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This paper analyzes the provision of residential parking in a monocentric city, with the ultimate 
goal of appraising the desirability and effects of regulations such as a minimum-parking 
requirement (MPR) per dwelling. The analysis considers three different regimes for provision of 
parking space: surface parking, underground parking, and structural parking, with the latter two 
regimes involving capital investment either in the form of an underground parking garage or an 
above-ground parking structure. Parking area is viewed as a dwelling attribute that, along with 
floor space, provides utility. In addition, road congestion in the neighborhood (which affects the 
commuting costs of local residents) depends on the average amount of off-street parking per 
dwelling, an externality that is ignored by profit-maximizing developers, making the equilibrium 
inefficient. The analysis explores the equilibrium spatial behavior of the two dwelling attributes 
as well as residential and parking structural density, and analysis of land rent shows which 
parking regimes are present in different parts of the city. Efficiency requires an increase in 
parking area per dwelling at each location, which can be achieved in a crude fashion by an 
MPR, whose effects are analyzed. 
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Parking and Urban Form

by

Jan K. Brueckner and Sofia F. Franco*

1. Introduction

Parking plays a central role in any effort to improve accessibility in urban areas. Parking

supply and parking policy affect the relative competitiveness of a central business district and

influence where development occurs, while affecting the cost and efficiency of daily commuting

and influencing where people live and how they access work and shopping areas. In addition,

congestion and parking supply are interrelated since looking for a parking space (known as

“cruising” for parking) creates additional delays and impairs local circulation.

Most cities worldwide seek to avoid parking shortages by requiring building developers to

provide a certain amount of parking area, usually within the same premises, as a condition

of zoning approval. These minimum parking requirements (MPRs) are usually set by city

planners from standardized transportation planning manuals, which measure trip generation

rates at peak periods with ample free parking and no public transit. The goal of MPRs is

to ensure adequate parking at a low price so as to limit local congestion and stimulate local

businesses (Shoup 1999).

While minimum parking requirements alleviate some urban parking problems, it is increas-

ingly recognized that they can create others. Critics of these regulations allege that MPRs

force developers to use more land per square foot of livable area than the market would dic-

tate while raising the cost and reducing the profitability of development in areas with high

land values (Willson 1995, Shoup 2002, 2005). As a result, MPRs may lead to an oversup-

ply of parking (Cutter and Franco 2012) while shifting the location of new development and

making infill projects and historic building retrofits less attractive and feasible (Shoup and

Pickrell 1978). In addition, by creating large, unsightly parking lots impervious to precipi-

tation, MPRs may compromise urban design (Mukhija and Shoup 2006) and contribute to
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environmental problems (Feitelson and Rotem 2004, Litman 2011).

Even though off-street parking supply is a hotly debated element of parking policy, re-

markably little analytical work exists studying the effects of parking supply on urban form.

This omission is particularly puzzling, as a substantial proportion of urban land is devoted to

parking (30% in multifamily-housing areas and 60% in commercial areas, according to Fergu-

son 2005). To help fill this gap in the literature, the present paper analyzes the provision of

residential parking in a monocentric city, with the ultimate goal of appraising the desirability

and effects of regulations such as residential minimum parking requirements.

Most theoretical studies on parking examine parking in downtown areas, analyzing how

parking pricing policy affects short-run commuter decisions regarding trip scheduling and fre-

quency, transport mode choice, and parking location. Existing studies focus on the efficiency of

second-best pricing of parking in the absence of congestion tolls (Arnott et al. 1991, Glazer and

Niskanen 1992, Verhoef et al. 1995, Arnott and Rowse 1999, Anderson and de Palma 2004);

the effects of curbside parking fees on cruising for parking in downtown areas (Arnott and Inci

2006); the effects of underpricing of parking facilities on social welfare (Calthrop and Proost

2006); and the effects of parking and transit subsidies on the CBD’s size (Voith 1998). Other

analytical studies focus on the effect employer-paid parking on the level of optimal congestion

charges (De Borger and Wuyts 2009) and on the optimal level of curbside parking capacity

in downtown areas when both urban transport and curbside parking are underpriced (Arnott

et al. 2013).1 Yet, none of these previous studies has developed an urban spatial model that

captures general-equilibrium interactions between residential parking and land-use, as is done

is this paper.

Only two existing studies integrate parking into an urban spatial model. Anderson and

De Palma (2007) analyze a city where the CBD is surrounded by a zone of parking lots, with

the outlying residential area comprised of two zones. In the inner zone, residents walk all

the way to work (crossing the parking lots). In the outer zone, residents drive to the parking

area (crossing the zone where walkers live) and then walk from their parking spot to work.

The paper characterizes the socially optimal configuration of the city and then shows that

the optimum coincides with an equilibrium in which parking is provided by monopolistically
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competitive lot owners (each operating at a particular distance).

In a second paper, Franco (2015) builds on the urban spatial framework developed by

Brueckner (1983) and develops a monocentric-city model with two transport modes, endoge-

nous residential surface parking, and a form of bottleneck congestion at the CBD. Her goal is

to explore the effects of changes in downtown parking supply on urban welfare, modal choice

and urban spatial structure. Franco shows that CBD parking reforms such as supply limits

that increase congestion costs in the short-run can be welfare improving if other commuting

externalities such as air pollution can be reduced. The study also shows that parking limits

may complement anti-sprawl policies by leading to a more-compact city in the long run.

Our approach is complementary to the models of Franco (2015) and Anderson and De

Palma (2007), although it differs by allowing the use of several alternative technologies for the

provision of parking space. In the model, housing developers use capital in standard fashion

to produce floor space, which is divided into individual dwellings. Beyond floor space, another

attribute is the parking area associated with the dwelling, which is also assumed to yield

utility. Under the surface parking regime, parking area is provided via an outdoor parking lot,

which requires a minimal capital investment, assumed to be zero. Under the structural parking

regime, a parking structure built adjacent to the residential structure provides parking area.

While capital cost is much higher than under surface parking, structural parking economizes

on land through use of a multistory structure. Underground parking, by contrast, requires no

additional land beyond that used for the residential building. Parking area is provided within

an underground structure directly below the building, which involves higher capital cost than

above-ground structural parking given the technical challenge of underground construction (see

Cutter and Franco 2012 for evidence).

Under any of three parking regimes, the developer maximizes profit by choice of dwelling

size, parking area per dwelling, residential structural density (capital per unit of residential

land, an indicator of building height), and parking inputs. These inputs are land in the case

of surface parking, land and capital in the case of structural parking, and capital alone in

the case of underground parking (the land input is already available). Under the latter two

regimes, parking structural density (capital per unit of parking land) is a choice variable of
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the developer, indicating the height of the above-ground parking structure or the depth of the

underground structure. Under each regime, the maximization problem involves an important

constraint that equates the development’s total parking area to parking area per dwelling times

the number of dwellings in the complex.

Focusing on urban form, the analysis first addresses the spatial behavior of the developer’s

choice variables, asking whether dwelling size and parking area per dwelling increase or decrease

with distance to CBD while exploring the spatial behavior of both residential and (where

relevant) parking structural density. Because of the complexity of the model, answers are

available only through the assumption of specific functional forms for utility and production

functions. Additional questions concern the relative locations within the city of the different

parking regimes. Does the model imply (as intuition would suggest) that surface parking is

found in the suburbs, with the non-surface parking regimes prevailing closer to the CBD?

The model is constructed to potentially include the phenomenon of parking-related conges-

tion, which generates an additional neighborhood-level travel cost. With provision of off-street

parking reducing this congestion, the extra travel cost falls as average parking area per dwelling

in the neighborhood increases, a cost-side benefit that accompanies the utility gain from a

dwelling’s off-street parking area. Atomistic developers, however, are portrayed as ignoring

the impact of their decisions on neighborhood-average parking area per dwelling, introducing

an externality that makes the equilibrium inefficient.

The model solutions in the presence of parking-related congestion can be deduced using

the solutions computed in its absence, and the analysis presents comparisons of the two sets

of solutions. The discussion then turns to correction of the market failure from decentralized

provision of parking. While intuition would suggest that a social planner would seek to raise

parking area per dwelling above the equilibrium level, taking account of the congestion-related

benefits overlooked by developers, the complexity of the model precludes a general demon-

stration of this conjecture. Instead, numerical analysis is used to confirm it, drawing on the

numerical framework used earlier in the paper to illustrate the model’s properties. The re-

sults indeed show that the parking area per dwelling is higher at the social optimum than in

the equilibrium, while highlighting the other changes in urban form (dwelling size, structural
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densities) that accompany movement to the social optimum. The final step in the analysis

is exploration of the effect on urban form of a minimum parking requirement, which specifies

a spatially invariant minimum level of parking area per dwelling, failing to incorporate the

spatial variation that the omniscient planner would dictate. With the exception of Cutter and

Franco (2012), no other theoretical study examines the broad effects of parking requirements

on urban form. In contrast to Cutter and Franco (2012), however, the current analysis focuses

on residential MPRs instead of non-residential parking regulations.

The next section of the paper presents the general model, with subsections dealing with

the three parking regimes. Section 3 presents model solutions in the absence of parking-

related congestion, relying specific functional forms, and section 4 introduces this type of

congestion and derives the effect on the equilibrium. Section 5 numerically characterizes the

social optimum in the presence of parking-related congestion, comparing it to the equilibrium,

while section 6 analyzes the effects of a minimum parking requirement, again numerically.

Section 7 offers conclusions.

2. Model

2.1. Utility function and budget constraint

Dwellings in the model have two attributes: floor space, measured in square feet and

denoted by q, and off-street parking area, again measured in square feet and denoted a. An

alternate measure of parking area would be the number of parking spaces associated with

the dwelling, but this discrete measure is replaced with a continuous square-footage measure

for analytical convenience. Letting c denote consumption of a composite non-housing good,

consumer utility is given by the common, well-behaved function v(c, q, a).

Off-street parking space generates utility by offering more convenience and safety than

on-street parking. The consumer has a shorter and possibly safer walk to the vehicle, and

off-street parking eliminates the search costs that may be incurred finding an on-street parking

space. In addition, the vehicle is better protected from damage (and from the weather if

covered) while parked in an off-street space. These benefits are assumed to be greater the

larger amount of parking space associated with the dwelling, so that va > 0 (superscripts
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denote partial derivatives).

As usual in the monocentric model, all consumers work in the CBD and earn a common

income w per period. Commuting cost from a residence x miles from the CBD is given by tx,

where t is commuting cost per round trip mile (measured per period). While the usual kind

of road congestion is omitted from the model for simplicity, the consumer is assumed to incur

parking-related congestion in the neighborhood of residence, which generates a cost of κ− τa,

where k, τ > 0 and a is the average amount of off-street parking in the neighborhood. This cost,

which is due to the congestion caused when other residents cruise for parking while searching

for an on-street space, is lower the higher is the average amount of off-street parking in the

neighborhood. For simplicity, κ is absorbed into the income term (which becomes y = w−κ),

so that the budget constraint of a consumer living at distance x is given by

c + R = y − tx + τa, (1)

where R is total rent for the dwelling (c is numeraire).2

In equilibrium, the urban residents must reach a common utility level u, which is viewed

as fixed for the purposes of the analysis (it thus relies on the “open city” model). The fixed

u then determines the rent R that a consumer is willing to pay for a dwelling as a function

of its location and attributes. This rent, denoted R(q, a, x; a), is implicitly determined by

eliminating c in the utility function using the budget constraint (1), and then setting the

resulting expression equal to u:3

v(y − tx + τa −R, q, a) = u. (2)

Differentiating (2) shows that rent falls with x, rises with a, and rises at a rate equal to the

relevant MRS as q or a increases, so that

Rq = vq/vc > 0, Ra = va/vc > 0, Ra = τ > 0, Rx = −t < 0. (3)
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The housing developer maximizes profit taking the R(q, a, x; a) function into account. Re-

liance on this function, rather than a price p per square foot of housing, distinguishes the

current developer’s problem from that in the standard exposition of the urban model. In that

exposition, consumers choose q conditional on a price p per square foot of housing. On the

production side, housing floor space in the standard model is produced by combining land and

capital, with the capital completely covering the lot (leaving no open space). Housing output

per unit of land is given by h(S), where S equals capital per unit of land (structural density)

and h′ > 0, h′′ < 0. The developer’s profit per unit of land is then written ph(S) − iS − r,

where i is the price per unit of capital and r is rent per unit of land. Note that ph(S) is revenue

per unit of land, equal to price per square foot times square feet per unit of land, and that the

developer chooses S. If the R(·) function were used instead of p, with a and a constrained to

be zero to match the standard model, profit would be written R(q, x)h(S)/q − iS − r, where

revenue is now rent per dwelling (R) times dwellings per unit of land, h(S)/q, equal to square

feet per unit of land divided by square feet per dwelling. In addition, the developer would

now choose both S and q. It is easy to see that these two versions of the standard model are

equivalent.

With multiple housing attributes (q and a), the second of the above approaches, which

relies on the R(·) function and assigns attribute choices to the developer, is more natural

and straightforward. The previous profit function, however, must be adjusted to include the

provision of parking. The subsequent sections carry out the required adjustments for the

cases of surface parking, structural parking, and underground parking, while characterizing

the developer’s optimal choices.4

2.2. Surface parking

To provide housing with surface parking, the developer must acquire the land on which the

building sits, denoted “residential” land, as well as additional land for parking. Let ` denote

residential land and ˜̀ denote the parking land area. Then, assuming that surface parking

entails no capital cost, the developer’s profit is given by

[
h(S)

q
R(q, a, x; a) − iS − r

]
` − r˜̀, (4)
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where the bracketed term gives profit per unit of land of residential land. The amount of land

˜̀ required for parking equals the number of dwellings in the building times parking area a per

dwelling, or

˜̀ = `
h(S)

q
a. (5)

Note the RHS equals residential land times dwellings per unit of residential land (total

dwellings) times parking area per dwelling. Substituting for ˜̀ in (4) using (5) and factor-

ing out `, profit per unit of residential land with surface parking equals

πsu =
h(S)

q
R(q, a, x; a) − iS − r

[
1 +

h(S)

q
a

]
, (6)

where the su subscript denotes surface parking.

The developer chooses S, q and a to maximize (6). In doing so, the developer behaves

competitively with respect to land rent r, which is viewed as parametric. Consistent with

this competitive behavior, the developer also ignores the effect of his decisions on the average

amount of off-street parking a in the immediate neighborhood (at the same distance x), which

is the joint result of decisions by many developers. Ultimately, however, the a choices of

developers end up determining a, as seen below. The first-order conditions for the maximization

problem are

S : (R − ra)
h′

q
− i = 0 (7)

q : Rq h

q
− (R − ra)

h

q2
= 0 (8)

a : Ra
− r = 0. (9)

These equations have the usual marginal-revenue-equals-marginal-cost interpretations. Eq.

(9), which says that the increase in rent per dwelling from more parking area should equal the

marginal land cost r, is especially transparent. In (7), a higher S leads to an increase in

dwellings per unit of residential land (h′/q), but the resulting revenue R per dwelling is partly
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offset by the parking-land cost of ra per dwelling. The resulting marginal revenue is then

equated to the cost i of capital. In (8), a higher q reduces dwellings per unit of residential

land, with the net revenue loss captured by the second term, but rent per dwelling also rises

(first term), with q being optimal when these effects just balance.

While land rent r is viewed as parametric by the developer, it is ultimately endogenous,

necessitating an additional equilibrium condition beyond (7)–(9). This condition is the zero-

profit requirement, which is written πsu = 0. Along with (7)–(9), this condition determines

equilibrium values of S, q, a and r as functions of the parameters of the problem, the most

important of which are x and a. A final equilibrium requirement is that a, the average amount

of off-street parking in the neighborhood, is consistent with the decisions of developers. Since

developers in a neighborhood all share a common value of x, the consistency requirement can

be written as a = a (the average a is the value chosen by developers at the given x). This

equilibrium condition shows that the choice of a generates an externality, with the developer’s

individual choice of a affecting parking-related congestion in the neighborhood and thus the

profits of other developers. As a result, equilibrium in the model will be inefficient, as discussed

in detail in section 4.

Of major interest is the spatial behavior of dwelling and building characteristics as well as

the behavior of land rent. In principle, the derivatives of these variables with respect to distance

x can be analyzed by total differentiation of (7)–(9) and the zero-profit condition. Although

no general results are available when a enters the R function, some general conclusions can be

stated when τ = 0, implying the absence of parking-related congestion (and thus the absence

of a from R(·)). In fact, these conclusions follow directly from the results of Brueckner’s

(1983) analysis of a model of urban yard space. To understand this commonality, note that

as depicted, surface parking is formally identical to the yard space associated with a dwelling,

which consumes land in identical fashion. Therefore, when τ = 0, the surface-parking model

just involves a relabeling of Brueckner’s yard-space variable. Appending su subscripts to the

variables, Brueckner’s Theorem 1 can be restated as

Proposition 1. Suppose that τ = 0 holds in the surface-parking model. Then,
∂Ssu/∂x, ∂rsu/∂x < 0. If q and a are complements or independent goods, then

9



∂qsu∂x, ∂asu/∂x > 0. If q and a are substitutes, then at least one of the inequali-
ties ∂qsu∂x > 0, ∂asu/∂x > 0 must hold.

Complementarity or independence of q and a obtains when R’s cross partial derivative satisfies

Rqa ≥ 0, while q and a are substitutes when Rqa < 0 (the sign of Rqa is opposite to that of

the pure substitution term in the Slutsky equation). Brueckner (1983) also proves that the

second-order conditions for the developer’s problem are satisfied.

Proposition 1 shows that, with surface parking, structural density S and land rent r behave

as in the standard urban model, decreasing with distance x to the CBD. If q and a are

complements or independent goods, then q increases with x, as in the standard model, while

parking area shows the same spatial pattern. In the substitutes case, however, either q or a

(but not both) could be decreasing in x. Although yard space and dwelling floor space would

appear to be substitutes, the intuition is less clear for parking area and floor space. However,

in the case of Cobb-Douglas preferences, considered in section 3, q and a are substitutes.

2.3. Structural parking

Instead of relying on surface parking, the developer could economize on land by building

an above-ground parking structure connected to the residential building. The technology for

providing structural parking mirrors that for floor space, with parking area per unit of land

given by fst(S̃), where S̃ is parking structural density (capital per unit of parking land) and

f ′

st > 0, f ′′

st < 0 (the st subscript denotes structural parking). Generalizing (4), profit with

structural parking is given by

[
h(S)

q
R(q, a, x; a) − iS − r

]
` − (r + iS̃ )̃`, (10)

where the term iS̃˜̀ gives capital cost for the parking structure. The constraint relating ˜̀ and

` is now written

h(S)

q
`a = fst(S̃ )̃` (11)

where the LHS is the total required parking area when area per dwelling is a, while the RHS

is total area in the parking structure. Using (11) to substitute for ˜̀ in (10), and then factoring
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out residential land `, profit per unit of residential land is

πst =

[
h(S)

q
R(q, a, x; a) − iS − r

]
− (r + iS̃)

h(S)

q

a

fst(S̃)
. (12)

The developer’s first-order condition are

S :

[
R − (r + iS̃)

a

fst

]
h′

q
− i = 0 (13)

q : Rq h

q
−

[
R − (r + iS̃)

a

fst

]
h

q2
= 0 (14)

a : Ra
− (r + iS̃)

1

fst
= 0 (15)

S̃ : (r + iS̃)f ′

st − ifst = 0. (16)

To interpret these conditions, observe that, instead of equaling R − ra as in (7)–(9), revenue

per dwelling net of parking cost with structural parking is R − (r + iS̃)a/fst. To understand

the second term in this expression, note that r+ iS̃ is land plus capital cost per unit of parking

land, while fst/a is the number of dwellings served per unit of parking land (parking area per

unit of land divided by parking area per dwelling). Therefore the second term above, which

can be written (r + iS̃)/(fst/a), has units of (cost/parking land)/(dwellings/parking land),

or parking cost per dwelling. Conditions (13)–(15) are the same as (7)–(9) after substitution

of this new parking-cost-per-dwelling expression in place of ra (in (15), replacement is by the

expression’s a derivative). The previous interpretations again apply. Note that condition (16),

which pertains to the new choice variable S̃, is the condition for minimizing parking cost per

dwelling holding a constant, which requires minimizing (r+iS̃)/fst(S̃). As before, a zero-profit

condition must hold, which is now written πst = 0, and the additional equilibrium condition

a = a must be imposed.

Since satisfaction of the second-order conditions for the structural-parking maximization

problem cannot be demonstrated, these conditions are assumed to hold. In addition, because

of the greater complexity of the structural-parking model, no general results on the spatial
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behavior of the choice variables are available. Such conclusions can be derived, however, when

specific functional forms are imposed, as seen in section 3.

2.4. Underground parking

With underground parking, capital is invested to construct a parking garage underneath

the building rather than adjacent to it.5 As a result, no additional land beyond the residential

land ` is used. Underground parking area per unit of parking land is given by fug(S̃), where S̃

is again parking structural density (capital per unit of parking land), and since underground

parking is more costly to build, the inequality fug(S̃) < fst(S̃) holds.

Profit per unit of residential land is now given by

πug =
h(S)

q
R(q, a, x; a) − i(S + S̃) − r, (17)

where the parking land cost from the surface case disappears but the new underground capital

cost iS̃ appears. The relevant parking-availability constraint now relates S̃ to other variables.

The constraint is written

h(S)

q
`a = fug(S̃)`, (18)

where the RHS is total available parking. Canceling `, and inverting the fug function to solve

for S̃ yields

S̃ = f−1

ug (h(S)a/q) ≡ S̃(S, q, a), (19)

where S̃S, S̃a > 0 and S̃q < 0. Substituting (19) in (17), the first-order conditions are

S : R
h′

q
− i(1 + S̃S) = 0 (20)

q : Rq h

q
− R

h

q2
− iS̃q = 0 (21)

a : Ra h

q
− iS̃a = 0. (22)

From (20), a higher S increases revenue per unit of residential land (first term), but in addition

to the direct capital cost (i), the resulting increase in dwellings per unit of residential land
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raises the amount of required underground parking capital, leading to an extra cost of iS̃S.

In (21), the first two terms give the direct effects of an increase in q, while the last term

captures the reduction of parking capital allowed by a larger q, which lowers dwellings per

unit of residential land. In (22), an increase in a raises revenue per dwelling (first term), but

the increase in required total parking space necessitates more parking capital, leading to an

extra cost of iS̃a. The zero-profit condition πug = 0 must hold, and the additional equilibrium

condition a = a must again be imposed.

As in the case of structural parking, satisfaction of the second-order conditions for the

profit-maximization problem cannot be demonstrated and must be assumed. In addition,

general results on the choice variables are again not available. However, the next section of

the paper dispells this ambiguity and that for the structural-parking case by imposing specific

functional forms.

2.5. Spatial behavior of land rent

Although no general results are available on the spatial behavior of the choice variables

under the structural and underground parking regimes, it can be shown that land rent is

decreasing with distance x to the CBD, as under the surface parking regime. Totally differen-

tiating the zero-profit conditions for two regimes with respect to x yields

∂πj

∂R
Rx +

∂πj

∂r

∂r

∂x
= 0, j = st, ug, (23)

where the x-derivatives of the choice variables vanish due to the envelope theorem. Rearranging

yields

∂r

∂x
= −

∂πj/∂R

∂πj/∂r
Rx < 0, j = st, ug, (24)

where the inequality follows because Rx < 0, ∂πj/∂R > 0, and ∂πj/∂r < 0 (the last two

inequalities can be seen from inspection of (12) and (17)). Summarizing yields

Proposition 2. Land rent is a decreasing function of distance to the CBD under the
structural and underground parking regimes.

13



3. Solutions with Specific Functional Forms

3.1. The solutions

This section imposes specific function forms for preferences and the floor space and parking

production functions, which allows solutions for all the variables in the model to be computed.

Preferences and the production functions are assumed to take a Cobb-Douglas form, making

the h and f functions power functions with exponents less than one. Formally, the functional

form assumptions are

v(c, q, a) = c1−αqαaγ, h(S) = Sβ , fst(S̃) = µstS̃
θ, fug(S̃) = µugS̃

θ, (25)

where the parameters are all positive satisfy α, β, θ < 1 and µug < µst. Note that the

exponents of the fst and fug functions are the same, while µug < µst implies that a given

amount of capital per acre yields less parking area underground than in a structure, reflecting

the higher cost of underground parking. From (2), the form of preferences implies

R(q, a, x; a) = y − tx + τa − u
1

1−αq−
α

1−αa−
γ

1−α . (26)

Recall that, with Cobb-Douglas preferences, q and a are substitutes (Rqa < 0).

In the case without parking-related congestion, where τ = 0, closed-form solutions for all

the variables can be derived (the case where τ > 0 is considered below). While the derivations

are lengthy, the steps for the underground case are shown in the appendix, and the other

derivations are available on request. The solutions for residential structural density, S, are as

follows:

Ssu = Asu(y − tx)
1+γ

α(1−β)+γ (27)

Sst = Ast(y − tx)
1+γ

α(1−β)+γ(1−θ) (28)

Sug = Aug(y − tx)
1+γ

α(1−β)+γ(1−θ) (29)
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∂Ssu

∂x
,

∂Sst

∂x
,

∂Sug

∂x
< 0. (30)

The A’s in (27)–(29) are complicated constants, and the conclusions in (30) follow because all

the exponents are positive. Thus, residential structural density under all three parking regimes

follows the pattern in the standard urban model, decreasing with distance x to the CBD (recall

from Proposition 1 that (27) holds generally).

Letting B’s denote constants, the solutions for dwelling size q are given by

qsu = Bsu(y − tx)
βγ−(1−β)(1−α)

α(1−β)+γ (31)

qst = Bst(y − tx)
−

(1−β)(1−α)+(θ−β)γ
α(1−β)+γ(1−θ) (32)

qug = Bug(y − tx)
−

(1−β)(1−α)+(θ−β)γ
α(1−β)+γ(1−θ) (33)

∂qsu

∂x
,

∂qst

∂x
,

∂qug

∂x
> (<) 0. (34)

Thus, the spatial behavior of q is ambiguous under all three parking regimes. Note that,

for surface parking, this result is consistent with Proposition 1 (see below for the behavior

of a). In addition, observe that if γ, the utility exponent on a, is sufficiently small (so that

parking is relatively unimportant), then the q exponent in (31) will be negative and q will

increase with x, as in the standard model. Note also that the exponents in (32) and (33) are

the same, implying that q behaves identically over space in the structural and underground-

parking regimes. In addition, observe that if θ ≥ β, so that the common capital exponent

in structural and underground parking-area production is at least as large as the residential

floor-space production exponent, then qst and qug both increase with x, as in the standard

model.

Letting C ’s denote constants, the solutions for parking area a per dwelling are given by

asu = Csu(y − tx)
−

αβ+(1−α)
α(1−β)+γ (35)

ast = Cst(y − tx)
−

(1−θ)−α(1−β)
α(1−β)+γ(1−θ) (36)

aug = Cug(y − tx)
−

(1−θ)−α(1−β)
α(1−β)+γ(1−θ) (37)
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∂asu

∂x
> 0,

∂ast

∂x
,

∂aug

∂x
> (<) 0. (38)

Since asu is increasing in x by (35) while the behavior of qsu is ambiguous by (31), the results

are consistent with Proposition 1’s requirement that at least one of q and a increases with x

in the surface-parking case. As in the case of q, the exponents in (36) and (37) are the same,

indicating the same spatial behavior of ast and aug. Note that if θ ≤ β, the exponents are

both negative, so that ast and aug both increase with x.

Letting D’s denote constants, the solutions for parking structural density, S̃, are

S̃st = Dst(y − tx)
1+γ

α(1−β)+γ(1−θ) (39)

S̃ug = Dug(y − tx)
1+γ

α(1−β)+γ(1−θ) (40)

∂S̃st

∂x
,

∂S̃ug

∂x
< 0. (41)

Comparing (39)–(40) and (28)–(29), parking structural density and residential structural den-

sity have common exponents across the structural and underground regimes, with all densities

decreasing in x.

Finally, letting E’s denote constants, the solutions for r are given by

rsu = Est(y − tx)
(1+γ

α(1−β)+γ (42)

rst = Est(y − tx)
1+γ

α(1−β)+γ(1−θ) (43)

rug = Eug(y − tx)
1+γ

α(1−β)+γ(1−θ) (44)

∂rsu

∂x
,

∂rst

∂x
,

∂rug

∂x
< 0. (45)

As seen above, the inequalities in (45) hold generally.

Summing up, the solutions show that structural densities, both residential and parking,

decline with distance x, matching the general behavior of land rents. However, the spatial
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behaviors of dwelling size and parking area per dwelling are more complex. In the case of

surface parking, a increases with x while q could either increase or decrease, although the

former case is ensured if parking is relatively unimportant, with γ small. Interestingly, the

structural and underground-parking cases exhibit the same spatial behaviors of q and a, with

the spatial patterns of both variables being ambiguous. However, when θ > β, q increases with

x while a could increase or decrease. When θ < β, a increases with x while q could increase or

decrease. But in the intermediate case where θ = β, both a and q increase with x. This case,

where production exponents are equal for floor space and parking area, thus fully mimics the

standard urban model, with both dimensions of dwelling “size” increasing with distance, while

structural densities and land rent fall with x.

3.2. The relative locations of the different parking regimes

Different parking regimes coexist in real-world cities, with surface parking present in some

areas and structural or underground parking present in others. The model makes sharp pre-

dictions about the relative locations of the three regimes, making use of the land-rent solutions

in (42)–(44). As usual, a particular parking regime will be present in a given area if developers

using that regime bid more for land than developers using the other regimes. Therefore, the

relative locations of the parking regimes can be deduced by considering the heights and the

slopes of the the land-rent curves generated by the r solutions.

Since rst and rug have common y − tx exponents, the two corresponding land rent curves

differ only in the multiplicative constants Est and Eug (which are highly complex expressions).

Therefore, one of the two regimes will dominate the other throughout the city, generating higher

land rent. To assess the direction of the dominance, note that the advantage of underground

parking relative to structural parking is that it avoids the need for additional land beyond the

residential land area. But underground parking has two disadvantages, the first being lower

capital productivity and thus higher capital costs, as reflected in the shift factor µug < µst

in the production function. The second and subtler disadvantage is the requirement that the

amount of parking land equal the amount of residential land, a constraint that is not present

in the structural case, where residential land and parking land can be adjusted independently.

Because of this second disadvantage, underground parking could be dominated by structural
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parking (Est > Eug) even if µug = µst were to hold, eliminating the capital-cost disadvantage.6

Since Eug is decreasing in µug, structural parking would then dominate underground parking

for all possible values of µug < µst. On the other hand, underground parking could instead

dominate structural parking when µug = µst, which allows the following conclusion to be

stated:

Proposition 3. When parking-related congestion is absent, structural parking dom-
inates underground parking everywhere in the city (generating higher land rent), or
there exists a critical value of the underground production-function shift factor, de-
noted µ∗

ug < µst, such that underground parking dominates (is dominated by) structural
parking as µug > (<) µ∗

ug.

Thus, the model implies that only one of the non-surface parking regimes will be observed

in the city. The next question is where this regime will be located relative to the area with

surface parking. The answer is immediate from inspection of the land-rent solutions. Since its

larger denominator means that the rsu exponent in (42) is smaller than the common exponents

in the rst and rug solutions, it follows that the rsu curve will be flatter than either of the other

curves at a point of intersection. Therefore, the rsu curve will be higher (lower) than the other

regime’s curve at locations outside (inside) the x value where they intersect, implying

Proposition 4. When parking-related congestion is absent, surface parking will be
observed in the city’s suburban area, with one of the other parking regimes (structural
or underground) observed in the central part of the city.

This conclusion makes intuitive sense given that both non-surface parking regimes conserve on

land, making their use natural in the central part of the city where land is expensive.

Tables 1, 2 and 3 show model solutions for r, a, q, S, and S̃ under the following parameter

values: u = 100, y = 100, t = 0.3, α = 0.4, δ = 0.1, β = 0.8, θ = 0.8, µst = 0.08, µug = 0.06,

and i = 0.05. Note that the exponents of the floor space and parking production functions are

assumed to be the same and equal to 0.8. Applying these parameter values to the solutions

from section 3.1, Table 1 shows land rents under the three regimes for both τ = 0 and for a

positive τ value of 0.2, a case discussed in section 4 below. The columns for τ = 0 show that

the underground regime generates higher land rent than the structural regime, dominating
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it at all distances in a reflection of Proposition 3. Following Proposition 4, the underground

(surface) parking regime generates the highest land rent inside (outside) an x value of 35, with

the two regimes thus being present in the shaded distance ranges in the τ = 0 columns of the

table. Figure 1 illustrates these outcomes.

Tables 2 and 3 show solutions for the remaining variables in the three regimes, with shading

showing the distance ranges over which the solutions are relevant (the solutions with τ = 0.2

discussed in the next section). Under the given parameter values, a (first part of Table 2) and

dwelling size q (second part of Table 3) both increase with distance under all regimes. Note

that parking area per dwelling exhibits a discontinous upward jump in the transition from

underground to surface parking, while dwelling size exhibits a discontinuous downward jump.

As is true in general, both residential and parking structural density decrease with distance

under the given parameter values, and like parking area, residential structural density exhibits

a discontinous upward jump in the transition between the underground and surface regimes.

The patterns seen in Tables 2 and 3 are highly robust to changes in the parameter values.

It should be noted that, given the open-city assumption, the distance x to the edge of

can be fixed arbitrarily by specifying the value of agricultural land rent ra. The value of x is

therefore not of interest, although it is assumed to lie beyond the distance range shown in the

tables.

4. Solutions When τ > 0

Consider now the case where τ > 0, so that parking-related congestion is present. Since

a is taken as parametric by developers, the previous a formulas still apply but with y − tx

replaced by y− tx+ τa. Imposing the equilibrium requirement that a = a, these formulas then

take the form

a = C(y − tx + τa)φ, (46)

where C and the exponent φ vary across regimes. Rather than giving a closed-form solution,

(46) instead gives an implicit solution for a. However, the solution remains unique, a conse-

quence of the fact that φ < 1 holds in each regime, implying that the RHS of (46) is a concave

function of a. With the RHS greater than the LHS when a = 0 and the LHS linear in a,
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concavity implies that a single a value exists where the two expressions are equal.

Recall that when φ < 0, ∂a/∂x > 0 holds when τ = 0. This same conclusion can be

demonstrated when τ > 0, as follows. Rearranging (46) yields a
1
φ C−

1
φ − τa = y − tx, and

differentiating with respect to x then gives

[
a

1
φ
−1

k

φ
− τ

]
∂a

∂x
= −t < 0, (47)

where k = C
−

1
φ > 0. With φ < 0, the bracketed term in (47) is negative, implying that

∂a/∂x > 0 must hold for the LHS to be negative. By contrast, the sign of this derivative is

ambiguous when φ > 0.

In addition, it can be shown that, despite ∂a/∂x > 0, y − tx + τa is decreasing in x when

φ < 0. Solving for ∂a/∂x using (47), the x derivative of y − tx + τa is

−t + τ
∂a

∂x
= −t − τ

ta

(a
1
φ k/φ) − τa

= −
ta

1
φ k/φ

(a
1
φ k/φ) − τa

< 0. (48)

Recall that the previous solutions for S, q, S̃, and r all involved y−tx raised to an exponent.

When τ > 0, the solutions for these variables are given by the same expressions with y − tx

replaced by y − tx + τa, with a given by the solution to (46). Since y − tx is decreasing in

x, the sign of the x derivative of the previous solutions depended on the sign of the exponent,

being negative (positive) when the exponent was positive (negative). Since y − tx + τa is also

decreasing in x when φ is negative given (48), all the previous conclusions about the signs of

the x derivatives of S, q, S̃, and r are unaffected, as long as φ for the particular regime is

negative. Summarizing yields

Proposition 5. If parking space per dwelling under a particular regime is increasing
in x in the absence of parking-related congestion, then the same conclusion holds in
the presence of such congestion. In addition, under this condition, the spatial behavior
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of S, q, S̃ and r is the same in the presence of parking-related congestion as in its
absence, with the distance derivatives having the same signs.

To state the implications of the proposition most simply, suppose that parameter values

are such that all the ambiguities in the solutions with τ = 0 are absent: θ = β and γ is small.

Then ∂a/∂x is positive under each regime when τ = 0, while q increases with x and r along

with the structural densities decrease with x. Then, Proposition 5 says that these vary same

patterns emerge when τ > 0. Appropriate qualifications to this statement would be made when

ambiguities are present in the solutions with τ = 0.7

While the previous discussion has focused on slopes, the levels of the solutions also change

when τ > 0. Since y − tx + τa is then larger than y − tx, it follows that all solutions with a

positive exponent (which are decreasing in x) are larger at a given x when τ > 0 than when

τ = 0, while all solutions with a negative exponent (which are increasing in x) are smaller

when τ = 0. For example, the S and r solutions are all larger when τ > 0 than when τ = 0.

Tables 1, 2 and 3 show the solutions when τ takes the positive value of 0.2. Under the

land rent patterns for τ = 0.2, shown in Table 1, underground parking continues to dominate

the structural regime at all locations. In addition, the underground parking area extends

farther from the CBD than when τ = 0, with the shaded areas in the table’s τ = 0.2 columns

showing that surface parking now first appears at x = 40 instead of x = 35. While the

direction of this change could not be predicted, the changes in the other variables, as seen in

the second of the two columns for each regime in Tables 2 and 3, follow Proposition 5 and

the subsequent discussion. In particular, given that a is increasing with distance under both

the underground and surface regimes when τ = 0, this pattern is preserved when τ = 0.2. In

addition, as predicted by Proposition 5, the spatial patterns of q (increasing in x), S, and S̃

(both decreasing in x) are preserved as well, as is the pattern of land rent (decreasing in x)

from Table 1. Moreover, as predicted by the discussion following Proposition 5, the levels of

the variables that are increasing in x (a and q) are lower at each location when τ = 0.2, while

the levels of variables that are decreasing in x (S, S̃) are higher.
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5. Inefficiency of Equilibria with Parking-Related Congestion

5.1. General considerations

Because developers view themselves as unable to affect the average level of off-street parking

in their neighborhoods, they ignore the collective beneficial effects of their a choices on parking-

related congestion. This observation suggests that the equilibrium level of off-street parking

when τ > 0 will be too low. To demonstrate this conclusion analytically, the perspective of

a social planner would be taken. Since consumer utility is fixed by the open-city assumption,

the planner’s goal would be to maximize total land rent in the city, which accrues to absentee

landowners as income. This maximization problem, in turn, requires maximizing land rent at

each location in the city through proper choice of the variables S, q, a, and S̃ (under the non-

surface regimes) at that location. With land rent again determined by a zero-profit condition

for developers, the planner can achieve the highest r by maximizing the developer’s profit while

taking a’s effect on parking-related congestion into account.

Under the surface parking regime, for example, the planner would maximize

πsu =
h(S)

q
R(q, a, x, a) − iS − r

[
1 +

h(S)

q
a

]
, (49)

which is identical to the previous profit expression (6) except that the a argument of R is

replaced by a. Instead of (9), the first-order condition for choice of a would be

Ra + Ra
− r = 0. (50)

With Ra = τ and Raa < 0, (50) would lead to a higher a value than solution where the a

effect is ignored, other things equal. But magnitude of Ra depends on the value of q, which

in turn is linked to the value of S. Indeed, since all the choice variables are interdependent,

the comparison between the planning solution and the equilibrium cannot be made by simply

focusing on the first-order condition for a. This difficulty suggests that the entire planning

solution should be computed using the previous functional-form assumptions and then com-

pared to the equilibrium. But this path is infeasible given that a appears in the linear part
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of R while also being raised to an exponent, which prevents derivation of analytical solutions

for any of the variables. As a result, the comparison between the planning solution and the

equilibrium is carried out numerically, with the results shown in Table 4.

5.2. Numerical results

In the upper panel of Table 4, the first column again shows equilibrium land rent when τ =

0.2 (now extended to three decimal places for comparison purposes). The numbers represent the

upper envelope of the rents in Table 1, with the shaded values showing rent for the underground

regime and the unshaded values corresponding the surface regime. The second column shows

the optimal land rent, where the term “optimal” refers to the planning solution. Since the

parking congestion effect is taken into account, optimal land rent is slightly higher than the

equilibrium rent at each location. The shaded range remains unchanged, indicating that the

switch from the underground regime to the surface regime again occurs at x = 40 (structural

parking is again dominated).8 The third column of the upper panel is discussed below.

The second half of Table 4’s upper panel shows parking area per dwelling, with the first

column showing equilibrium values and the second showing optimal values. Comparing the

columns, the conjecture that the optimal a is higher than the equilibrium value is borne out.

The optimal parking area per dwelling is higher at each location under both the underground

and surface regimes, reflecting the planner’s recognition of the congestion-reducing effect of a

higher a. Note that the shaded range represents a values for the underground regime, while

the unshaded range represents a values for the surface regime.

The lower panel of Table 4 shows the differences between the optimal and equilibrium

values of dwelling size and residential structural density, which are impossible to predict a

priori. The first two columns of the panel show that the optimal dwelling size is smaller than

the equilibrium size at each location. Thus, the shift to larger parking areas in moving to

the planning solution is accompanied by a decline in dwelling sizes, so that the two dwelling

attributes change in opposite directions. In addition, while Table 4 shows that the optimal

residential structural density is lower than the equilibrium density at the shaded locations,

where underground parking is provided, the reverse is true under surface parking, with resi-

dential structural density increasing in moving from the equilibrium to the planning solution.9
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Although, with the decrease in dwelling sizes, a decline in S under both regimes might have

been expected given the need for less floor space, the solutions show that this conjecture is

incorrect. But the change in parking structural density for the underground regime follows this

intuition: with a rising, S̃ increases in moving from the equilibrium to the planning solution,

a result that is not shown in Table 4. These conclusions are summarized as follows:

Proposition 6. In the numerical solution, the optimal parking area per dwelling is
higher than the equilibrium area throughout the city, while the optimal dwelling size
is lower than the equilibrium size. The optimal residential structural density is higher
(lower) than the equilibrium density under the underground (surface) regime, while the
optimal underground parking structural density is higher than the equilibrium density.

6. A Minimum Parking Requirement

While the planning solution requires raising a above the equilibrium value at each location,

cities often take a cruder approach by imposing a minimum parking requirement (MPR). An

MPR consists of a spatially invariant value of a, denoted â, along with the constraint a ≥ â. It

is useful to investigate the effect of an MPR, using the numerical approach while again setting

τ = 0.2.

When a mild MPR with â = 3.8 is imposed, the MPR is binding out to x = 15, and while

a rises over this range, there are no effects outside it. A more-stringent MPR with â = 7 has

broader effects, as seen in the MPR columns of Table 4. As can be seen in the second part

of Table 4’s upper panel, the equilibrium violates the MPR over almost the entire range of

distance values, with the MPR nonbinding only at x = 60, where surface parking is provided.

Therefore, when the MPR is imposed, a rises at all distances closer to the CBD, with the

increase being substantial close to the CBD but smaller farther out.

Since a marginal increase in a raises land rent starting at the equilibrium, the initial

movement toward the MPR value raises land rent at all locations. If â is below the optimal

a, then land rent continues to rise until â is reached. But if the movement toward â causes

a to rise above the optimal a value, then land rent starts to fall from the maximum achieved

at â. In this case, whether rent under the MPR is higher or lower than the equilibrium value

depends on how far â lies above the optimal a value. If the difference is small, land rent under
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the MPR will be higher, and otherwise it will be lower.

These conclusions can be seen in Table 4. Since â is far above the optimal values for

underground parking, the MPR reduces land rent everwhere under that regime relative to the

equilibrium. But since â is smaller than the optimal a for surface parking at x = 55, land

rent rises at this location, staying the same at x = 60 since the MPR is not binding there.

Moreover, since â is only slightly larger than the optimal a values at x = 45 and x = 50, the

MPR raises land rent at these locations as well. But at all distances closer to the CBD, â is

sufficiently far above the optimal a that the MPR reduces land rent under the surface regime

at these locations, a result that can be seen at x = 40 (where the surface regime prevails before

and after the imposition of the MPR). Finally, since the MPR imposes a bigger constraint for

the underground regime, land rent falls by more for this regime than for the surface regime

in the vicinty of boundary between the regimes, leading to an inward shift in the boundary

from x = 40 to x = 30, with the surface parking area expanding (as seen in the change in the

shaded areas).

The lower panel of Table 4 shows that the MPR reduces dwelling sizes relative to the

equilibrium under both regimes, an effect that follows the dwelling-size reduction in moving

to the planning solution. Apparently, any increase in a prompts a reduction in q, regardless of

whether or not the higher a overshoots the optimal value. The effects of the MPR on residential

structural density, however, do not always follow the changes that occur in moving to the social

optimum. The pattern is the same for underground parking, with the MPR greatly reducing

S under that regime over the entire range of distances in the city. But the MPR also leads to a

lower S under the surface regime (rather than the higher one reached in moving to the planning

solution) out to a distance of x = 40. This effect can be seen at x = 40, where surface parking

exists both in the equilibrium and under the MPR. S rises, however, at x = 45, 50, and 55, as

in the shift to the planning solution (staying constant at x = 60). Apparently, an increase in

a only raises S under the surface regime when the increase leaves a close to the optimal value.

When the increase far overshoots the optimal value, as happens when x ≤ 40, the higher a

leads to a reduction rather than an increase in residential structural density. Figures 2 and

3 illustrate the results from Table 4 for two of the variables: parking area per dwelling and
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dwelling size.

While the MPR is binding almost everywhere in this numerical example, Cutter and Franco

(2012) provide empirical results designed to test whether MPRs in the Los Angeles area repre-

sent binding constraints on developers, using two approaches relying on a commercial-property

database. The first compares a building’s available parking area to the area mandated by the

MPR, and the evidence showing that the two areas tend to be close suggests that the MPR

constraint is typically binding. The second approach estimates the value of additional parking

using an hedonic price model, and then compares this value to the cost of providing additional

parking. The results show that value is less than cost, suggesting that MPRs lead developers

to provide more parking than they would voluntary, making the constraints binding.

7. Conclusion

This paper has analyzed provision of parking in a monocentric city, focusing in a realistic

fashion on three different parking regimes reflecting different technologies for producing parking

space. The analysis derives the equilibrium spatial behavior of parking area and floor space per

dwelling, residential structural density, and parking strutural density (when relevant) under

the three regimes, while deducing (through an analysis of land rent) the relative locations of

the regimes in the city. Since failure by developers to account for the effect of their decisions

on neighborhood parking congestion makes the equilibrium inefficient, a social planner would

seek to raise parking area per dwelling throughout the city, with attendant effects on the other

decision variables. A minimum parking requirement offers a crude way of addressing this

inefficiency, and its effects are derived.

The novelty of the paper is its consideration of parking as an element of urban form,

achieved by adding parking area per dwelling and any associated capital investment to the

list of land-use variables chosen by housing developers. This innovation builds on Brueckner’s

(1983) incorporation of yard space in the standard urban model. However, because the paper

has a purely residential focus, embodying the usual and unrealistic restriction of the city’s

business area to a point in space, it abstracts from a host of questions related to work-related

parking. These questions include the optimal provision of employee parking space, which in
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turn has broad implications for transport mode choice and road congestion. A related question

concerns decentralized provision of employee parking, particularly the effects of different charg-

ing schemes (worker-paid parking vs. provision of free space by employers). By extending the

model to include land-use in the CBD, and by adding mode choice as well as road congestion,

such questions could be addressed. See Franco (2015) for an initial effort in this direction.
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Appendix

A.1. Derivation of underground parking solutions when τ = 0

Under the assumed functional forms, the condition (18) and the S̃ function are written

aSβ

q
= µS̃θ; S̃ = δ

(
a

q

)1
θ

S
β
θ , (a1)

where δ = µ−1/θ. Profit in (17) then becomes

R
Sβ

q
− i

[
S + δ

(
a

q

) 1
θ

S
β
θ

]
− r. (a2)

From (20), the first-order condition for S is

R
βSβ−1

q
− i

[
1 +

δβ

θ

(
a

q

) 1
θ

S
β
θ
−1

]
= 0, (a3)

and the condition (22) for a, after some rearrangement, can be written as

iδ

(
a

q

) 1
θ

S
β
θ
−1 =

θγ

1 − α
νq−

α
1−αa−

γ
1−α

Sβ−1

q
, (a4)

where ν = u
1

1−α . Substituting (a4) for the last term in (a3), gathering terms, and substituting

for R using (24) while imposing τ = 0, (a3) reduces to

βSβ−1

q

[
y − tx−

1 + γ − α

1 − α
νq−

α
1−αa−

γ
1−α

]
= i. (a5)

From (21), the first-order condition for q is, after rearrangement

−R
Sβ

q
+

iδ

θ

(
a

q

) 1
θ

S
β
θ +

α

1 − α
νq−

α
1−α a−

γ
1−α

Sβ

q
= 0. (a6)
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Combining (a4) and (a6), eliminating R using (24), and simplifying yields

νq−
α

1−αa−
γ

1−α =
1 − α

1 + γ
(y − tx). (a7)

Substituting (a7) in (a5) and substituting for R, a(5) becomes

βSβ−1

q

α

1 + γ
(y − tx) = i, (a8)

and solving for S yields

S =

(
αβ

iq(1 + γ)

) 1
1−β

(y − tx)
1

1−β . (a9)

Substituting (a9), (a4) can be written (after substantial simplification) as

a = F (y − tx)
θ−β
1−β q

1−θ
1−β , (a10)

where F is a constant.

Substituting (a10) in (a7) and solving for q yields the solution (31). Substituting (31) into

(a10) then yields the a solution (35), and substituting (31) into (a9) yields the S solution (27).

Substituting the S, q and a solutions into (a1) yields the S̃ solution (38).

Land rent is given by

r = R
Sβ

q
− iS − iδ

(
a

q

) 1
θ

S
β
θ (a11)

Combining (24) and (a7) yields

R =
α + γ

1 + γ
(y − tx), (a12)

so that (a8) can be rewritten as

βSβ

q

α

α + γ
R = iS. (a13)
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Using (a12) and (a13), the first two terms in (a11) equal

(
1 −

αβ

α + γ

)
R

Sβ

q
=

α(1 − β) + γ

1 + γ

Sβ

q
(y − tx), (a14)

using (a12). Then, using (a4) and (a7), the last term in (a11) is

θγ

1 − α
νq−

α
1−αa−

γ
1−α

Sβ

q
=

θγ

1 − α

1 − α

1 + γ
(y − tx)

Sβ

q
. (a15)

Substituting (a14) and (a15) into (a11) then yields

r =
α(1 − β) + γ(1 − θ)

1 + γ

Sβ

q
(y − tx) (a16)

Finally, substituting the S and q solutions into (a16) yields the r solution (42).
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Table 1:  Equilibrium land rent  

 Land Rent  
x Underground Surface Structural 
 τ=0 τ=0.2 τ=0 τ=0.2 τ=0 τ=0.2 
0 5.43 5.87 3.23 3.34 4.39 4.75 

5 4.60 4.98 2.94 3.05 3.72 4.03 
10 3.88 4.22 2.68 2.79 3.14 3.41 
15 3.27 3.57 2.44 2.54 2.65 2.88 

20 2.75 3.00 2.21 2.32 2.22 2.43 
25 2.30 2.53 2.00 2.11 1.86 2.04 
`30 1.92 2.12 1.81 1.92 1.56 1.71 

35 1.60 1.77 1.64 1.75 1.30 1.43 
40 1.33 1.47 1.48 1.59 1.08 1.19 
45 1.10 1.23 1.33 1.44 0.89 0.99 

50 0.91 1.01 1.20 1.30 0.73 0.82 

55 0.75 0.84 1.07 1.18 0.60 0.68 
60 0.61 0.69 0.96 1.07 0.49 0.56 
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Table 2: Equilibrium parking area and parking structural density 

 Parking Area per Dwelling Parking Structural Density 
x Underground Surface Structural Underground Structural 
 τ=0 τ=0.2 τ=0 τ=0.2 τ=0 τ=0.2 τ=0 τ=0.2 τ=0 τ=0.2 
0 3.57 3.54 2.82 2.74 3.60 3.57 86.88 93.90 351.17 379.78 
5 3.64 3.61 3.04 2.95 3.67 3.64 73.57 79.72 297.38 322.45 
10 3.71 3.67 3.29 3.18 3.74 3.70 62.15 67.52 251.19 273.12 
15 3.78 3.74 3.56 3.44 3.81 3.77 52.36 57.05 211.62 230.75 
20 3.85 3.81 3.87 3.71 3.88 3.84 43.99 48.08 177.80 194.46 
25 3.92 3.88 4.20 4.01 3.96 3.92 36.85 40.41 148.96 163.44 
30 4.00 3.96 4.56 4.35 4.04 3.99 30.79 33.87 124.44 136.99 
35 4.08 4.04 4.97 4.71 4.12 4.07 25.64 28.31 103.65 114.51 
40 4.17 4.12 5.41 5.10 4.20 4.15 21.29 23.59 86.07 95.43 
45 4.25 4.20 5.91 5.54 4.29 4.24 17.62 19.60 71.24 79.30 
50 4.34 4.29 6.46 6.02 4.38 4.33 14.54 16.24 58.77 65.69 
55 4.44 4.38 7.08 6.54 4.47 4.42 11.95 13.41 48.31 54.24 
60 4.53 4.48 7.77 7.11 4.57 4.51 9.79 11.03 39.57 44.64 

 

 

Table 3: Equilibrium residential structural density and dwelling size 

 Residential Structural Density Dwelling Size 
x Underground Surface Structural Underground Surface Structural 
 τ=0  τ=0.2 τ=0  τ=0.2 τ=0  τ=0.2 τ=0  τ=0.2 τ=0  τ=0.2 τ=0  τ=0.2 
0 347.53 375.60 258.16 266.93 351.17 379.78 180.55 179.02 191.61 191.37 180.17 178.64 
5 294.30 318.90 235.38 244.14 297.38 322.45 183.85 182.25 192.25 192.00 183.47 181.86 
10 248.59 270.10 214.31 223.06 251.19 273.12 187.27 185.58 192.91 192.63 186.88 185.18 
15 209.42 228.20 194.84 203.57 211.62 230.75 190.80 189.02 193.58 193.27 190.41 188.62 
20 175.95 192.30 176.88 185.59 177.80 194.46 194.46 192.59 194.26 193.92 194.06 192.17 
25 147.42 161.63 160.32 169.01 148.96 163.44 198.25 196.27 194.95 194.58 197.84 195.85 
30 123.15 135.47 145.07 153.75 124.44 136.00 202.18 200.09 195.66 195.25 201.76 199.66 
35 102.58 113.23 131.06 139.72 103.65 114.51 206.25 204.04 196.39 195.93 205.82 203.60 
40 85.17 94.37 118.20 126.83 86.07 95.44 210.48 208.14 197.13 196.62 210.04 207.69 
45 70.50 78.41 106.41 115.02 71.24 79.30 214.87 212.39 197.88 197.32 214.42 211.92 
50 58.16 64.95 95.62 104.20 58.77 65.69 219.43 216.80 198.65 198.03 218.97 216.32 
55 47.81 53.63 85.76 94.31 48.31 54.24 224.16 221.37 199.44 198.75 223.70 220.89 
60 39.17 44.14 76.77 85.28 39.58 44.64 229.09 226.13 200.25 199.48 228.62 225.62 
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Table 4: Comparison of equilibrium, optimum and MPR when τ = 0.2 

 Land Rent Parking Area per Dwelling 
x Equilibrium Optimal MPR: a ≥ 7 Equilibrium  Optimal MPR: a ≥ 7 
0 5.869 5.882 4.440 3.54 3.76 7 
5 4.983 4.995 3.840 3.61 3.84 7 
10 4.220 4.231 3.312 3.67 3.91 7 
15 3.566 3.576 2.849 3.74 4.00 7 
20 3.005 3.014 2.443 3.81 4.08 7 
25 2.525 2.534 2.089 3.88 4.17 7 
30 2.117 2.124 1.856 3.96 4.26 7 
35 1.769 1.776 1.714 4.04 4.36 7 
40 1.585 1.592 1.575 5.10 5.75 7 
45 1.438 1.445 1.441 5.54 6.32 7 
50 1.303 1.310 1.310 6.02 6.96 7 
55 1.179 1.188 1.185 6.54 7.69 7 
60 1.066 1.076 1.066 7.11 8.51 7.11 

  
 
 

 Dwelling size Residential Structural Density 
x Equilibrium Optimal MPR: a ≥ 7 Equilibrium Optimal MPR: a ≥ 7 
0 179.02 178.27 178.00 375.60 370.34 223.42 
5 182.25 181.45 180.96 318.90 314.30 194.71 
10 185.58 184.74 184.03 270.10 266.09 169.24 
15 189.02 188.13 187.21 228.20 224.71 146.69 
20 192.59 191.65 190.52 192.30 189.27 126.78 
25 196.27 195.28 193.95 161.63 159.00 109.25 
30 200.09 199.03 186.94 135.47 133.20 148.48 
35 204.04 202.92 188.74 113.23 111.27 137.11 
40 196.62 194.21 190.66 126.83 127.35 126.03 
45 197.32 194.63 192.71 115.02 115.59 115.26 
50 198.03 195.03 194.92 104.20 104.84 104.84 
55 198.75 195.40 197.29 94.31 95.02 94.78 
60 199.48 195.72 199.48 85.28 86.06 85.28 

33 
 



 

 

 

160

165

170

175

180

185

190

195

200

205

210

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Fig. 3: Dwelling size when τ = 0.2 

Equilibrium Dwelling Size Optimal Dwelling Size Dwelling Size under MPR

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

Fig. 2: Parking area when τ = 0.2 

Equilibrium Parking Area Optimal Parking Area Parking Area under MPR

34 
 



References

Anderson, S. and A. de Palma (2004). “The Economics of Pricing Parking.” Journal of Urban
Economics 55, 1-20.

Anderson, S. and A. de Palma (2007). “Parking in the City.” Papers in Regional Science 86,
621-632.

Arnott, R.J., A. de Palma and R. Lindsey (1991). “A Temporal and Spatial Equilibrium
Analysis of Commuter Parking.” Journal of Public Economics 45, 301-335.

Arnott, R.J. and J. Rowse (1999). “Modeling Parking.” Journal of Urban Economics 45,
97-124.

Arnott, R.J. and E. Inci (2006). “An Integrated Model of Downtown Parking and Traffic
Congestion.” Journal of Urban Economics 60, 418-442.

Arnott, R.J., E. Inci and J. Rowse (2013). “Downtown Curbside Parking Capacity.” CESifo
Working Paper 4085.

Brueckner, J.K. (1983). “The Economics of Urban Yard space: An ‘Implicit-Market’ Model
for Housing Attributes. Journal of Urban Economics 13, 216-234.

De Borger, B., and B. Wuyts (2009). ”Commuting, Transport Tax Reform and the Labour
Market: Employer-paid Parking and the Relative Efficiency of Revenue Recycling Instru-
ments.” Urban Studies 46, 213-233.

Calthrop, E. and S. Proost (2006). “Regulating On-Street Parking.” Regional Science and
Urban Economics 36, 29-48.

Cutter, W.B. and S.F. Franco. (2012). “Do Parking Requirements Significantly Increase the
Area Dedicated to Parking? A Test of the Effect of Parking Requirements Values in Los
Angeles County.” Transportation Research Part A 46, 901-925.

De Borger, B. and B. Wuyts (2009). “Commuting, Transport Tax Reform and the Labour Mar-
ket: Employer-paid Parking and the Relative Efficiency of Revenue Recycling Instruments.”
Urban Studies 46, 213-233.

Feitelson, E. and O. Rotem (2004). “The Case for Taxing Surface Parking.” Transportation
Research Part D 9, 319-333.

Ferguson, B.K. (2005). Porous pavements. Taylor & Francis, Boca Raton, Florida.

35



Franco, S.F. (2015). “Downtown Parking Supply, Work-Trip Mode Choice and Urban Spatial
Structure.” Working paper, Nova School of Business and Economics.

Glazer A. and E. Niskanen (1992). “Parking Fees and Congestion.” Regional Science and
Urban Economics 22, 123-132.

Inci, E. (2015) . “A Review of the Economics of Parking.” Economics of Transportation, in
press.

Litman, T. (2011). “Why and How to Reduce the Amount of Land Paved for Roads and
Parking Facilities.” Environmental Practice 13, 38-46.

Mukhija V., and D. Shoup (2006). “Quantity Versus Quality in Off-Street Parking Require-
ments.” Journal of the American Planning Association 72, 296-308.

Shoup, D.C. (1999). “The Trouble with Minimum Parking Requirements.” Transportation
Research Part A 33, 549-574.

Shoup, D. (2002). The Trouble with Minimum Parking Requirements. Victoria Transport
Policy Institute. Victoria, BC.

Shoup, D.C. (2005). The High Cost of Free Parking. Planners Press, Chicago.

Shoup, D.C. and D.H. Pickrell (1978). “Problems With Parking Requirements in Zoning
Ordinances.” Traffic Quarterly 32, 545-561.

Verhoef, E.T., Nijkamp, P., and P. Rietveld (1995). “The Economics of Regulatory Parking
Policies: the Im(possibilities) of Parking Policies in Traffic Congestion.” Transportation
Research Part A 29, 141-156.

Voith, R. (1998). “Parking, Transit, and Employment in a Central Business District.” Journal
of Urban Economics 44, 43-58.

Willson, R.W. (1995). “Suburban Parking Requirements - A Tacit Policy For Automobile Use
And Sprawl.” Journal of the American Planning Association 61, 29-42.

36



Footnotes

∗Franco is a permanent researcher at the UECE-Research Unit on Complexity and Economics
of ISEG/ULisboa. She acknowledges the support of a grant from the Multicampus Research
Program and Initiative (MPRI) of the University of California (award number 142934).
However, the views expressed in this paper are solely those of the authors.

1See Inci (2015) for a survey of this literature.

2To maintain simplicity, this formulation does not include on-street parking search costs in
the budget constraint. If a consumer’s search costs were instead captured in this fashion,
the costs would decrease with a (since less on-street search is needed the more off-street
parking a dwelling has) and increase with a (since higher average off-street parking means
fewer residents searching in the neighborhood). This interaction is suppressed, with budget
constraint containing only a congestion term related to parking, while convenience costs are
captured solely in the utility function.

3The semicolon preceding a emphasizes its special status, being neither a direct choice variable
nor an immutable locational characteristic like x.

4It should be noted that, unlike in the standard model, the approach where the consumer
chooses q conditional on p is not equivalent in the current model to the approach based
on R under two of the parking regimes (surface and structural). The reason is that, aside
from its appearance in the revenue expression Rh(S)/q, q appears elsewhere in the profit
function in these two parking regimes, as seen below. The two approaches are equivalent for
underground parking.

5Underground parking could be viewed as including the case where a single-story parking
garage is built under the first residential floor of the building but above ground.

6The magnitudes of Est and Eug cannot be compared unambiguously when µ = 1, which
means that Est > Eug may hold in this case.

7In addition to this preservation of spatial behaviors when φ < 0, it is easily seen that the
relative rate of change in the variables of the model as x increases is smaller in the presence
of parking-related congestion. Focusing on a, for example, differentation of (46) yields

1

a

∂a

∂x
= φ

−t + τ ∂a
∂x

y − tx + τa
. (f1)
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Compared to the case where τ = 0, the negative numerator of the ratio in (f1) is closer to
zero when τ > 0 while the denominator is larger. As a result, the relative rate of change
of a is smaller when τ > 0 than when τ = 0. Differentiation of the solutions for the other
variables after replacing y − tx by y − tx + τa yields analogous conclusions.

8Finer spatial resolution, of course, would show a change in the switch point.

9These patterns prevails within each regime over the entire range of distances in the city, with
S falling (rising) at all locations for the underground (surface) regime.
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