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Abstract 
 
Reliable early warning signals are essential for timely implementation of macroeconomic and 
macro-prudential policies. This paper presents an early warning system as a set of multi-period 
forecasts of indicators of tail real and financial (systemic) risks. Forecasts are obtained from: (a) 
autoregressive and factor-augmented VARs with linear GARCH volatility (FAVARs), and (b) 
auto-regressive and factor-augmented Quantile Projections (QPs). We use a large database of 
monthly U.S. data for the period 1972:1-2014:12 to forecasts our tail risk indicators with each 
model in pseudo-real time. Our key finding is that forecasts obtained with autoregressive and 
FAVAR models significantly underestimate tail risks, while forecasts obtained with 
autoregressive and factor-augmented QPs deliver superior and fairly reliable early warning 
signals for tail real and financial risks up to a one-year horizon. 
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I.   INTRODUCTION 

The 2007-2009 financial crisis and its adverse impact on real activity has spurred 

renewed efforts in modeling adverse “tail” events in both the financial and real sectors. 

Bisias et al. (2012) provide an extensive survey of the models currently available to measure 

and track indicators of tail (systemic) financial risk. Yet, most of these models focus 

exclusively on vulnerabilities in the financial system or some of its components, with no 

assessment of either their impact on real activity, or on how vulnerabilities in the real sector 

may affect the financial sector. Most importantly, the out-of-sample forecasting power of 

many of the proposed measures is seldom assessed, making it difficult to gauge their 

usefulness as early warning signals. Tail real risks are also the focus of an important 

theoretical literature—briefly reviewed by Acemoglu et al. (2015)—which aims at explaining 

how aggregate tail real risks can arise from a variety of shock configurations at disaggregated 

levels of an economy. To the best of our knowledge, however, this literature has not tackled 

the issue of forecasting tail risks. Operationally, reliable early warning signals for tail real 

and financial risks—where reliability is defined as the ability of a model to issue signals with 

relatively small percentages of missed realizations of future adverse extreme events—are 

essential for timely implementation of  macroeconomic and macroprudential policies.  

Building on our previous work (De Nicolò and Lucchetta, 2012, 2013), this paper 

develops an early warning system (EWS) as a set of multi-period forecasts of indicators of 

tail real and financial risks. Our analysis introduces three novel features. First, we compare 

multi-period forecasts of indicators of tail real and financial risks obtained using two types of 

forecasting models: autoregressions (AR) and factor-augmented VARs, with the volatility of 

each indicator following a linear GARCH process (FAVARs), and autoregressive and factor-

augmented Quantile Projections (sometimes referred to as QPs), which we already partially 
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used in our previous work and here extend in terms of model specification and data quality. 

As pointed out in Komunjer (2013), a potential advantage of these models is that they do not 

require assumptions about the underlying distribution of a variable to be forecast, and in 

principle they can capture any type of asymmetry. Therefore, one key objective of this study 

is to assess the comparative forecasting performance for tail risks of workhorse forecasting 

models, such as AR and FAVAR models, and Quantile Projection models. Second, we assess 

the forecasting performance of Equally Weighted Pools of forecasts obtained under FAVARs 

and QPs to gauge whether the superiority of simple pooled forecasts documented in Amisano 

and Geweke (2011, 2013) extends to the tails of a predicted distribution. Lastly, the out-of 

sample forecasting accuracy of the tail risk indicators under each model is assessed by 

comparing their multi-period tail forecasts using a scoring rule which places heavier weight 

on the tails of interest. In essence, our aim is to identify the specification or combination of 

models among those considered that can deliver reliable early warning signals of tail real and 

financial risks.   

Our measures of tail risks are constructed following a standard risk management 

approach. Tail real risks are measured by the Value at-Risk (VaR) of two standard aggregate 

macroeconomic variables, industrial production growth and employment growth. Tail 

financial risk in the corporate and banking sectors are measured by the VaR of a “portfolio” 

version of the distance to insolvency measure introduced by Atkenson et al (2013), which is 

based on a large class of theoretical structural models, and is germane to other theory-based 

indicators of tail financial risk used in recent studies (see e.g. Acharya et al., 2010 or 

Brownlee and Engle, 2010). Tail risks in financial markets are measured by the VaR of 

changes in a Financial Condition Index.  
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We implement our EWS using a large set of monthly U.S. data for the period 1973:2-

2014:12. Estimation and forecasting is conducted using both a moving and an expanding 

window of data: the moving window estimation is used to account for time variation in 

parameters and possible structural breaks, while the estimation based on the longer 

expanding window provides us a forecasting “hedge” against possible imprecision of 

parameter estimation under the shorter moving window. For each variable underlying our tail 

risk measures, we compute multi-period density and VaR forecasts at a three month, six 

months and 12 month horizons, and compare their accuracy using the Quantile Weighted 

Probability Score (QWPS) introduced by Gneiting and Ranjan (2011).  

Our analysis delivers three main results.  First, factor models deliver density and VaR 

forecasts significantly more accurate, or at least as accurate, than those of autoregressions 

and quantile autoregressions for all variables and forecasting horizons. This result extends 

the finding of superior predictive ability of factor models with many predictors (see e.g. 

Stock and Watson, 2006) to density and VaR forecasts at multiple forecasting horizons. 

Second, density and VaR forecasts of the Equally Weighted Pool of both types of models turn 

out to be significantly more accurate, or at least as accurate, than those obtained from each 

model in the pool. This result extends the finding of superior predictive ability of Equally 

Weighted Pool forecasts (see e.g. Amisano and Geweke, 2011 and 2012) to density and 

quantile forecasts at multiple forecasting horizons as well.  

Our third result is the most important operationally, since it involves an assessment of 

the ability of our tail risk forecasts to serve as reliable early warning signals. In this regard, 

we have bad news and good news for risk-averse policy makers. The bad news is that the AR 

and FAVAR models deliver VaR forecasts that significantly underestimate tail risks for each 
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tail risk indicator and forecast horizon. Furthermore, their accuracy decreases substantially 

for the subsample that includes the recent financial crisis, this implying that their reliability 

falls when it is needed most. The failure of this class of models to issue reliable early 

warning signals is due to their inability to capture asymmetric and time varying changes in 

the shapes of the tails of distributions owing to their underlying Gaussian assumption. Policy 

makers may be particularly concerned about this result, since forecasts of this class of models 

(as well as their DSGE versions) are often used in central banks and international 

organizations as inputs for stress testing purposes. The good news is that factor-augmented 

Quantile Projections are far superior to AR and FAVAR forecasts, delivering tail forecasts 

that are reliable early warning signals for horizons up to one year. Importantly, their 

reliability is broadly preserved for the subsample that includes the recent financial crisis. In 

sum, these models seem to anticipate those asymmetric changes in the shape of the 

distribution that may result in significant changes in its tails.  

The remainder of the paper is composed of five sections and two Appendixes. Section 

II defines our tail risk measures. Section III details the data used to extract factors as 

predictors and the choice of factors. Section IV describes the forecasting models, their 

estimation and the evaluation of their forecasting accuracy. Section V details the results, and 

Section VI concludes. The Data Appendix details data and their sources, while the Tables 

Appendix contains some auxiliary tables. 

II.   TAIL RISK MEASURES  

Our tail risk measures are VaR s of indicators of real activity and financial stress, 

with the probability level   set equal to 10% (i.e. 0.10  ). The tail real risks measures 

are: the 0.10VaR of the (log) change in the industrial production index IPG , denoted by 
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( )VaR IPG  (also called Industrial Production-at-Risk), and the 
0.10VaR  of the (log) change in 

total employment EMG , denoted by ( )VaR EMG  (also called Employment-at-Risk).  

Tail financial risks in the corporate and banking sectors are measured by the 
0.10VaR

of a portfolio version of the Distance-to-Insolvency (DI) introduced by Atkeson et al. (2013), 

who show that: (i) DI is a measure of the adequacy of a firm’s equity cushion relative to its 

riskiness based on Leland’s (1994) structural model of credit risk; (ii) it is satisfactorily 

proxied by the reciprocal of its estimated instantaneous equity volatility; and (iii) it tracks 

closely other measures of risk derived from structural models of firm valuation, such as the 

distance-to-default. In our implementation, we compute the DI of returns of value weighted 

portfolios including all firms in the DataStream equity indexes of non-financial firms and 

banks, denoted by CDI and BDI respectively. These portfolios represents large portions of 

the corporate and banking sectors, the latter including all banks considered “systemically 

important”. Thus, a “portfolio” DI is a lower bound of the probability of insolvency of these 

two sectors, as profits and losses of each firm in the portfolio are evened out. As in Atkenson 

et al (2013), a proxy measure of the instantaneous equity return volatility is obtained by 

monthly averaging daily squared returns. Thus, tail risk in the corporate sector is measured 

by the 0.10VaR of the DI of the portfolio of non-financial firms, denoted by ( )VaR CDI  (also 

called Corporate Sector-at-Risk), and in the banking sector by the 0.10VaR  of the DI of the 

portfolio of banks, denoted by ( )VaR BDI  (also called Banking Sector-at-Risk.).  

Our measure of tail risks in financial markets is based on the National Financial 

Condition Index (NFCI) produced by the Federal Reserve Bank of Chicago. Brave and 

Butters (2011) document the FCI’s construction, obtained as a weighted average of more 

than 100 standardized indicators of risk, credit, and leverage in the financial system, and 
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show that this FCI captures well‐known periods of financial stress.  Financial Conditions 

Indexes (FCIs)—initially studied by Hatzius et al.(2010) in the aftermath of the 2007-2009 

financial crisis, and later produced in several  central banks and international organizations—

have been typically designed either to measure whether broad financial conditions are loose 

or tight by historical standards, thus serving as coincident indicators, or to assess whether the 

financial system experiences historically unusual stress, therefore serving as early warning 

indicators. As documented in Aramonte et al. (2013), however, the existing evidence on 

whether FCIs are useful as coincident indicators or as early warning indicators is mixed. In 

our study, we measure tail risk in financial markets by the 0.10VaR of the negative first 

differences in the NFCI1 (DNFCI), denoted by ( )VaR DNFCI  (also called Financial 

Markets-at-Risk).  

Table 1 reports descriptive statistics of the series underlying our tail risk indicators 

and their correlation matrix. As it may be expected, there is a negative and significant 

contemporaneous correlation between financial risk and real activity.  

[Insert Table 1 around here] 

 

III.   CHOICE OF FACTORS 

As in Stock and Watson, 2002, Pesaran et al., 2011, Stock and Watson, 2012), among 

others, we estimate factors by principal components—called PCA factors—obtained as the 

solution of a maximization problem subject to a factor loading constraint, as detailed in Stock 

                                                 
1
 Positive (negative) values of the NFCI indicate financial conditions that are tighter (looser), We take the 

negative of NFCI first difference  to preserve the negative orientation of all our other tail risk measures. 



8 

 

 

and Watson (2011). The dataset to estimate PCA factors includes 164 monthly time series of 

the U.S. economy for the period 1973:1-2014:12 taken from the FRED-MD database 

constructed by McCracken and Ng (2014) and from DataStream.2  As shown in Table 2, the 

distribution of the series by group is fairly comprehensive and relatively balanced. A 

description of the series and the relevant transformations used to ensure their stationarity are 

detailed in the Data Appendix. 

[Insert Table 2 about here] 

In forecasting exercises of the type we consider, two issues are addressed at the 

outset: what is the maximum number of PCA factors to use as predictors, and which factors 

among those selected are specified in a forecasting model.  

On the first issue, information criteria are typically used to determine the number of 

PCA factors. In large datasets—such as that used in Stock and Watson (2002), as well as in 

similarly sized datasets— the widely used Bai and Ng (2002) criteria (BN henceforth) 

typically select between 7 and 9 factors. In the FRED-MD dataset—which is a subset of our 

dataset for our selected data range—McCracken and Ng (2014) find 8 factors selected 

according to the BN PCP2 criterion. However, they further observe that the incremental 

explanatory power of PCA factors declines significantly moving from 5 to 8 factors, and that 

the existence of several series which are not significantly explained by PCA factors may 

introduce estimation errors of the type pointed out by Boivin and Ng (2006) that may, in turn, 

affect the determination of the number of factors.  

                                                 
2
 We are grateful to Michael McCracken for having allowed us access to the FRED-MD database prior to its 

public release. The counting of series in our dataset includes the NFCI series taken from the Federal Reserve 

Bank of Chicago website. 
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In this study we use two selection criteria recently proposed by Ahn and Horenstein 

(2013) (AH henceforth) that perform similarly to, or even better than, competing criteria 

under a variety of simulations. The first criterion, called ER (from “eigenvalue ratio”), selects 

the number of factors that maximize the ratio of two adjacent eigenvalues arranged in 

descending order; the second one, called GR, selects the number of factors that maximizes 

the rate of growth of adjacent eigenvalues arranged in descending order.  Figure 2 shows that 

for the entire time range of our dataset, both AH criteria deliver three factors which explain 

0.34 percent of the total variation in the data.  

[Insert Figure 1 about here] 

On the issue of which factors are specified in a forecasting model, Bai and Ng  (2008, 

2009) have shown that the ranking of factors by information criteria might not be the best 

one for inclusion of factors in predictive regressions, and have proposed selection methods 

aimed at improving forecasting performance whose application is outside the scope of this 

paper. In our study, we consider models with the factors selected according to the AH criteria 

and, in addition, models with five factors. This last choice is motivated by McCracken and 

Ng (2014) evidence on the decreases of explanatory power of factors after the estimated fifth, 

and on judgment by Stock and Watson (2012) that the use of five factors can be a useful 

benchmark in evaluating forecasting models. For the entire time range of our dataset, five 

factors explain 0.43 percent of the total variation in the data.  

As shown in Table 3, the explanatory power of factors in contemporaneous 

regressions of the variables underlying our measures of tail risk on factors and AR terms is 

anything but trivial:  R2s with five factors ranges from 0.28 to 0.76, and the addiction of five 

AR terms in each equation yields R2s ranging from 0.56 to 0.76.     
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[Insert Table 3 about here] 

 

IV.   FORECASTING MODELS 

 

A.   AR and FAVAR models 

Denote with { , , , , }t t t t t tY IPG EMG CDI BDI DNFCI  the set of variables we wish to 

forecast, with ty  an element of tY  , and with tF  a vector of PCA factors.  For each t ty Y , 

the FAVAR specification we use is given by the following equations:  

1

1

( ) ( )

( ) ( )

tt t

t t yt

F FA L B L

y a L b L y u






     
       

       

               (1) 

             
1 1| |

yt yt yt

yt yt yt

u

a b c u

 

   



  
                   (2),  

 Note that in (1) we do not impose ( ) 0B L  , which is a restriction that has been 

applied in many forecasting exercises in the literature (see e.g. Stock and Watson, 2006, or 

Pesaran at al., 2011).  Stock and Watson (2005) found that this restriction was rejected in 

their FAVAR version of an approximate dynamic factor model, but its impact was not 

quantitatively significant. However, this is not the case for our dataset and the variables 

underlying our tail risk measures.  

Table 4 reports the results of exclusion tests similar to those carried out by Stock and 

Watson (2005): it shows the percentiles of the distribution of p-values of chi-square tests of 

including a lag of the 5 variables in tY  in each equation of a VAR(4) with 5 factors, and the 

associated increase in R2. Estimations were carried out using an expanding data window 
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starting from an initial estimation period of 120 month (370 regressions for each factor and 

each variable), resulting in a total of 1850 tests. It can be seen that that for the entire set of 

tests, 25% of the p-values are less than .002 and 50% are less than .09. These rejections are 

associated with economically significant improvements in the ability to predict the PCA 

factors, since about 25% of the total number of the regressions is associated with 

improvements in the R2 greater than or equal to 0.09, with the financial variables CDI, BDI 

and DNFCI yielding improvements in the R2 greater than or equal to 0.26. 

[Insert Table 4 about here] 

Equation (2) describes a linear GARCH(1,1) process for ty  , where 
yt  are assumed 

to be  i.i.d. 0-mean random variables distributed with a Gaussian cdf, and 
yt  is the 

conditional standard deviation. This specification is supported by standard ARCH tests, 

which reveal that the null of absence of time variation in second moments is rejected for all 

variables except EMG. This specification is also helpful in assessing whether a simple 

GARCH specification can improve tail forecasts over the standard constant volatility 

assumption.    

To account for time variation in parameters and possible structural breaks, we used 

two window-based forecasting schemes. The first window is a rolling window of 120 

months, while the second one is an expanding window starting with the first estimation 

period of 120 month (1973:2-1984:1), and adding one observation sequentially at each 

forecasting date. For each t ty Y  and the two estimation windows, we estimated density 

forecasts and 0.10VaR  obtained with two FAVAR models, an AR model, and an Equally 

Weighted Pool of all forecasts. FAVAR(x) is a factor model where the optimal number of 

factors x, is selected according to the AH criteria, while FAVAR(5) is a factor model with 
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five factors. In order to assess the incremental forecasting power of PCA factors, we 

estimated an AR model where the conditional variance of t ty Y  follows a linear 

GARCH(1,1) process. Finally, we constructed the EWP forecast based on evidence of the 

superior forecasting power of combinations of density forecasts over component density 

forecasts documented by Amisano and Geweke (2011, 2012 and 2013). 

Let the mean and volatility forecasts of y  at horizon 1h   be ˆ
t hy 

 and ˆ
t h    

respectively. Since IPG and EMG are expressed in percentage changes, and DNFCI is 

expressed in first differences, their multi-period mean forecasts at horizon h  are given by

1

ˆ ˆ
h

t h t i

i

y y 



 .  Following Ghysels et al (2009) and Andersen et al (2010), the multi-period 

volatility forecasts at horizon h  are proxied by the expected quadratic variation, given by 

1

ˆ ˆ
h

t h t i

i

  



 where each term of this sum is the forward iteration of the linear GARCH 

equation.  Since the variables CDI and BDI are in levels, the relevant forecasts are just the 

iterated forecast values h  periods ahead.  Therefore, the VaR of t hy   at probability level 

(0,1)  is given by: 

1ˆ ˆ( ) ( ) ( )t h t h t h t hVaR y Q y y F   

                    (3), 

where 1( )F  is the inverse Gaussian cdf. 

Summing up, the structure of our forecasting set-up with AR and FAVAR models is 

similar to set-ups of individual forecasts of several macroeconomic variables, such as that 

considered by Stock and Watson (2002). However, this study extends this type of forecasting 

set-up in two important dimensions. First, we use FAVARs with time varying volatility of 
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the predicted variable: While the GARCH specification is standard for the financial 

variables, its adoption for the real variables is also instrumental in assessing whether a fairly 

general time varying variance specification can account for the differential behavior in the 

tails of real variables, such as GDP, noted by Acemoglu et al (2015). Second, we use forward 

iterations of the FAVAR and the linear GARCH process for each 
ty  and its variance to 

obtain multi-period density forecasts. This is in contrast to direct forecasts obtained as 

projections of the forecast variable at different horizons, based on current information. This 

choice is motivated by the empirical findings of Marcellino and Watson (2006) and Pesaran 

et al. (2011) on the superiority of iterated forecasts over direct forecasts for first moments, 

and the superiority of iterated forecasts over direct forecasts for second moments documented 

in Ghysels et al (2009).   

B.   AR and Factor-Augmented Quantile Projections 

For each t ty Y  we estimate quantile projections (QPs) of the following form: 

          
( ) ( ) ( ) ( )t h t t t hy A B F C L y             (4) 

In Equation (4), estimated factors tF
 
 and lagged values of ty  are the predictors of ( )t hy   at 

each forecasting horizon (h=3, 6, and 12).  The VaR  of t hy   is the quantile forecast: 

           ˆ ˆˆ( ) ( ) ( ) ( )t h t tVaR y A B F C L y            (5), 

where the “hat” denotes the estimated parameters of the quantile projections (4).  

In this case—differing form the AR and FAVAR estimations—forecasts are direct 

rather than iterated. We chose to use direct QPs for two reasons. First, to the best of our 

knowledge, this study and our previous contributions are the first to consider factor-

augmented quantile predictions in the mold of the literature of forecasting with many 
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predictors. This literature has proceeded first with direct forecasts, and then has progressed 

comparing direct with iterated forecasts. As we do not have previous evidence on direct 

forecasts with quantile projections, we wished to provide such evidence first. Second, to the 

best of our knowledge, we are unaware of studies examining the statistical properties of 

iterated quantile forecasts, especially in the context of choices of factors and autoregressive 

lags, which in the standard linear regression framework are determined by well-known 

information criteria. A systematic comparison of direct and iterated quantile predictions in 

the context of forecasting with factors as predictors may be a worthwhile effort deserving a 

specific detailed study of its own.   

However, to maintain broad comparability of QP specifications with the AR and 

FAVAR models, for each t ty Y  and estimation window, we estimate the following three QP 

specifications similar to those of the AR and FAVAR models: quantile projections as 

autoregressions with five lags (QAR); two factor-augmented quantile autoregressions with 

two lags, where we introduce three factors (model QARF(3)) and five factors (model 

QARF(5)) respectively.  In addition, as in the case of AR and FAVAR models, we computed 

Equally Weighted Pool of quantile projections (EWPQ) of the six quantile forecasts (three 

for each estimation window), averaging them at each forecasting date as in Giacomini and 

Kumanjer (2005).  

C.   Forecast evaluation  

As is common in the density forecast literature (see, e.g. Corradi and Swanson, 2006, 

and Gneiting et al. ,2007), we compared the accuracy of density and VaR forecasts generated 

by different models using a scoring rule, consistently with our objective of assessing the 

ability of different models to deliver forecasts of tail risk indicators useful as early warning 
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signals. The scoring rule we use is the Quantile-Weighted Probability Score (QWPS) 

proposed by Gneiting and Ranjan (2011), which allows us to compare the accuracy of 

density forecasts with reference to particular regions of a distribution, such as its tails, as well 

as the predictive accuracy of specific quantiles (or VaRs).  

Following Gneiting and Ranjan (2011), the QWPS can be briefly described as 

follows. Denote with f  a density forecast, with y  a realization of the forecast variable, with 

F  the cdf corresponding to the density f , and with 1( )F   the predicted quantile at level 

(0,1) . The (continuous) quantile-weighted probability score ( , )QWPS f y  is defined by: 

 
1

1

0

( , ) ( ( ), , ) ( )QWPS f y QS F y w d        (6), 

where       

                             1 1 1( ( ), , ) 2( { ( )} )( ( ) )QS F y I y F F y             (7) 

is the score of quantile  , {.}I  is an indicator function, and ( )w  is a non-negative 

weighting function on the unit interval.  This score has negative orientation, with lower 

values indicating better performance. The quantile prediction 1( )F  is optimal when the ex-

post loss is ( , , ) 2(1 ) | |L x y y x     in case of an over-prediction ( x y ), and 

( , , ) 2 | |L x y y x   in case of an under-prediction ( x y ). If ( ) 1w    for all (0,1) , 

each quantile is assigned equal weight, resulting in an unweighted or uniform QWPS. To 

evaluate the performance of density forecasts over the left tail, we constructed a left tail 

QWPS. setting 2( ) (1 )w    , as suggested by Gneiting and Ranjan (2011).3  If ( ) 1w    

                                                 
3
 In the empirical implementation of the AR and FAVAR models, we compute a discretized version of the 

QWPS using a grid of 100 quantiles. 
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for a specific (0,1)  and is 0 otherwise, the QWPS collapses to the quantile score (7), 

which we use to compare the predictive ability of  
0.10VaR  forecasts of different models.   

Following Amisano and Giannini (2007) and Gneiting and Ranjan (2011), 

comparisons of the predictive power of density and 
0.10VaR forecasts are carried out applying 

Diebold and Mariano (1995) tests (DM henceforth) of equal forecasting performance of two 

different density or quantile scores. Under standard regularity conditions, the t-statistics of 

the differences between the scores of two density or 0.10VaR  forecasts is asymptotically 

standard normal under the null hypothesis of equality of scores. Given the negative 

orientation of QWPS and quantile scores, a forecast with score m  is superior (inferior) to a 

forecast with score h  if the t-stat is significantly negative (positive).4  

To evaluate our tail risk forecasts as early warning signals, we also compare 0.10VaR

forecasts using standard measures of coverage ratios or VaR violations, defined as the 

percentage of cases where the realized value of a variable is lower than the predicted VaR for 

a given target probability level (in our case, 0.10  ). The  finding of a coverage ratio 

higher than the target probability level would indicate that the relevant forecast 

underestimates tail risk, since it does not capture all adverse risk realizations at that given 

target probability level (a Type I error). Conversely, the finding of a VaR forecast whose 

coverage ratio is lower than the target probability level would indicate it overestimates tail 

risk, since it would issue a percentage of signals that are “false alarms” relative to the target 

                                                 
4 Diks et al. (2011) implement Montecarlo experiments testing the power of DM tests for comparisons of 

scoring rules: they find their power adequate when the number of occurrences in the rejection region is greater 

than 40, which is a threshold satisfied by most of our forecasts using the expanding window.   
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probability level (a Type II error). A risk-averse policy maker would likely consider as more 

reliable a forecast that potentially overestimates rather than underestimates tail risks, as the 

consequences of missing adverse tail realizations may entail significantly larger costs than 

those associated with false alarms. 

V.   RESULTS 

Estimation and forecasting was conducted in pseudo-real time. Factors and 

parameters of all models were re-estimated for each estimation window. At each forecasting 

date, the lags of the AR and FAVAR models are selected according to the SBIC criterion 

allowing a maximum of six lags.  As shown in Figure 3, the AH criteria selected two factors 

until 1992:7, and three factors thereafter. By contrast, under the rolling window the AH 

selected factors range from one to three, suggesting time variations likely related to the 

changing sources of common shocks across variables. 

[Insert Figure 3 about here]  

In sum, the total number of forecasts was 369 at a 3-months horizon, 366 at a 6-months 

horizon, and 362 at a 12-month horizon. 

A.   Results of AR and FAVAR models 

 Table 5 reports the matrix of DM tests of left tail QWPSs for each variable, 

estimation window and forecast horizon. Each cell of the matrix contains the t-stat of the 

difference test between the left tail QWPS of the row model and the column model. A 

negative (positive) and significant t-stat indicates that the left tail QWPS of the model row is 

superior (inferior) to that of the column model. The suffixes attached to models’ names 

denotes estimation with a rolling window (-R) or an expanding window (-E).  

[Insert Table 5 about here]  
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The DM tests for the real variables IPG and EMG  (Panels A and B) show that at least one 

factor model delivers significantly better left tail forecasts than AR models, and that the EWP  

forecasts are are significantly superior to, or not significantly different from, the AR and 

FAVAR forecasts at any forecasting horizon. A more muted differential forecasting power of 

FAVARs relative to the AR models is found for the financial variables CDI, BDI and DNFCI  

(Panels C-E) . The relevant DM tests show that for some of these variables and forecasting 

horizon, at least one AR model produces better left tail forecasts than some FAVARs. Yet, 

for all variables and forecasting horizons, no AR or FAVAR model produces left tail 

forecasts superior to those of the EWP. This result indicates the usefulness of including 

FAVARs in the forecast pool. 5   

All the foregoing results hold when we consider the full matrix of DM tests of equal 

predictive ability of  0.10VaR  forecasts, which we do not report in full for brevity. The (weak) 

dominance of the 0.10VaR  forecasts of the EWP model is illustrated in Table 6, which reports 

DM tests of the 0.10VaR scores of the EWP against scores of all other six models. The EWP 

indeed delivers strictly better 0.10VaR  forecasts in 68 tests out of the total of 90, with 22 DM 

tests indicating no significant difference in forecasting performance. 

[Insert Table 6 about here] 

In sum, two key results stand out. First, FAVAR models exhibit tail risk forecasts 

significantly better than, or not significantly different from, those obtained with AR models 

                                                 
5 Tables A.1 and A.2 in the Table Appendix report results for the uniform QWPS and the right tail QWPS as 

well, the latter defined symmetrically to the left tail by setting 
2( )w   , as suggested by Gneiting and 

Ranjan (2011). An interesting result common to all models is that density forecasts at all horizons for all 

variables except CDI are better in predicting the right tail (i.e. good tail outcomes)  rather than the left tail (i.e. 

bad tail outcomes), since the left tail QWPS  is uniformly lower than the right tail QWPS. This suggests the 

presence of asymmetries that are not adequately captured by a specification based on the symmetric Gaussian 

assumption, even allowing for GARCH effects.  
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for most variables and forecasting horizons, although there are few cases where they are 

significantly worse than those of some AR models for some financial variables. Yet, FAVAR 

forecasts are useful components of the EWP, since the EWP exhibits 
0.10VaR  forecasts 

significantly better or at least as good as those obtained from the majority of all other models 

for any variable and all horizons. This result complements the evidence reported in Geweke 

and Amisano (2012, 2013) about EWPs as enhancers of forecasting performance of overall 

density forecasts, since our results indicate that factors also enhance density forecasts of the 

left tail.   

B.     Results of Quantile Projections 

Table 7 reports the matrix of DM tests of  0.10VaR  scores of the forecasts associated 

with all Quantile Projection models for each variable, estimation window and forecast 

horizon in the same format of Table 5.  

[Insert Table 7 about here]  

The DM tests for the real variables IPG and EMG  (Panels A and B)  are similar to 

those obtained previously: at least one factor-augmented quantile projection delivers 

significantly better 0.10VaR forecasts than QAR projections, and the EWPQ  delivers 0.10VaR

forecasts significantly better or at least as good than those of factor-augmented quantile 

projections at any forecasting horizon.  Differing from previous results, however, the results 

of the DM tests for the financial variables CDI, BDI and DNFCI  (Panels C-E) indicate that 

the forecasts of either the factor-augmented QPs or the EWPQ  are superior to, or at least as 

good than, those of the QAR projections for most variables and horizons. The only exception 

are the DM tests for the DNFCI variable, for which the 0.10VaR  forecasts of the QARF(3)-R 

and QARF(5)-R projections are significantly superior to those of the EWPQ.  
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Summing up, factors in QPs improve the accuracy of forecasts of tail risks more 

markedly than in the case of AR and FAVAR models, since for all variables and forecasting 

horizons, factor -augmented QPs exhibit significantly better or at least as good 
0.10VaR  

forecasts than those obtained with QAR projections. In addition, and similarly to the results 

of the AR and FAVAR models, 
0.10VaR forecasts of the EWPQ are significantly superior or at 

least as good as those of factor-augmented QPs for most variables and forecasting horizons.  

 

C.   Comparing 0.10VaR  forecasts of the EWP and EWPQ    

The finding of the (weak) dominance of EWP and EWPQ 0.10VaR  forecasts over all 

component models for most variables and time horizons allows us to compare the forecasting 

power of AR and FAVAR models relative to QPs by just focusing on comparisons of EWP 

and EWPQ forecasts. Table 8 reports the ratio of the EWPQ 0.10VaR  score over the EWP 

0.10VaR  score for each variable and forecasting horizon, with marks of significance associated 

with the relevant DM tests.  

 [Insert Table 8 about here]  

It is apparent that the 0.10VaR  forecasts of the EWPQ are significantly more accurate than 

those of the EWP for all variables and horizons, with the only exception being the 0.10VaR

forecast of DNFCI at the three months horizon, where EWPQ and EWP forecasts do not 

differ significantly.  

The dominance of the 0.10VaR  forecasts of the EWPQ over those of the EWP is 

further illustrated in Table 9, which reports coverage ratios of 0.10VaR  forecasts obtained with 

the EWP and the EWPQ for all variables and forecasting horizons, further broken down in 



21 

 

 

statistics for the whole sample and the sample starting in 2007, which includes all 

observations related to the 2007-2009 financial crisis.   

[Insert Table 9 about here]  

With the exception of 
0.10VaR forecast for IPG at the three month horizon, all other EWP 

0.10VaR coverage ratios significantly exceed the target coverage of 10%, and often by a large 

magnitude. In addition, EWP 0.10VaR forecasts become significantly worse during the sample 

period that includes the 2007-2009 financial crisis, indicating that the accuracy of these tail 

risk predictions becomes poorer when accuracy is needed most. Thus, the tail forecasts of the 

AR and FAVAR models do not issue reliable early warning signals, that is, signals associated 

with a moderate percentage of missed realizations of adverse tail events.  

A different picture emerges from the forecasting results of the EWPQ. As shown in 

Table 9, the improvement in the precision of EWPQ 0.10VaR forecasts relative to the EWP 

forecasts is fairly dramatic. Specifically, note that the coverage ratios of the EWPQ 0.10VaR

forecasts are not higher than the target coverage for about half of the predictions for both the 

full sample and the sub-sample including the 2007-2009 financial crisis, and that the 

coverage ratios of the EWPQ 0.10VaR  forecasts is higher in about half of all cases by a much 

smaller magnitude than that associated with the EWP 0.10VaR forecasts in such cases.  All in 

all, the 0.10VaR forecasts issued by the EWPQ are significantly more reliable early warning 

signals than those associated with the EWP.   

 The usefulness of the EWPQ 0.10VaR forecasts as early warning signals is also 

visually illustrated in the Figures in Set 1, which depict actual and 0.10VaR  12 month forecasts 

for each variable. In most instances, the decline in 0.10VaR forecasts predicts subsequent 
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declines in each of the indicators considered fairly accurately, even though the accuracy of 

EWPQ 
0.10VaR forecasts at the exact forecasting date may occur with a lag.  

Thus, factor-augmented QPs deliver forecasts that appear to be fairly reliable early 

warning signals for tail real and financial risks. Their superiority over forecasts obtained with 

AR and FAVAR models is due to their ability to capture and anticipate asymmetric changes 

in the distribution of a variable that may shift the probability mass to the left tail. 

 

VI.   CONCLUSIONS 

In this paper we developed a novel early warning system for tail real and financial 

risks. Using new measures of tail risks, we (i) assessed the predictive role of PCA factors in 

improving tail forecasts obtained with workhorse forecasting models such as AR and 

FAVAR models and factor-augmented Quantile Projections; (ii) gauged the additional 

predictive power of Equally Weighted Pools of forecasts for both modeling frameworks; and 

(iii) compared the accuracy of tail forecasts in terms of their ability to issue reliable early 

warning signals.  

 Our results regarding the significant improvement in the accuracy of tail forecasts 

arising from the use of PCA factors as predictors, and the overall dominance of Equally 

Weighted Pools of forecasts over single model forecasts complement the results of a large 

portion of the existing literature that has not specifically focused on tail forecasts. Our 

positive result concerning the ability of factor-augmented Quantile Projections to deliver 

relatively reliable early warning signals for different measures of tail real and financial risks 

is encouraging, and motivates several potentially useful extensions of our EWS. These 

extensions include tailoring our modeling framework to different countries or sets of country 
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in a region and identifying the economic drivers of shifts in the probability distribution of tail 

risks based on stress-test type exercises: these extensions are already part of our research 

agenda.  
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TABLES AND FIGURES 

Table 1 

Descriptive Statistics 

Variable Obs Mean Std. Dev. Min Max 

      IPG 503 0.176 0.731 -4.299 2.068 

EMG 503 0.114 0.276 -0.852 1.502 

CDI 504 0.083 0.032 0.014 0.241 

BDI 504 0.082 0.044 0.008 0.316 

DNFCI 504 0.025 1.000 -4.515 1.053 

 

Correlations 

(Significance at 5% confidence level=*) 

 

 

IPG EMG CDI BDI    DNFCI 

      IPG 1 

    EMG 0.3823* 1 

   CDI 0.1798* 0.1287* 1 

  BDI 0.1390* 0.2230* 0.5916* 1 

 DNFCI -0.2351* -0.1572* 0.0323 0.046 1 

 

 

Table 2. Dataset series by group 

 

 
 

 

 

 

Group Summary description # of series

1 Real output and income 17

2 Employment and hours 30

3 Housing starts and permits 10

4 Consumption expeditures, retail sales, ISM and consumer confidence indexes 13

5 Money and credit quantities 14

6 Interest rates, spreads and exchange rates 22

7 Goods and commodity prices 21

8 Equity market (stock prices, dividend yields, price-earnings ratios) 27

9 Risks in the financial and corporate sectors (Distance to Insolvency, NFCI) 10

Total number of series 164
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Figure 1.  AH factor selection criteria ER and GR  

as a function of the number of PCA factors k  

(Sample range: 1973:2-2014:12) 

 

 
 

 

 

 

Table 3. R2 of regressions of variables on each factor, factor combination,  

and factor combinations with AR(5) terms 
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k 

ER(k) GR(k) 

f1 f2 f3 f4 f5 f1-f3 f1-f5 f1-f3+AR(5) f1-f5+AR(5)

IPG 0.48 0.16 0.07 0.01 0.03 0.71 0.76 0.73 0.76

EMG 0.28 0.04 0.00 0.01 0.01 0.32 0.33 0.33 0.35

CDI 0.06 0.12 0.01 0.00 0.16 0.20 0.36 0.46 0.51

BDI 0.13 0.01 0.10 0.01 0.15 0.24 0.40 0.57 0.61

DNFCI 0.13 0.02 0.01 0.12 0.00 0.16 0.28 0.51 0.56
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Table 4.  Tests of FAVAR exclusion restrictions 

 

 
 

 

 

 

Figure 3.  Number of factors selected by AH criteria for the  

rolling window of 120 months and the expanding window 

 

 
 

 

percentiles 0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99

All series p-values 0.00 0.00 0.00 0.01 0.09 0.41 0.70 0.80 0.93

marginal R2 0.00 0.00 0.00 0.01 0.02 0.09 0.52 0.70 0.89

IPG p-values 0.00 0.00 0.00 0.00 0.02 0.10 0.24 0.39 0.61

marginal R2 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.10 0.16

EMG p-values 0.02 0.02 0.04 0.10 0.32 0.66 0.82 0.89 0.94

marginal R2 0.00 0.01 0.01 0.02 0.03 0.08 0.24 0.39 0.61

CDI p-values 0.01 0.01 0.01 0.04 0.18 0.52 0.76 0.84 0.95

marginal R2 0.00 0.00 0.00 0.01 0.02 0.51 0.81 0.88 0.93

BDI p-values 0.01 0.01 0.02 0.05 0.26 0.58 0.75 0.83 0.94

marginal R2 0.00 0.00 0.00 0.01 0.04 0.26 0.62 0.68 0.81

DNFCI p-values 0.00 0.00 0.00 0.00 0.00 0.04 0.17 0.27 0.57

marginal R2 0.00 0.00 0.00 0.01 0.04 0.33 0.67 0.76 0.94
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Table 5.    DM pairwise tests of left tail QWPS of AR and FAVAR models 

 
Notes: Bolded figures indicate t-stats corresponding to p-values <=0.05 (if negative) or  p-values >=095 (if 

positive) of pairwise tests of  left tail QWPS of model column-left tail QWPS of  model row. Suffixes –R and –

E indicate estimation under a rolling window and an expanding window respectively. 

 

Panel A.  IPG (Industrial Production Growth)  

 
 

Panel B. EMG (Employment Growth) 

 

Horizon t-stats

AR-R FAVAR(x)-R FAVAR(5)-R AR-E FAVAR(x)-E FAVAR(5)-E

3 AR-R .

months FAVAR(x)-R -1.02 .

FAVAR(5)-R -0.47 1.39 .

 AR-E -1.35 0.54 -0.11 .

FAVAR(x)-E -1.96 -1.25 -2.21 -1.61 .

FAVAR(5)-E -2.54 -2.69 -3.68 -2.42 -1.51 .

EWP -4.18 -3.78 -4.63 -4.10 -0.94 0.45

6 AR-R .

months FAVAR(x)-R -0.88 .

FAVAR(5)-R 0.02 2.18 .

AR-E -2.78 -0.40 -1.39 .

FAVAR(x)-E -2.07 -1.36 -2.58 -0.91 .

FAVAR(5)-E -2.36 -2.45 -4.59 -1.46 -0.82 .

EWP -5.01 -3.94 -5.08 -3.36 -0.77 -0.04

12 AR-R .

months FAVAR(x)-R -0.36 .

FAVAR(5)-R 1.82 3.61 .

AR-E -2.70 -1.13 -3.14 .

FAVAR(x)-E -3.33 -3.17 -5.52 -2.71 .

FAVAR(5)-E -2.18 -2.29 -6.52 -1.36 1.06 .

EWP -5.73 -5.95 -7.12 -3.45 0.77 -0.31

Horizon t-stats

AR-R FAVAR(x)-R FAVAR(5)-R AR-E FAVAR(x)-E FAVAR(5)-E

3 AR-R .

months FAVAR(x)-R -2.56 .

FAVAR(5)-R -2.65 0.33 .

 AR-E 3.91 4.73 4.94 .

FAVAR(x)-E -0.19 2.94 2.54 -2.19 .

FAVAR(5)-E 0.36 3.48 3.51 -1.68 0.92 .

EWP -5.15 -1.70 -2.31 -7.66 -4.53 -5.65

6 AR-R .

months FAVAR(x)-R -3.43 .

FAVAR(5)-R -2.33 1.45 .

AR-E 4.94 6.02 4.82 .

FAVAR(x)-E 0.91 4.95 3.52 -1.83 .

FAVAR(5)-E 1.37 5.16 4.39 -1.35 0.74 .

EWP -4.98 0.29 -1.33 -7.72 -5.83 -6.44

12 AR-R .

months FAVAR(x)-R -3.31 .

FAVAR(5)-R -1.36 2.52 .

AR-E 6.09 6.51 4.65 .

FAVAR(x)-E 3.04 5.97 4.10 -1.19 .

FAVAR(5)-E 3.13 6.32 5.04 -0.82 0.40 .

EWP -4.20 1.12 -1.68 -8.04 -7.07 -7.63
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Table 5 (cont.).   DM pairwise tests of left tail QWPS of AR and FAVAR models 

 
Notes: Bolded figures indicate t-stats corresponding to p-values <=0.05 (if negative) or  p-values >=095 (if 

positive) of pairwise tests of  left tail QWPS of model column-left tail QWPS of  model row. Suffixes –R and –

E indicate estimation under a rolling window and an expanding window respectively. 

 

Panel C.  CDI (Corporate Sector Distance to Insolvency) 

 
 

Panel D.  BDI (Banking Sector Distance to Insolvency) 

 
 

Horizon t-stats

AR-R FAVAR(x)-R FAVAR(5)-R AR-E FAVAR(x)-E FAVAR(5)-E

3 AR-R .

months FAVAR(x)-R 2.84 .

FAVAR(5)-R 1.82 -0.97 .

 AR-E -2.39 -4.58 -3.55 .

FAVAR(x)-E 0.65 -2.25 -1.32 2.72 .

FAVAR(5)-E 0.17 -2.82 -1.89 2.26 -0.88 .

EWP -2.75 -6.19 -4.99 0.00 -3.78 -3.34

6 AR-R .

months FAVAR(x)-R 0.87 .

FAVAR(5)-R 0.14 -0.88 .

AR-E -3.27 -3.61 -2.94 .

FAVAR(x)-E 0.37 -0.41 0.31 3.45 .

FAVAR(5)-E -0.34 -1.28 -0.48 2.94 -1.16 .

EWP -3.72 -5.46 -4.20 -0.06 -4.31 -4.31

12 AR-R .

months FAVAR(x)-R -2.09 .

FAVAR(5)-R -2.68 -1.04 .

AR-E -3.10 -1.20 -0.38 .

FAVAR(x)-E -1.27 0.69 1.50 1.85 .

FAVAR(5)-E -1.58 0.55 1.49 1.90 -0.28 .

EWP -5.14 -2.93 -2.04 -1.81 -3.42 -3.91

Horizon t-stats

AR-R FAVAR(x)-R FAVAR(5)-R AR-E FAVAR(x)-E FAVAR(5)-E

3 AR-R .

months FAVAR(x)-R 3.42 .

FAVAR(5)-R 2.99 -0.08 .

 AR-E -0.40 -3.53 -3.52 .

FAVAR(x)-E 0.69 -2.94 -2.80 1.44 .

FAVAR(5)-E 2.29 -1.51 -1.41 3.06 4.13 .

EWP -2.24 -5.84 -5.64 -1.93 -4.86 -6.68

6 AR-R .

months FAVAR(x)-R 1.29 .

FAVAR(5)-R 1.87 0.69 .

AR-E 0.82 -0.29 -1.06 .

FAVAR(x)-E 1.83 0.60 -0.28 0.96 .

FAVAR(5)-E 2.58 1.44 0.68 1.92 3.09 .

EWP -2.13 -3.75 -4.74 -3.79 -7.30 -7.93

12 AR-R .

months FAVAR(x)-R 1.25 .

FAVAR(5)-R 2.85 1.64 .

AR-E 3.74 2.81 1.55 .

FAVAR(x)-E 3.54 2.55 0.95 -0.87 .

FAVAR(5)-E 4.30 3.40 1.87 0.32 4.10 .

EWP -0.41 -1.92 -4.06 -6.25 -8.22 -9.46
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Table 5 (cont.).   DM pairwise tests of left tail QWPS of AR and FAVAR models 

 
Notes: Bolded figures indicate t-stats corresponding to p-values <=0.05 (if negative) or  p-values >=095 (if 

positive) of pairwise tests of  left tail QWPS of model column-left tail QWPS of  model row. Suffixes –R and –

E indicate estimation under a rolling window and an expanding window respectively. 

. 

 

Panel E. DNFCI (Negative change in NFCI) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Horizon t-stats

AR-R FAVAR(x)-R FAVAR(5)-R AR-E FAVAR(x)-E FAVAR(5)-E

3 AR-R .

months FAVAR(x)-R 1.03 .

FAVAR(5)-R 0.97 -0.14 .

 AR-E 0.56 -0.51 -0.44 .

FAVAR(x)-E 1.44 0.81 0.58 1.28 .

FAVAR(5)-E 3.02 2.28 2.56 2.94 3.15 .

EWP -1.20 -1.65 -2.79 -1.81 -3.93 -5.84

6 AR-R .

months FAVAR(x)-R 1.75 .

FAVAR(5)-R 0.88 -1.07 .

AR-E -1.92 -2.31 -2.08 .

FAVAR(x)-E 0.04 -0.83 -0.80 1.25 .

FAVAR(5)-E 1.71 0.40 1.02 2.78 4.01 .

EWP -1.67 -2.52 -3.62 0.23 -1.95 -3.93

12 AR-R .

months FAVAR(x)-R 2.68 .

FAVAR(5)-R 2.73 -0.17 .

AR-E -2.19 -3.05 -4.25 .

FAVAR(x)-E 0.51 -1.39 -2.16 2.16 .

FAVAR(5)-E 1.71 -0.25 -0.45 3.11 3.13 .

EWP 0.22 -2.87 -4.92 2.15 -1.39 -2.98
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Table 6.   DM pairwise tests of 
0.10VaR  scores of EWP against AR and FAVAR models 

 
Notes: Bolded figures indicate t-stats corresponding to p-values <=0.05 of pairwise test of  10% EWP quantile 

score – quantile score of  model row. Suffixes –R and –E indicate estimation under a rolling window and an 

expanding window respectively. 

   

t-stats 

   

 

AR-R FAVAR(x)-R FAVAR(5)-R AR-E FAVAR(x)-E FAVAR(5)-E 

IPG 

      3 months -4.45 -2.65 -2.48 -4.20 -0.26 1.79 

6 months -5.57 -2.47 -3.70 -3.90 -0.30 1.27 

12 months -6.33 -4.01 -5.16 -3.40 0.76 0.23 

       EMG 

      3 months -4.84 -2.20 -2.83 -7.28 -4.18 -5.35 

6 months -4.36 -0.43 -1.60 -7.38 -5.31 -5.73 

12 months -3.34 0.73 -1.24 -8.08 -6.42 -6.71 

       CDI 

      3 months -3.53 -5.19 -4.38 -1.97 -4.30 -3.53 

6 months -4.09 -4.13 -3.36 -1.76 -4.77 -4.19 

12 months -5.24 -2.62 -2.70 -2.93 -4.15 -3.89 

       BDI 

      3 months -3.27 -6.16 -6.04 -2.71 -2.10 -2.57 

6 months -3.44 -4.99 -5.80 -3.87 -4.64 -4.14 

12 months -2.37 -4.17 -6.11 -4.95 -5.29 -5.54 

       DNFCI 

      3 months -2.61 -0.68 -2.40 -1.51 -2.29 -3.40 

6 months -1.56 -0.89 -2.36 1.02 -1.40 -2.55 

12 months -0.90 -1.60 -2.14 1.62 -0.93 -0.53 
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Table 7.    DM pairwise tests of 0.10VaR  scores of Quantile Projection models 

 
Notes: Bolded figures indicate t-stats corresponding to p-values <=0.05 (if negative) or  p-values >=095 (if 

positive) of pairwise tests of 10% quantile score of model column-10% quantile score of model row. Suffixes –

R and –E indicate estimation under a rolling window and an expanding window respectively. 

 

Panel A.  IPG (Industrial Production Growth)  

 
 

Panel B.  EMG (Employment Growth)  

 

Horizon t-stats

QAR-R QARF(3)-R QARF(5)-R QAR-E QARF(3)-E QARF(5)-E

3 QAR-R .

months QARF(3)-R -4.72 .

QARF(5)-R -3.50 0.38 .

 QAR-E 4.96 7.34 5.93 .

QARF(3)-E -2.01 2.27 1.48 -5.24 .

QARF(5)-E -3.03 0.96 0.60 -6.63 -1.67 .

EWPQ -5.16 0.48 0.00 -8.15 -1.57 -0.68

6 QAR-R .

months QARF(3)-R -1.99 .

QARF(5)-R -1.63 -0.31 .

QAR-E 6.37 4.24 3.32 .

QARF(3)-E -1.71 0.44 0.53 -4.19 .

QARF(5)-E -2.40 -0.38 0.04 -5.04 -1.69 .

EWPQ -5.77 -2.65 -1.40 -10.46 -3.01 -2.39

12 QAR-R .

months QARF(3)-R -4.53 .

QARF(5)-R -3.43 0.25 .

QAR-E 4.23 6.70 5.72 .

QARF(3)-E -3.40 1.20 0.94 -8.20 .

QARF(5)-E -3.99 0.84 0.61 -8.78 -0.92 .

EWPQ -6.64 0.75 0.34 -10.77 -1.13 -0.59

Horizon t-stats

QAR-R QARF(3)-R QARF(5)-R QAR-E QARF(3)-E QARF(5)-E

3 QAR-R .

months QARF(3)-R -1.73 .

QARF(5)-R -1.88 -0.61 .

 QAR-E 5.69 2.93 3.06 .

QARF(3)-E -0.81 1.79 1.93 -2.06 .

QARF(5)-E -0.45 2.68 2.99 -1.61 1.15 .

EWPQ -3.08 -1.30 -0.92 -4.74 -2.70 -3.33

6 QAR-R .

months QARF(3)-R -2.00 .

QARF(5)-R -2.03 0.21 .

QAR-E 4.17 3.05 3.11 .

QARF(3)-E -0.52 2.10 2.01 -1.76 .

QARF(5)-E -1.67 0.33 0.21 -2.67 -1.98 .

EWPQ -4.70 -1.75 -2.01 -5.94 -3.61 -1.72

12 QAR-R .

months QARF(3)-R -4.57 .

QARF(5)-R -5.29 -0.94 .

QAR-E 2.42 4.55 5.39 .

QARF(3)-E -3.19 1.60 2.55 -4.80 .

QARF(5)-E -4.13 1.15 2.28 -4.66 -1.10 .

EWPQ -7.66 0.40 1.37 -6.57 -1.84 -0.98
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Table 7 (cont.). DM pairwise tests of 0.10VaR scores of Quantile Projection models 

 
Notes: Bolded figures indicate t-stats corresponding to p-values <=0.05 (if negative) or  p-values >=095 (if 

positive) of pairwise tests of  10% quantile score of model column-10% quantile score of model row. Suffixes –

R and –E indicate estimation under a rolling window and an expanding window respectively. 

 

Panel C.  CDI (Corporate Sector Distance to Insolvency)  

 
 

Panel D.  BDI (Banking Sector Distance to Insolvency)  

 

Horizon t-stats

QAR-R QARF(3)-R QARF(5)-R QAR-E QARF(3)-E QARF(5)-E

3 QAR-R .

months QARF(3)-R -1.51 .

QARF(5)-R 0.28 1.76 .

 QAR-E -1.72 0.60 -1.08 .

QARF(3)-E -3.46 -1.08 -2.26 -3.28 .

QARF(5)-E -3.21 -0.41 -1.90 -2.05 1.13 .

EWPQ -4.12 -3.76 -4.23 -3.31 -1.87 -2.22

6 QAR-R .

months QARF(3)-R -2.31 .

QARF(5)-R -0.44 1.08 .

QAR-E -0.87 1.79 0.15 .

QARF(3)-E -0.12 2.16 0.29 0.30 .

QARF(5)-E -0.37 2.11 0.22 0.15 -0.21 .

EWPQ -4.10 -0.44 -1.27 -3.60 -2.59 -4.50

12 QAR-R .

months QARF(3)-R -1.88 .

QARF(5)-R 0.89 2.03 .

QAR-E -1.36 0.91 -1.38 .

QARF(3)-E -0.84 1.19 -1.35 0.18 .

QARF(5)-E -1.26 0.53 -1.71 -0.48 -1.27 .

EWPQ -4.00 -1.21 -2.58 -3.18 -4.84 -2.87

Horizon t-stats

QAR-R QARF(3)-R QARF(5)-R QAR-E QARF(3)-E QARF(5)-E

3 QAR-R .

months QARF(3)-R -1.18 .

QARF(5)-R 3.29 5.53 .

 QAR-E 1.60 2.72 -2.24 .

QARF(3)-E -1.08 0.13 -4.26 -3.55 .

QARF(5)-E -1.11 -0.08 -4.46 -3.87 -0.23 .

EWPQ -1.91 -0.88 -5.76 -2.88 -0.97 -0.52

6 QAR-R .

months QARF(3)-R 0.95 .

QARF(5)-R 0.99 0.12 .

QAR-E -1.11 -1.51 -1.77 .

QARF(3)-E -1.61 -2.09 -2.35 -0.99 .

QARF(5)-E -1.15 -1.74 -1.99 -0.22 1.12 .

EWPQ -3.07 -3.23 -3.55 -1.88 -1.02 -1.92

12 QAR-R .

months QARF(3)-R -0.78 .

QARF(5)-R -0.96 -0.43 .

AR-E 0.00 0.70 0.89 .

QARF(3)-E -2.09 -1.22 -0.69 -2.04 .

QARF(5)-E -2.14 -1.57 -1.28 -2.14 -0.80 .

EWPQ -4.35 -3.64 -2.24 -4.12 -2.46 -1.01
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Table 7 (cont.). DM pairwise tests of 0.10VaR scores of Quantile Projection models 

 
Notes: Bolded figures indicate t-stats corresponding to p-values <=0.05 (if negative) or  p-values >=095 (if 

positive) of pairwise tests of  10% quantile score of model column-10% quantile score of model row. Suffixes –

R and –E indicate estimation under a rolling window and an expanding window respectively. 

 

Panel E.  DNFCI (Negative Change in NFCI)  

 
 

Table 8. 0.10VaR scores of EWPQ forecasts/ 0.10VaR scores of EWP forecasts 

(* denotes significance of DM tests of  

numerator forecast score—denominator forecast score) 

 

Forecast horizon 3 months 6 month 

12 

months 

  

    IPG (Industrial Production growth)    0.90* 0.81* 0.84* 

     EMG (Employment Growth)   0.78* 0.68* 0.66* 

     CDI (Corporate Sector DI)   0.88* 0.91* 0.86* 

     BDI (Banking Sector DI)   0.77* 0.69* 0.56* 

     DNFCI  (Negative change in NFCI)   1.02 0.95* 0.81* 

Horizon t-stats

QAR-R QARF(3)-R QARF(5)-R QAR-E QARF(3)-E QARF(5)-E

3 QAR-R .

months QARF(3)-R -1.22 .

QARF(5)-R -1.71 -2.12 .

 QAR-E 5.37 9.31 9.02 .

QARF(3)-E 0.90 5.45 6.99 -5.01 .

QARF(5)-E 0.83 4.67 7.13 -4.76 -0.37 .

EWPQ 1.90 7.41 9.83 -4.74 2.20 2.53

6 QAR-R .

months QARF(3)-R -1.78 .

QARF(5)-R -2.55 -2.98 .

QAR-E 4.79 14.38 13.97 .

QARF(3)-E 0.06 3.95 6.14 -5.94 .

QARF(5)-E -0.45 2.50 5.40 -6.60 -2.02 .

EWPQ -0.97 2.90 5.65 -12.41 -2.46 -0.82

12 QAR-R .

months QARF(3)-R -3.20 .

QARF(5)-R -3.46 -1.38 .

QAR-E 3.57 14.19 13.05 .

QARF(3)-E -0.80 5.67 7.16 -6.45 .

QARF(5)-E -1.29 3.95 5.21 -7.09 -2.48 .

EWPQ -1.89 5.32 6.84 -11.33 -2.86 -0.87
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Table 9. Coverage ratios of the EWP and EWPQ 0.10VaR forecasts  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EWP    EWPQ

Forecast Horizon months months

3 6 12 3 6 12

IPG (Industrial Production Growth) 1984:1-2014:12 0.09 0.14 0.18 0.05 0.09 0.11

2007:1-2015:12 0.13 0.17 0.24 0.10 0.12 0.15

EMG (Employment Growth) 1984:1-2014:10 0.16 0.22 0.27 0.10 0.12 0.14

2007:1-2015:10 0.30 0.34 0.42 0.11 0.19 0.21

CDI (Corporate Sector DI) 1984:1-2014:10 0.18 0.20 0.24 0.13 0.06 0.15

2007:1-2015:10 0.20 0.23 0.26 0.09 0.06 0.17

BDI (Banking Sector DI) 1984:1-2014:10 0.23 0.28 0.36 0.14 0.16 0.18

2007:1-2015:10 0.27 0.36 0.45 0.07 0.23 0.20

DNFCI (negative change in NFCI) 1984:1-2014:10 0.12 0.12 0.13 0.04 0.05 0.07

2007:1-2015:10 0.17 0.24 0.29 0.11 0.13 0.15
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Figure Set 1. EWPQ 0.10VaR forecasts at 12 month horizon  

 

IPG and Industrial Production-at-Risk ( 0.10( )VaR IPG ) 

 
 

EMG and Employment-at-Risk ( 0.10( )VaR EMG  

 
 

CDI and Corporate Sector-at-Risk ( 0.10( )VaR CDI  
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BDI and Banking Sector-at-Risk  ( 0.10( )VaR BDI  

 
 

 

DNFCI and Financial Markets-at-Risk ( 0.10( )VaR DNFCI ) 
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DATA APPENDIX 

The data range of all variables 1973:1-2014:12. The format of the tables is as follows: group, series 

number, transformation code, series mnemonic (id), and series description. The column “tcode” 

denotes the following transformations: (1) no transformation, (2) first difference, (3) first difference 

of logarithms. Application of transformations was implemented trough standard unit root tests. All 

series are taken from the FRED-MD database, except those marked in italics (taken from 

DataStream), and in bold-italics (taken from the Fed Chicago website). 

 
Group 1 # Tcode Id description 

 1 3 RPI Real Personal Income 

 2 3 W875RX1 RPI ex. Transfers 

 3 3 INDPRO IP Index 

 4 3 IPFPNSS IP: Final Products and Supplies 

 5 3 IPFINAL IP: Final Products 

 6 3 IPCONGD IP: Consumer Goods 

 7 3 IPDCONGD IP: Durable Consumer Goods 

 8 3 IPNCONGD IP: Nondurable Consumer Goods 

 9 3 IPBUSEQ IP: Business Equipment 

 10 3 IPMAT IP: Materials 

 11 3 IPDMAT IP: Durable Materials 

 12 3 IPNMAT IP: Nondurable Materials 

 13 3 IPMANSICS IP: Manufacturing 

 14 3 IPB51222S IP: Residential Utilities 

 15 3 IPFUELS IP: Fuels 

 16 1 NAPMPI ISM Manufacturing: Production 

  17 2 CAPUTLB00004S Capacity Utilization: Manufacturing 

 

Group 2 # tcode Id description 

 1 3 CLF16OV Civilian Labor Force 

 2 3 CE16OV Civilian Employment 

 3 2 UNRATE Civilian Unemployment Rate 

 4 2 UEMPMEAN Average Duration of Unemployment 

 5 3 UEMPLT5 Civilians Unemployed <5 Weeks 

 6 3 UEMP5TO14 Civilians Unemployed 5-14 Weeks 

 7 3 UEMP15OV Civilians Unemployed >15 Weeks 

 8 3 UEMP15T26 Civilians Unemployed 15-26 Weeks 

 9 3 UEMP27OV Civilians Unemployed >27 Weeks 

 10 3 CLAIMSx Initial Claims 

 11 3 PAYEMS All Employees: Total nonfarm 

 12 3 USGOOD All Employees: Goods-Producing 
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 13 3 CES1021000001 All Employees: Mining and Logging 

 14 3 USCONS All Employees:  Construction 

 15 3 MANEMP All Employees:  Manufacturing 

 16 3 DMANEMP All Employees: Durable goods 

 17 3 NDMANEMP All Employees: Nondurable goods 

 18 3 SRVPRD All Employees: Service Industries 

 19 3 USTPU All Employees: TT&U 

 20 3 USWTRADE All Employees: Wholesale Trade 

 21 3 USTRADE All Employees: Retail Trade 

 22 3 USFIRE All Employees: Financial Activities 

 23 3 USGOVT All Employees: Government 

 24 2 CES0600000007 Hours:  Goods-Producing 

 25 2 AWOTMAN Overtime Hours: Manufacturing 

 26 2 AWHMAN Hours: Manufacturing 

 27 1 NAPMEI ISM Manufacturing: Employment 

 28 3 CES0600000008 Ave. Hourly Earnings: Goods 

 29 3 CES2000000008 Ave. Hourly Earnings: Construction 

  30 3 CES3000000008 Ave. Hourly Earnings: Manufacturing 

 

Group 3 # tcode Id description 

 1 3 HOUST Starts: Total 

 2 3 HOUSTNE Starts: Northeast 

 3 3 HOUSTMW Starts: Midwest 

 4 3 HOUSTS Starts: South 

 5 3 HOUSTW Starts: West 

 6 3 PERMIT Permits 

 7 3 PERMITNE Permits: Northeast 

 8 3 PERMITMW Permits: Midwest 

 9 3 PERMITS Permits: South 

  10 3 PERMITW Permits: West 

 

Group 4 # tcode Id description 

 1 3 DPCERA3M086SBEA Real PCE 

 2 3 CMRMTSPLx Real M&T Sales 

 3 3 RETAILx Retail and Food Services Sales 

 4 1 NAPM ISM: PMI Composite Index 

 5 1 NAPMNOI ISM: New Orders Index 

 6 1 NAPMSDI ISM: Supplier Deliveries Index 

 7 1 NAPMII ISM: Inventories Index 

 8 3 AMDMNOx Orders: Durable Goods 

 9 3 ANDENOx Orders: Nondefense Capital Goods 
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 10 3 AMDMUOx Unfilled Orders: Durable Goods 

 11 3 BUSINVx Total Business Inventories 

 12 2 ISRATIOx Inventories to Sales Ratio 

  13 2 
USCNFCONQ 

Conference Board  Consumer Confidence Index 

 

Group 5 id tcode Id description 

 1 3 M1SL M1 Money Stock 

 2 3 M2SL M2 Money Stock 

 3 3 M2REAL Real M2 Money Stock 

 4 3 AMBSL St. Louis Adjusted Monetary Base 

 5 3 TOTRESNS Total Reserves 

 6 3 NONBORRES Nonborrowed Reserves 

 7 3 BUSLOANS Commercial and Industrial Loans 

 8 3 REALLN Real Estate Loans 

 9 3 NONREVSL Total Nonrevolving Credit 

 10 2 CONSPI Credit to PI ratio 

 11 3 MZMSL MZM Money Stock 

 12 3 DTCOLNVHFNM Consumer Motor Vehicle Loans 

 13 3 DTCTHFNM Total Consumer Loans and Leases 

  14 3 INVEST Securities in Bank Credit 

 

Group 6 # tcode Id description 

 1 2 FEDFUNDS Effective Federal Funds Rate 

 2 2 CP3M 3-Month AA Comm. Paper Rate 

 3 2 TB3MS 3-Month T-bill 

 4 2 TB6MS 6-Month T-bill 

 5 2 GS1 1-Year T-bond 

 6 2 GS5 5-Year T-bond 

 7 2 GS10 10-Year T-bond 

 8 2 AAA Aaa Corporate Bond Yield 

 9 2 BAA Baa Corporate Bond Yield 

 10 1 COMPAPFF CP - FFR spread 

 11 1 TB3SMFFM 3 Mo. - FFR spread 

 12 1 TB6SMFFM 6 Mo. - FFR spread 

 13 1 T1YFFM 1 yr. - FFR spread 

 14 1 T5YFFM 5 yr. - FFR spread 

 15 1 T10YFFM 10 yr. - FFR spread 

 16 1 AAAFFM Aaa - FFR spread 

 17 1 BAAFFM Baa - FFR spread 

 18 3 TWEXMMTH Trade Weighted U.S. FX Rate 

 19 3 EXSZUS Switzerland / U.S. FX Rate 
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 20 3 EXJPUS Japan / U.S. FX Rate 

 21 3 EXUSUK U.S. / U.K. FX Rate 

  22 3 EXCAUS Canada / U.S. FX Rate 

 

Group 7 # tcode Id description 

 1 3 PPIFGS PPI: Finished Goods 

 2 3 PPIFCG PPI: Finished Consumer Goods 

 3 3 PPIITM PPI: Intermediate Materials 

 4 3 PPICRM PPI: Crude Materials 

 5 3 Oilprice Crude Oil Prices: WTI 

 6 3 PPICMM PPI: Commodities 

 7 1 NAPMPRI ISM Manufacturing: Prices 

 8 3 CPIAUCSL CPI: All Items 

 9 3 CPIAPPSL CPI: Apparel 

 10 3 CPITRNSL CPI: Transportation 

 11 3 CPIMEDSL CPI: Medical Care 

 12 3 CUSR0000SAC CPI: Commodities 

 13 3 CUUR0000SAD CPI: Durables 

 14 3 CUSR0000SAS CPI: Services 

 15 3 CPIULFSL CPI: All Items Less Food 

 16 3 CUUR0000SA0L2 CPI: All items less shelter 

 17 3 CUSR0000SA0L5 CPI: All items less medical care 

 18 3 PCEPI PCE: Chain-type Price Index 

 19 3 DDURRG3M086SBEA PCE: Durable goods 

 20 3 DNDGRG3M086SBEA PCE: Nondurable goods 

  21 3 DSERRG3M086SBEA PCE: Services 

 

Group 8 # tcode Id description 

 1 
3 TOTMKUS(PI) US-DS Market - PRICE INDEX 

 2 
3 TOTMKUS(PE) US-DS Market - PER 

 3 
2 TOTMKUS(DY) US-DS Market - DIVIDEND YIELD 

 4 
3 TOTLIUS(PI) US-DS NON-FINANCIAL - PRICE INDEX 

 5 
3 TOTLIUS(PE) US-DS NON-FINANCIAL - PER 

 6 
2 TOTLIUS(DY) US-DS NON-FINANCIAL - DIVIDEND YIELD 

 7 
3 INDUSUS(PI) US-DS Industrials - PRICE INDEX 

 8 
3 INDUSUS(PE) US-DS Industrials - PER 

 9 
2 INDUSUS(DY) US-DS Industrials - DIVIDEND YIELD 

 10 
3 CNSMGUS(PI) US-DS Consumer Gds - PRICE INDEX 

 11 
3 CNSMGUS(PE) US-DS Consumer Gds - PER 

 12 
2 CNSMGUS(DY) US-DS Consumer Gds - DIVIDEND YIELD 

 13 
3 FINANUS(PI) US-DS Financials - PRICE INDEX 
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 14 
3 FINANUS(PE) US-DS Financials - PER 

 15 
2 FINANUS(DY) US-DS Financials - DIVIDEND YIELD 

 16 
3 TECNOUS(PI) US-DS Technology - PRICE INDEX 

 17 
3 TECNOUS(PE) US-DS Technology - PER 

 18 
2 TECNOUS(DY) US-DS Technology - DIVIDEND YIELD 

 19 
3 BANKSUS(PI) US-DS Banks - PRICE INDEX 

 20 
3 BANKSUS(PE) US-DS Banks - PER 

 21 
2 BANKSUS(DY) US-DS Banks - DIVIDEND YIELD 

 22 
3 INSURUS(PI) US-DS Insurance - PRICE INDEX 

 23 
3 INSURUS(PE) US-DS Insurance - PER 

 24 
2 INSURUS(DY) US-DS Insurance - DIVIDEND YIELD 

 25 
3 RLESTUS(PI) US-DS Real Estate - PRICE INDEX 

 26 
3 RLESTUS(PE) US-DS Real Estate - PER 

 27 
2 RLESTUS(DY) US-DS Real Estate - DIVIDEND YIELD 

 

Group 9 # tcode Id description 

 1 
1 TOTMKUS(PI) US-DS Market - Distance to Insolvency 

 2 
1 TOTLIUS(PI) US-DS NON-FINANCIAL -Distance to Insolvency 

 3 
1 INDUSUS(PI) US-DS Industrials - Distance to Insolvency 

 4 
1 CNSMGUS(PI) US-DS Consumer Gds - Distance to Insolvency 

 5 
1 FINANUS(PI) US-DS Financials - Distance to Insolvency 

 6 
1 TECNOUS(PI) US-DS Technology - Distance to Insolvency 

 7 
1 BANKSUS(PI) US-DS Banks - Distance to Insolvency 

 8 
1 INSURUS(PI) US-DS Insurance - Distance to Insolvency 

 9 
1 RLESTUS(PI) US-DS Real Estate - Distance to Insolvency 

  10 2 NFCI Fed Chicago National Financial Conditions Index 
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TABLES APPENDIX 

 

Table A.1.   RMSE, Uniform, Right Tail and Left Tail QWPS  

of density forecasts of AR and FAVAR models 

(real variables)  

 

 

 

  

 

 

 

                                                     Model AR-R FAVAR(x)-R FAVAR(5)-R AR-E FAVAR(x)-E FAVAR(5)-E EWP minimum

Variable across

IPG rows

A. 3 month horizon

RMSE 1.18 1.11 1.13 1.15 1.10 1.04 1.05 1.04

Uniform QWPS 61.36 60.08 62.36 59.84 58.55 56.52 55.63 55.63

Right tail QWPS 18.04 17.94 18.88 17.50 17.84 17.25 16.82 16.82

Left tail QWPS 19.92 18.98 19.52 19.41 18.06 17.26 17.31 17.26

B.  6 month horizon

RMSE 2.26 2.10 2.18 2.10 2.08 1.96 1.96 1.96

Uniform QWPS 115.32 111.53 116.97 106.70 105.88 102.92 99.43 99.43

Right tail QWPS 33.09 31.85 33.84 29.44 30.27 29.54 28.45 28.45

Left tail QWPS 38.62 36.99 38.64 36.41 34.99 33.55 32.73 32.73

C.  12 month horizon

RMSE 4.32 3.81 4.05 3.92 3.61 3.36 3.39 3.36

Uniform QWPS 215.25 198.77 218.29 198.07 181.29 176.18 172.03 172.03

Right tail QWPS 61.79 56.05 62.67 53.86 50.59 49.08 48.81 48.81

Left tail QWPS 73.41 67.70 73.82 69.29 62.04 59.79 57.88 57.88

EMG A. 3 month horizon

RMSE 0.46 0.39 0.40 0.45 0.42 0.42 0.40 0.39

Uniform QWPS 26.12 23.41 23.14 27.43 25.72 25.60 22.40 22.40

Right tail QWPS 7.80 7.23 6.97 7.73 7.67 7.32 6.81 6.81

Left tail QWPS 8.52 7.32 7.40 9.60 8.43 8.71 6.91 6.91

B.  6 month horizon

RMSE 0.76 0.63 0.65 0.75 0.72 0.72 0.66 0.63

Uniform QWPS 41.81 35.92 36.74 44.45 42.37 43.00 35.99 35.92

Right tail QWPS 11.96 10.68 10.48 11.59 11.63 11.66 10.43 10.43

Left tail QWPS 14.20 11.73 12.37 16.64 14.96 15.33 11.79 11.73

C.  12 month horizon

RMSE 1.34 1.14 1.18 1.36 1.32 1.30 1.19 1.14

Uniform QWPS 71.37 59.87 63.52 76.17 73.11 74.13 60.42 59.87

Right tail QWPS 18.94 16.42 16.98 17.82 18.50 18.76 16.10 16.10

Left tail QWPS 25.93 21.06 22.73 30.95 27.65 27.96 21.53 21.06
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Table A.2   RMSE, Uniform, Right Tail and Left Tail QWPS  

of density forecasts of AR and FAVAR models 

(financial variables) 

 

 

 

                                                     Model AR-R FAVAR(x)-R FAVAR(5)-R AR-E FAVAR(x)-E FAVAR(5)-E EWP minimum

Variable across

rows

CDI A. 3 month horizon

RMSE 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Uniform QWPS 1.91 2.07 1.99 1.80 1.93 1.94 1.82 1.80

Right tail QWPS 0.63 0.68 0.64 0.59 0.64 0.65 0.60 0.59

Left tail QWPS 0.55 0.61 0.59 0.52 0.57 0.56 0.52 0.52

B.  6 month horizon

RMSE 0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.03

Uniform QWPS 2.08 2.15 2.11 1.92 2.09 2.06 1.95 1.92

Right tail QWPS 0.68 0.71 0.70 0.63 0.69 0.67 0.64 0.63

Left tail QWPS 0.61 0.62 0.61 0.55 0.61 0.60 0.55 0.55

C.  12 month horizon

RMSE 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Uniform QWPS 2.31 2.27 2.20 2.13 2.21 2.24 2.14 2.13

Right tail QWPS 0.76 0.77 0.73 0.70 0.72 0.74 0.71 0.70

Left tail QWPS 0.68 0.64 0.63 0.62 0.66 0.65 0.60 0.60

BDI A. 3 month horizon

RMSE 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03

Uniform QWPS 1.84 1.93 1.94 1.84 1.97 2.07 1.84 1.84

Right tail QWPS 0.58 0.57 0.58 0.58 0.63 0.65 0.59 0.57

Left tail QWPS 0.56 0.64 0.63 0.55 0.57 0.60 0.53 0.53

B.  6 month horizon

RMSE 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.03

Uniform QWPS 2.08 2.15 2.15 2.19 2.28 2.36 2.09 2.08

Right tail QWPS 0.64 0.66 0.65 0.67 0.70 0.72 0.66 0.64

Left tail QWPS 0.65 0.68 0.69 0.67 0.69 0.71 0.62 0.62

C.  12 month horizon

RMSE 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

Uniform QWPS 2.29 2.35 2.39 2.60 2.63 2.69 2.39 2.29

Right tail QWPS 0.70 0.71 0.70 0.76 0.78 0.80 0.73 0.70

Left tail QWPS 0.72 0.75 0.79 0.83 0.82 0.84 0.72 0.72

DNFCI A. 3 month horizon

RMSE 0.32 0.44 0.35 0.33 0.35 0.39 0.31 0.31

Uniform QWPS 14.42 17.14 15.82 15.15 16.32 18.03 14.11 14.11

Right tail QWPS 3.91 5.43 4.48 4.18 4.65 5.19 3.93 3.91

Left tail QWPS 5.06 5.24 5.26 5.15 5.39 5.90 4.77 4.77

B.  6 month horizon

RMSE 0.45 0.74 0.51 0.44 0.42 0.47 0.42 0.42

Uniform QWPS 20.33 26.17 22.28 19.98 20.64 23.15 19.17 19.17

Right tail QWPS 5.52 8.76 6.41 5.55 5.93 6.82 5.48 5.48

Left tail QWPS 7.11 7.66 7.34 6.76 6.81 7.44 6.38 6.38

C.  6 month horizon

RMSE 0.60 0.83 0.68 0.58 0.53 0.61 0.55 0.53

Uniform QWPS 28.19 31.90 30.89 27.53 27.45 30.98 26.31 26.31

Right tail QWPS 7.77 9.72 8.69 7.77 7.62 9.08 7.33 7.33

Left tail QWPS 9.87 10.16 10.37 9.30 9.39 10.00 9.05 9.05
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