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Abstract 

Theoretical and empirical work on innovation and firm survival has produced 

varied and often conflicting findings. In this paper, we draw on 

Schumpeterian models of competition and innovation and stochastic 

models of firm dynamics to demonstrate that the conflicting findings may 

be due to linear specifications of the innovation-survival relationship. 

We demonstrate that a quadratic specification is appropriate 

theoretically and fits the data well. Our findings from an unbalanced 

panel of 39,705 UK firms from 1997-2012 indicate that an inverted-U 

relationship holds for different types of R&D expenditures and sources 

of funding. We also report that R&D intensity is more likely to increase 

survival when firms are in more concentrated industries and in Pavitt 

technology classes consisting of specialized suppliers of technology and 

scale-intensive industries. Finally, we report that the effects of firm and 

industry characteristics as well as macroeconomic environment 

indicators are all consistent with prior findings. The results are robust to 

step-wise modeling, controlling for left truncation and use of lagged 

values to address potential simultaneity bias.  
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Inverted-U relationship between innovation and survival: 

Evidence from firm-level UK data 
 

1. Introduction 

The theoretical and empirical work on firm dynamics has produced a wide range of findings on 

entry and exit patterns. The most often-cited empirical patterns include the following: (i) entry 

and exit rates are highly and positively correlated across industries; (ii) high entry rates are 

often associated with high rates of innovation and increased efficiency; (iii) firm size and age 

are correlated positively with survival; (iv) small firms that survive tend to grow faster than 

larger firms; and (v) younger firms have a higher probability of exiting, but those that survive 

tend to grow faster than older firms  (Geroski, 1995; Klette and Kortum, 2004). 

Nevertheless, the evidence on how innovation affects firm entry and exit remained mixed. Early 

theoretical models adopt a stochastic approach, in which firm- or industry-specific factors 

(including innovation) have no role in determining firm survival.  Entry and exit decisions are 

made through passive learning about the effect of the idiosyncratic shocks on firm value 

(Jovanovic, 1982; 1994). In Hopenhayn (1992), survival depends on firm-specific productivity 

shocks and some industry characteristics such as entry cost and production technology; but 

innovation is not modelled as a particular source of productivity shock. Ericson and Pakes 

(1995) is the first study where innovation plays a central role in determining firm performance, 

including entry and exit. In this second-generation stochastic model, firms decide to remain or 

exit after discovering how innovation affects firm value.  Because innovation is risky and 

associated with high levels of return uncertainty, the model predicts a negative relationship 

between innovation and firm survival.  

As a third strand in the theoretical effort, evolutionary models emphasize the importance of 

‘innovation regimes’ that mediate the effect of innovation on survival. In entrepreneurial 

regimes, higher levels of innovation are associated with higher survival rates because 

innovation is generally undertaken by small/innovative firms that break into the market and 

survive. In contrast, when the innovation regime is routinized – i.e., when it is dominated by 

large incumbent firms - innovation is associated with lower survival rates. Nevertheless, Aghion 

et al (2013) demonstrate that the differential effects of innovation on productivity (and hence 

survival) may be driven by relative positions of the firms vis-à-vis the technology frontier rather 

than by the dichotomy between entrepreneurial and routinized innovation regimes.  

Variation in the theoretical perspectives has been accompanied with varied and often 

conflicting findings in the empirical literature. For example, Audretsch (1991) estimates a logit 

model and reports that small-firm innovation rate increases survival rate among US firms. 

However, using the same dataset and a Cox hazard model, Audretsch and Mahmood (1995) 

report that small firm innovation rate has no effect. Cefis and Marsili (2005) estimate a 



parametric duration model with data on Dutch manufacturing firms and report that innovative 

firms have higher survival probabilities. Nevertheless, Jensen et al (2008) and Buddelmeyer et 

al. (2010) report that the effect on survival depends on the riskiness of the innovation measure 

in empirical work. These studies find that trademark applications (as a measure of low-risk 

investment in innovation) increases survival for both new and incumbent firms; but patent 

applications (high-risk investments) have no effect on survival. Yet, in the UK context, Helmers 

and Rogers (2010) report just the opposite: firms with at least one patent or trademark 

application have higher survival probabilities; and firms with larger numbers of higher-quality 

(hence higher-risk) patents tends to have even higher survival probabilities.  

Such heterogeneity in the evidence base may be due to differences in sampling, estimation 

methods or innovation measures used. Nonetheless, such differences do not seem to have 

generated varied and conflicting results concerning the effects of other firm-specific factors 

such as age and size. Nor do they seem to generate varied/conflicting findings on the role of 

industry-specific factors such as industry growth or macroeconomic factors such as volatility 

or currency appreciation.1  

Therefore, we are of the view that differing and conflicting findings on the innovation-survival 

relationship reflect the inadequacy of the linear specifications used in empirical models. Stated 

differently, the existing models yield an ‘average’ effect-size estimate that can be either positive 

or negative - depending on the level of competition and the riskiness of the innovation 

investments that characterize the data at hand, but overlooked by the linear model used. 

Therefore, we propose a quadratic model that would capture various sources of non-linearities 

in the innovation-survival relationship and the mediating role played market structure. The 

quadratic model is justified because of theoretical and empirical findings indicating that:  

 The relationship between product-market competition and innovation depends on the 

initial level of competition assumed (see the comprehensive review by Gilbert, 2006);  

 The relationship between product-market competition and innovation is non-linear 

(Aghion et al, 2005; 2009; Tingall and Poldahl, 2006; Berubé et al, 2012; Polder and 

Veldhuizen, 2012; Hashem and Ugur, 2013); 

 Competition and productivity growth also displays non-linear relationship: starting 

from an initially low level of competition, higher competition stimulates growth; but 

starting from a high initial level of competition, higher competition has a less positive or 

even a negative effect on productivity growth (Aghion et al., 2013);  

 The relationship between innovation and firm survival is highly contingent on return 

uncertainty and limited appropriability of the innovative investments (Ericson and 

Pakes, 1995; Jensen et al, 2008; Buddelmeyer et al, 2010).  

 

                                                           
1 As indicated above, both theoretical and empirical work report convergent findings on the effects of firm age 
and size. Also, industry growth is usually reported to have a positive effect on survival. Finally, the empirical 
work tends to be in agreement that exchange rate appreciation, price volatility or output gap have a negative 
effect on firm survival. 



The remainder of this paper is organised as follows. In section 2, we demonstrate why it is 

necessary to adopt a quadratic specification and why it is necessary to control for market 

concentration on its own and in interaction with R&D intensity. In section 3, we discuss our 

data and estimation methodology. Section 4 reports the results from a lognormal survival 

model chosen on the basis of tests for proportional hazards and Akaike and Bayesian information 

criteria (AIC and BIC). Results for different R&D types and sources of funding confirm the presence 

of an inverted-U relationship between R&D intensity and survival probabilities. They also confirm 

that the effect of R&D intensity on survival is mediated by market concentration- with R&D intensity 

having stronger positive effects on survival as the level of market concentration increases. In the 

conclusions section, we summarise the main findings and discuss their relevance for policy, practice 

and future research. 

 

2. Modelling the relationship between R&D and survival 

Since the pioneering study of Dunne et al (1988) on patterns of firm entry and exit, there has 

been a sustained research effort towards modeling and estimating post-entry performance. A 

significant milestone in the empirical research was the special issue of the International Journal 

of Industrial Organization in 1995, in which Geroski (1995) distilled the stylised facts and 

empirical patterns indicated above.  

The empirical work has been informed by four theoretical perspectives. The evolutionary 

approach of Nelson and Winter (1982) has informed studies that distinguish between an 

‘entrepreneurial regime’ in which new firms have an innovative advantage over established 

firms and a ‘routinized regime’ where incumbents have an advantage over new comers. In the 

former, new firms are innovative and innovation increases survival rates. In the latter, 

innovation is less likely and innovative entrants have lower probabilities of survival 

(Audretsch, 1991; Audretsch and Mahmood, 1995).  

The stochastic models draw on stochastic evolution models by Hart and Prais (1956), Simon 

and Bonini (1958) and Adelman (1958). In the early models, firm dynamics (entry and exit) are 

determined by idiosyncratic shocks rather than firm-specific factors. Jovanovic (1982; 1994) 

was the first to incorporate a firm-specific element into the stochastic models. Here, the firm 

faces productivity shocks that are drawn from a distribution with known variance but unknown 

mean – which is specific to the firm. The firm decides to enter or exit when it discovers the mean 

of the productivity shock it is faced with.  Although exit and entry generates an equilibrium 

selection, but the probability of entry and exit (i.e., the probability of survival) is distributed 

stochastically across firms and independent of observable firm or industry characteristics, 

including innovation.   

Ericson and Pakes (1995) is the first study that allows firms to invest in innovation and discover 

actively whether it would be more profitable to stay in or exit the industry. In other words, 

firms are active learners and their entry/exit decisions depend on the stochastic outcome of 

their investment, the success of other firms in the industry, and the competitive pressure from 

outside the industry. The model predicts that higher levels of investment in innovation are 

associated with higher levels of uncertainty and thus lower survival rates. The implication is 



that it is necessary to allow for heterogeneity in the innovation-survival relationship if the 

levels of uncertainty associated with a given level of innovation differs between industries or 

technology classes – an issue not addressed by Ericson and Pakes (1995) but we aim to address 

here.  

Around the same time, Dixit (1995) draws attention to ‘deterministic’ factors, particularly to 

the role of sunk costs and the ways in which the latter can induce hysteresis in firms’ entry and 

exit decisions. In Dixit (1995), the firm chooses between entry or exit on the basis two trigger 

prices. If we consider the entry and exit costs as sunk costs, the firm is faced with two trigger 

prices. The trigger price for entry is higher than the sum of the variable costs and the interests 

paid on entry cost; but the trigger price for exit is less than the difference between variable cost 

and the interest on the exit cost. The gap between optimum entry and exit triggers is a source 

of "hysteresis", defined as “the failure of an effect to reverse itself as its underlying cause is 

reversed.”  

Due to hysteresis, firms are slow in entering the market even though entry is profitable; and 

they are also slow in exiting even though exit is optimal. If hysteresis is at work, estimating a 

linear relationship between innovation and survival boils down to estimating a relationship 

between innovation and delayed entry and exit. To correct for this bias, we need to account for 

whether the relationship between innovation and survival differs at different levels of market 

concentration, which enable firms to derive different levels of rents that can induce faster or 

slower entry or exit decisions.   

What emerges from the work above is that the effect of innovation on firm survival may not be 

monotonic. The effect is likely to depend on the riskiness of the innovation, the nature of the 

productivity shock it entails, the innovation/technology regime in place, and the extent to 

which larger firms or firms in concentrated markets are able to resist short-run deteriorations 

in their market values. Given these mediating factors, it is necessary to model and test a non-

monotonic effect, which depends on the technological distance between the leaders and the 

followers (the state of the industry) and on the transition of the industry from one state to the 

other.  

In Schumpeterian models of innovation, the non-linear relationship between competition and 

innovation (which is usually measured as R&D intensity) is driven two factors. The first factor 

is the initial level of competition, which can be low or high. The second is the speed with which 

an industry moves from a levelled to an unlevelled state in terms of technology. A levelled 

industry consists of firms that are neck-and-neck in terms of technology; whereas an unlevelled 

industry is characterised by a large gap between technology leaders and laggards.  

 

In levelled industries, increased competition makes life more difficult for neck-and-neck firms 

and encourages them to innovate in order to escape competition. As a result of this escape-

competition effect, an increase in competition within levelled industries will be associated with 

increased R&D intensity in the industry. The escape-competition effect and the increase in R&D 

intensity will be observed irrespective of the initial level of competition.  

 



In contrast, increased competition in unlevelled industries has an ambiguous effect on firms’ 

innovation effort. On the one hand, increased competition may discourage laggard firms from 

innovation if the initial level of completion is high – i.e., if the prospect for extracting innovation 

rents is weak. This is the Schumpeterian effect, which leads to constant or lower R&D intensity 

at the industry level following an increase in competition. On the other hand, if competition 

increases from an initially low level to begin with, increased competition may induce laggard 

firms to innovate. In this case, increased competition is associated with increased R&D intensity 

within the industry. Overall, in unlevelled industries, the initial level of competition (market 

concentration) matters and R&D intensity may or may not increase in response to increased 

competition. The outcome will depend on whether the escape competition effect or 

Schumpeterian effect dominates.  

 

Although the fractions of the levelled and unlevelled industries are given in the steady state, the 

fractions observed at any given time are endogenous to innovation intensities in both 

industries. These real-time fractions depends on the speed with which an industry moves from 

the levelled to the unlevelled state or vice versa. Aghion et al (2001; 2013) demonstrate that 

transition from one state to the other also depends on how firms adjust their R&D intensities 

in reaction to an increase in competition.   

 

If the industry is unlevelled and the initial level of competition is high to begin with, an increase 

in competition will cause the industry to spend more time in the unlevelled state. This is because 

increased competition have an ambiguous effect on R&D intensity as both Schumpeterian and 

escape-competition effects are at work. However, if the initial level of competition is high and 

the industry is levelled, the industry will move quickly from the levelled to unlevelled state. This 

is because an increase in competition from an initially high level will provide strong incentive 

for firms that are just behind the technology leader to innovate and overtake the leader. 

However, as the laggards innovate and overtake leader, the industry quickly moves away from 

the levelled to unlevelled state.  

 

Hence, when the initial level of competition is high to begin with, an increase in competition 

will cause both the levelled and unlevelled industries to spend more time in the unlevelled state. 

Because both Schumpeterian and escape competition effects are at work in the unlevelled state, 

the level of R&D intensity is lower than what we would have observed in a levelled industry.  

 

In contrast, when the initial level of competition is low to begin with, there is little or no 

incentive for firms in the levelled industry to innovate in response to a given increase in 

competition. Thus, the industry will spend most of the time in the levelled state. On the other 

hand, when the initial level of competition is low and the industry is unlevelled the escape-

competition effect will dominate and laggard firms will catch up with technology leaders. 

Consequently, when the initial level of competition is low to begin with, an increase in 

competition will cause both the levelled and unlevelled industries to spend more time in the 

levelled state. Because the escape-competition effect is dominant in the levelled state, the level 

of R&D intensity is higher than what we would have observed in an unlevelled industry.  

 



The analysis above suggests that the initial level of competition mediates the effect of R&D 

investments on firm survival. When the initial level of competition is high, the industry will 

spend longer spells in the unlevelled state where the Schumpeterian effect discourages 

investment in R&D. As a result, radical changes in R&D intensity are less likely and the 

relationship between innovation and survival is weaker. However, when the initial level of 

competition is low, the industry will spend longer spells in the levelled state where the escape 

competition effect is dominant. In this case, radical changes in R&D intensity are more likely 

and the relationship between innovation and survival is stronger. In the light of these dynamics, 

we propose the following hypothesis: 

 

Hypothesis 1: The level of market concentration itself may not have a direct effect on firm 

survival, but firms are more likely to respond to increased competition by increasing their R&D 

effort when the initial level of competition is low (i.e., when the initial level of market 

concentration is high). Hence, an increase in R&D intensity will have a positive effect on survival 

when the firm is already in relatively more concentrated industries.  

 

In both Ericson and Pakes (1995) and in Aghion et al. (2001; 2013), increased innovation leads 

to higher turnover rates, defined as the sum of entry and exit rates. Higher levels of turnover 

reflect higher levels of creative destruction in the Schumpeterian models, which yield an 

inverted-U relationship between turnover rates and productivity levels (Aghion et al., 2013). 

Combining the two, the relationship between innovation effort and productivity must also 

follow an inverted-U pattern: a given increase in R&D intensity boosts productivity when the 

initial level of R&D intensity is low; but the effect on productivity diminishes and becomes 

negative when R&D intensity increases from a high level to begin with.  

 

This by-product of the Schumpeterian models is consistent with both case-study and empirical 

evidence on the relationship between the level of R&D intensity and productivity of the R&D 

projects. These studies indicate that the productivity of R&D projects tends to diminish with 

size because large-size R&D projects are usually observed in firms closer to the technology 

frontier, where the probability of success (i.e., the probability of securing a breakthrough 

innovation) is low.  Pamamolli et al. (2011) and DiMasi and Grabowski (2012) provide 

extensive evidence on this pattern in the pharmaceutical industry, where R&D productivity is 

low or negative because of an increasing concentration of large R&D projects in areas where 

the risk of failure is high. On the other hand, Kortum (1993) demonstrate that the stock of 

patents has fallen as the R&D intensity has increased in 20 US manufacturing industries – and 

the fall in the patents/R&D ratio could not be explained by increased demand. Finally, 

Czarnitzki and Toole (2013) report that market uncertainty is higher for larger projects, and 

investment in such projects are usually undertaken by firms in highly concentrated industries 

– where survival is a function of the interaction between market power and R&D intensity 

rather than productivity of the R&D investment per se. In the light of this analysis, we derive 

two further hypotheses on the innovation-survival relationship, assuming a given level of 

market concentration.  

 



Hypothesis 2: When the initial level of R&D intensity is low, an increase in R&D intensity leads to 

longer survival times because the risk associated with increased R&D intensity is relatively low 

and the increased R&D intensity is likely to move the industry from an unlevelled to a levelled state 

where innovation has an escape competition effect. 

 

Hypothesis 3:  When the initial level of R&D intensity is high, an increase in R&D intensity will 

have a relatively smaller positive effect or a negative effect on survival because an increase in R&D 

intensity from an initially high level is associated with lower R&D productivity and/or higher 

failure probabilities.  

 

The analysis above suggests that the direct effect of market concentration on survival is 

ambiguous. The hypothesized ambiguity is in line with earlier findings reported in the empirical 

literature. For example, Mata and Portugal (1994) and Wagner (1994) report insignificant 

effects; McCloughan and Stone (1998) report an inverted-U relationship between 

concentration and survival, but the coefficient on the linear term is insignificant; and Baldwin 

and Rafiquzzaman (1995) report a positive and significant linear relationship. However, we 

hypothesize that the interaction between market concentration and R&D intensity of the firm 

does matter: firms with higher levels of R&D intensity are more likely to survive if they are in a 

concentrated market. This is because innovative firms in concentrated markets are more likely 

to secure monopoly profits as a result of innovation.  

The analysis above also suggests that the relationship between R&D intensity (which depends 

on the initial level of market concentration and whether the firm is in a levelled or unlevelled 

industry) and survival is non-monotonic. The relationship is likely to follow an inverted-U 

pattern because: the effect of R&D intensity on survival is mediated though: (i) an inverted-U 

relationship between creative destruction and productivity; and (ii) higher risks of failure (or 

lower returns on R&D projects) as R&D intensity increases.  

Given these conclusions, we can specify the survival model in terms of accelerated failure time 

(duration) or hazard rates.  

 

 𝑙𝑜𝑔𝑡𝑗 = 𝐗𝑗𝛽 + 𝑧𝑗          (1) 

ℎ(𝑡𝑗) = ℎ0(𝑡)𝑒𝑥𝑝(𝐗𝑗𝛽)      (2) 

 

Where, 𝑙𝑜𝑔𝑡𝑗  in (1) is survival time, ℎ(𝑡𝑗) in (2) is hazard rate, 𝐗𝑗  is a vector of covariates that 

affect survival time, 𝛽 is a vector of coefficients to be estimated, and 𝑧𝑗  is the error term. In the 

methodology section below, we discuss which specification we choose and why. For the 

moment, we limit ourselves to specifying the covariates in 𝐗𝑗 .  

In the light of the discussion above, the covariates should include R&D intensity, square of R&D 

intensity, a measure of market concentration, its square, and an interaction term between 

market concentration and R&D intensity.  Also, the stylised facts and empirical patterns 



indicated above suggest that a number of other firm, industry and macroeconomic factors 

should also be included in 𝐗𝑗 . Hence the vector Xj can be defined as follows: 

𝐗𝑗=(RD_int, RD_int_sq, HI, RD_int*HI, Other_firm_covs, Other_ind_covs, Macro_covs).  

The full list of the covariates and expected signs are indicated in Table 1 below.  

Of the covariates of main interest (1 – 4), the R&D intensity and its square enables us to test for 

an inverted-U relationship between R&D intensity and survival in accordance with hypotheses 

(2) and (3). An increase in R&D intensity has a positive effect on survival when the initial level 

of R&D intensity is low, but the effect is dampened and becomes negative at higher levels of 

R&D intensity. So far, only Sharapov et al (2011) have tested for quadratic relationship between 

R&D intensity and survival. Estimating a proportional hazard model, they report an inverted-U 

relationship between R&D intensity and hazard rates. This finding, however, is the opposite of 

what we expect – given the theoretical models of competition, innovation and firm survival in 

Aghion et al (2001; 2013) and Ericson and Pakes (1995). As indicated in hypotheses (2) and 

(3), the inverted-U relationship should be observed between R&D intensity and survival – not 

between R&D intensity and hazard rates: the latter should have U-shape.  

Covariates (3) and (4) are necessary to test for Hypthesis 1. We expect the direct of effect of 

market concentration on survival to be ambiguous. This is in accordance with Hypothesis (1) – 

and tallies with reported findings in the empirical literature. As indicated above, McCloughan 

and Stone (1998) and Baldwin and Rafiquzzaman (1995) find a significant relationship 

between market concentration and firm survival. However, Mata and Portugal (1994) and 

Wagner (1994) report insignificant effects. This is not surprising because the level of market 

concentration can have two opposite effects on firm survival. On the one hand, it may allow 

firms to enjoy higher price-cost-margins that should, ceteris paribus, increase the probability of 

survival. On the other hand, highly concentrated markets may be subject to aggressive 

behaviour by rivals which may reduce chances of survival.  

The expected signs for other covariates (categorised into firm-specific, industry-specific and 

macroeconomic environment factors) are informed by the stylised facts and empirical patterns 

reported in the literature. The relevant literature for each expected effect is listed in the last 

column of Table 1. 

 

Table 1: Factors affecting firm survival  

Covariate Description and (expected effect) Related literature 
Covariates of 
main interest 

1. 1. R&D intensity 

 
 
R&D intensity - R&D expenditures over 
sales for  different R&D types and sources of 
funding  ( + ) 

 
 
Aghion et al (2001; 2013); Ericson 
and Pakes (1995); Sharapov et al 
(2011) 

 
2. 2. R&D int. sq.   

 
Square of R&D intensity  ( - ) 

 
Aghion et al (2001; 2013); Ericson 
and Pakes (1995); Sharapov et al 
(2011) 

   



3. Herfh. Index 
(HI) 

Herfindahl-Hirschman index calculated at 3-
digit industry level   (+ / -) 

McCloughan and Stone (1998); 
Baldwin and Rafiquzzaman (1995); 
Wagner (1994) 

4. (R&D. int.)*(HI) Product of R&D intensity and Herfindahl-
Hirschman index   ( + ) 

Aghion et al (2001; 2013); Ericson 
and Pakes (1995) 

Other firm-level 
covariates 

  

 
5. Age 

 
Firm age in years  ( + ) 

 
Hopenhayn (1992); Ericson and 
Pakes (1995); (Geroski, 1995); Cefis 
and Marsili (2005); Doms et al 
(1995); Disney et al (2000) 

6. Size Number of employees  ( + ) Hopenhayn (1992); Ericson and 
Pakes (1995); (Geroski, 1995); Cefis 
and Marsili (2005); Doms et al 
(1995); Disney et al (2000) 

7. Size_sq Square of number of employees  ( - ) Hopenhayn (1992); Ericson and 
Pakes (1995); (Geroski, 1995); Cefis 
and Marsili (2005); Doms et al 
(1995); Disney et al (2000) 

8. Live_lu Indicates multi-plant firm if live local unit is 
1 or greater ( + / - ) 

Audretsch and Mahmood (1995) 

9. Productivity Deflated turnover per employees ( + ) (Audretsch, 1991) Hopenhayn 
(1992); Ericson and Pakes (1995) 

10. Growth Growth of deflated turnover ( + ) (Audretsch, 1991) Hopenhayn 
(1992); Ericson and Pakes (1995); 
Cefis and Marsili (2005); Mata et al 
(1995); Agarwal (1997). 

11. Civil R&D Dummy variable indicating that firm is 
engaged only in civil R&D - firms engaged in 
defence only or in defence and civil R&D  are 
excluded category (+ / -) 

Not tested before. 

12. UK_owned Ownership dummy indicating that firm is 
UK-owned – non-UK firms are excluded 
category ( + / - ) 
 

Sharapov et al (2011) 

Industry 
covariates  
13. Pavitt 
technology class   

 
 
Four dummy variables for 4 Pavitt classes - 
excluded category is Pavitt class dominated 
by technology suppliers (+ / -)  
 

 
(Pavitt, 1984); (Agarwal and 
Audretsch, 2001); Cefis and Marsili 
(2005) 
 
  

   
 
Macroeconomic 
factors 
14. Crisis year 

 
 
A dummy variable equal 1 for the Asian 
crisis year of 1998; dot.com bubble crisis of 
2001; and start of the recent financial crisis 
in 2008 ( - ) 

 
 
Not tested before; but Bhattacharjee 
et al (2009) report higher hazard 
rates in periods of volatility. 

15. Effective 
exchange rate 

Average effective exchange rate defined 
against a basket currencies - an increases in 
A_reer indicates domestic currency 
appreciation  ( - )   

Bhattacharjee et al (2009); Goudie 
and Meeks (1991)  

 
16. FTSE350 

 
Stock market index for FTSE 350 ( + ) 

 
(Jensent et al, 2008) 
 

 



  

 

3. Data and methodology  

Our dataset is constructed by merging two ONS databases: the Business Structure Database (BSD) 

and the Business Expenditure on Research and Development (BERD). The BSD contains 

demographic data on firm births, deaths, number of local units, ownership, location, etc.; and a limited 

range of firm-level variables such as employment and turnover. Each firm (enterprise) is identified 

with unique identifier (entref); whereas each local unit (plant) with the enterprise is identified with 

unique local-unit identifier (luref). We merged the BSD with BERD, using the unique firm identifier 

(entref). We constructed consistent standard industry classification (SIC) codes based on the latest 

codes adopted in 2007, obtaining SIC codes at 1-digit, 2-digt and 3-digit industry levels.  

BERD is a rich database on R&D expenditures and their sources of funding. The sample includes 

around 400 largest investors in R&D plus a stratified sample based on size (employment). Hence, 

while BSD contains information on the firm every year until it is dead, firms in BERD do not 

necessarily appear in the sample every year. Nevertheless, the number of firms in BERD has increased 

over years and it was possible to have a match for 45,082 firms (entrefs) in total. However, the final 

sample for estimation consists of 39,705 firms (entrefs) as we excluded firms in the top 1% of the 

R&D intensity distribution. The distribution of R&D intensity is known to be highly skewed with a 

long right tail (Aghion, 2013). This is found to be the case in BERD too, with the added property that 

the R&D intensity of some firms in the top 1% of distribution constitutes very large multiples of their 

turnover or employment for repeated years. These are usually one-person innovators or venture-

capital innovators.2 Summary statistics for the estimation sample are presented in Tables A1 and A2 

in the Appendix. 

First, we conduct nonparametric analysis of the data, without any assumptions about the 

functional form of the survivor function. For this, we use the Kaplan-Meier estimator of the 

survivor function S(t) and the Nelson-Aalen estimator for the cumulative hazard H(t).  

𝑆(𝑡) =  Π𝑠<𝑡
𝑁𝑠−𝐷𝑠

𝑁𝑠
;        𝑎𝑛𝑑      𝐻(𝑡) =  −ln [𝑆(𝑡)]   (3) 

Here, where t is analysis time; H(t) is the cumulative hazard function or a total number of 

expected firm exits until time t; Ns is the number of firms at risk at time s; and Ds is the number 

of failures (‘natural deaths’) at time s. In large samples such as ours (39,705 firms and 183,105 

observations), both estimators deliver similar results. Therefore, we report nonparametric 

results for the survival function only.  

Then we proceed to provide estimates adjusted for the effects of observed firm, industry and 

macroeconomic variables which are known to affect cumulative hazard or survival, including 

R&D intensity. Two types of models for adjusting survivor functions for the effects of covariates 

                                                           
2 Exclusion of the firms in the top 1% of the R&D intensity distribution did not affect the sign and significance of 
the parameters of interest (R&D intensity, its square and the interaction between R&D intensity and the 
Herfindahl index. The effect was limited to coefficient size. Estimation results are not reported here, but are 
available on request. 



are the proportional hazards (PH) and the accelerated failure-time (AFT) models. In the PH 

model, the covariates have a multiplicative effect on the hazard function, as indicated in (4) 

below. 

ℎ(𝑡𝑗) = ℎ0(𝑡)𝑔(𝐱𝑗) = ℎ0(𝑡)exp (𝐱𝑗𝛽)    (4) 

Here, j is firm, x is a vector of covariates that capture firm-, industry- and macro-level factors 

assumed to affect cumulative hazard and β is a set of parameters to be estimated. The baseline 

hazard h0(t) can be left either unspecified yielding a Cox PH model; or it can be specified as a 

parametric function, yielding a range of parametric PH models including exponential, Weibull, 

and Gompertz.  

On the other hand, one can estimate an accelerated failure-time (AFT) model of survival. In the 

AFT model, the natural logarithm of the survival time, log(t), is expressed as a linear function 

of the covariates, yielding the linear model in (5). 

𝑙𝑜𝑔𝑡𝑗 =  𝐱𝑗𝛽 + 𝑧𝑗        (5) 

Here, zj is the error term and all other terms are as described above. The error term has a 

density function f( ), the distributional form of which can be: (i) normal density (yielding a log-

normal regression); (ii) logistic density (yielding a log-logistic regression); or extreme value 

density (yielding a Weibull regression).  

Our estimation strategy follows an iterative processes. First, we estimate a PH Cox model that 

assumes a non-parametric baseline hazard.  The PH Cox model assumes that covariates shift 

the baseline hazard function for the jth firm in form of hj(t) = h0(t)exp(β’x). Here h0(t) is the 

baseline hazard function; x is the matrix of covariates; and β is a vector of regression 

coefficients. Taking logarithm: log [hj(t)/h0(t)] = β1X1i + β2X2i + β3X3i + …+ βkXki. Note that 

ratio hj(t)/h0(t) is fixed, but a particular form of h0(t) is not known. 

Then we estimated a range of parametric PH and AFT models (exponential, Weibull, Gompertz, 

and log-normal) to ascertain the preferred model on the basis of AIC and BIC information. Right 

censoring when firm exit has not occurred during the observation period or when firm 

disappears from the ONS register for unknown reasons can be dealt with in the parametric 

models. In these models, the origin of time at risk is important and we set it from the start of 

our sample observation in 1997. The likelihood function of estimated parametric models is as 

indicated in (6) below.  

𝐿𝑖(𝛽, 𝛾) = [𝑆(𝑡𝑖|𝑋𝑖𝛽𝑥, 𝛾)]1−𝑑𝑖[𝑓(𝑡𝑖| 𝑋𝑖 𝛽𝑥, 𝛾)]𝑑𝑖/ 𝑆(𝑡0𝑖|𝑋𝑖 𝛽𝑥, 𝛾)  (6) 

Here, f is the density function of the assumed distribution, S is survival function, ti is duration 

time between firm entry and exit for the ith observation, and t0 is the beginning of the 

observation period. At time ti the firm either exits (di = 1) or is right-censored (di = 0). 

𝑆(𝑡01|𝑋𝑖 𝛽𝑥, 𝛾)  is the probability for a firm to survive up to time t01, parameters  βx, γ are 

estimated with maximum likelihood method. We fit four non-nested models: exponential, 

Weibull, Gompertz, and log-normal and choose the preferred (optimal) model using the 

minimum of the Akaike and Schwartz (Bayesian) information criteria (AIC and BIC).  



We define firm exit (failure) as either the death year indicated in the Business Structure 

Database (BSD) of the Office of National Statistics (ONS) or as the first year when the firm 

employment and turnover are zero for 3 consecutive years. This is done to correct for 

administrative delays in recording the correct death year. BSD is an annual snapshot of the 

Interdepartmental Business Register (IDBR), which contains all firms registered for value-

added tax (VAT) or income tax through the pay-as-you-earn (PAYE) system.  

Firms in BSD have two identifiers: (i) an enterprise identifier for each firm, which may be a 

single-plant or multi-plant firm; and (ii) a local unit identifier for each local unit (plant) within 

the firm, including the firm itself if the latter is a single-plant firm. We differentiate between 

firm exit due to corporate market transactions (mergers, acquisitions or outright sale) and firm 

exit due to liquidation or bankruptcy (‘natural death’). This is done by establishing whether the 

local unit reference for local units within a multi-plant firm or for a single-plant firm itself 

survives the enterprise reference. If the local-unit reference survives the enterprise reference 

in IDBR, firm exit is coded as exit due to corporate market control. Such exist are not included 

in the estimation sample, which consists of exits due to ‘natural death’ only. Firm age is defined 

as the difference between a current period and a firm’s year of birth. The survival analysis is 

conducted on the basis of analysis time – which is equal to the difference between the current 

year and the firm’s entry into the dataset.  

Proportional hazard models assume a continuous hazard function – i.e., there are no tied 

survival times. However, tied events do occur in survival data because of the way in which time 

is recorded. If tied events occur, the likelihood reflects the marginal probability that the tied-

failure events occurred before the non-failure events in the risk pool. Finally, the risk pool for 

each tied failure event is the sum of non-failure subjects (firms). 

The range of covariates in the PH and AFT models of (4) and (5) is informed by the literature 

indicated in Table 1 above and by the three hypotheses we wish to test (see above). Our 

hypotheses require R&D intensity, its square, Herfindah-Hirschman index (HI) as a measure of 

concentration at 3-digit industry level, its square, and an interaction term consisting of R&D 

intensity multiplied with HI. To reduce heterogeneity, we use the logarithm of the covariates 

unless the latter are defined as dummy variables or ratios between 0 and 1.  

R&D intensity is calculated as R&D/turnover for all types of R&D expenditures and funding 

sources (see summary statistics tables - Table A1 and A2 - in the Appendix). . The HI is calculated 

at 3-digit industry level, using consistent the standard industrial classification code (SIC) 

adopted in 2007. Firm growth is calculated as the log difference of turnover in two successive 

years, using the ONS 2-digit output deflator to obtain deflated turnover. As indicated above, 

firm age is calculated as the difference between current year (t) and the birth year of the firm 

as recorded in IDBR. The birth year for firms that entered the IDBR in the first year of its 

existence (i.e., in 1973) were all given 1973 as the birth year, despite the fact that some firms 

in this first cohort were born before 1973 (see Riegler, 2012). Therefore, we will estimate the 

preferred model with firms born in 1974 or after.  

We also control for a range of firm-, industry- and macro-level variables. Of these, size is 

measured by headcount employment; live local unit is the number local units other than the 



head-quarters of the firm (hence single-plant firms will have 0 local unit); deflated turnover per 

employee as a measure of productivity; growth of deflated turnover as a measure of firm 

growth; a civil dummy that indicates that the firm is not engaged in defence-related R&D; a UK 

ownership dummy that indicates that the firm is not foreign-owned; four dummies for 4 Pavitt 

technology classes (Pavitt, 1984), with unclassified firms treated as excluded category;  yearly 

average effective real exchange rate, defined as the price of domestic currency vis-à-vis a basket 

of currencies for UK’s major trading partners (Bank of England data); yearly FTSE-350 index; 

and a crisis dummy that takes the value of 1 for crisis years of 1998 (east Asian crisis), 2001 

(the dot.com bubble crisis) and 2008 (the fir year full-year of the recent financial crisis). The 

FTSE-350 index and the average effective exchange rate are used as indicators of time shocks 

that may affect all firms. Whilst the FTSE-350 index reflects the profitability expectations of the 

market participants for the year, the average real effective exchange rate reflects the 

competitiveness of UK firms.  

The preferred model chosen on the basis of AIC and BIC is first estimated in a step-wise fashion 

to verify if the main coefficients of interest (i.e., R&D intensity, its square, the Herfindal index, 

its square and the interaction between R&D intensity and the Herfindahl index) remain robust 

to model specification. Then, we estimate the full model with different samples. First, we 

estimate the full-model with firms born in 1974 and thereafter (post-1973 sample) to isolate 

the likely bias that may arise from incorrectly recorded firm age for firms born in 1973 or 

before. In the second step, we re-estimate the model with the same sample, using lagged values 

of the firm-level covariates in order to minimise the risk simultaneity. In the third step, we take 

account of left truncation (i.e., lack of information on firms that entered the IDBR before our 

first year of data in 1997) by estimating the preferred model with firms that entered the IDBR 

in 2000 or thereafter.  

Finally, we estimated the model with different R&D types, including: (i) total R&D intensity; (ii) 

extramural R&D intensity that measures the intensity of the R&D commissioned from outside 

the firm; (iii) intensity of R&D expenditures on capital investment; (iv) intensity of current R&D 

expenditures; (v) intensity of privately-funded R&D (R&D funded from firm funds and other 

private funds including parent company); and (vi) publicly-funded R&D intensity (R&D funded 

by direct support for the UK government and/or the European Commission). 

  

4. Results 

In what follows, we first present non-parametric estimations of survival rates – by R&D intensity 

quartiles, market concentration quartiles, and Pavitt technology classes. 

  



Figure 1: Non-parametric survival estimations 

Survival rates by R&D intensity quartile  Survival rates by Herfindahl index quartile Survival rates by Pavitt technology class 

 

 

The estimates above are based on Kaplan-Meier survivor estimators of the survival functions. They indicate that: (i) firms in the 3rd and 4th 

quartiles of the R&D intensity (i.e., above-median R&D intensity) tend to have lower survival rates; (ii) firms in the lowest quartile of the market 

concentration has lower survival rates compared to the remaining 3 quartiles; (iii) the survival rates in other quartiles do not display a clear 

pattern;  (iv) Pavitt class 1, which consists of science-based technology industries has the lowest survival rate, followed by Pavitt class 3 (scale-

intensive industries). The difference between survival rates summarised above has been confirmed by Log-rank, Wilcoxon, Tarone-Ware and 

Peto-Peto tests. The null hypothesis about the equality survival rates by R&D intensity quartile, by market concentration quartile and by Pavitt  

class has been rejected.3  

 

                                                           
3 Also, the nonparametric tests reject the equality of survival functions across quartiles of employment as proxy for firm size and for the crisis and non-crisis years. Test 
results are not reported here to save space, but they are available on request.  



 

Hence, the non-parametric results indicate that higher levels of R&D intensity are likely to be 

associated with lower survival rates. In other words, the Schumpeterian creative destruction dynamics 

are likely to be observed at the top end of the R&D intensity distribution. The graphs also indicate 

that firms tend to have lower survival rates when the initial level of market concentration is low. 

However, the closeness and crossing of the survival function estimates for quartile 2-4 of the 

Herfindahl index also indicate that market concentration on its own may not be a significant 

determinant of survival. Finally, the graphs indicate firms have lower survival durations when they 

are located within a science-based industry (Pavitt 1) compared to other classes. However, firms in 

the Pavitt class 2 (specialised suppliers of technology) and Pavitt class 5 (unclassified firms) tend to 

longer survival durations. 

However, it must be indicated that the results from non-parametric estimations may not be reliable as 

they are not conditioned on other factors (firm, industry and macroeconomic variables) that also affect 

survival. The estimations results below will address this issue and provide a fuller picture about the 

effect of all covariates on survival. The proportional hazard (PH) and accelerated failure time (AFT) 

models to be estimated, respectively, can be specified as follows. 

ℎ(𝑡𝑗) = ℎ0(𝑡)𝑔(𝐱𝑗) = ℎ0(𝑡) exp(𝛽0) exp (𝛽1𝑅𝐷_𝑖𝑛𝑡𝑗 + 𝛽2𝑅𝐷_𝑖𝑛𝑡_𝑠𝑞𝑗  + 𝛽3𝐻𝐼𝑗 + 𝛽4𝐻𝐼 ∗

𝑅𝐷_𝑖𝑛𝑡𝑗 + 𝛽5𝐴𝑔𝑒𝑗 + 𝛽6𝐸𝑚𝑝𝑙𝑗 + 𝛽7𝐸𝑚𝑝𝑙_𝑠𝑞𝑗 + 𝛽8𝐿𝑖𝑣𝑒_𝑙𝑢𝑗 + 𝛽9𝑃𝑟𝑜𝑑𝑗 + 𝛽10𝐺𝑟𝑜𝑤𝑡ℎ𝑗 +

𝛽11𝐶𝑖𝑣𝑖𝑙_𝑅𝐷𝑗 + 𝛽12𝑈𝐾_𝑓𝑖𝑟𝑚𝑗 + 𝛽13𝑃𝑎𝑣𝑖𝑡𝑡1𝑗 + 𝛽14𝑃𝑎𝑣𝑖𝑡𝑡2𝑗 + 𝛽15𝑃𝑎𝑣𝑖𝑡𝑡3𝑗 + 𝛽16𝑃𝑎𝑣𝑖𝑡𝑡5𝑗 +

𝛽17𝐴𝑟𝑒𝑒𝑟𝑗 + 𝛽18𝐶𝑟𝑖𝑠𝑖𝑠𝑗 + 𝛽19𝐹𝑇𝑆𝐸_350𝑗)    (4a) 

 

𝑙𝑜𝑔𝑡𝑗 =  𝛽0 + 𝛽1𝑅𝐷_𝑖𝑛𝑡𝑗 + 𝛽2𝑅𝐷_𝑖𝑛𝑡_𝑠𝑞𝑗  + 𝛽3𝐻𝐼𝑗 + 𝛽4𝐻𝐼 ∗ 𝑅𝐷_𝑖𝑛𝑡𝑗 + 𝛽5𝐴𝑔𝑒𝑗 + 𝛽6𝐸𝑚𝑝𝑙𝑗 +

𝛽7𝐸𝑚𝑝𝑙_𝑠𝑞𝑗 + 𝛽8𝐿𝑖𝑣𝑒_𝑙𝑢𝑗 + 𝛽9𝑃𝑟𝑜𝑑𝑗 + 𝛽10𝐺𝑟𝑜𝑤𝑡ℎ𝑗 + 𝛽11𝐶𝑖𝑣𝑖𝑙_𝑅𝐷𝑗 + 𝛽12𝑈𝐾_𝑓𝑖𝑟𝑚𝑗 +

𝛽13𝑃𝑎𝑣𝑖𝑡𝑡1𝑗 + 𝛽14𝑃𝑎𝑣𝑖𝑡𝑡2𝑗 + 𝛽15𝑃𝑎𝑣𝑖𝑡𝑡3𝑗 + 𝛽16𝑃𝑎𝑣𝑖𝑡𝑡5𝑗 + 𝛽17𝐴𝑟𝑒𝑒𝑟𝑗 + 𝛽18𝐶𝑟𝑖𝑠𝑖𝑠𝑗 +

𝛽19𝐹𝑇𝑆𝐸_350𝑗  + 𝑧𝑗        (5a) 

Abbreviations refer to the following variables: 

RD_int is R&d expenditures as a ratio of turnover. The models are estimated with six different R&D 

intensities: total R&D intensity; extramural R&D intensity; intensity of R&D expenditures on capital 

(labs, instruments, machinery, etc.); intensity of current R&D expenditures; intensity of privately-

funded R&D expenditures; and intensity of publicly-funded R&D intensity (UK and EU funded 

R&D).  

RD_int_sq is the squared value of each R&D intensity defined above.  

HI is the Herfindahl-Hirschman index, calculated as a measure of market concentration at 3-digut 

industry level. 

HI*RD_int is the interaction term for R&D and concentration, with RD_int corresponding to each of 

the R&D intensities defined above. 

Age is firm age in years. 



Empl is headcount employment as a measure of size from IDBR, including part-time and full-time 

workers. IDBR employment is based on firms’ PAYE returns; 

Empl_sq is the squared value of employment as defined above. 

Live_lu is the number of live local units, apart from the firm’s headquarters. 

Prod is a measure of productivity, calculated as deflated turnover per employee. 

Growth is the annual growth rate, calculated as log difference of deflated turnover. 

Civil_RD is a dummy indicating that the firm is engaged in civil R&D only. The excluded category 

is firms engaged partly or fully in defence-related R&D. 

UK_firm is a dummy indicating that the firm is owned by UK natioanls. The excluded category is all 

firms owned by non-UK nationals. 

Pavitt1 is Pavitt technology class that consists of firms within science-based industries such as 

chemicals, information technology, office machinery, precision instruments, and medical and 

optical instruments industries (35% of the firm/year observations). The excluded category is 

Pavitt class 4, which consists firms within technology-supplier-dominated industries such as 

textiles & clothing, food & drink, fabricated metals, etc. (27% of the firm/year observations).  

Pavitt2 is Pavitt technology class that consists of firms within industries that are specialized 

suppliers of technology or capital goods to other industries such as mechanical engineering 

industries, manufacturers of electrical machinery, equipment hire&lease industries, and 

business services suppliers (22% of the firm/year observations). The excluded category is 

Pavitt class 4. 

Pavitt3 is Pavitt technology class that consists of firms within scale-intensive industries such as 

pulp&paper, transport vehicles, mineral oil refining industries, financial intermediaries, etc. 

(9% of the firm/year observations). The excluded category is Pavitt class 4. 

Pavitt5 is Pavitt technology class that consists of firms within unclassified industries (7% of the 

firm/year observatuions). The excluded category is Pavitt class 4. 

Areer is the average effective exchange rate, defined as the price of UK currency against a basket of 

currencies of the UK’s major trading partners. An increase in Areer indicates appreciation of the UK 

currency.  

Crisis is a dummy equal to 1 for years 1998 (the east Asian crisis), 2001 (the burts of dot.com bubble), 

and 2008 (the first full-year of the recent financial crisis. 

FTSE_350 is the share price index for the largest 350 UK companies.  

 

 

 



The inclusion of R&D intensity and its square will enable us to test hypotheses 2 and 3 derived n 

section 2; whereas the inclusion of the Herfindahl index and its interaction with R&D intensity will 

enable us to test hypothesis 1. The expected sigs are as follows: RD_int (+); RD_int_sq (-); HI 

(ambiguous or insignificant); and HI*RD_int (+).The remaining covariates are included in the model 

on the basis of existing empirical work. The relevant empirical studies and the expected signs of these 

covariates are indicated in Table 1 above.  

Following the non-parametric tests, we estimated model (4a) with a PH Cox specification, 

which assumes that covariates shift the baseline hazard function  for the jth firm in form of hj(t) 

= h0(t)exp(β’x). Here h0(t) is the baseline hazard function; x is the vector of covariates; and β is 

a vector of regression coefficients. Note that ratio hj(t)/h0(t) is fixed, but the particular form of 

h0(t) is not known. 

We reject the Cox specification because it fails on specification link test using the likelihood 

ratio, which is an analogue of RESET test for the OLS estimator. We have also tested for 

proportional hazard assumptions of the Cox model in the data and had to reject them for the 

chosen specification. Interaction of the covariates with time came out statistically significant, 

leading to rejection of the Cox model assumptions. Tests with Schoenfeld (1982) residuals 

obtained from the Cox model and fitting a smooth function of time for them shows a linear 

relationship, which also rejects the proportionality assumption. Then, we estimated the model 

with four parametric PH and AFT specifications, including exponential, Weibull, Gompertz, and 

log-normal. The AIC and BIC values indicate that the log-normal is the preferred specification 

as it has the smallest values of AIC and BIC across all types of R&D intensity.4 Therefore, results 

reported below are from log-normal specification, which can be estimated in AFT mode.  

A positive (negative) and significant coefficient in AFT estimation indicates that the time to 

failure (i.e., survival time) increases (decreases) as the covariate increases by one unit. An 

insignificant coefficient indicates no effect of the time to failure. The log-normal estimations in 

AFT mode take account of right censoring – i.e., the situation when firm exit has not occurred 

during the observation period or when firm disappears from the ONS register for unknown 

reasons. The origin of time at risk is set from the start of our sample observation in 1997. In 

other words, the results presented below are based on analysis time rather than age, which is 

included in the model as a separate covariate.  

Table 2 below presents the results from the lognormal survival model for six types of R&D 

intensities. The summary statistics for the estimation sample are presented in Appendix Tables 

A1 and A2, which report the summary statistics in level and logs, respectively.5 The logarithm 

of some covariates is taken after their values in level are augmented by 1 where necessary to 

take account of zero (0) values.  

  

                                                           
4 Results are not reported here to save space, but are available on request. 
5 Minimum and maximum values are not reported in Tables A1 and A2 in the Appendix. This is due to non-
disclosure requirements of the Secure Data Access unit of UK Data Archive. These statistics will be made 
available later when UK Data Service verifies that their release will not conflict with the non-disclosure rules.  



 

Table 2: R&D intensity, source of funding and firm survival: firms with birth year > 1973 
 

 Total R&D Extramural 
R&D 

Capital 
R&D 

Current 
R&D 

Private 
R&D 

Public R&D 

       
Log (R&D intensity + 1) 0.2729*** 1.3689*** 2.7036*** 0.2577*** 0.3947*** -1.3934*** 
 (0.05647) (0.3713) (0.4163) (0.06115) (0.06455) (0.1911) 
       
Log (R&D intensity + 1) sq.  -0.1434*** -4.1782*** -9.0264*** -0.1569*** -0.2139*** 1.6693*** 
 (0.02751) (0.9953) (1.3796) (0.03204) (0.03510) (0.3355) 
       
Herfindahl index (HI) -0.04956 0.001795 0.02146 -0.05683 -0.03775 -0.05346 
 (0.08064) (0.07596) (0.07697) (0.08045) (0.08020) (0.07739) 
       
HI*Log (R&D int.)  0.6100*** 1.7538 1.5154 0.7528*** 0.6457*** 4.0050*** 
 (0.1714) (1.6836) (1.4642) (0.1856) (0.1972) (0.6893) 
       
Log (age + 1) 0.4080*** 0.4070*** 0.4076*** 0.4079*** 0.4101*** 0.4109*** 
 (0.01413) (0.01411) (0.01411) (0.01413) (0.01409) (0.01425) 
       
Log (employment + 1) 0.2591*** 0.2564*** 0.2564*** 0.2581*** 0.2578*** 0.2502*** 
 (0.01759) (0.01753) (0.01753) (0.01758) (0.01754) (0.01753) 
       
Log (employment + 1)  sq. -0.02824*** -0.02803*** -0.02801*** -0.02811*** -0.02809*** -0.02725*** 
 (0.002546) (0.002542) (0.002542) (0.002546) (0.002542) (0.002536) 
       
Log (live local unit + 1) 0.02394 0.02408 0.02426 0.02342 0.02449 0.02303 
 (0.02008) (0.02009) (0.02008) (0.02009) (0.02005) (0.02013) 
Log (deflated turnover per       
employee + 1) 0.1066*** 0.09218*** 0.1029*** 0.1042*** 0.1114*** 0.07119*** 
 (0.008413) (0.007480) (0.007867) (0.008410) (0.008346) (0.007570) 
       
Growth rate from t-1 to t 0.01987*** 0.01859*** 0.01853*** 0.01965*** 0.02111*** 0.01692*** 
 (0.005191) (0.005107) (0.005175) (0.005188) (0.005210) (0.005109) 
       
Civil-only R&D firm  0.09196*** 0.09410*** 0.09106*** 0.09236*** 0.09032*** 0.08677*** 
 (0.01071) (0.01069) (0.01067) (0.01071) (0.01068) (0.01065) 
       
Firm UK owned 0.08343*** 0.08036*** 0.08210*** 0.08310*** 0.08494*** 0.07297*** 
 (0.02326) (0.02328) (0.02325) (0.02326) (0.02323) (0.02326) 
       
Pavitt class 1 -0.02663 -0.003482 -0.02711 -0.02303 -0.03795 -0.00056 
 (0.1035) (0.1037) (0.1037) (0.1034) (0.1034) (0.1031) 
       
Pavitt class 2 0.1979*** 0.1990*** 0.1979*** 0.1988*** 0.1943*** 0.2009*** 
 (0.06720) (0.06723) (0.06727) (0.06721) (0.06717) (0.06706) 
       
Pavitt class 3 0.05278 0.06352 0.05278 0.05477 0.04557 0.06995 
 (0.06493) (0.06503) (0.06505) (0.06493) (0.06489) (0.06483) 
       
Pavitt class 5 0.09868 0.09450 0.09504 0.1003 0.09803 0.09870 
 (0.07729) (0.07737) (0.07740) (0.07728) (0.07723) (0.07699) 
       
Real effective exchange rate -0.06145*** -0.06151*** -0.06139*** -0.06152*** -0.06139*** -0.06174*** 
 (0.000798) (0.000796) (0.000799) (0.000798) (0.000797) (0.000794) 
       
Crisis dummy = 1 in 1998, 
2001 and 2008 

-0.4741*** -0.4769*** -0.4764*** -0.4740*** -0.4702*** -0.4794*** 

 (0.00635) (0.00634) (0.00634) (0.00635) (0.00635) (0.00637) 



       
Log (FTSE350)  1.0958*** 1.0860*** 1.0920*** 1.0930*** 1.1010*** 1.0869*** 
 (0.02948) (0.02935) (0.02939) (0.02949) (0.02948) (0.02928) 
       
Constant -3.5449*** -3.3744*** -3.4707*** -3.4954*** -3.6140*** -3.2011*** 
 (0.3380) (0.3361) (0.3356) (0.3370) (0.3387) (0.3324) 
2-digit industry dummies Yes Yes Yes Yes Yes Yes 
       
Ln(Sigma)  -0.3110*** -0.3111*** -0.3113*** -0.3108*** -0.3125*** -0.3122*** 
 (0.006376) (0.006368) (0.006392) (0.006374) (0.006390) (0.006443) 
Observations 168843 168822 168874 168835 168827 168925 
AIC 58216.2 58274.5 58307.8 58221.1 58241.9 58214.9 
BIC 59260.0 59318.3 59351.6 59264.9 59285.7 59258.8 
Number of subjects  36836 36843 36836 36835 36836 36840 
Number of failure times 39990 40034 39945 39981 39972 39937 
Log likelihhod -29004.1 -29033.2 -29049.9 -29006.6 -29016.9 -29003.5 
Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All firms born in 1974 and after. 
Observations in the top 1% of the R&D intensity distribution for each R&D category are excluded. Estimation 
period: 1997-2012. 

 
Results in the top four rows indicate that hypotheses 2 and 3 are supported by the data. The 

relationship between R&D intensity and survival has an inverted-U shape – with notable 

exception of the publicly-funded R&D intensity. When the initial R&D intensity is low to begin 

with, an increase in R&D intensity increases the survival time; but the increase is at decreasing 

rates and the turning points are reach around exp(1) = 2.72, which is the R&D intensity that 

corresponds to the turning points. In the sample, this level of R&D intensity is observed in the 

top quartile of the R&D intensity distribution. This finding indicates that the effect of R&D 

intensity on firm survival mirrors the effect of turnover (creative destruction) on productivity 

and reflects the higher risks associated with higher levels of R&D investment. It also indicates 

the existing findings may be due to misspecification bias to the extent that they are derived 

from a linear specification without testing for significance of a quadratic specification.  

Similarly results in rows 5 – 8 indicate that hypothesis 1 is supported by the data. The HI on its 

own is not statistically significant, but it is significant and positive when interacted with R&D 

intensity. In other words, the effect of R&D intensity on survival is stronger in more 

concentrated industries. This is because, in more concentrated industries, a given increase in 

R&D intensity is more likely to enable the firm to extract innovation rents and increase its 

chances of survival. The significance of the interaction term is in line with the Schumpeterian 

proposition that investment in R&D is motivated by the scope for innovation rents. It also 

indicates failure to control for the interaction between R&D intensity and market structure 

could be a source of misspecification bias.  

When we look at the effects of different R&D types, we observe that extramural R&D (R&D 

commissioned form outside the firm) and capital-related R&D expenditures (i.e., investment in 

R&D-related labs, instruments, machinery, etc.) have stronger positive effects on survival time 

compared to total, current and private R&D. This is to be expected because the level of capital 

R&D is an indication of technological capacity and cumulative knowledge. Similarly, extramural 

R&D indicates ability to link with universities and specialised private research institutions. The 

turning points for capital and extramural R&D intensity are much smaller than those for total, 

current and privately-funded R&D. This is also to be expected because extramural R&D and 



capital-related R&D intensity is much smaller (0.009) than total or current R&D intensity 

(0.158 and 0.137, respectively). 

The coefficients on publicly-funded R&D intensity are not in line with hypotheses 2 and 3 above. 

However, they confirm that the relationship between R&D intensity and survival is non-

monotonic, albeit with a U shape. Because publicly-funded R&D is essentially R&D subsidies 

from the UK government and the European Commission, the negative coefficient on the linear 

term can be due to funding rules that favour firms already in distress (i.e., firms faced with 

higher hazard rates at the time of subsidy). Secondly, public subsidies may have a substitution 

effect, leading to lower R&D effort in terms of privately-funded or total R&D intensity. We do 

not wish to delve too much into this finding because it is not robust to controlling for left 

truncation or lagged estimation.  

Given that coefficients on the Herfindahl index are not statistically significant, we have checked 

if the Herfindahl index and its interaction with R&D intensity are jointly significant with 

likelihood-ratio test and failed to reject joint significance of these variables. Similarly we have 

failed to reject joint insignificance of the Pavitt class dummies despite the fact that some of the 

Pavitt class dummies are not individually significant. Finally, Post-estimation of Cox-Snell 

residuals for all 6 types of R&D show that they approximately satisfy the condition of hazard 

function equal to one for all time.  

Before we discuss the effects of other covariates, we proceed to discuss the findings from 

various robustness checks. As indicated above, some firms in the dataset are left-truncated in 

that they existed before 1997 (the initial year in our sample) but they are not observed before 

1997. To address this issue, we restricted the sample to firms that enter the dataset in 2000 or 

after. The estimations results remained the same – as can be seen in Table 3.  

 

Table 3: R&D expenditures, source of funding and firm survival: Entry in 2000 and after 
 
 Total R&D Extramural 

R&D 
Capital R&D Current 

R&D 
Private 
R&D 

Public R&D 

       
Log (R&D intensity + 1) 0.3996*** 1.5888*** 3.1598*** 0.3875*** 0.5389*** -0.1227 
 (0.06831) (0.4453) (0.5339) (0.07408) (0.07808) (0.2798) 
       
Log (R&D intensity + 1) sq.  -0.1839*** -4.7307*** -10.007*** -0.1939*** -0.2702*** 0.03864 
 (0.03472) (1.3725) (1.7658) (0.03993) (0.04477) (0.4913) 
       
Herfindahl index (HI) -0.06144 -0.01967 0.009138 -0.06366 -0.04637 -0.01037 
 (0.08891) (0.08379) (0.08518) (0.08876) (0.08885) (0.08490) 
       
HI*Log (R&D int.)  0.5677** 4.7854*** 2.9545 0.6506*** 0.5412** 1.9335* 
 (0.2260) (1.5630) (2.0095) (0.2512) (0.2600) (1.1312) 
       
Log (age + 1) 0.6063*** 0.6002*** 0.6026*** 0.6055*** 0.6071*** 0.6009*** 
 (0.01628) (0.01627) (0.01628) (0.01628) (0.01627) (0.01626) 
       
Log (employment + 1) 0.2856*** 0.2857*** 0.2842*** 0.2856*** 0.2834*** 0.2821*** 
 (0.01673) (0.01672) (0.01672) (0.01673) (0.01674) (0.01670) 
       
Log (employment + 1)  sq. -0.03790*** -0.03821*** -0.03801*** -0.03783*** -0.03753*** -0.03764*** 
 (0.002775) (0.002775) (0.002775) (0.002775) (0.002778) (0.002772) 



       
Log (live local unit + 1) 0.07864*** 0.08312*** 0.08258*** 0.07676*** 0.07752*** 0.07940*** 
 (0.02006) (0.02007) (0.02006) (0.02006) (0.02006) (0.02005) 
       
Log (deflated turnover per 
employee + 1) 

0.07158*** 0.04819*** 0.06247*** 0.06876*** 0.07714*** 0.03536*** 

 (0.008224) (0.007213) (0.007711) (0.008198) (0.008313) (0.007098) 
       
Growth rate from t-1 to t 0.04101*** 0.04240*** 0.04067*** 0.04042*** 0.04218*** 0.03736*** 
 (0.007968) (0.007853) (0.007925) (0.007967) (0.007990) (0.007795) 
       
Civil-only R&D firm  0.08347*** 0.08792*** 0.08189*** 0.08436*** 0.08648*** 0.08022*** 
 (0.01626) (0.01628) (0.01624) (0.01626) (0.01627) (0.01621) 
       
Firm UK owned 0.007894 0.001999 0.007879 0.008896 0.01128 -0.003665 
 (0.03202) (0.03212) (0.03190) (0.03201) (0.03200) (0.03187) 
       
Pavitt class 1 -0.1241 -0.07501 -0.1151 -0.1157 -0.1335 -0.08013 
 (0.1033) (0.1033) (0.1038) (0.1033) (0.1036) (0.1030) 
       
Pavitt class 2 0.07856 0.07853 0.07947 0.08125 0.07531 0.08359 
 (0.06558) (0.06560) (0.06581) (0.06560) (0.06564) (0.06564) 
       
Pavitt class 3 0.1383** 0.1653** 0.1476** 0.1427** 0.1282* 0.1679** 
 (0.06922) (0.06942) (0.06987) (0.06923) (0.06970) (0.06921) 
       
Pavitt class 5 0.1429** 0.1322* 0.1337* 0.1447** 0.1402** 0.1329* 
 (0.07005) (0.07015) (0.07018) (0.07008) (0.07009) (0.07014) 
       
Real eff. exchange rate -0.04013*** -0.04044*** -0.04013*** -0.04024*** -0.04032*** -0.04077*** 
 (0.0008118) (0.0008122) (0.0008120) (0.0008116) (0.0008104

) 
(0.0008242) 

       
Crisis dummy = 1 in 1998, 
2001 and 2008 

-0.2351*** -0.2381*** -0.2324*** -0.2346*** -0.2343*** -0.2347*** 

 (0.02106) (0.02109) (0.02105) (0.02103) (0.02107) (0.02102) 
       
Log (FTSE350)  1.5296*** 1.4962*** 1.5218*** 1.5252*** 1.5373*** 1.4833*** 
 (0.05111) (0.05075) (0.05089) (0.05114) (0.05120) (0.05073) 
       
       
Constant -8.6587*** -8.2281*** -8.5346*** -8.5951*** -8.7274*** -8.0093*** 
 (0.4961) (0.4914) (0.4926) (0.4960) (0.4965) (0.4909) 
2-digit industry dummies Yes Yes Yes Yes Yes Yes 
       
Ln(Sigma) -0.4168*** -0.4159*** -0.4165*** -0.4167*** -0.4170*** -0.4152*** 
 (0.009319) (0.009310) (0.009325) (0.009318) (0.009329) (0.009308) 
Observations 45483 45477 45539 45495 45474 45584 
AIC 21208.8 21258.3 21239.1 21217.0 21183.8 21339.7 
BIC 22098.8 22148.3 22129.2 22106.9 22073.7 22229.8 
Number of subjects 13927 13924 13925 13928 13926 13935 
Number of failure times 10091 10102 10088 10094 10074 10113 
Log likelihood -10502.4 -10527.2 -10517.5 -10506.5 -10489.9 -10567.8 
 
Standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All firms born in 2000 and after. Observations 
in the top 1% of the R&D intensity distribution for each R&D category are excluded. 

 

 



 

Then, we took into account the risk of simultaneity, whereby firm’s observation of its survival 

prospect may affect its R&D effort and other choice variables such as employment. To address 

this simultaneity (reverse causality) problem, we re-estimated the model by taking one-year 

lags of all firm-specific covariates. Results in Table 4 indicate that the findings are robust - with 

notable exception of the Herfindahl-Hirschman index (concentration) which turns out to be 

negative and significant.  

Table 4: R&D expenditures, source of funding and firm survival: Lagged estimation 

  
 Total R&D Extramural 

R&D 
Capital R&D Current 

R&D 
Private R&D Public R&D 

       
Log (R&D intensity + 1) 0.2007*** 0.3258*** 0.4677*** 0.1842*** 0.2576*** -0.03697 
 (0.04713) (0.09811) (0.1279) (0.04932) (0.05046) (0.09603) 
       
Log (R&D intensity + 1) sq.  -0.02782** -0.04559** -0.09759** -0.02414** -0.03874*** 0.03100 
 (0.01119) (0.02221) (0.04387) (0.01188) (0.01272) (0.03189) 
       
Herfindahl index (HI) -0.2084** -0.1789** -0.1802** -0.2100** -0.1992** -0.1921** 
 (0.09318) (0.08859) (0.08872) (0.09277) (0.09242) (0.08974) 
       
HI*Log (R&D int.)  0.2918* -0.01609 0.06865 0.3221** 0.2372 0.9844** 
 (0.1530) (0.4923) (0.4622) (0.1566) (0.1538) (0.4386) 
       
Log (age + 1) 0.3162*** 0.3158*** 0.3149*** 0.3167*** 0.3171*** 0.3147*** 
 (0.01858) (0.01858) (0.01861) (0.01859) (0.01853) (0.01873) 
       
Log (employment + 1) 0.2582*** 0.2527*** 0.2546*** 0.2563*** 0.2569*** 0.2523*** 
 (0.02293) (0.02288) (0.02291) (0.02293) (0.02289) (0.02295) 
       
Log (employment + 1)  sq. -0.02386*** -0.02319*** -0.02344*** -0.02361*** -0.02371*** -0.02304*** 
 (0.003249) (0.003246) (0.003251) (0.003250) (0.003244) (0.003253) 
       
Log (live local unit + 1) -0.02357 -0.02620 -0.02535 -0.02481 -0.02281 -0.02798 
 (0.02607) (0.02614) (0.02616) (0.02608) (0.02604) (0.02622) 
       
Log (deflated turnover per 
employee + 1) 

0.1391*** 0.1165*** 0.1205*** 0.1364*** 0.1399*** 0.1133*** 

 (0.01109) (0.009627) (0.009938) (0.01106) (0.01094) (0.01000) 
       
Growth rate from t-1 to t -0.004102 -0.009820 -0.008056 -0.004573 -0.003430 -0.01166* 
 (0.007033) (0.006939) (0.007006) (0.007028) (0.007043) (0.006949) 
       
Civil-only R&D firm  0.04815*** 0.05062*** 0.05117*** 0.04924*** 0.04760*** 0.05262*** 
 (0.01419) (0.01422) (0.01420) (0.01418) (0.01416) (0.01420) 
       
Firm UK owned 0.1010*** 0.09330*** 0.09531*** 0.1012*** 0.1022*** 0.09080*** 
 (0.02954) (0.02959) (0.02958) (0.02954) (0.02949) (0.02963) 
       
Pavitt class 1 0.1397*** 0.1591*** 0.1593*** 0.1435*** 0.1394*** 0.1646*** 
 (0.04145) (0.04129) (0.04131) (0.04144) (0.04132) (0.04144) 
       
Pavitt class 2 0.2146*** 0.2172*** 0.2177*** 0.2143*** 0.2114*** 0.2165*** 
 (0.04169) (0.04174) (0.04179) (0.04172) (0.04166) (0.04186) 
       
Pavitt class 3 0.05476 0.06212 0.06216 0.05557 0.05343 0.06576 



 (0.04774) (0.04778) (0.04785) (0.04776) (0.04771) (0.04783) 
       
Pavitt class 5 0.07832 0.07409 0.07420 0.07935 0.07978 0.07663 
 (0.07521) (0.07523) (0.07531) (0.07525) (0.07514) (0.07540) 
       
Real effective exchange 
rate 

-0.06605*** -0.06613*** -0.06620*** -0.06608*** -0.06607*** -0.06632*** 

 (0.001107) (0.001108) (0.001108) (0.001107) (0.001105) (0.001112) 
       
Crisis dummy = 1 in 1998, 
2001 and 2008 

-0.1216*** -0.1280*** -0.1248*** -0.1233*** -0.1212*** -0.1284*** 

 (0.008823) (0.008842) (0.008877) (0.008827) (0.008822) (0.008856) 
       
Log (FTSE350)  1.0166*** 1.0047*** 1.0096*** 1.0134*** 1.0219*** 0.9999*** 
 (0.04127) (0.04109) (0.04118) (0.04124) (0.04126) (0.04117) 
       
       
Constant -2.0051*** -1.7676*** -2.5343*** -2.7067*** -2.0407*** -2.3950*** 
 (0.3528) (0.3461) (0.4015) (0.4047) (0.3538) (0.3965) 
2-digit industry dummies Yes Yes Yes Yes Yes Yes 
       
Ln(Sigma) -0.3185*** -0.3172*** -0.3165*** -0.3181*** -0.3194*** -0.3154*** 
 (0.01076) (0.01077) (0.01077) (0.01077) (0.01077) (0.01081) 
Observations 127735 127697 127780 127720 127709 127813 
AIC 34786.4 34855.8 34899.4 34802.5 34811.2 34876.8 
BIC 35157.2 35226.5 35270.2 35173.3 35182.0 35247.7 
Number of subjects 28607 28610 28615 28604 28598 28613 
Number of failure times 27154 27170 27129 27144 27130 27131 
Log likelihood -17355.2 -17389.9 -17411.7 -17363.3 -17367.6 -17400.4 
 

Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All firms born in 1974 and after. 

Observations in the top 1% of the R&D intensity distribution for each R&D category are excluded.  

 

Finally, we checked whether estimation results are robust to model specification by following a step-

wise estimation routine. We first estimated the model with total R&D intensity and its square. We 

subsequently added firm-specific covariates followed by industry covariates and macroeconomic 

environment factors. We also experimented with 1-digit and 2-digit industry dummies. The results in 

Table 5 are consistent with the baseline model, with the exception of the most truncated version. In 

that version, which includes only R&D intensity, its square and industry dummies the non-monotonic 

relationship between R&D intensity and survival was still evident. However, the coefficients had 

opposite signs to the baseline model. This is to be expected as the bare model is mis-specified.6 

 

 

 

  

                                                           
6 We estimated step-wise regressions for other R&D types in the baseline model. The results are similar. These 
results are available on request. 



Table 5: R&D expenditures, source of funding and firm survival: Step-wise estimation 
 

 (1) (2) (3) (4) (5) 
      
Log (R&D intensity + 1) -0.6367*** 0.4432*** 0.3899*** 0.2707*** 0.2729*** 
 (0.06309) (0.06993) (0.07343) (0.05748) (0.05647) 
      
Log (R&D intensity + 1) sq.  0.2441*** -0.1403*** -0.1772*** -0.1398*** -0.1434*** 
 (0.03433) (0.03478) (0.03490) (0.02787) (0.02751) 
      
Herfindahl index (HI)   0.1927* -0.1072 -0.04956 
   (0.1017) (0.07739) (0.08064) 
      
Log (R&D int.)*HI    1.5057*** 0.6047*** 0.6100*** 
   (0.2443) (0.1711) (0.1714) 
      
Log (age + 1)  0.2143*** 0.2174*** 0.3966*** 0.4080*** 
  (0.01860) (0.01865) (0.01418) (0.01413) 
      
Log (employment + 1)  0.2849*** 0.2805*** 0.2542*** 0.2591*** 
  (0.02314) (0.02310) (0.01742) (0.01759) 
      
Log (employment + 1)  sq.  -0.02578*** -0.02529*** -0.02777*** -0.02824*** 
  (0.003362) (0.003351) (0.002522) (0.002546) 
      
Log (live local unit + 1)  -0.09246*** -0.09677*** 0.03244 0.02394 
  (0.02652) (0.02653) (0.02006) (0.02008) 
      
Log (deflated turnover per 
employee + 1) 

 0.2052*** 0.2051*** 0.1063*** 0.1066*** 

  (0.01136) (0.01137) (0.008406) (0.008413) 
      
Growth rate from t-1 to t  -0.009088 -0.005281 0.01949*** 0.01987*** 
  (0.006722) (0.006763) (0.005245) (0.005191) 
      
Civil-only R&D firm   -0.05170*** -0.04891*** 0.08540*** 0.09196*** 
  (0.01437) (0.01402) (0.01109) (0.01071) 
      
Firm UK owned  0.1402*** 0.1369*** 0.08183*** 0.08343*** 
  (0.03149) (0.03151) (0.02358) (0.02326) 
      
Pavitt class 1   0.008330 0.1086*** -0.02663 
   (0.04368) (0.03310) (0.1035) 
      
Pavitt class 2   0.1612*** 0.1771*** 0.1979*** 
   (0.04418) (0.03327) (0.06720) 
      
Pavitt class 3   -0.01445 0.03088 0.05278 
   (0.05032) (0.03784) (0.06493) 
      
Pavitt class 5   0.1193 0.09081 0.09868 
   (0.08201) (0.05972) (0.07729) 
      
Real effective exchange rate    -0.06260*** -0.06145*** 
    (0.0007987) (0.0007983) 
      
Crisis dummy = 1 in 1998, 
2001 and 2008 

   -0.4850*** -0.4741*** 

    (0.006273) (0.006350) 
      
Log (FTSE350)     1.1067*** 1.0958*** 



    (0.02943) (0.02948) 
      
Constant 0.2982 -1.8928*** -2.0670*** -3.9136*** -3.5449*** 
 (0.2792) (0.3496) (0.3526) (0.3845) (0.3380) 
1 or 2 digit industry 
dummies 1 digit 1 digit 1 digit 1 digit 2 digit 
      
Ln(Sigma) -0.01465** -0.07707*** -0.07802*** -0.2997*** -0.3110*** 
 (0.005747) (0.006293) (0.006350) (0.006297) (0.006376) 
Observations 170166 168843 168843 168843 168843 
AIC 73919.4 70520.4 70377.0 58714.9 58216.2 
BIC 74140.4 70821.5 70738.3 59106.3 59260.0 
Number of subjects 37026 36836 36836 36836 36836 
Number of failure times 40732 39990 39990 39990 39990 
Log likelihood -36937.7 -35230.2 -35152.5 -29318.4 -29004.1 

 

Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. All firms born in 1974 and after. 

Observations in the top 1% of the total R&D intensity distribution are excluded 

 

A few observations are in order now that we have presented the results from various 

robustness checks. First, we can reiterate the two conclusion we derived from the baseline 

estimations in Table 2 above: (i) the data lends support to hypotheses 2 and 3 that posit a 

quadratic relationship between R&D intensity and firm survival. This relationship follows an 

inverted-U pattern and remains robust to different types of R&D, with the exception of publicly-

funded business R&D; and (ii) the data also lends support to hypothesis 1, which posits that 

R&D intensity is more likely to increase survival time in more concentrated industries and the 

effect of market concentration on survival is ambiguous.  

Secondly, the estimated coefficients for R&D intensity and its square retain their signs, but their 

magnitudes differ between different estimations. Yet, the turning points are more or less the 

same as the baseline model – usually within the top quartile of the R&D intensity distribution 

for total, current and private R&D. The notable exception is publicly-funded R&D intensity, 

which does not remain significant in the robustness checks.  However its interaction with 

market concentration remains significant and positive, indicating that publicly-funded R&D 

tends to increase survival time as the level of market concentration increases.  

Third: estimates for the effects of other firm-level covariates such as age and size remain robust 

to sample selection and model specification. Age is positively related to survival whilst size has 

an inverted-U relationship with survival. These findings are in line with theoretical predictions 

in Hopenhayn (1992) and Ericson and Pakes (1995); and with empirical findings reported in 

(Geroski, 1995), Cefis and Marsili (2005), Doms et al (1995) and Disney et al (2000).  

Fourth: our findings indicate that real turnover per employees (as a crude measure of 

productivity) has a positive effect on survival time; and the effect is consistent across 

estimations and samples. This is in line with theoretical predictions in Hopenhayn (1992) and 

Ericson and Pakes (1995); and with empirical findings in (Audretsch, 1991), Cefis and Marsili 

(2005), Mata et al (1995), and Agarwal (1997). Also, we find that the growth rate of firm output 

(measured as deflated turnover) has a positive and significant effect on survival time in 

contemporaneous estimations; but the growth rate in the preceding year has no effect. Our 

findings for the contemporaneous growth effect are in line with Audretsch (1991), Hopenhayn 

(1992) and Ericson and Pakes (1995). The lagged effect, however, is not tested in previous 



studies. Our finding indicates that growth performance in the previous year does not 

necessarily increase survival time as past growth is not a predictor of growth in the current 

year, when the firm has to decide about exit or persistence on the basis of its market 

opportunities.  

Fifth: We find that two firm characteristics that may be specific to UK firms have consistent 

effects on survival - UK ownership and engagement in civil R&D only.  In all estimations, firms 

that engage in civil R&D only have higher survival rates compared to those that engage solely 

or partly in defence-related R&D. We think that this is due to absolute and relative decline in 

defence expenditures in the UK. Since the end of the Cold War, UK defence R&D expenditures 

fell from £5 billion in 1989 to £2 billion in 2012 (constant prices).  In addition, the gap between 

civil and defence R&D expenditures has widened in favour of the former from £10 to £22 billion 

over the same period (ONS, 2014). During this process, some of the firms engaged solely or 

partly in defence-related R&D may have exited due to reduced subsidies or lower demand for 

defence-related R&D or both. In addition, we also find largely consistent evidence indicating 

that UK firms tend to have higher survival rates compared to foreign-owned firms. We think 

that this may be due aggressive relocation decisions of foreign firms, which are usually 

subsidiaries of multinational corporations in search of optimal location.  

The evidence on the survival of multi-plant firms is mixed. Multi-plant firms tend to have higher 

survival rates only in the estimation where we control for left truncation. In other estimations, 

the number of live local units is either insignificant or does not remain robust to model 

specification. This finding indicates that firms with larger numbers of local units may enjoy 

longer survival time only if the risk pool consists of firms born in the same year or thereafter.  

In contrast, when the risk pool consists of newly-born firms with a large number of local units 

and others that had survived with smaller or zero local units, the number of local units is not a 

significant determinant of survival time.  

Sixth: Our findings concerning Pavitt technology classes indicates that firms in industries 

specialised in the supply of technology (Pavitt class 2) tend to have higher survival rates 

compared to firms in other classes and the supplier-dominated technology (Pavitt class 4). In 

contrast to findings from non-parametric estimations results in Figure 1 above, lower survival 

rates in the science-based technology class (Pavitt class 1) do not hold when the survival rates 

are conditioned on firm, industry and macroeconomic covariates.  

Finally: Our findings indicate that the macroeconomic environment has significant effects on 

firm survival. Currency appreciation tends to reduce survival rates due to reduced international 

competitiveness. This is in line with Holmes et al. (2010) and Bhattacharjee et al. (2009), who 

report real appreciation has a negative effect on survival of small and medium-sized enterprises in 

Northern Ireland. It is also in line with simulations results reported by Goudie and Meeks (1991), 

who utilised a demand-driven Keynesian model and demonstrated that larger number of UK 

firms are liable to failure when the currency appreciates. Of other indicators of the macroeconomic 

environment, the FTSE-350 index is found to have a positive effect on survival time; and the effect is 

consistent across samples and model specifications. This is in line with Jensent et al. (2008), who report 

that an increase in the stock market index increases the survival time of Australian firms. Finally, we 



find that the survival rate is significantly lower in the first year of periodic crisis, including the East Asian 

crisis of 1998, the dot.com bubble of 2001, and the first full-year of the recent financial crisis in 2008.  

 

5. Conclusions  

The findings in this study add to the existing evidence base concerning the relationship between 

firm-, industry- and macro-level variables and firm survival. This is done by drawing on a rich 

dataset for UK firms from 1997-2012 and conducting a number of robustness checks. The 

findings from a log-normal survival model indicate that age is positively related to survival time 

whereas size has an inverted-U relationship with survival. Also, higher levels of firm 

productivity are associated with longer survival time; but the growth of firm output increases 

survival time only when the effect is estimated contemporaneously. Finally, macroeconomic 

indicators such as business cycles and real currency appreciation affects survival time – and the 

estimated effects are in line with the existing literature. 

However, this study has also contributed to existing knowledge about the relationship between 

innovation and market structure on the one hand and firm survival on the other. We have 

demonstrated that it is more appropriate to model the relationship between innovation 

(proxied with R&D intensity) and survival as a quadratic relationship. The quadratic 

relationship is driven by three factors: (i) the initial level of market concentration; (ii) the 

quadratic relationship between the rate of innovation (creative destruction) and productivity 

in Schumpeterian models; and (iii) the increased risk associated with increased size of the R&D 

projects in stochastic models of firm dynamics. In this setting, market concentration on its own 

may not affect survival rates directly, but it is one of the factors that mediates the relationship 

between innovation intensity and survival.  

Using UK data for 39,705 firms from 1997-2012, our findings indicate that the relationship 

between R&D intensity and survival has an inverted-U shape. As R&D intensity increases from 

low initial level, survival rates increase but at slower rates. After the turning point, higher levels 

of R&D intensity may reduce survival rates. These findings are robust to left truncation, control 

for simultaneity bias and step-wise estimations. They are also consistent between different 

R&D types – including total R&D, extramural R&D, intramural R&D (not reported here due to 

space constraints), privately-funded R&D and current or capital R&D intensities.  

We also find that market concentration on its own does not have a significant effect on survival, 

with the exception of lagged estimations that control for simultaneity bias. This finding is 

compatible with the hypothesis that we tested in this study: the level of market concentration 

has an ambiguous effect on survival, but it has a positive effect when interacted with R&D 

intensity. Stateed differently, firms that increase their R&D intensities in relatively more 

concentrated market have better chance of survival compared to those that innovate in less 

concentrated markets. This finding suggests that a Schumpeterian effect is at work: innovation 

tends to pay off more if the firm already has some market power. 

Our findings go some way towards explaining the varied and often conflicting findings reported 

on the relationship between innovation and firm entry/exit. The existing work, with the 



exception of Sharapov et al (2011), adopts a linear modelling approach. Hence, it is not 

surprising that some studies may report a positive relationship while others report a negative 

one. Such discrepancy may well be related to different levels of market concentration, different 

levels of initial R&D intensities, and different levels of risk associated with R&D projects. The 

mediating effects of such factors cannot be captured through linear estimations. Hence, they 

depict the part of the elephant they touch but not the full picture of the beast. Quadratic 

specifications go some way towards providing a less partial account of the relationship between 

innovation and survival. 
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Appendix 

Table A1: Summary statistics - variables in levels 

Variable Observations Mean 

Coefficient of 

variation Skewness 

Total R&D intensity 183105 0.158 2.387 5.619 

Extramural R&D intensity 183105 0.009 3.367 8.348 

Capital R&D intensity 183105 0.009 2.691 7.146 

Current R&D intensity 183105 0.137 2.410 5.681 

Private R&D intensity 183105 0.129 2.411 5.867 

Public R&D intensity 183105 0.019 3.517 7.161 

Total R&D intensity sq. 183105 0.167 6.258 12.688 

Extramural R&D intensity 

sq. 183105 0.001 9.449 18.067 

Capital R&D intensity sq. 183105 0.001 8.152 18.769 

Current R&D intensity sq. 183105 0.129 6.329 12.827 

Private R&D intensity sq. 183105 0.114 6.523 13.412 

Public R&D intensity sq. 183105 0.005 8.104 14.781 

Total R&D intensity*HI 183105 0.015 3.414 11.815 

Extramural R&D 

intensity*HI 183105 0.001 4.723 16.636 

Capital R&D intensity*HI 183105 0.001 3.893 20.302 

Current R&D intensity*HI 183105 0.013 3.458 12.501 

Private R&D intensity*HI 183105 0.012 3.481 13.634 

Public R&D intensity*HI 183105 0.002 4.374 13.033 

Age 183105 14.329 0.601 0.461 

Size (employment) 183105 114.126 9.903 68.412 

Size squared 

(employment)^2 183105 129x104 77.622 117.949 

Live local unit (plants other 

than HQ) 183105 1.932 17.766 167.212 

Deflated turnover per 

employee 182905 212.310 28.783 127.214 

Growth of deflated turnover 170725 0.044 14.606 0.670 

Civil dummy = 1 if firm 

engages in civil R&D only 183105 0.415 1.186 0.343 

UK ownership dummy -- 1 

if firm is UK owned 183105 0.882 0.366 -2.365 

Herfindahl index (HI) 

measure of concentration 183105 0.098 1.092 3.095 

Pavitt technology class 1 

(science-based) 183105 0.352 1.356 0.618 

Pavitt technology class 2 

(specialised suppliers of 

technology)) 183105 0.217 1.901 1.375 

Pavitt technology class 3 

(scale-intensive) 183105 0.094 3.105 2.783 

Pavitt technology class 4 

(supplier-dominated) 183105 0.273 1.633 1.021 



Pavitt technology class 5 

(others) 183105 0.064 3.817 3.555 

Average effective real 

exchange rate 183105 92.463 0.101 -0.294 

Crisis dummy = 1 if year--

1998, 2001 and 2008 183105 0.153 2.356 1.931 

FTSE 350 index 183105 2791.732 0.130 -0.392 

     

Number of firms 39705    

 

Note: the sample consists of all firms born in 1974 or after; but it excludes firms in the top 1% of the 

R&D intensity distribution for each R&D category.



Table A2: Summary statistics - variables in logs 

Variable Observations Mean Coefficient 

of variation 

Skewness 

Log (Total R&D intensity + 1)  183105 0.118 1.782 3.454 

Log (Extram. R&D intensity + 1)  183105 0.009 3.149 7.434 

Log (Capital R&D intensity + 1)  183105 0.009 2.557 6.446 

Log (Current R&D intensity + 1) 183105 0.105 1.832 3.600 

Log (Private R&D intensity + 1) 183105 0.100 1.831 3.726 

Log (Public R&D intensity + 1) 183105 0.017 3.198 6.051 

Log (Total R&D intensity) squared 183105 0.058 3.854 7.067 

Log (Extram. R&D intensity) sq. 183105 0.001 8.395 16.010 

Log (Capital R&D intensity) sq. 183105 0.001 7.305 16.374 

Log (Current R&D intensity) sq. 183105 0.048 4.010 7.372 

Log (Private R&D intensity) sq. 183105 0.044 4.127 7.702 

Log (Public R&D intensity) sq. 183105 0.003 6.836 12.127 

Log(Total R&D intensity)*HI 183105 0.011 2.645 8.501 

Log(Extramur. R&D intensity)*HI 183105 0.001 4.455 15.312 

Log(Capital R&D intensity)*HI 183105 0.001 3.720 18.308 

Log(Current R&D intensity)*HI 183105 0.010 2.711 8.964 

Log(Private R&D intensity)*HI 183105 0.009 2.739 9.581 

Log(Public R&D intensity)*HI 183105 0.002 4.019 11.578 

Log(Age + 1) 183105 2.530 0.274 -0.797 

Log(Employment + 1) 183105 2.853 0.600 0.584 

Log(Employment) squared  183105 11.066 1.086 1.938 

Log (Local plant + 1)  183105 0.643 0.894 2.266 

Log (Deflated T/O per employee + 1) 182905 4.265 0.248 0.121 

Growth of deflated turnover 170725 0.044 14.606 0.670 

Civil dummy = 1 if firm engages in 

civil R&D only 

183105 0.415 1.186 0.343 

UK ownership dummy = 1 if firm is 

UK owned 

183105 0.882 0.366 -2.365 

Herfindahl index (HI)  183105 0.098 1.092 3.095 

Pavitt technology class 1 (science-

based) 

183105 0.352 1.356 0.618 

Pavitt technology class 2 (specialised 

suppliers of technology)) 

183105 0.217 1.901 1.375 

Pavitt technology class 3 (scale-

intensive) 

183105 0.094 3.105 2.783 

Pavitt technology class 4 (supplier-

dominated) 

183105 0.273 1.633 1.021 

Pavitt technology class 5 (others) 183105 0.064 3.817 3.555 

Average effective real exchange rate 183105 92.463 0.101 -0.294 

Crisis dummy = 1 if year = 1998, 2001 

and 2008 

183105 0.153 2.356 1.931 

Log (FTSE 350 index) 183105 7.926 0.017 -0.613 

     

Number of firms 39705    

Note: the sample consists of all firms born in 1974 or after; but it excludes firms in the top 1% of the R&D 

intensity distribution for each R&D category.  

 


