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Abstract 
 
Rainfall is a truly exogeneous variable and hence popular as an instrument for many outcomes. 
But by its very nature, rainfall in nearby areas tends to be correlated. I show theoretically that if 
there are also spatial trends in outcomes of interest, this may create spurious correlation. In 
panel data models where fixed features can be dummied out, the same problem can occur if time 
trends are spatially dependent. Using Monte Carlo analysis, I show that standard tests can reject 
true null hypotheses in up to 99% of cases. I also show that this feature is present in a study of 
the effect of precipitation on electoral turnout in Norway. Using precipitation on non-election 
days, I show that the distribution of parameter estimates is far away from the theoretical 
distribution. To solve the problem, I suggest controlling for spatial and spatio-temporal trends 
using multi-dimensional polynomial approximations. 
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1 Introduction

In empirical economic research, truly exogenous variables are sought after, as they are a

potential sources of exogenous variation which may provide causal inference. One such

variable that has captures ample attention is the weather: Few suspect that human actions

affect the weather in the short run, and the weather has a potential impact on a number of

outcomes.

But by its very nature, rainfall is spatially correlated: If it’s raining in one location, the

likelihood of rain in nearby areas is high. In this paper I show that this induces a danger of

spurious correlations if there are also trends in the outcomes of interest.

In cross sectional data, it is common to observe spatial patterns in many outcomes. When

these are regressed on rainfall, the spatial patterns in the two variables is almost always going

to coincide in one way or another. Even if there are no real relationship between the two,

conventional tests will indicate a relationship. In panel data, where spatial trends can be

controlled by fixed effects, the same problem may arise if there are spatially dependent trends

in the outcomes of interest.

As an example, consider the relationship between electoral turnout and rainfall. There

may be good reasons to expect a relationship between turnout and rainfall on election day.

But rainfall on other days, with a possible exception of a few days prior to the election,

should not have any impact. Using data from Norwegian municipal elections, I study the

effect of rainfall on any day in window between 600 days before and 600 days after the

election.1

In these analyses we should only expect to find significant results due to the expected

Type I errors determined by the level of significance. That is not the case. Rather, a 5 %

significance test reject the hypothesis of no effect of precipitation 70.8 % of the cases.2 The

estimated t-values are shown in Figure 1. Although the distribution is symmetric around

zero, the variance is much higher than the expected level of unity. Moreover, the distribution

is not normal as the tails are lighter than the normal kurtosis.

In this paper, I provide an explanation for such spurious findings. In the case of Nor-

wegian municipal elections, there is a spatio-temporal trend in turnout: in the eastern part

turnout has decreased faster than national averages whereas the decline has been less fast in

the western part. These trends are not controlled away by two way fixed effects. Moreover,

as there is spatial dependency in rainfall data, the probability of generating either positive

or negative correlation between the two is high. As trends are common in many types of

1The estimation uses data from ten elections between 1971 and 2007 using a two way fixed effects speci-
fication. See Section 5.3 for further details.

2One explanation for this feature could be that the distribution of precipitation has heavy tails or other
irregularities in the data. However, results remain the same if one looks at dummies for precipitation above
different thresholds, normalize by municipality means or variances, normalize the turnout variable and so
on.

2



Figure 1: Regression coefficients
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Notes: The graph shows the coefficient from two way fixed effects regression of electoral
turnout on daily precipitation. Precipitation for 600 days before to 600 days after election
day employed, but data from +/- 10 days are excluded.

outcomes, a proper understanding of these complications is key to a proper use of weather

data in any analysis.

My suggested solution to the problem is to add a parametric trend. In the cross sectional

spatial case, such a trend would be a low dimensional polynomial in geographical coordinates.

In the case of panel data, we want a time trend whose slope varies geographically, so the slope

of the trend is modeled by a similar polynomial in geographical coordinates. Although any

polynomial can in theory be used, sequences of orthogonal polynomials have good numerical

stability. In the current study, I focus on tensor products of Legendre polynomials, which

seem to perform well.

The use of meteorological data in empirical analyses has skyrocketed in recent years.

Some of these take worries of spurious correlations into account by running placebo studies,

but far from all. Among the first applications where studies using annual and seasonal

weather conditions to study agricultural output and hence serve as an instrument for income

– see Dell et al. (2014) for a survey of this literature. More recently, short term weather

conditions have also caught researchers’ attention.One strand of literature is based on the

relationship between weather conditions and people’s mood.3 An early contribution along

these lines is Saunders’ (1993) finding that US daily stock prices are affected by weather

conditions in New York City, where they were traded.4

3See Cunningham (1979) for a seminal contribution and e.g. Denissen et al. (2008) and Keller et al.
(2005) for more recent contributions.

4See e.g. Frühwirth and Sögner (2015) for an updated overview of the relationship between financial
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Starting with Gomez et al. (2007) and Hansford and Gomez (2010), there is also by now a

fairly large literature on the relationship between election day weather and turnout. Beyond

the US, the question has been studied in Japan, Holland, Spain, Italy, Sweden, and Norway

(Horiuchi and Saito, 2009; Eisinga et al., 2012b,a; Artés, 2014; Sforza, 2013; Lo Prete and

Revelli, 2014; Persson et al., 2014; Lind, 2014). In many studies, it is found that rain on

election day reduces turnout, but in Sweden there seems to be essentially no relationship

between the two and in Norway the relationship is positive. Daily weather conditions have

also been found to have an impact on participation in civil rights riots in the 1960s (Collins

and Margo, 2007), Tea Party rallies (Madestam et al., 2013), and May day demonstrations

(Kurrild-Klitgaard, 2013).

There is also clear evidence that the weather on a specific day affects the labor market:

Male works have been found to work more on rainy days (Connolly, 2008) and labor pro-

ductivity seems to be higher (Lee et al., 2014). Graff Zivin et al. (2015) find that NLSY

survey respondents’ math performance depends on the temperature on the day of observa-

tions. Connolly (2013) shows that answers to well-being surveys are affected by the weather

on the interview day. Guven and Hoxha (2014) build on this research and use sunshine as

an instrument for happiness to find the effect of happiness on willingness to take risk.

In other studies of the effect of daily weather conditions, Simonsohn (2010) find that the

probability of enrollment into colleges is related to cloud cover of the day of visiting the

college. Busse et al. (2014) find that the car purchase decisions are affected by daily weather

conditions: it is more common to buy convertibles on warm days without rain and 4x4s on

cold days with rain or snow. Carr and Doleac (2014) use variation in rainfall in the afternoon

on incapacitating potential offenders to derive the causal effect of potential offenders on gun

violence. Sen and Yildirim (2015) use rain on a given day as an instrument for the number

of readers an online newspaper article gets, based on the idea that potential readers spend

more time indoors on rainy days and hence have more time to read online newspapers.

The paper is also related to literature on spurious regressions in time series. In some ways

it relates to the presence of spurious regression in regressions with non-stationary variables

(Granger and Newbold, 1974; Phillips, 1986). Also, my suggested solution by estimation

spatial or spatio-temporal trends relates to the literature on time trends (Sims et al., 1990).

As this concerns units in space, it also relates to the massive literature on spatial statistics5

and the more modest literature on spatial econometrics.6

The literature on spatio-temporal statistics has a strong focus on space-time autoregres-

sive moving average (STARMA) type models (Cliff et al., 1975; Pfeifer and Deutsch, 1980),

characterized by linear dependence lagged in both space and time. Such models can also

markets and the weather.
5Cressie (1993) and Ripley (2004) provide introductions to parts of the literature.
6See e.g LeSage and Pace (2009) for an introduction.
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be extended to regression frameworks with spatial autoregressive distributed lags models

(Elhorst, 2001). Although these models may be suited to handle the problem at hand, their

main problem is that they are difficult to identify and estimate by themselves. When we also

want to add panel data features, clustered standard errors, instrumental variables or discon-

tinuity designs, they become intractable and not useful for practical applications. Hence I

have chosen to rely on a simpler approach.

My suggested solution is to allow for a spatially varying time trend. This relates to

the literature on varying coefficients (Hastie and Tibshirani, 1993) and particularly spatially

varying coefficients (Gelfand et al., 2003). Specifically, Hoover et al. (1998) and Huang et al.

(2002) estimate varying coefficients models where they model the coefficients by regularized

basis functions as I suggest (albeit using B-splines rather than polynomial bases).7 However,

they consider coefficients varying in time, not in space. To the best of my knowledge, the

only spatial application of the methodology is Zhu et al. (2014) who study MRI images.

Finally, there is a quite substantial literature on spatio-temporal modeling of weather

phenomena(Stern and Coe, 1984; Brown et al., 2001; Velarde et al., 2004), but this literature

generally has completely different objectives than the current paper.

2 The problem

A simple way to illustrate how the problem of spurious correlation may arise is the following

specification: Consider N observations on a line. The explanatory variable is generated by

K shocks νk ∼ iid(0, σ2
ν) for k = 1, . . . , K. The location of shock k is pk ∈ [1, N ]. In the

case of precipitation, we may think of each shock as a weather system with intensity νk and

center at pk. At position i, the total effect of shocks is ri =
∑

k
νk

1+d(i,pk)
where d is a distance

function which satisfies d(i, i) = 0 and d(i, j) > 0 when i 6= j. This is essentially a radial

basis function network, which is commonly used to approximate functions (Buhmann, 2003).

Hence this model should approximate a wide varieties of spatial patterns found in real life.

To simplify the analysis, I here focus on d(i, j) = |i−j|; for a plane we can use the Euclidean

distance.

The outcome variable is

yi = α + βri + τi + εi (1)

where τi is a trend that we simply define as τi = τi for some number τ . We want to test the

hypothesis that β = 0, and the issue is the effect of neglecting the trend τi. The core of the

problem is that the regression analysis may mistake the trend τ for the signal ri.

Assume first that K = 1, i.e there is only one shock. The situation is illustrated in Figure

2. As is apparent from the figure, whenever the “position” of the shock is p 6= N
2

, there is

7See also Matsui et al. (2011, 2014) for some recent development.
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Figure 2: The stylized econometric model
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Notes: Panel (a) shows the simulated yi and riagainst the observation number i. Panel (b)
shows a scatter plot of yi versus ri as well as a linear fit of the data. Data are simulated for
β = 0.

scope for the shock to pick up parts of the trend. I show formally that this is indeed so

below. Moreover, as N grows, the problem does not diminish but rather get more acute.

To see the problem formally, consider the situation where the data are generated by (1),

but where we fail to control for the trend in the analysis. The OLS estimator then yields

β̂ = β +

∑
(ri − r̄)εi∑
(ri − r̄)2

+ τ

∑
(ri − r̄)i∑
(ri − r̄)2

(2)

In a finite sample with εi ∼ NID (0, σ2), the first fraction has a normal distribution

and is handled by ordinary hypothesis testing. 8 The second term, which stems from the

omitted variable, is more problematic. In applied research much emphasis is on statistical

significance, hence the t-values. Without loss of insight, I assume that σ is known so we can

concentrate on z-values. We can split the z-value into to components

z =

∑(
1

1+|P−i| − w̄
)
εi
σ√∑(

1
1+|P−i| − w̄

)2

︸ ︷︷ ︸
A

+
τ

σ

∑(
1

1+|P−i| − w̄
)
i√∑(

1
1+|P−i| − w̄

)2

︸ ︷︷ ︸
B

(3)

The first term, A is a weighted sum of standard normally distributed variables so the first

term, A ∼ N(0, 1). This is not the case for the second term, B. Here the numerator grows

8However, as N → +∞, we get 1
N

∑
(ri − r̄)2 → 0, so even with τ = 0, β̂ would not be consistent

with a single shock. When we let the number of shocks K grow as the sample size grows, this also assures
convergence of estimators.
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infinitely whereas the denominator goes to zero.

First, I show in Appendix (A.1) that the expression 1
N

∑(
1
|P−i| − w̄

)
i converges to a

logarithmic function and hence diverges as N →∞. The proof is based on showing that the

expression can be sandwiched between two harmonic sequences which both have logarithmic

growth.

In Appendix A.2, I show that as N →∞, 1
N

√∑(
1

1+|P−i| − w̄
)2

→ 0. This is based on

showing that
∑(

1
1+|P−i| − w̄

)2

, which is closely related to a sum of the reciprocals of the

squares of natural numbers. As N →∞, this is known to approach to the constant π2

6
, and

similarly the sum at hand also converges to a constant. Consequently, the expression goes

to 0 at rate O
(

1
N

)
. This leads to the following result:

Proposition 1. For K = 1, B = τ
σ

∑
( 1
1+|P−i|−w̄)i√∑
( 1
1+|P−i|−w̄)

2
→∞ as N →∞.

It follows that the z-value of the test for β = 0 diverges as N →∞, even when the true

β = 0. Consider next the case of multiple shocks. If there is a fixed number of shocks K,

then the conclusions from the analysis above remains essentially unchanged when N becomes

large: The numerator of (3) still has logarithmic growth9 and the denominator goes towards

zero. If, however K keeps growing linearly with N , then the situation improves. In this case

the denominator converge to a non-zero constant. However, the numerator still diverges.

Table 1 shows a Monte Carlo analysis of the above model for sample sizes between 10 and

10000 and number of shocks varying from 1 to 20000. The simulations are based on a model

where the true β = 0 so t-tests should reject at the rate of the test. First, we recognize the

diverging t-values: The larger the sample gets, the more likely the t-test is to reject. A test

at the 5 % level rejects in about half of the cases for small samples and in more than 80 %

of cases in larger samples.10 Rejections rates and values of |t| are slightly smaller for larger

numbers of shocks, but this is not enought to take levels down to reasonable magnitudes.

3 More realistic models

3.1 Spatial models

In many real world applications, the assumption of a linear world is too restrictive.11 A

more realistic assumption is a spatial data structure where it is meaningful to talk about the

9There may be shock on either side of N
2 , but with probability 1 the shows on one side or the other

dominate the other.
10These numbers could of course be reduced by increasing the noise, i.e. increasing the variance of εi, but

this does not reduce the importance of the problem.
11An exception is time series data, but the current modeling of shocks does not seem particularly relevant

to that case.
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Table 1: A Monte Carlo analysis of the simple model

K

N 1 2 5 10 100 N 2N

10 0.59 0.57 0.51 0.49 0.49 0.49 0.51
2.6 2.6 2.4 2.4 2.4 2.3 2.3

50 0.77 0.67 0.64 0.66 0.62 0.62 0.63
3.9 3.5 3.4 3.4 3.3 3.3 3.5

100 0.79 0.74 0.69 0.68 0.67 0.67 0.66
4.3 4 3.8 3.8 3.8 3.8 3.7

1000 0.86 0.82 0.82 0.80 0.78 0.75 0.82
6.2 6.1 6 5.7 5.6 5.4 5.9

10000 0.90 0.88 0.86 0.87 0.83 0.86 0.83
8.8 8.5 8.2 8.3 7.9 7.7 7.9

Notes:The table shows the fraction of cases where a t-test of β = 0 is rejected at the 5 %
level (first line) and the average of the absolute value of the associated t-value (second line).
The true model is β = 0, τ = 1, εi ∼ N(0, 1), and for each k, νk ∼ N(0, 1) and the position
pk ∼ U(0, N). Each model is replicated 1000 times.

distance between two observations, and where units tend to be correlated with nearby units.

Denoting observation i’s geographical position (xi, yi), we can redefine the distance function

as d(i, p) =
√

(xi − xp)2 + (yi − yxp)2 and the trend as a spatial trend τi = τxxi + τyyi

for constants τx and τy. Such trends, sometimes with more sophisticated specifications, are

widespread in geographical data and their study goes at least back to Krumbein (1959; 1963)

and Tobler (1969). Without going into the formalism, it is easily seen that this model is

essentially equivalent to the model studied in Section 2, and hence that the same problems

arise. A Monte Carlo shown in Appendix Table A-1 shows that the problem is indeed still

present and if anything stronger than in the basic model.

3.2 Panel data models

In many applications including most of those mentioned in the introduction, we have access

to a panel of observations. This allows for controlling for unit fixed effects, which would

rule out the problem of the spatial trend τi. Time trends are also unproblematic as they

are routinely handled by year dummies. But if time trends depend on geography, that is we

have spatio-temporal trends, the problem studies above reappears. Consider the case where

zit = αi + β
∑

ri + τit+ εit (4)

8



with the trend τi = τxxi + τyyi for constants τx and τy. If we assume a balanced panel so we

can differentiate expression (4), we get

∆zit = β
∑

∆ri + τi + ∆εit

which essentially is specification (1). De-meaning of course yields similar results. The only

major difference is that we look at differenced shocks (or deviations from means). However,

these have the exact same properties of spatial correlation as the undifferenced shock, so the

issues studied in Section 2 still remain.

To see the effect of omitted spatio-temporal trends, Table 2 shows the results from some

Monte Carlo simulations of model (4) for different panel lengths, sample sizes, and number

of shocks. The conclusions are generally as above – the null hypothesis of no relationship

which should have been rejected in 5% of cases is rejected far too often and t-values are

typically high. Moreover, the problem is exacerbated by increasing sample sizes. There are

some indications that increased panel lengths reduces the problem. As time periods are

independent of each other, increasing T increases the (random) variation in ∆ri which helps

uncover its independence to ∆zit.

4 Detecting and solving the problem

The problem can usually be detected by examining the weather at counterfactual dates

as in Figure 1. If rejection rates differ markedly from the expected rates, some spatial or

spatio-temporal dependency may be the explanation although of course other explanations

obviously also exist. The next step should be to try to get some impression of the spatial

dependency. One way to do this is to simply plot maps of spatial values or estimated spatial

trends. In some cases it may also be useful to use testing procedures such as Moran’s I

statistic.

If a spatial pattern is found, two possible solutions can be pursued. The ideal solution

is to find the source of the dependency and expand the econometric specification to take

this into account. If, for instance, geographically different trends are due to geographical

differences in demographic patterns (say young people moving toward large cities), one could

potentially solve the problem by adding demographic controls. However, it may not always

be easy to find a simple explanation and there may not be a single explanation for the

geographical trend. In such cases, it may be a better option to attempt to control for the

geo-spatial trend. In the time series literature, this is usually done by simply including the

date as a variable, sometimes with a few polynomial terms. In the case of geographical data,

this may be too limiting.

What we want is to estimate a function T (x, y). Usually, the shape of T is unknown, so

9
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a flexible estimator in two-dimensional space is called for. Kernel based and other standard

non-parametric estimators are computationally intensive, and as their rate of convergence is

typically below
√
n, inference of the other variables in the regression can’t always be made

using standard techniques. Consequently, a simpler form may be advisable in many cases.

In the case of a panel, we to estimate a function T (x, y, t). As this is a function of

three variables, a fully flexible non-parametric approach gets even more demanding. At

least for short panels, it seems reasonable that the trend may be kept linear, so we can

rewrite T (x, y, t) = P (x, y)t for some function P . One solution that seems to work well for

the electoral turnout data considered below is one where P is specified as a tensor product

of Legendre polynomials.12 The choice of orthogonal polynomials is to reduce problems of

multicollinearity and improve numerical stability. One justification for choosing Legendre

polynomials is their orthogonality property with regard to an L2 inner product given a

uniform spatial distribution of units. Although the distribution is not exactly uniform, this

approach is likely to give better behavior than most other orthogonal polynomial bases that

provide orthogonality given various bell shaped distributions.

Given dimensionalities K and L, we then specify

T (x, y, t) = t
K∑
k=0

L∑
`=0

θk`Pk (x)P` (y) (5)

where Pi(·) is the i’th order Legendre polynomial. 13 The (K+ 1)(L+ 1) parameters θk` can

be estimated together with the other parameters in an ordinary regression model.

The choice of the dimensions K and L has to be chosen to make the polynomial (5)

provide a reasonable fit of the data. If K and L are chosen too high, there is both a danger

of over fitting Hastie et al. (2008, Ch. 7) and loosing so much variation that it becomes

impossible to identify the effect of the variable of interest. Hence we want would like a good

fit with a low dimensional polynomial. To make a good trade off, I recommend to consider

choosing K and L by maximizing a linear penalty function

R2 − ξ(K + 1)(L+ 1) (6)

where ξ is a penalty for more parameters to estimate. This is closely related to maximizing

the AIC and BIC criteria, but for varying penalties for the degrees of freedom. Varying

the parameter ξ, we can trace out the class of potentially good polynomial compositions.

It is also important to undertake counter factual estimations as in Figure 1 to check that

12See e.g. Judd (1998, Ch. 6) for an overview of Legendre polynomials and other polynomial basis with
applications in economics and Totik (2005) for the mathematical background.

13These polynomials are usually defined recursively with P0(x) = 1, P1(x) = x, and for i ≥ 2, Pi(x) =
[(2i− 1)xPi−1(x)− (i− 1)Pi−1(x)] /i where the variable x is normalized to be in the interval [−1, 1].
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the polynomial at hand actually solves the problem. If the fit is good enough, most of the

placebo variables should have little effect on the outcome. Another approach could also be

to choose K and L high, but constrain the θk` by employing ridge regression, LASSO, or

other versions of constrained estimation (Belloni et al., 2014; Hastie et al., 2008, Ch. 3).

5 Turnout in Norwegian elections

5.1 Data

As an application, consider the relationship between electoral turnout and rain considered,

that was also discussed in the Introduction. The meteorological data for this application are

created by the Norwegian Meteorological Institute (met.no). The data are based on daily

observations of precipitation at all 421 measurement stations in Norway, and based on spatial

interpolation using a residual kriging approach is applied Tveito and Førland (1999). First,

each observation is regressed on a number of geographic properties to separate between a

deterministic and a stochastic part. The residuals are then interpolated using kriging and

combined with deterministic parts to obtain a grid of 1 × 1 km cells for Norway. Average

precitipation values on election days are shown in Panel (a) of Figure 3. As one would

expect, average rainfall is larger along the west coast and in parts of the north.

I combine these data with GIS data on municipal boundaries to construct data on average

precipitation by municipality for each election year. Municipal boundaries have changed over

time, and GIS data on past municipal borders are essentially non-existent. To solve this I

map municipalities that no longer exist into their current municipality and use weather data

from the present day municipality. Data on electoral turnout taken from the recent collection

of Norwegian municipal data made available by Fiva et al. (2012), originating from Statistics

Norway and the Norwegian Social Science Data Services. See Lind (2014) for full details of

the data used. Panel (b) of Figure 3 show the average election day precipitation and turnout

for the period 1971-2007. There are no clear geographical trends in average turnout.

5.2 The spatio-temporal trend in turnout

As was already mentioned in the Introduction, when we do not control for spatio-temporal

trends we typically get large t-values when regressing turnout on precipitation both on

election day and almost any other day. One explanation for this finding could be outliers in

precipitation, which is well know to have a heavy right tail, and turnout. To show that this

cannot be the sole explanation, Figure 4 shows the distribution of the t-values in a number

of specifications that reduces the leverage of outliers. Panel (a) is the specification shown in

the introduction, where the level of turnout is regressed on the level of rain in millimeters.

12



Figure 3: Spatial averages

(a) Precipitation (b) Turnout

Notes: Panel (a) shows average precipitation on election day, averaged over the elections
1971-2007. Dark colors indicate high levels of precipitation. Panel (b) shows municipal
average turnout in the same elections. Dark colors indicate high turnout.
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Figure 4: Distribution of the t-values
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Notes: The graph shows the distribution of the t-values when regressing municipal turnout
on daily precipitation for 600 days before and after election day. The 10 days before and
after the actual election day are omitted. Panel (a) shows results from regressing levels on
levels. Panel (b) shows the regression of turnout on a dummy for more than 25 mm rain
while Panel (c) employs a dummy for any rain. Panel (d) shows results from a regression
where the rank of turnout is measured on the rank of rain, i.e. both variables are uniform
on the unit interval.
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Figure 5: Association between the t-values in the different specifications
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Notes: The graph shows the association between the t-values when regressing municipal
turnout on daily precipitation for 600 days before and after election day using four different
specifications. The 10 days before and after the actual election day are omitted.

Panels (b) and (c) replace the measure of precipitation with dummies for substantial rain,

defined as above 2.5 mm, and any rain at all. Finally, in Panel (d) both rainfall and turnout

are measured using their ranks so they both have a uniform distribution on the unit interval.

In all four cases, the distribution is far from the standard normal or t-distributions we would

expect. The four measured t-values are indeed heavily correlated as seen from the matrix

plot in Figure 5. This should indicate that mere outliers cannot explain the findings.

There is indeed strong spatio-temporal trends in the turnout data. Figure 6 shows the

municipality specific coefficients δi from a regression of the type

Turnoutit = αi + τt + δit+ εit (7)

Panel (a) shows the geographical distribution of temporal trends. It is clear that there is a

strong negative trend in the eastern part of the country and a positive trend in parts of the
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Figure 6: Spatio-temporal patterns in turnout

Trend × 1000
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Notes: The figure shows municipality specific coefficients δi from the regression (7). Red
areas are strong negative, blue areas strong positive.

16



west and the center. Panel (b) shows a Moran plot where the municipality specific coefficient

δi is plotted against the average δi in the adjacent municipalities. Again it is clear that there

is a spatial pattern. Formally, Moran’s I statistic is I = 0.456 and the Moran test for no

spatial dependency rejects with a p-value of 2.2× 10−16. We conclude that when controlling

for two way fixed effects, turnout has been declining in the eastern part of the country and

increasing in the western part. As shown in Sections 2 and 3, this can explain the t-values

shown in Figure 4.

5.3 Controlling for the spatio-temporal trend

As argued in Section 4, one way to handle the problem of spation-temporal trends is to

control them out in the estimation. I approximate the trend with the tensor product of

Legendre polynomials. The first step needed is to make a choice of how many polynomial

terms to include in each of the two dimensions. Figure 7 shows the the model’s fit (net of a

baseline model without spatio-temporal controls) for each combination of between 0 and 10

terms in each dimensions. Combinations of polynomial orders K and L that are maxima of

the penalized model (6) for some value of ξ, i.e. those which are elements of the convex hull

of the points, are shown in red. There is a strong increase in fit going up to about 15 terms,

then the effect of additional terms seems to flatten out. To avoid over fitting the data an

preserve some degrees of freedom, my preferred model specifies spatio-temporal trends using

a first order polynomial in the longitude and a sixth order polynomial in the latitude, using

13 terms and increasing the fit as measured by R2 by 0.083.

Adding more terms not only have a minor impact on the model’s fit, it turns out that the

exact specification of the spatio-temporal has little importance once we reach a minimum

level of complexity. Figure 8 shows the distribution of t-values for six specification with

increasing complexity of the tensor product of Legendre polynomials and with linear and

quadratic time trends. The distributions are almost perfectly overlapping for each of the

four models. Indeed, the correlation between the most and the least complex models are

between .85 and .9.

Moreover, we notice that the distribution of t-values is much more well behaved than the

extreme values found in Figure 4. The distribution is somewhat fatter than the theoretical

Student’s t distribution. Still, the distribution is much more sensible t work with.

Table 3 shows estimation results from the preferred specification. The general pattern

is that rain seems to increase turnout in Norway – see Lind (2014) for a discussion of the

rationale behind this. Column (1) shows the plain regression of turnout on precipitation

in cm. The effect of 1 cm increase in precipitation is about .3 percentage point increase

in turnout. Columns (2) and (3) turns the attention to dummies for positive rain and

substantial rain, defined as above 2.5 mm. Comparing elections with and without rain,
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Figure 7: The number of terms in the nonparametric trend model
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Notes: Panel (a) shows model fit as a function of the number of terms in the longitudinal
and latitudinal polynomials, whereas Panel (b) shows fit as a function of the total number
of terms included in the tensor product. Approximation is with tensor products of Legendre
polynomials of varying degrees. In Panel (b), combinations that belong to the convex hull are
shown with solid orange dots and other combinations with hollow green dots.

turnout is about .5 to .7 percentage points higher in the former. Columns (5) and (6) tests

for the presence of a change in the parameters estimates over time. The effects seem to be

fairly stable. Finally, Columns (7) and (8) test for non-linearities in the relationship. There

is a weak tendency for extreme amounts of precipitation to reduce turnout, but the overall

pattern is still close to linearity.
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Figure 8: Distribution of t-values controlling for spatio-temporal trends
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Notes:The graph shows the distribution of the t-values when regressing municipal turnout on
daily precipitation for 600 days before and after election day. The 10 days before and after
the actual election day are omitted. Panel (a) shows results from regressing levels on levels.
Panel (b) shows the regression of turnout on a dummy for more than 25 mm rain while
Panel (c) employs a dummy for any rain. Panel (d) shows results from a regression where
the rank of turnout is measured on the rank of rain, i.e. both variables are uniform on the
unit interval.
Spatio-temporal trends are controlled for using tensor products of Legendre polynomials with
1×6, 3×10, and 7×8 terms. Linear temporal trends are shown in solid lines and quadratic
linear trends in dashed lines.
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6 Conclusion

In this paper, I have shown that when outcomes of interest are regressed on weather data,

there is a danger of spurious correlations. The reason is that spatial patterns in weather

conditions are likely to align up with spatial or spatio-temporal patterns in the outcomes

of interest. This can be shown theoretically in simple models, and occur in Monte Carlo

analyses in a wider range of models. I also illustrate the problem using real data on Norwegian

electoral participation, where turnout is correlated with rainfall on irrelevant days in the

majority of cases.

To solve the problem, I suggest introducing controls for spatial or spatio-temporal trends

in regressions. This is a simple remedy that can easily be combined with other techniques,

such as instrumental variables of regression discontinuity designs. In the sample of Norwegian

elections, this is shown to substantially improve the behavior of estimators.

The question of more sophisticated approaches to controlling for spatial and spatio-

temporal trends, possibly borrowing from the literature on spatial statistics and econometrics

is left for future research. There are probably possibilities to do better, but it is unclear that

such approaches are sufficiently simple to implement that they actually matter for the applied

researcher.

As weather data are typically available for a large number of periods, of which only a few

matter, there is ample supply of placebo data. One question is whether these placebos could

be used to construct a more correct null distribution of the parameter of interest, somewhat

along the lines of bootstrapping techniques. Saunders (1993) implements a version of this

estimator, but does not go into its statistical properties and potential advantages compared

to ordinary inference.
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A Proofs

A.1 Proof of divergence of the numerator in (3)

Proof. Let d·e and b·c denote the ceil and floor operators. 14 If we have λ = dpne − pn (so

1− λ = pn− bpnc) we have

∑ 1

|pn− 1|+ 1
=

1

dpne − pn+ 1
+

1

dpne − pn+ 2
+ . . .+

1

dpne − pn+ (n− dpne)

+
1

pn− bpnc+ 1
+

1

pn− bpnc+ 2
+ . . .+

1

pn− bpnc+ bpnc

=
1

1 + λ
+

1

2 + λ
+ . . .+

1

(n− dpne) + λ

+
1

1 + (1− λ)
+

1

2 + (1− λ)
+ . . .+

1

bpnc+ (1− λ)

Define

S1
n−dpne =

1

1 + λ
+

1

2 + λ
+ . . .+

1

(n− dpne) + λ

and

S2
bpnc = +

1

1 + (1− λ)
+

1

2 + (1− λ)
+ . . .+

1

bpnc+ (1− λ)

The series S1
n is a generalized harmonic series of length (n− dpne). If we define S0

n =

1 + 1
2

+ . . . 1
n

as the standard harmonic series of length n, we see that S0
n−dpne+1 − 1 <

S1
n−dpne < S0

n−dpne. For large n we know that S0
n → γ+ lnn where γ is the Euler–Mascheroni

constant (γ ≈ .577). Hence γ + ln n−dpne+1
e

< S1
n−dpne < γ + ln (n− dpne). From a similar

reasoning, γ + ln bpnc+1
e

< S2
bpnc < γ + ln (bpnc). It follows that

2γ + ln
n− dpne+ 1

e
+ ln

bpnc+ 1

e
<
∑ 1

|pn− 1|+ 1
< 2γ + ln (n− dpne) + ln (bpnc)

Next, the term

∑ i

|P − i|+ 1
=

dpne
dpne − pn+ 1

+
dpne+ 1

dpne − pn+ 2
+ . . .+

n

dpne − pn+ (n− dpne)

+
bpnc

pn− bpnc+ 1
+

bpnc − 1

pn− bpnc+ 2
+ . . .+

1

pn− bpnc+ bpnc
14That is, for any x ∈ R+, dxe = min {y ∈ N : x ≤ y} and bxc = max {y ∈ N : x ≥ y}.
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We have

dpne+ 1

dpne − pn+ 1
+

dpne+ 2

dpne − pn+ 2
+ . . .+

n

dpne − pn+ (n− dpne)

= (dpne − 1)

(
1

dpne − pn+ 1
+

1

dpne − pn+ 2
+ . . .+

1

dpne − pn+ (n− dpne)

)
+

1

dpne − pn+ 1
+

2

dpne − pn+ 2
+ . . .+

n− dpne
dpne − pn+ (n− dpne)

= (dpne − 1)S1
n + T 1

n−dpne

where the serie

T 1
n =

1

1 + λ
+

2

2 + λ
+ . . .+

n

n+ λ

We know that
n

1 + λ
< T 1

n < n

Similarly,

bpnc
pn− bpnc+ 1

+
bpnc − 1

pn− bpnc+ 2
+ . . .+

1

pn− bpnc+ bpnc

= (bpnc+ 1)

(
1

pn− bpnc+ 1
+

1

pn− bpnc+ 2
+ . . .+

1

pn− bpnc+ bpnc

)
−
(

1

pn− bpnc+ 1
+

2

pn− bpnc+ 2
+ . . .+

bpnc
pn− bpnc+ bpnc

)
= (bpnc+ 1)S2

n − T 2
bpnc

where the serie

T 2
n =

1

1 + (1− λ)
+

2

2 + (1− λ)
+ . . .+

n

n+ (1− λ)

We know that
n

2− λ
< T 1

n < n

It follows that

1

n

∑ i

|P − i|+ 1
=

(dpne − 1)S1
n−dpne + (bpnc+ 1)S2

bpnc + T 1
n−dpne − T 2

bpnc

n

so the full numerator becomes

N =
1

n

∑(
1

|P − i|+ 1
− w̄

)
i =

(
dpne − 1

n
− n+ 1

2n

)
S1
n−dpne

+

(
(bpnc+ 1)

n
− n+ 1

2n

)
S2
bpnc +

T 1
n−dpne − T 2

bpnc

n
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When n→ +∞, we see that the two first parentheses converge to p− 1
2

and the last fraction

to ... Hence N converges to a log function, and hence diverges.

A.2 Proof of convergence of the denominator in (3)

Proof. We want to study the behavior of

√
1
N2

∑(
1

|P−i|+1
− w̄

)2

. We have 1
N2

∑(
1

|P−i|+1
− w̄

)2

=

1
N2

∑(
1

|P−i|+1

)2

− 1
N2Nw̄

2. We know from the proof in Appendix A.1 that w̄ converges to

a log function so w̄2

N
→ 0 as N → ∞. As for the proof in A.1, define λ = dpne − pn (so

1− λ = pn− bpnc). Then we have

∑(
1

|pn− 1|+ 1

)2

=

(
1

dpne − pn+ 1

)2

+

(
1

dpne − pn+ 2

)2

+ . . .+

(
1

dpne − pn+ (n− dpne)

)2

+

(
1
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)2

+

(
1
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)2

+ . . .+

(
1
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)2

=

(
1

1 + λ

)2

+

(
1

2 + λ

)2

+ . . .+

(
1

(n− dpne) + λ

)2

+

(
1

1 + (1− λ)

)2

+

(
1

2 + (1− λ)
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+ . . .+

(
1
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Define the series
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n−dpne =

(
1
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+
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+ . . .+
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1
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1
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+ . . .+

(
1
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and define the sum of the the reciprocals of the squares of natural numbers Q0
n =

∑n
i=1

(
1
i

)2
.

Then we see that Q0
1+n−dpne − 1 ≤ Q1

n−dpne ≤ Q0
n−dpne and Q0

1+bpnc − 1 ≤ Q2
bpnc ≤ Q0

bpnc.

Hence for given p then limN→∞
∑(

1
|pn−1|+1

)2

= Q∞. And as limN→∞Q
0
n = π2

6
, we

have π2

3
− 2 ≤ Q∞ ≤ π2

3
. As limN→∞

√
1
N2

∑(
1

|P−i|+1
− w̄

)2

→
√

Q∞
N2 , it is clear that

limN→∞

√
1
N2

∑(
1

|P−i|+1
− w̄

)2

= 0, and this happens at rate O
(

1
N

)
.
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B Additional Monte Carlo results

Table A-1: A Monte Carlo analysis of the spatial model

K

N 1 2 5 10 100 N 2N

9 0.37 0.36 0.31 0.32 0.30 0.29 0.25
1.76 1.71 1.59 1.59 1.56 1.53 1.42

25 0.57 0.58 0.55 0.54 0.54 0.54 0.51
2.84 2.78 2.57 2.52 2.44 2.49 2.43

49 0.65 0.66 0.66 0.65 0.63 0.66 0.64
3.8 3.84 3.59 3.47 3.28 3.41 3.35

100 0.73 0.76 0.73 0.74 0.72 0.71 0.75
5.21 5.12 4.79 4.87 4.61 4.6 4.64

400 0.85 0.85 0.84 0.85 0.85 0.85 0.83
9.15 8.98 8.5 8.6 8.12 8.56 7.79

1024 0.88 0.90 0.90 0.91 0.89 0.89 0.90
13.1 12.9 12.7 12.7 12.3 11.7 12.2

10000 0.95 0.96 0.96 0.94 0.96 0.95 0.96
31.5 31.6 31.5 30.3 29.8 31 31.4

Notes:The table shows the fraction of cases where a t-test of β = 0 is rejected at the 5 %
level (first line) and the average of the absolute value of the associated t-value (second line).
The true model is zi = α + β

∑
ri + τ (xi + yi) + εi withβ = 0, τ = 1, εi ∼ N(0, 1), and for

each k, νk ∼ N(0, 1) and the position pk ∼ U([0, N ]× [0, N ]). Each model is replicated 1000
times.
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