent literature on ambiguity in continuous time models we model the set of priors that the

firm considers using a set of density generators. The set of measures that is considered by the firm is denoted

by PΘ, where Θ is a set of density generators. A process (θt)t≥0 is a density generator if it is such that the

process
(
M θ
t

)
t≥0

, where
dM θ

t

M θ
t

= −θtdBt, M θ
0 = 1, (1)

is a P-martingale. Such a process (θt)t≥0 generates a new measure Pθ via the Radon-Nikodym derivative

dPθ/dP = M θ
∞.

In order to use density generators as a model for ambiguity the set Θ needs some more structure. Fol-

lowing Chen and Epstein (2002), the set of density generators, Θ, is chosen as follows. Let (Θt)t≥0 be a

collection of correspondences Θt : Ω � R, such that

1. There is a compact subset K ⊂ R, such that Θt(ω) ⊆ K, for all ω ∈ Ω and all t ∈ [0, T ];

2. For all t ∈ [0, T ], Θt is compact-valued and convex-valued;

3. For all t ∈ (0, T ], the mapping (s, ω) 7→ Θs(ω), restricted to [0, t]× Ω, is B[0, t]×Ft-measurable;
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4. 0 ∈ Θt(ω), dt⊗ dP-a.e.

The set of density generators is then taken to be,

Θ = {(θt)t≥0 |θt(ω) ∈ Θt(ω), dP− a.e., all t ≥ 0},

and the resulting set of measures PΘ is called strongly-rectangular. For sets of strongly rectangular priors

the following has been obtained by Chen and Epstein (2002):

1. P ∈PΘ;

2. All measures in PΘ are uniformly absolutely continuous with respect to P and are equivalent to P;

3. For every X ∈ L 2(Ω,F ,P), there exists P∗ ∈PΘ such that for all t ≥ 0,

EP∗ [X|Ft] = inf
Q∈PΘ

EQ[X|Ft]. (2)

Finally, for further reference, define the upper-rim generator (θ∗t )t≥0, where

θ∗t = arg max{σw(t)θt|θt ∈ Θt}. (3)

Note that (θ∗t )t≥0 ∈ Θ.

From Girsanov’s theorem it immediately follows that under Pθ ∈PΘ, the process
(
Bθ
t

)
t≥0

, defined by

Bθ
t = Bt +

∫ t

0
θsds,

is a Pθ-Brownian motion and that, under Pθ, the process (Xt)t≥0 follows the diffusion

dXt

Xt
= µθ(t)dt+ σdBθ

t ,

Furthermore,

µθ(t) = µ− σθt.

In the remainder we will assume that Θt = [−κ, κ], for all t > 0, for some κ > 0. Denote ∆ =

[µ, µ] = [µ − σκ, µ + σκ]. This form of ambiguity is called κ-ignorance (cf. Chen and Epstein (2002)).

The advantages of using this definition of ambiguity are that (i) Θ is strongly rectangular so that the results

stated above apply and (ii) the upper-rim generator takes a convenient form, namely θ∗t = κ, for all t ≥ 0.

In addition, it can easily be shown that
(
Bθ
t

)
t≥0

is a P-martingale for every (θt)t≥0 ∈ Θ.

Notice, Cheng and Riedel (2013) show that κ−ignorance can be applied in an infinite time-horizon. In

particular they show that value functions taken under drift ambiguity in the infinite time horizon are nothing

but the limits of value functions of finite time horizons T if T →∞.

In our model, we assume Firm 1 to be ambiguity averse.

Finally, the discount rate is assumed to be r > µ.
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3 Value Functions: Leader Value and Follower Value

Assume Firm 1 becomes the leader at t. Then the non-ambiguous Firm 2 solves the optimal stopping

problem

F2(xt) = sup
τF2 ≥t

EP
[ ∫ τF2

t
e−r(s−t)D01Xsds+

∫ ∞
τF2

e−r(s−t)D11Xs − e−r(τ
F
2 −t)αI|Ft

]
. (4)

Thus, τF2 is the optimal time Firm 2 invests as a follower.

On the other hand, if the non-ambiguous firm becomes the leader at a certain point in time t, its value

function is

L2(xt) = EP
[ ∫ τF1

t
e−r(s−t)D10Xsds+

∫ ∞
τF1

e−r(s−t)D11Xsds− αI|Ft

]
, (5)

where τF1 denotes the optimal time at which the ambiguous firm invests as a follower. From the standard

literature on real option games (cf. Pawlina and Kort (2006)) we know that the former value function can be

written as

F2(xt) =


xtD01
r−µ +

(
xF2 (D11−D01)

r−µ − αI
)(

xt
xF2

)β(µ)
, if xt ≤ xF2 ,

xtD11
r−µ − αI if xt > xF2 ,

(6)

where τF2 is the first hitting time of xF2 , i.e

τF2 = inf{s ≥ t|Xs ≥ xF2 }.

The standard procedure of dynamic programming yields that the threshold xF2 is given by

xF2 =
β(µ)

β(µ)− 1

αI(r − µ)

D11 −D01
,

where β(µ) is the positive root of the fundamental quadratic 1/2σ2β(µ)(β(µ)−1)+µβ(µ)−r = 0, which

is

β(µ) =
1

2
− µ

σ2
+

√(
µ

σ2
− 1

2

)2

+
2r

s2
> 1.

Applying the standard techniques of backward induction and dynamic programming, one can show that

the leader value (5) turns out to be

L2(xt) =


xtD10
r−µ − αI +

x1
F (D11−D10)

r−µ

(
xt
xF1

)β(µ)
, if xt ≤ xF1 ,

xtD11
r−m − I1, if xt > xF1 .

Accordingly, the real value xF1 describes the optimal time for the ambiguous firm to become the follower,

i.e.

τF1 = inf{s ≥ t|Xs ≥ xF1 }.
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If ambiguity is introduced, the standard techniques for computing the value functions are not applicable

any longer. In our case, where ambiguity is modeled by a strongly rectangular set of density generators, one

needs, in contrast to the standard case, to allow for changing priors over time.

The value functions of the ambiguous Firm 1 are given by

F1(x) := sup
τF1 ≥t

inf
Q∈PΘ

EQ
[ ∫ τF1

t
e−r(s−t)D01Xsds+

∫ ∞
τF1

e−r(s−t)D11Xs − e−r(τ
F
1 −t)I|Ft

]
(7)

and

L1(xt) = inf
Q∈PΘ

EQ
[ ∫ τF2

t
e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft

]
− I, (8)

respectively.

If the set of priors PΘ is strongly rectangular, it turns out that problem (7) can be reduced to a standard

optimal stopping problem and, hence, can be solved by using standard techniques. This reduction is possible

due to the following lemma, the proof of which is standard and is, thus, omitted.

Lemma 1. Let PΘ be strongly-rectangular. Then

F1(xt) = sup
τF1 ≥t

EP
θ∗
[ ∫ τF1

t
e−r(s−t)D01Xsds+

∫ ∞
τF1

e−r(s−t)D11Xsds− e−r(τ
F
1 −t)I|Ft

]
, (9)

where (θ∗t )t≥0 is the upper-rim generator (3)

Hence, for the follower problem of the ambiguous firm, the worst case is always induced by the worst

possible drift µ. This observation indeed makes sense; the actions of the opponent have, essentially, no

influence of the decision as a follower. The problem therefore reduces to one of a ”monopolistic” decision-

maker. Nishimura and Ozaki (2007) already showed that for such decisions, the worst case is always given

by the worst trend µ.

In other words, we find that the follower value of the ambiguous firm can be expressed by

F1(xt) =


xtD01
r−µ +

(
xF1 (D11−D01)

r−µ − I
)(

xt
xF1

)β(µ)
, if xt ≤ xF1 ,

xtD11
r−µ − I if xt > xF1 ,

(10)

where

xF1 =
β(µ)

β(µ)− 1

I(r − µ)

D11 −D01
.

Determining the leader value function of the ambiguous firm, however, is a different issue. The action

of the opponent (in this case the decision when to invest as a follower) is crucial for the computation of the

leader function which might lead, as we will see, to a non-trivial behaviour of the worst case prior.
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Figure 1: The Leader value function L1(xt) for the values D10 = 1.5, D11 = 1, D01 = −0.01, r = 0.05,

σ = 0.1, I = 100, µ = 0.02, µ = 0.3, µ = 0.01 and xF2 = 5.95.

The next theorem describes the leader value function of the ambiguous firm. Two cases are distinguished

there. If the difference D10 − D11 is sufficiently small, we find that the worst case is, as before, always

induced by µ. In case this condition is not satisfied, the worst case is given by µ for values xt up to a certain

threshold x∗, where it jumps to µ. The intuition for this fact can already be derived from equation (8); the

lowest trend µ gives the minimal values for the payoff stream (DklXt). However, the higher the trend µ the

sooner the stopping time τF2 is expected to be reached. The higher payoff stream (D10Xt) is then sooner

replaced by the lower one (D11Xt). If the drop of the payoffs becomes sufficiently small, the former effect

always dominates the latter. In this case the worst case is given by µ for each xt.

Theorem 1. The worst case for the leader function of the ambiguous firm is always given by the worst

possible drift µ if and only if the following condition holds

D10 −D11

D10
≤ 1

β(µ)
. (11)

In this case, the leader function becomes

L1(xt) =


D10xt
r−µ +

(
xt
xF2

)β(µ)
D11−D10
r−µ xF2 − I if xt < xF2

D11xt
r−µ − I if xt ≥ xF2 .

(12)
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On the other hand, if D10−D11
D10

> 1
β(µ) , then there exists a unique threshold

x∗ =

− D10
r−µ

D11
r−µ −

D10
r−µ

1

β(µ)

 1
β(µ)−1

xF2 ,

such that µ is the worst case on the set {Xt < x∗} and µ is the worst case on {x∗ ≤ Xt < xF2 }. Further-

more, in this case the leader value function is given by

L1(xt) =


D10xt
r−µ +A1xt

β(µ) − I if xt < x∗

D10xt
r−µ +

(
xt
xF2

)β(µ) (
D11
r−µ −

D10
r−µ

)
xF2 − I if x∗ ≤ xt < xF2

D11xt
r−µ − I if xt ≥ xF2 ,

(13)

where

A1 =

(
D10x

∗

r − µ
− D10x

∗

r − µ

)
1

(x∗)β(µ)
+

(
(x∗)

xF2

)β(µ)( D11

r − µ
− D10

r − µ

)
xF2

1

(x∗)β(µ)
.

Figure (1) shows a typical run of the leader value function for the case that the worst case changes. The

critical value x∗ determines the maximal value of this function in the interval [0, xF2 ]. The worst case is

given by the lowest possible trend in the region where L1 is increasing, whereas the highest possible trend

depicts the worst case whenever the leader function is decreasing.

For the proof of Theorem (1), we need a completely different approach compared to the standard literature

on real option games. We use backward stochastic differential equations and g−expectations introduced by

Peng (1997). The advantage of this approach lies in the fact that we know the value of our problem at

the entry point of the follower. This value yields the starting point for a backward stochastic differential

equation. The non-linear Feynman-Kac formula reduces the problem to solving a certain non-linear partial

differential equation. From this non-linear PDE we are eventually able to derive the worst case prior.

Proof.

Denote

Yt := inf
Q∈PΘ

EQ
[∫ τF2

t
e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft]

9



Applying the time consistency property of a rectangular set of density generators gives

Yt = inf
Q∈PΘ

EQ
[∫ τF2

t
e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft]

= inf
Q∈PΘ

EQ
[

inf
Q′∈PΘ

EQ
′

[∫ τF2

t
e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣FτF2

] ∣∣∣Ft]

= inf
Q∈PΘ

EQ
[∫ τF2

t
e−r(s−t)D10Xsds+ e−r(τ

F
2 −t) inf

Q′∈PΘ
EQ
′

[∫ ∞
τF2

e−r(s−τ
F
2 )D11Xsds

∣∣∣FτF2
] ∣∣∣Ft]

= inf
Q∈PΘ

EQ
[∫ τF2

t
e−r(s−t)D10Xsds+ e−r(τ

F
2 −t)Φ(xτF2

)
∣∣∣Ft] ,

where

Φ(xt) := inf
Q∈PΘ

EQ
[ ∫ ∞

t
e−r(s−t)D11Xsds

∣∣∣Ft] =
D11xt
r − µ

. (14)

Chen and Epstein (2002) show that Yt solves the BSDE

−dYt = g(Zt)dt− ZtdBt,

for the generator

g(z) = −κ|z| − rYt +XtD10.

The boundary condition is given by

YτF2
= Φ(xF2 ),

In the terminology of Peng (2013) we say that the leader value is the g-expectation of the random variable

Φ(xF2 ), and denote it by

Yt = Eg[Φ(xF2 )|Ft].

Denote the present value of the leader payoff by L, i.e.

L(xt) = Yt.

The non-linear Feynman-Kac formula2 (Peng, 2013, Theorem 3) implies that L solves the non-linear

PDE

LXL(x) + g(σxL′(x)) = 0.

Hence, L solves

1

2
σ2x2L′′(x) + µxL′(x)− κσx

∣∣L′(x)
∣∣− rL(x) +D10x = 0. (15)

2Note that Peng (1991) shows that the non-linear Feynman-Kac formula not only holds for deterministic times but also first exit

times like τF2 .
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Expression (15) implies that µ is the worst case on the set {x ≤ xF2 |L′(x) > 0} and µ is the worst case on

{x ≤ xF2 |L′(x) < 0}.

The general increasing solution to the PDE (15) is

L(µ, x) =
D10x

r − µ
+Axβ(µ),

where µ equals either µ or µ. The constant A is determined by the boundary condition L(µ, xF2 ) = Φ(xF2 ).

Notice that L is a concave function in x. Indeed, L consists of a linear function plus a termAxβ(µ), in which

A denotes a constant and xβ(µ) a convex function (since β(µ) > 1 for all µ). Furthermore, we have A < 0,

which follows directly from the boundary condition (14) and the fact that D10 > D11. Hence, L is concave.

In order to determine the constant A, we suppose for the moment that µ is the worst case in the region

close to xF2 . The value matching condition at xF2 then gives

L(µ, xF2 ) =
D10x

F
2

r − µ
+A1x

F
2
β(µ)

=
D11x

F
2

r − µ
.

This implies

A1 =
D10 −D11

r − µ
xF2

1−β(µ)
,

and therefore

L(xt) =
D10xt
r − µ

+

(
xt

xF2

)β(µ) D11 −D10

r − µ
xF2 . (16)

On the other hand, if we suppose that µ is the worst case close to xF2 , the value matching condition gives

L(µ, xF2 ) =
D10x

F
2

r − µ
+A2x

F
2
β(µ)

=
D11x

F
2

r − µ
.

This implies

A2 =
D11

r − µ
− D10

r − µ
xF2

1−β(µ)
.

Hence, in that region, we have

L(xt) =
D10xt
r − µ

+

(
xt

xF2

)β(µ)( D11

r − µ
− D10

r − µ

)
xF2 (17)

Now two cases are possible. Either µ is always the worst case or there exists a critical point x∗ < xF2

such that µ is the worst case on {Xt < x∗} and µ is the worst case on {x∗ < Xt ≤ xF2 }.

Note first that the value function L is increasing at 0. That means µ is the worst case close to 0.

So, µ is always the worst case if and only if L′(x) ≥ 0 for all x ≤ xF2 . Due to the continuity and

concavity of the value function, this is equivalent to the condition

L′(xF2 ) ≥ 0.
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Therefore,

L′(xF2 ) =
D10

r − µ
+

(
D11 −D10

r − µ

)
β(µ)

(
xF2
xF2

)β(µ)−1

≥ 0

D11 −D10 ≥ −
D10

β(µ)

D10 −D11

D10
≤ 1

β(µ)
.

If the last condition is not satisfied, the worst case changes at some point x∗ ≤ xF2 from µ to µ. Using

again the continuity and concavity of the leader value function, we can easily verify that x∗ is uniquely

determined by L′(x∗) = 0. Hence, x∗ is the solution to

D10

r − µ
+

(
D11

r − µ
− D10

r − µ

)
β(µ)

(
x∗

xF2

)β(µ)−1

= 0(
D11

r − µ
− D10

r − µ

)
β(µ)

(
x∗

xF2

)β(µ)−1

= − D10

r − µ(
x∗

xF2

)β(µ)−1

= −
D10
r−µ

D11
r−µ −

D10
r−µ

1

β(µ)

x∗ =

− D10
r−µ

D11
r−µ −

D10
r−µ

1

β(µ)

 1
β(µ)−1

xF2 .

At x∗ we get a further value matching condition firstly observed by Cheng and Riedel (2013), namely

that L(µ, x∗) = L(µ, x∗). This implies

D10x
∗

r − µ
+A1(x∗)β(µ) =

D10x
∗

r − µ
+

(
x∗

xF2

)β(µ)( D11

r − µ
− D10

r − µ

)
xF2 .

Thus,

A1 =

(
D10x

∗

r − µ
− D10x

∗

r − µ

)
1

(x∗)β(µ)
+

(
x∗

xF2

)β(µ)( D11

r − µ
− D10

r − µ

)
xF2

1

(x∗)β(µ)
,

and the result follows.

3.1 Optimal Leader Threshold

Next we want to determine the optimal time to invest as a leader. Suppose Firm 2 knows it becomes the

leader and searches for the optimal time to invest. It then faces at time t the following optimal stopping

problem

L∗(xt) = sup
τ tL,2≥t

EP
[ ∫ τF1

τ tL,2

e−r(s−t)D10Xsds+

∫ ∞
τF1

e−r(s−t)D11Xsds− e−r(τ
t
L,2−t)αI

∣∣∣Ft]. (18)

12



The solution can be found by applying the standard techniques and is given by

τ tL,2 = inf{s ≥ t|Xs ≥ xL2 },

where

xL2 =
β

β − 1

αI(r − µ)

D10 −D00
.

The ambiguous firm solves the following optimal stopping problem

L∗(xt) = sup
τ tL,1≥t

inf
Q∈PΘ

EQ
[ ∫ τF2

τ tL,1

e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds− e−r(τ
t
L,1−t)I

∣∣∣Ft]. (19)

Again, in order to determine this stopping time for the ambiguous firm, we cannot apply the standard pro-

cedure. Nevertheless, the stopping time does not differ from the one of a non-ambiguous firm given a drift

µ.

Proposition 1. The optimal time to invest as a leader for the ambiguous firm is

τ tL,1 = inf{s ≥ t|Xs ≥ xL1 },

where

xL1 =
β(µ)

β(µ)− 1

I(r − µ)

D10 −D00
.

For the proof we refer to the appendix.

4 Equilibrium Analysis

The appropriate equilibrium concept for a game with ambiguity as described here is not immediately clear.

In this paper we consider two types of equilibria: preemptive equilibria in which firms try to preempt each

other at some times where it is sub-optimal to invest, and sequential equilibria, where one firm invests at its

optimal time.

4.1 Strategies and Payoffs

The appropriate notion of subgame perfect equilibrium for our game is developed in Riedel and Steg (2014).

Let T denote the set of stopping times with respect to the filtration (Ft)t≥0. The set T will act as the set

of (pure) strategies. Given the definitions of the leader and follower payoffs above, the timing game is

Γ =
〈

(Ω,F , (Ft)t≥0 ,P),PΘ,T ×T , (Li, Fi,Mi)i=1,2, (πi)i=1,2

〉
,
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where, for (τ1, τ2) ∈ T ×T ,

π1 = inf
Q∈PΘ

EQ[L11τ1<τ2 + F11τ1>τ2 +M11τ1=τ2 ], and

π2 = EP[L21τ1>τ2 + F21τ1<τ2 +M21τ1=τ2 ].

The subgame starting at stopping time ϑ ∈ T is the tuple

Γ =
〈

(Ω,F , (Ft)t≥0 ,P),PΘ,Tϑ ×Tϑ, (Li, Fi,Mi)i=1,2, (π
ϑ
i )i=1,2

〉
,

where Tϑ is the set of stopping times no smaller than ϑ a.s.,

Tϑ := {τ ∈ T |τ ≥ ϑ,P− a.s.},

and, for (τ1, τ2) ∈ Tϑ ×Tϑ,

πϑ1 = inf
Q∈PΘ

EQ[L11τ1<τ2 + F11τ1>τ2 +M11τ1=τ2 |Fϑ], and

πϑ2 = EP[L21τ1>τ2 + F21τ1<τ2 +M21τ1=τ2 |Fϑ].

As it is argued in Riedel and Steg (2014) careful consideration has to be given to the appropriate notion of

strategy. They show that the notion of extended mixed strategy is versatile and intuitively appealing. For the

subgame Γϑ this is a pair of processes (Gϑ, αϑ), both taking values in [0, 1], with the following properties.

1. For every Q ∈ PΘ, Gϑ is adapted, has right-continuous and non-decreasing sample paths, with

Gϑ(s) = 0 for all s < ϑ, Q− a.s.

2. For every Q ∈PΘ, αϑ is progressively measurable with right-continuous sample paths whenever its

value is in (0, 1), Q− a.s.

3. For every Q ∈PΘ, on {t ≥ ϑ}, it holds that

αϑ(t) > 0⇒ Gϑ(t) = 1, Q− a.s.

We use the convention that

Gϑ(0−) ≡ 0, Gϑ(∞) ≡ 1, and αϑ(∞) ≡ 1.

For our purposes extended mixed strategies are, in fact, more general than necessary. Therefore, we

will restrict attention to what we will call extended pure strategies. For the subgame Γϑ this is a pair of

extended mixed strategies (Gϑi , α
ϑ
i )i=1,2, where Gϑi is restricted to take values in {0, 1}. In other words, in

14



an extended pure strategy a firm does not mix over stopping times, but potentially mixes over its “investment

intensity” αϑ.

An extended pure strategy for the game Γ is then a collection (Gϑ, αϑ)ϑ∈T of extended pure strategies

in subgames Γϑ, ϑ ∈ T satisfying the time consistency conditions that for all ϑ, ν ∈ T it holds that

1. ν ≤ t ∈ R+ ⇒ Gϑ(t) = Gϑ(ν−) + (1−Gϑ(ν−))Gν(t), PΘ-q.s. on {ϑ ≤ ν}, and

2. αϑ(τ) = αν(τ), PΘ-q.s., for all τ ∈ T .

The importance of the α component in the definition of extended pure strategy becomes obvious in the

definition of payoffs. Essentially α allows both for immediate investment and coordination between firms.

It leads to investment probabilities that can be thought of as the limits of conditional stage investment

probabilities of discrete-time behavioural strategies with vanishing period length. In the remainder, let τ̂ϑi

be the first time that αϑi is strictly positive, and let τ̂ϑ be the first time that at least one αϑ is non-zero in the

subgame Γϑ, i.e.

τ̂ϑi = inf
{
t ≥ ϑ

∣∣∣ αϑi (t) > 0
}
, and τ̂ϑ = inf

{
t ≥ ϑ

∣∣∣ αϑ1 (t) + αϑ2 (t) > 0
}
,

respectively. At time τ̂ϑ the extended pure strategies induce a probability measure on the state state space

Λ = { {Firm 1 becomes the leader}, {Firm 2 becomes the leader}, {Both firms invest simultaneously} } ,

for which we will use the shorthand notation

Λ = { (L, 1), (L, 2),M } .

Riedel and Steg (2014) show that the probability measure on Λ, induced by the pair (αϑ1 , α
ϑ
1 ), is given by

λϑL,i(τ̂
ϑ) =



αϑi (τ̂ϑ)(1−αϑj (τ̂ϑ))

αϑi (τ̂ϑ)+αϑj (τ̂ϑ)−αϑi (τ̂ϑ)αϑj (τ̂ϑ)
if τ̂ϑi = τ̂ϑj and αϑi (τ̂ϑi ), αϑj (τ̂ϑi ) > 0

1 if τ̂ϑi < τ̂ϑj , or τ̂ϑi = τ̂ϑj and αϑj (τ̂ϑj ) = 0

0 if τ̂ϑi > τ̂ϑj , or τ̂ϑi = τ̂ϑj and αϑj (τ̂ϑj ) = 0

1
2

(
lim inft↓τ̂ϑi

αϑi (t)(1−αϑj (t))

αϑi (t)+αϑj (t)−αϑi (t)αϑj (t)
if τ̂ϑi = τ̂ϑj , αϑi (τ̂ϑi ) = αϑj (τ̂ϑj ) = 0,

+lim supt↓τ̂ϑi
αϑi (t)(1−αϑj (t))

αϑi (t)+αϑj (t)−αϑi (t)αϑj (t)

)
and αϑi (τ̂ϑi +), αϑj (τ̂ϑj +) > 0,

and

λϑM (τ̂ϑ) =


0 if τ̂ϑi = τ̂ϑj , αϑi (τ̂ϑi ) = αϑj (τ̂ϑi ) = 0, and αϑi (τ̂ϑi +), αϑj (τ̂ϑi +) > 0

αϑi (τ̂ϑ)αϑj (τ̂ϑ)

αϑi (τ̂ϑ)+αϑj (τ̂ϑ)−αϑi (τ̂ϑ)αϑj (τ̂ϑ)
otherwise.

Note the following:
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1. if τ̂ϑi < τ̂ϑj there is no coordination problem: Firm i becomes the leader a.s.;

2. if τ̂ϑi = τ̂ϑj , but αϑj (τ̂ϑj ) = 0, there is no coordination problem: Firm i becomes the leader a.s.;

3. in the degenerate case where αϑi (τ̂ϑi ) = αϑj (τ̂ϑj ) = 0, and αϑi (τ̂ϑi +), αϑj (τ̂ϑj +) > 0, the leader role is

effectively assigned on the basis of the flip of a fair coin;

4. there is no ambiguity (for Firm 1) over the measure λ.

In order to derive the payoffs to firms, let τϑG,i denote the first time that Gϑi jumps to one, i.e.

τϑG,i = inf
{
t ≥ ϑ

∣∣∣ Gϑi (t) > 0
}
.

The payoff to the ambiguous firm of a pair of extended pure strategies ((G1, α1), (G2, α2)) in the sub-

game Γϑ is given by

V ϑ
1 (Gϑ1 , α

ϑ
1 , G

ϑ
2 , α

ϑ
2 ) :=

inf
Q∈PΘ

EQ
[

1τϑG,1<min{τϑG,2,τ̂ϑ}

(∫ τF2

τϑG,1

e−r(s−ϑ)D10Xsds+

∫ ∞
τF2

e−r(s−ϑ)D11Xsds− e−r(τ
ϑ
G,1−ϑ)I

)∣∣∣Fϑ

]

+ inf
Q∈PΘ

EQ
[

1τϑG,2<min{τϑG,1,τ̂ϑ}

(∫ τF1

τϑG,2

e−r(s−ϑ)D01Xsds+

∫ ∞
τF1

e−r(s−ϑ)D11Xs − e−r(τ
F
1 −ϑ)I

)∣∣∣Fϑ

]

+ inf
Q∈PΘ

EQ
[

1τϑG,1=τϑG,2<τ̂
ϑ

(∫ ∞
τϑG,1

e−r(s−ϑ)D11Xsds

)∣∣∣Fϑ

]

+ inf
Q∈PΘ

EQ
[

1τ̂ϑ≤min{τϑG,1,τ
ϑ
G,2}

λϑL,1(τ̂ϑ)

(∫ τF2

τ̂ϑ
e−r(s−ϑ)D10Xsds

+

∫ ∞
τF2

e−r(s−ϑ)D11Xsds− e−r(τ
ϑ
G,1−ϑ)I

)∣∣∣Fϑ

]

+ inf
Q∈PΘ

EQ
[

1τ̂ϑ≤min{τϑG,1,τ
ϑ
G,2}

λϑL,2(τ̂ϑ)

(∫ τF1

τ̂ϑ
e−r(s−ϑ)D01Xsds

+

∫ ∞
τF1

e−r(s−ϑ)D11Xs − e−r(τ
F
1 −ϑ)I

)∣∣∣Fϑ

]

+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,2}

λϑM (τ̂ϑ)

(∫ ∞
τ̂ϑ

e−r(s−ϑ)D11Xsds

) ∣∣∣Fϑ

]
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The first line of of the payoff function can be rewritten to

inf
Q∈PΘ

EQ
[

1τϑG,1<min{τϑG,2,τ̂ϑ}

(∫ τF2

τϑG,1

e−r(s−ϑ)D10Xsds+

∫ ∞
τF2

e−r(s−ϑ)D11Xsds− e−r(τ
ϑ
G,1−ϑ)I

)∣∣∣Fϑ

]

= inf
Q∈PΘ

EQ
[

1τϑG,1<min{τϑG,2,τ̂ϑ}
e−r(τ

ϑ
G,1−ϑ)

(∫ τF2

τϑG,1

e−r(s−τ
ϑ
G,1)D10Xsds

+

∫ ∞
τF2

e−r(s−τ
ϑ
G,1)D11Xsds− I

)∣∣∣Fϑ

]

= inf
Q∈PΘ

EQ
[

1τϑG,1<min{τϑG,2,τ̂ϑ}
inf

Q′∈PΘ
EQ
′

[
e−r(τ

ϑ
G,1−ϑ)

(∫ τF2

τϑG,1

e−r(s−τ
ϑ
G,1)D10Xsds

+

∫ ∞
τF2

e−r(s−τ
ϑ
G,1)D11Xsds− I

)∣∣∣FτϑG,1

]∣∣∣Fϑ

]

= inf
Q∈PΘ

EQ
[

1τϑG,1<min{τϑG,2,τ̂ϑ}
e−r(τ

ϑ
G,1−ϑ) inf

Q′∈PΘ
EQ
′

[∫ τF2

τϑG,1

e−r(s−τ
ϑ
G,1)D10Xsds

+

∫ ∞
τF2

e−r(s−τ
ϑ
G,1)D11Xsds− I

∣∣∣FτϑG,1

]∣∣∣Fϑ

]

= inf
Q∈PΘ

EQ
[
1τϑG,1<min{τϑG,2,τ̂ϑ}

e−r(τ
ϑ
G,1−ϑ)L1(xτϑG,1

)
∣∣∣Fϑ

]
Using the same arguments, the other lines can be rewritten3 and the payoff of the ambiguous firm even-

tually becomes

V ϑ
1 (Gϑ1 , α

ϑ
1 , G

ϑ
2 , α

ϑ
2 ) := inf

Q∈PΘ
EQ
[
1τϑG,1<min{τϑG,2,τ̂ϑ}

e−r(τ
ϑ
G,1−ϑ)L1(xτϑG,1

)
∣∣∣Fϑ

]
+ inf
Q∈PΘ

EQ
[
1τϑG,2<min{τϑG,1,τ̂ϑ}

e−r(τ
ϑ
G,2−ϑ)F1(xτϑG,2

)
∣∣∣Fϑ

]
+ inf
Q∈PΘ

EQ
[
1τϑG,1=τϑG,2<τ̂

ϑe
−r(τϑG,1−ϑ)M1(xτϑG,1

)
∣∣∣Fϑ

]
+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,2}

λϑL,1(τ̂ϑ)e−r(τ̂
ϑ−ϑ)L1(xτ̂ϑ)

∣∣∣Fϑ

]
+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,2}

λϑL,2(τ̂ϑ)e−r(τ̂
ϑ−ϑ)F1(xτ̂ϑ)

∣∣∣Fϑ

]
+ inf
Q∈PΘ

EQ
[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,2}

λϑM (τ̂ϑ)e−r(τ̂
ϑ−ϑ)M1(xτ̂ϑ)

∣∣∣Fϑ

]
.

3For the last three lines it is important to note that Firm 1 is not ambiguous over the measure λ.
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In the same way, the payoff for the unambiguous firm can be written as

V ϑ
2 (Gϑ2 , α

ϑ
2 , G

ϑ
1 , α

ϑ
1 ) :=EP

[
1τϑG,2<min{τϑG,2,τ̂ϑ}

e−r(τ
ϑ
G,1−ϑ)L2(xτϑG,2

)
∣∣∣Fϑ

]
+EP

[
1τϑG,1<min{τϑG,2,τ̂ϑ}

e−r(τ
ϑ
G,1−ϑ)F2(xτϑG,1

)
∣∣∣Fϑ

]
+EP

[
1τϑG,1=τϑG,2<τ̂

ϑe
−r(τϑG,2−ϑ)M2(xτϑG,2

)
∣∣∣Fϑ

]
+EP

[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,2}

λϑL,2(τ̂ϑ)e−r(τ̂
ϑ−ϑ)L2(xτ̂ϑ)

∣∣∣Fϑ

]
+EP

[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,2}

λϑL,1(τ̂ϑ)e−r(τ̂
ϑ−ϑ)F2(xτ̂ϑ)

∣∣∣Fϑ

]
+EP

[
1τ̂ϑ≤min{τϑG,1,τ

ϑ
G,2}

λϑM (τ̂ϑ)e−r(τ̂
ϑ−ϑ)M2(xτ̂ϑ)

∣∣∣Fϑ

]
,

4.2 Preemptive and Sequential Equilibria

An equilibrium for the subgame Γϑ is a pair of extended pure strategies
(
(Ḡϑ1 , ᾱ

ϑ
1 ), (Ḡϑ2 , ᾱ

ϑ
2 )
)
, such that for

each Firm i = 1, 2 and every extended pure strategy (Gϑi , α
ϑ
i ) it holds that

V ϑ
i (Ḡϑi , ᾱ

ϑ
i , Ḡ

ϑ
j , ᾱ

ϑ
j ) ≥ V ϑ

i (Gϑi , α
ϑ
i , Ḡ

ϑ
j , ᾱ

ϑ
j ),

for j 6= i. A subgame perfect equilibrium is a pair of extended pure strategies
(
(Ḡ1, ᾱ1), (Ḡ2, ᾱ2)

)
, such

that for each ϑ ∈ T the pair
(
(Ḡϑ1 , ᾱ

ϑ
1 ), (Ḡϑ2 , ᾱ

ϑ
2 )
)

is an equilibrium in the subgame Γϑ.

There are several types of equilibria of interest in this model. Fix ϑ ∈ T . For Firm i we denote the

optimal time of investment, assuming that the other firm cannot preempt, in the subgame Γϑ by τϑL,i, i.e.

τϑL,i = inf
{
t ≥ ϑ

∣∣ Xt ≥ xLi
}
.

We also define the preemption region as the part of the state space where both firms prefer to be the leader

rather than the follower, i.e.

P = { x ∈ R+ | (L1(x)− F1(x)) ∧ (L2(x)− F2(x)) > 0 } .

The first hitting time of P in the subgame Γϑ is denoted by τϑP .

We distinguish between two different equilibrium concepts. Lemma (2) determines a preemptive equilib-

rium.

Lemma 2. (Riedel and Steg (2014)) Suppose ϑ ∈ T satisfies ϑ = τϑP a.s. Then
(
(Gϑ1 , α

ϑ
1 ), (Gϑ2 , α

ϑ
2 )
)

given

by

αϑi (t) =


1 if t = τ tP , Ljt = F jt , and (Lit > F it or F jt = M j

t )

1L1
t>F

1
t
1L2

t>F
2
t

Ljt−F
j
t

Ljt−M
j
t

otherwise.
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Figure 2: The resulting equilibria with respect to κ and α for the valuesD10 = 1.5, D11 = 1, D01 = −0.01,

r = 0.05, σ = 0.1 and µ = 0.02.

for any t ∈ [ϑ,∞) and Gϑi = 1t≥ϑ, i = 1, 2, j ∈ {1, 2} i, are an equilibrium in the subgame at ϑ.

In a preemptive equilibrium both firms try to preempt each other. Investment takes place sooner than it

optimally would, i.e. the time one firm would invest without the fear of being preempted. The resulting

equilibrium in the latter case is called sequential equilibrium. For certain underlying parameters (see Figure

(2)) the preemption time τϑP is greater than the the optimal time to invest τϑL,i for firm i. A sequential

equilibrium is given by the next lemma.

Lemma 3. Suppose ϑ = τϑL,i < τϑP for one i ∈ {1, 2}. Then
(
(Gϑ1 , α

ϑ
1 ), (Gϑ2 , α

ϑ
2 )
)

given by

αϑi (ϑ) = 1, Gϑi (t) = 0 for all t < ϑ,Gϑj (t) = 0 for all t ≤ ϑ

are an equilibrium in the subgame at ϑ.

Proof. The stopping time τϑL,i is determined in Proposition (1) as the stopping time that maximizes the

leader payoff. Hence, without the threat of being preempted by its opponent, i.e. τϑL,i < τϑP , it is not optimal

to deviate for firm i. Firm j does not want to stop before τϑL,i as its payoff of becoming the leader is strictly

smaller than becoming the follower up to τϑP .

Now, we are finally able to formulate a subgame perfect equilibrium for our game.

Theorem 2. There exists a subgame perfect equilibrium ((G1, α1), (G2, α2)) with αϑi and Gϑ1 given by

19



(i) Lemma (2) if either ϑ ≥ τϑP or τϑP ≤ τϑL,i.

(ii) Lemma (3) otherwise (i.e. ϑ < τϑP and τϑP > τϑL,i).

Proof. Optimality for case (ii) follows along the same lines as the proof of Lemma (3).

If ϑ ≥ τϑP , then optimality for case (i) follows directly from Lemma (2). What remains to proof is that,

in case ϑ < τϑP , neither of the firms wants to invest sooner than τϑP .

We start with firm 1. Suppose that Firm 2 plays the preemption equilibrium strategy. Then if firm 1 plays

the preemption strategy, its payoff is V1(x) = Ex[e−rτpL1(xP )], for any x < xP . [This is the case, because,

either the other firm is indifferent between the leader and follower role at xP , in which case firm 1 becomes

the leader, or firm 1 is indifferent in which case F1(xP ) = L1(xP ).] Note that V1 is a strictly increasing

function, with V1(xP ) = L1(xP ) and V1(0) = 0 > L1(0), so that V1(x) > L1(x) for any x < xP . The

only deviations τ̂ that could potentially give a higher payoff have τ̂ < τP , P-a.s. Consider the first hitting

time τ̂ of some x̂ < xP . Let V̂1 denote the payoff to firm 1 of this strategy (while the other firm plays its

preemption strategy). For x̂ ≤ x < xP , it holds that V̂1(x) = L1(x) < V1(x).

For x < x̂, note that V̂1(x) =
(
x
x̂

)β
L1(x̂) = L1(x̂)

x̂β
. Consider the mapping x 7→ L1(x)

xβ
. This function

attains its maximum at xL1 > xP . Therefore, its derivative is positive on (0, xP ), implying that V1(x) >

V̂1(x). Any stopping time τ can be written as a mixture of first hitting times. So, no stopping time τ̂ with

τ̂ < τP , P-a.s. yields a higher payoff than τP . For firm 2, the argument is similar after realizing that

V1(x) = L2(xP )

x
β(µ)

P

xβ(µ) and V̂1(x) = L2(x̂)

x̂β(µ) x
β(µ). This holds because xP < xL2 < x∗, so that µ is the trend

under the worst-case measure for every x ∈ (0, xP ].

Figure (2) shows the resulting equilibria with respect to different values of cost disadvantage and degree

of ambiguity. In a world without ambiguity, the firm that has the lower investment cost always becomes

the leader (cf. Pawlina and Kort (2006)). This result, however, might change if ambiguity is introduced.

Although the non-ambiguous firm has a higher cost of investment, it might become the leader anyway.

Ambiguity, therefore, might outbalance the cost advantage.

Appendix

A Proof of Proposition (1)

The proof is very similar to the proof of Theorem (1). We take the same procedure, but now considering the

value function in the continuation region, i.e. before any investment has taken place. Applying the BSDE
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approach and adding beside the value matching condition a smooth pasting condition eventually yield the

desired stopping time.

Proof.

Denote

Yt = inf
Q∈PΘ

EQ
[ ∫ τ tL,1

t
e−r(s−t)D00Xsds+

∫ τF2

τ tL,1

e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft]

Using the time consistency property of a rectangular set of density generators yields

Yt = inf
Q∈PΘ

EQ
[ ∫ τ tL,1

t
e−r(s−t)D00Xsds+

∫ τF2

τ tL,1

e−r(s−t)D10Xsds+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Ft]

= inf
Q∈PΘ

EQ
[

inf
Q′∈PΘ

EQ
′

[∫ τ tL,1

t
e−r(s−t)D00Xsds+

∫ τF2

τ tL,1

e−r(s−t)D10Xsds

+

∫ ∞
τF2

e−r(s−t)D11Xsds
∣∣∣Fτ tL,1

]∣∣∣Ft]

= inf
Q∈PΘ

EQ
[∫ τ tL,1

t
e−r(s−t)D00Xsds+ e−r(τ

t
L,1−t) inf

Q′∈PΘ
EQ
′

[∫ τF2

τ tL,1

e−r(s−τ
t
L,1)D10Xsds

+

∫ ∞
τF2

e−r(s−τ
t
L,1)D11Xsds

∣∣∣Fτ tL,1
]∣∣∣Ft]

= inf
Q∈PΘ

EQ
[∫ τ tL,1

t
e−r(s−t)D00Xsds+ L1(xτ tL,1)

∣∣∣Ft] ,
Chen and Epstein (2002) show that Yt solves the BSDE

−dYt = g(Zt)dt− ZtdBt,

for the generator

g(z) = −κ|z| − rYt +XtD00.

The boundary condition is given by

Yτ tL,1 = L(xL1 ),

Denote the present value of the leader payoff by Λ, i.e.

Λ(xt) = Yt.

The non-linear Feynman-Kac formula implies that Λ solves the non-linear PDE

LXΛ(x) + g(σxΛ′(x)) = 0.
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Hence, Λ solves

1

2
σ2x2Λ′′(x) + µxΛ′(x)− κσx

∣∣Λ′(x)
∣∣− rΛ(x) +D00x = 0. (A.1)

In the continuation region the leader function has to be increasing, hence Λ′ > 0. This implies that µ is the

worst case in the continuation region.

Therefore, equation (A.1) becomes

1

2
σ2x2Λ′′(x) + (µ− κσ)xΛ′(x)− rΛ(x) +D00x =

1

2
σ2x2Λ′′(x) + µxΛ′(x)− rΛ(x) +D00x = 0.

The general increasing solution to this PDE is

Λ(x) =
D00x

r − µ
+A2x

β(µ).

We have to distinguish two cases here. Either the condition given in theorem (1) holds which means that

the boundary condition takes the form (12) or the boundary condition becomes (13).

We will show that for both cases, the optimal threshold to invest becomes

xL1 =
β(µ)

β(µ)− 1

I1(r − µ)

D10 −D00
. (A.2)

Let’s first take a look at the former case. The value matching condition is given by

L1(xτ tL,1) =
D10xt
r − µ

+

(
xt

xF2

)β(µ) D11 −D10

r − µ
xF2 − I. (A.3)

In addition to the value matching condition we apply another boundary condition called smooth pasting.

Smooth pasting implies that the derivatives of the value function Λ and L coincide at xτ tL,1 , i.e.

Λ′(xτ tL,1) = L′1(xτ tL,1). (A.4)

This condition ensures differentiability at the investment threshold.

Applying condition (A.4) yields

D00

r − µ
+ β(µ)A2x

L
1
β(µ)−1

=
D10

r − µ
+

(
xL1
xF2

)β(µ)−1
D11 −D10

r − µ

A2 =
D10 −D00

r − µ
1

β(µ)

1

xL1
β(µ)−1

+
D11 −D10

r − µ
1

xF2
β(µ)−1

.
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The value matching condition gives

D00 − xL1
r − µ

+

(
D10 −D00

r − µ
1

β(µ)

1

xL1
β(µ)−1

+
D11 −D10

r − µ
1

xF2
β(µ)−1

)
xL1

β(µ)
=
D10 − xL1
r − µ

+

(
xL1
xF2

)β(µ)
D11 −D10

r − µ
xF2 − I1

D00 − xL1
r − µ

+
D10 −D00

r − µ
1

β(µ)
xL1 =

D10x
L
1

r − µ
− I1

I =
β(µ)− 1

β(µ)

D10 −D00

r − µ
xL1 ,

and therefore

xL1 =
β

β − 1

I1(r − µ)

D10 −D00
.

In case µ is not always the worst case, the boundary value L1(xL1 ) differs. We have

L1(xL1 ) =
D10x

L
1

r − µ
+A1x

L
1
β(µ) − I1,

where

A1 =

(
D10x

∗

r − µ
− D10x

∗

r − µ

)
1

x∗β(µ)
+

(
x∗

xF2

)β(µ)( D11

r − µ
− D10

r − µ

)
xF2

1

x∗β(µ)
.

Here smooth pasting gives

D00

r − µ
+ β(µ)A2x

L
1
β(µ)−1

=
D10

r − µ
+ β(µ)A1x

L
1
β(µ)−1

A2 =
D10 −D00

r − µ
1

β(µ)

1

xL1
β(µ)−1

+A1.

Applying the value matching condition finally yields

D00x
L
1

r − µ
+

(
D10 −D00

r − µ
1

β(µ)

1

xL1
β(µ)−1

+A1

)
xL1

β(µ)
=
D10x

L
1

r − µ
+A1x

L
1
β(µ)

I =
β(µ)− 1

β(µ)

D10 −D00

r − µ
xL1 ,

and the result follows.
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