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Abstract 
 
Economists have analyzed potential for damages from climate change from theoretical analyses 
and with Integrated Assessment Models (IAMs). Analytical models typically write damages as a 
function of the carbon stock, while IAMs typically view damages as based on temperatures. In 
this paper, we evaluate the implications for adapting analytic models to include two state 
variables—temperature and carbon stocks. We first provide an analytical comparison of a model 
where damages are based on carbon stocks against a model where damages are based on 
temperatures. When damages are based on carbon stocks, the time path of optimal emissions is 
described by a first-order differential equation; when damages are based on temperatures, the 
time path of optimal emissions is described by a second-order differential equation. We then 
proceed to an empirical analysis of the link between temperatures and carbon stocks. Our 
empirical analysis strongly supports a relation between levels of carbon stocks and changes in 
temperatures, and indicates the virtual absence of a linkage between levels of carbon and levels 
of temperature. As such, it is broadly supportive of a more elaborate modeling structure, under 
which two state variables are included in the analytical framework. 
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1 Introduction

Perhaps the most pressing issue currently facing environmental economists is the poten-

tial large-scale damages that might obtain from climate change. This problem has been

investigated from a variety of perspectives, from purely theoretical analyses to detailed

and sophisticated numerical simulations (often called “Integrated Assessment Models,” or

IAMs). Aside from the methodological differences in these two approaches, they often

differ in certain key modeling assumptions. Of particular interest is the way that damages

are modeled. Analytical models typically write damages asa function of the carbon stock,

while IAMs typically view damages as based on temperatures, and build in a numerical

algorithm to link carbon stocks to temperature changes. Examples of the former include

Chakravorty et al. (2006); Dutta and Radner (2009); Forster (1980); Grimaud and Rouge

(2014); Harstad (2012); Jouvet et al. (2005); Karp and Zhang (2006); Michel and Rotillon

(1995); van der Ploeg and Withagen (2014); Tahvonen (1997) and Ulph and Ulph (1997),

while examples of the latter include Crost and Traeger (2013); Golosov et al. (2014); Kelly

and Kolstad (1999); Leach (2007); Lemon and Traeger (2014); Nordhaus (2008) and Pizer

(1999).

It seems clear that the principal causal factor in damages will be the climate itself, per-

haps proxied by some measure of temperature (e.g., global mean temperature). Carbon

stocks only matter to the extent they influence the evolution of climate. For damages to

be linked to Carbon stocks, one must implicitly assume that the linkage from Carbon to

temperatures is direct, with levels in carbon impacting temperature levels. But there are
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physical reasons that changes in, not levels of, global temperatures are impacted by radia-

tive forcing, which in turn is linked to carbon stock (Allen et al., 2009). Taken literally,

these facts imply that one must go beyond a simple one-state-variable model, allowing in-

stead for two state variables—temperature and carbon stocks. But this extra complication

does impose a modeling cost, in that it renders analyses more complex, and has the poten-

tial to obscure interpretations. As such, it seems prudent to evaluate the distinction between

an analytical model that bases damages on carbon stocks and an analytical model that bases

damages on temperature. Our goal in this paper is to provide such an evaluation.

We start our investigation by providing a continuous-time dynamic optimization model

of climate policy in Section 2. Here we compare a structure where damages are based on

carbon stocks to a structure where damages are based on temperatures; a specific com-

parison is offered for two representations that have received considerable attention in the

literature, namely where damages are additive (and so are subtracted from the gross flow

of benefits) and one where damages are multiplicative (and so scale down benefits). In

Section 3, we compare the two modeling structures; this boils down to a comparison be-

tween the differential equations that describe the time path of optimal emissions. When

damages are based on carbon stocks, the time path of optimal emissions is described by a

first-order differential equation; when damages are based on temperatures, the time path of

optimal emissions is described by a second-order differential equation. We then proceed to

an empirical analysis of the link between temperatures and carbon stocks, in Section 4. Us-

ing readily available data on carbon stocks, global emissions, and global temperatures we
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evaluate the relations underpinnings economic analyses. The empirical analysis strongly

supports a relation between levels of carbon stocks and changes in temperatures, and indi-

cates the virtual absence of a linkage between levels of carbon and levels of temperature.

As such, it is broadly supportive of a more elaborate modeling structure, under which two

state variables are included in the analytical framework. We offer concluding comments in

Section 5.

2 Conceptual Underpinnings

A number of authors have investigated the dynamic optimization problem associated with

climate change. By and large, the typical analytical investigation models damages as based

on carbon stocks.1 In such a setting, the key state variable is the stock of atmospheric

carbon, C. The evolution of this state variable is commonly expressed as the difference

between the flow of (unabated) emissions, E, and the rate of natural assimilation of carbon

into natural sinks, f (C):

Ċ = E− f (C). (1)

While it is analytically convenient to assume natural uptake is linear in the carbon stock,

which corresponds to exponential decay, Solomon et al. (n.d.) has noted that some carbon

stays in the atmosphere for a very long time. Thus, assuming exponential decay of the

1 Indeed, damages are often assumed to take a simple functional form, e.g.quadratic. Basing damages on
carbon stocks is a seemingly natural application of stock-related damages, in that current economic activity,
represented by the flow of emissions, maps naturally into changes in atmospheric carbon. This modeling
approach has a long history, going back at least to Forster (1980).
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(complete) carbon stock is incompatible with physical reality. Allen et al. (2009) offer

a more satisfactory physical model, based on multiple carbon stocks that reflect different

time scales. For example, writing long-term equilibrium carbon stocks as C3 and deviations

away from those stocks as C2, the system satisfies

Ċ2 = a0E−b2C2;

Ċ3 = b3C3.

An alternative scenario, that does not require multiple state variables to measure carbon,

would be to allow for non-linear decay. In such a model, the uptake function f (C) is

increasing but concave in the carbon stock: f ′(C) > 0, f ′′(C) < 0. We will adopt this

modeling convention in the pursuant discussion. We start by investigating a simple model

wherein damages are tied to atmospheric carbon, and then proceed to a more realistic model

wherein temperatures determine damages.

2.1 Damages as a Function of Carbon

To analyze the significance of characterizing damages as a function of temperature, we start

by investigating the simplified model where damages depend only on the stock of carbon.

In this setting, we write payoffs at any point in time t as U(E,C). These payoffs could be

additive in damages, in which case U(E,C) = u(E)−∆(C), where u would be interpreted

as net benefits from unabated emissions, for example GDP net of sequestration and abate-
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ment costs, and ∆(C) would be damages. Alternatively, payoffs could be multiplicative in

damages, with U(E,C) = δ(C)u(E), where 1− δ(C) is interpreted as the reduction in net

benefits associated with damages. For either variation, it is natural to assume the payoff

function is increasing at small levels of E and globally concave.

The social planner’s problem is to select a time path of unabated emissions that maxi-

mizes the present discounted flow of payoffs:

max
Et

∫
∞

0
U(Et ,Ct)e−ρtdt

subject to: Ċt = Et− f (Ct);

where ρ is the discount rate.

The solution to this problem is described by Pontryagin’s maximum principle: we first

define the current-value Hamiltonian

H =U(E,C)+m[E− f (C)], (2)

where m is the co-state variable (i.e., shadow value) associated with the state variable C.

The optimal level of emissions maximizes the Hamiltonian at each point in time; assuming

interior solutions, we have

∂U
∂E

+m = 0. (3)
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The solution also requires that the co-state variable follows the equation of motion

ṁ = ρm− ∂H
∂C

= [ρ+ f ′(C)]m− ∂U
∂C

. (4)

To make additional headway, we time-differentiate equation (3) to obtain

(
∂2U
∂E2

)
Ė +

(
∂2U

∂E∂C

)
Ċ+ ṁ = 0. (5)

Using eqs. (3), (4) and (5), and combining terms, we obtain

Ė = E
[
ρ+ f ′(C)

]
εE +

∂U/∂C
∂2U/∂E2 −

(
E− f (C)

)[
∂2U

∂E∂C
/

∂2U
∂E2

]
, (6)

where εE is the elasticity of marginal payoffs with respect to emissions, ∂U
∂E /(E

∂2U
∂E2 ).

Combining equation (6) with the state equation governing the carbon stock generates a

system of two first-order differential equations. The solution to this system then yields the

time path of emissions and the carbon stock.

2.2 Damages as a Function of Temperatures

Linking damages to carbon stocks would make sense if temperatures were directly related

to carbon stocks, through a monotonic transformation T = φ(C). In the absence of such a

transformation, the dynamic optimization problem associated with framing optimal climate
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policy would need to include at least two state variable, temperatures and carbon stocks.

Such a model can be constructed starting from Weitzman (2010). Let T (t) represent a

measure of temperature – such as global mean temperature – at time t, and denote the stock

of atmospheric carbon by C(t). The equation of motion for temperature can then be written

as (Allen et al., 2009; Weitzman, 2010):

Ṫ = αln(C/C0)−βT, (7)

where C0 measures pre-industrial atmospheric levels of CO2.

At any point in time t payoffs are Π(E,T ). These payoffs could be additive in damages,

in which case Π(E,T ) = π(E)−D(T ), where π would be interpreted as net benefits from

unabated emissions, for example GDP net of sequestration and abatement costs, and D

would be temperature-related damages. Alternatively, payoffs could be multiplicative in

damages, with Π(E,T ) = d(T )π(E), where 1−d(T ) is interpreted as the reduction in net

benefits associated with temperature-related damages. It is natural to assume the payoff

function is increasing at small levels of E and globally concave.

The social planner’s problem is to select a time path of unabated emissions that maxi-
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mizes the present discounted flow of payoffs:

max
Et

∫
∞

0
Π(Et ,Tt)e−ρtdt

subject to: Ċt = Et− f (Ct),

Ṫ = αln(C/C0)−βT.

The solution to this problem is described by Pontryagin’s maximum principle: we first

define the current-value Hamiltonian

H = Π(E,T )+µ[E− f (C)]+ν[αln(C/C0)−βT ], (8)

where µ and ν refer to the co-state variables (i.e., shadow values) associated with the state

variables C and T , respectively. The optimal values of the controls maximize the Hamilto-

nian at each point in time; assuming interior solutions, we therefore have

∂Π

∂E
+µ = 0. (9)
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The solution also requires the co-state variables follow the equations of motion

µ̇ = ρµ− ∂H
∂C

= [ρ+ f ′(C)]µ− αν

C
; (10)

ν̇ = ρν− ∂H
∂T

= [ρ+β]ν− ∂Π

∂T
. (11)

To make additional headway, we time-differentiate equation (9) to obtain

(
∂2Π

∂E2

)
Ė +

(
∂2Π

∂E∂T

)
Ṫ + µ̇ = 0. (12)

Using eqs. (9), (10) and (12), and combining terms, we obtain

Ė = E
[
ρ+ f ′(C)

]
σE +

(
α

C∂2Π/∂E2

)
ν−

[
αln(C/C0)−βT

]( ∂2Π

∂E∂T
/

∂2Π

∂E2

)
, (13)

where σE is the elasticity of marginal payoffs with respect to emissions, ∂Π

∂E /(E
∂2Π

∂E2 ). The

key points to be gleaned from equations (9) and (13) is that damages only exert an indirect

effect on optimal emissions, in that they influence changes in – but not levels of – optimal

emissions. That is, the role played by climate change in determining optimal policy at

a point in time is far subtler than would be suggested by a simpler model that regards

damages as the result of the stock of greenhouse gases.
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3 Comparing the Two Models

Combining equation (13) with the state equations governing the carbon stock and temper-

ature generates a system of three first-order differential equations. The solution to this

system then yields the time path of emissions, the carbon stock and temperatures. We note

that one could reduce this system by time-differentiating equation (13), and then using the

state equation of T to eliminate temperature from the system. In this way, a second-order

differential equation for emissions can be linked to global carbon stock. This characteriza-

tion is plainly different from the system of two first-order differential equations one would

obtain in the context of the simpler model where damages are linked to carbon stocks.

To facilitate a more in-depth comparison, we investigate two specific formulations of

payoffs that have been considered in the literature: one where damages are additive, and

one where damages are multiplicative. In both representations, we will assume that gross

payoffs associated with the flow of emissions are iso-elastic.

3.1 Additive Damages

We first analyze a version of the model where utility is comprised of payoffs from consump-

tion, which is tied to emissions, minus the damages incurred as a result of the relevant state

variable. In such a version of the model, we have U(E,C) = u(E)−D(C) in the context

of subsection 2.1 and Π(E,T ) = π(E)−∆(T ) in the context of subsection 2.2. We assume

10



the flow of utility payment functions are equal, and are iso-elastic: u(E) = π(E) = Eγ; then

u ′(E)
Eu ′′(E)

=
1

γ−1
=

π ′(E)
Eπ ′′(E)

.

The equation of motion governing optimal emissions in subsection 2.1 can be rewritten

as

Ė =

[
ρ+ f ′(C)− ED ′(C)

u ′(E)

](
E

γ−1

)
. (14)

The equation of motion governing optimal emissions in subsection 2.2 can be rewritten as

Ė =

[
ρ+ f ′(C)+

(
α

π ′(E)

)(
E
C

)
ν

](
E

γ−1

)
. (15)

Inspecting eqs. (14) and (15), and recalling that u(E) = π(E), we see that the difference

boils down to a comparison of αν with −CD ′(C). In light of the evolution of the shadow

value ν, it is apparent that these terms are unlikely to coincide except by accident. In other

words, basing damages on carbon stocks will lead to approximation errors that change over

time.

3.2 Multiplicative Damages

We next analyze a version of the model where damages are multiplicative. In this variant,

payoffs are proportional to a factor that reflects the the damages incurred as a result of

the relevant state variable. In the context of subsection 2.1, we have U(E,C) = δ(C)u(E).
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In the context of subsection 2.2, we have Π(E,T ) = d(T )π(E). As in the preceding sub-

section, we assume u(E) = π(E) = Eγ.

The equation of motion governing optimal emissions in subsection 2.1 can be rewritten

as

Ė =

[
ρ+ f ′(C)− E∆ ′(C)

u ′(E)
+δ
′(C)

[
f (C)−E

]]( E
γ−1

)
. (16)

The equation of motion governing optimal emissions in subsection 2.2 can be rewritten as

Ė =

[
ρ+ f ′(C)+

(
α

π ′(E)

)(
E
C

)
ν−d ′(T )

[
αln(C/C0)−βT

]]( E
γ−1

)
. (17)

Inspecting eqs. (16) and (17), and recalling that u(E) = π(E), we see that a comparison

of the equations of motion on emissions involves a comparison of αν/C with d ′(C). But

the distinction between the terms d ′(T )Ṫ and δ ′(C)Ċ also enters. Were there a monotonic

transformation T = φ(C) that tied temperature levels to carbon stocks, then Ṫ = φ ′(C)Ċ

and so δ ′(C)Ċ = d ′(T )φ ′(C)Ṫ/φ ′(C) = d ′(T )Ṫ . As we noted above, however, there are

reasons to doubt the existence of such a monotonic transformation. As in the preceding

sub-section, then, we conclude that the time path of emissions under a model with damages

based on carbon stocks would only coincide with the time path of emissions under a model

with damages based on carbon stocks by accident. Here again, basing damages on carbon

stocks will lead to approximation errors that change over time.

The main message from this analysis is that adopting the simplifying assumption that

damages are based on carbon stocks, as opposed to temperatures, is likely to induce ap-
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proximation errors unless there is a monotonic transformation that links temperature levels

to carbon stocks. In the next section, we investigate the empirical plausibility of such a

monotonic transformation.

4 Empirical Analysis of Temperatures

The preceding analysis provides a conceptual framework for comparing models where

damages are linked to carbon stocks with models where damages are linked to tempera-

ture. At its core, the key distinction between these models boils down to the state equation

governing temperature stocks, eq. (7). In essence, the role played by carbon stocks is in-

termediate if they impact the rate of change in temperatures, whereas the role played by

carbon stocks can be viewed as primary if they impact the level of temperatures. Putting

these comparisons on the same footing, the question boils down to this: is it levels of

carbon, or changes in carbon, that impact the change in temperature? In this section, we

provide empirical evidence on this comparison.

4.1 Data and methodology

To shed light on this issue, we collected data on global mean temperatures and atmospheric

carbon.2 Carbon stocks are measured at a number of locations. We use observations from

Mauna Loa, which represent the longest time series of atmospheric carbon observations.

2 Atmospheric carbon data are available at ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2 mm mlo.txt.
Global mean temperature data are available at http://data.giss.nasa.gov/gistemp/tabledata/GLB.Ts+dSST.txt.
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Data on both global mean temperature and carbon stocks are available at the monthly level

from March 1958 to August 2014, which yields 678 observations.

Using this data, we investigate eq. (7). The regression equation of interest is:

∆Tt = β0 +β1lnCt +β2Tt + εt , (18)

where Tt is global mean temperature at time t, ∆Tt is the change in global mean temperature,

Tt −Tt−1, lnCt is the natural log of atmospheric carbon at time t, εt is the disturbance term

at time t, and β0,β1,β2 are parameters to be estimated. The hypothesis of interest is that

β1 > 0.

Equation (18) could equally well be viewed as one where the left-side variable is current

temperature, in which case one of the regressors is the lagged value of the left-side variable.

This fact poses no difficulties if the residual term is serially uncorrelated, but that seems

suspect in the case at hand. Because temperatures evolve slowly, the potential for shocks in

one month to exert an influence on temperatures in the next month would seem to be very

real. Accordingly, we proceed on the assumption that we have serial correlation as well as a

lagged left-side variable in the regression equation. Addressing this complication requires

the procurement of a consistent estimate of the serial correlation parameter; we follow the

approach suggested by Hamilton (1994, p. 226).3 We will also consider a variation on the

3 The idea is to run a regression that adds lagged values of the original regressors, and then form the
negative of the ratio of the point estimates on current and lagged values of the exogenous variable (the natural
log of carbon stock). This point estimate is a consistent estimator of the true underlying serial correlation
parameter. We then transform the variables by subtracting the product of this estimate with the lagged value
of the variable, for each of our variables. The point estimates reported below are derived from such a trans-
formation. Because this approach requires dropping the first two observations, the regressions employ 676
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regression equation that includes the change in atmospheric carbon, ∆Ct =Ct −Ct−1, as a

regressor; the simple model that uses carbon as the only state variable can be interpreted as

the hypothesis that the coefficient on ∆Ct is positive.

4.2 Main results

Results from regression analysis based on the above model are presented in Table 1. The

the second column (labeled ‘Regression 1’) is based on equation (18); both lagged temper-

ature (measured in degrees Centigrade) and the natural log of atmospheric carbon stocks

(measured in parts per million) are strongly statistically significant, and take the anticipated

sign. We also note that there is considerable residual uncertainty, as indicated by the mod-

est R-squared value. An alternative regression, that allows for the possible influence of the

change in carbon stocks upon the change in temperatures, is reported in the third column

(‘Regression 2’). We note that the coefficients on lagged temperature and the natural log of

atmospheric carbon stocks, as well as the constant, are very similar in the two regressions.

Further, the coefficient on the new variable appears insignificant, both numerically and sta-

tistically. By contrast, dropping the natural log of carbon stocks, as we do in the fourth

column (‘Regression 3’) yields a noticeable drop in explanatory power (as measured by the

sharp reduction in the R2 statistic), a noticeable change in the coefficient on lagged temper-

ature, and a sign change in the constant. This third regression corresponds to a model in

which there is a direct relation between levels of carbon stock and levels of temperatures,

observations.
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as is implied in a number of extant theoretical analyses. In our view, the regression results

reported in Table 1 strongly support the physical model described in eq. (7) — where car-

bon stocks influence changes in temperatures — and cast serious doubt on a model that

posits a direct relation between carbon stocks and temperatures.

Overall, these results strongly support the hypothesis that the level of carbon stocks is a

key driver in temperature changes, consistent with the representation in the state equation

for temperatures, eq. (7). By contrast, there is little evidence to suggest that changes in

carbon stocks exert any impact on changes in temperatures, which argues against a direct

relation between carbon stocks and temperatures. This aspect of our results argues against

the empirical validity of a simple dynamic optimization model that expresses damages in

terms of carbon stocks, and that uses only carbon as the sole state variable.

4.3 Robustness

There are two possible issues with the analysis undertaken above. The first has to do with

the potential endogeneity of carbon stocks, and the second has to do with the time series

structure of the error term in our regressions. The concern regarding potential endogene-

ity of carbon stocks arises because increases in temperatures from one observation to the

next, i.e., from one month to the next, can increase vegetation; in turn, this increased veg-

etation can exert a temproary impact on carbon uptake, which might influence measured

carbon stocks. To address this concern, we ran an instrumental variables regression us-

ing lagged carbon stocks and lagged carbon dioxide emissions as instruments for current
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carbon stocks.4 Lagged carbon stocks and emissions are certainly not caused by current

temperatures, while the state equation describing the evolution of carbon stocks suggests

there should be a reasonably relation between current stocks on the one hand and lagged

stocks and emissions on the other hand. We therefore expect these variables to perform

well as instruments for current stock. The results from an instrumental variables regression

using these instruments are reported in the fifth column, labeled ‘regression 4’. We see

here that the coefficients on lagged temperature and the natural log of carbon stocks are

quite similar to those in regression 1, suggesting the potential endogeneity of the carbon

stock variable is likely of minimal concern. Finally, we employed a similar instrumental

variables approach to re-estimate regression 2, which are listed in the sixth column (labeled

‘regression 5’).5 We see again that the coefficients on lagged temperature and the natural

log of carbon stocks are quite similar to those in regression 2, as is the coefficient on the

difference in carbon stocks. These results also suggesting the potential endogeneity of the

carbon stock variable is likely of minimal concern.

The second issue is that the error structure might be more intricate than our initial anal-

ysis admits. One particular possibility is that the system is characterized by time-varying

volatility, i.e. that the variance in the error terms changes over time. A general characteri-

4 Data on global CO2 emissions are only available at the annual level, whereas monthly observations on
US emissions are available starting in January 1973. We used this set of US monthly emissions to identify the
average fraction of annual emissions associated with each of the 12 months, and then used these estimated
fractions to construct a synthetic time series of monthly US emissions from March 1958 to December 1972.
The corresponding vector can be regarded as an estimate of US monthly emissions. The US was the largest
global emitter of CO2 until relatively recently, regularly representing over 20% of global emissions. More-
over, annual US emissions are closely correlated with global emissions: between 1958 and 2010, the simple
correlation between these two time series is 93.4%.

5 Because the inclusion of the change in carbon stocks implies lagged carbon appears as aright-side
variable, we use twice lagged carbon stocks and twice lagged emissions as instruments here.
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zation of this phenomenon is the “generalized autoregressive conditional heteroskedastic”

(GARCH) framework. Under the GARCH framework, the disturbance term in equation

(18) is Normally distributed with mean 0 and variance σ2
t , where:

σ
2
t = α0 +

q

∑
i=1

αiε
2
t−i +

p

∑
j=1

κiσ
2
t− j. (19)

We refer to this model as the “GARCH(p,q)” model in the pursuant discussion. Note that

when σ2
t = σ2 the GARCH model reduces to the standard regression model.

The first step in invoking this approach is to determine the appropriate lag lengths (p

and q); we use two criteria that have been proposed in the literature, the “Akaike Infor-

mation Criterion” (AIC) and the “Bayesian Information Criterion” (BIC) to perform this

determination. The idea is to select the combination of p and q that minimizes these crite-

rion. Table 2 provides values of these criteria for a variety of lag combinations.6

As is often true in this sort of analysis, the AIC and BIC do not agreee (Hamilton, 1994).

In particular, the AIC selects a model with p = q = 4, while the BIC selects a model with

p = 2,q = 3. In light of this ambiguity, we provide estimates under both specifications, in

Table 3. The second and third columns list estimates for the model p = 2,q = 3, while the

fourth and fifth columns list estimates for the model p= q= 4. Columns 2 and 4 correspond

to column 2 of Table 3, while columns 3 and 5 correspond to column 3 of Table 3. We

observe that the GARCH parameters are jointly statistically significant, pointing to the

6 For some combinations, the numerical algorithm failed to converge. Accordingly, the AIC and BIC
are not defined for these combinations, and so we do not list them in Table 2.
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presence of fat tails in the error structure.7

The key message from these regressions is that the estimates on both lnCt and Tt−1 are

quite similar for both variations of both models; these estimates are also close and to the

corresponding estimates in Table 1. Moreover, the estimates on ∆Ct in columns 3 and 5 are

statistically insignificant, also as in Table 1.

Overall, these results corroborate the results we discussed above. In particular, they

are strongly supportive of the role played by the level of carbon stocks as a key driver in

temperature changes, but indicate that changes in carbon stocks exert essentially no effect

on changes in temperatures. These results are consistent with the representation in the state

equation for temperatures, eq. (7).

5 Conclusion

In this paper, we consider extensions to the traditional theoretical growth model associ-

ated with climate policy, and consider related empirical evidence. Our analytical analysis

points to the potential for important modeling errors associated with the use of carbon-

based damage functions: in that setting, the time path of optimal emissions is described

by a first-order differential equation, whereas the the time path of optimal emissions is

7 The maximized value of the log-likelihood function for the GARCH(2,3) model is LL∗ = 578.79,
while the maximized value of the log-likelihood function for the model that assumes the error structure is not
GARCH is LL0 = 561.76; this yields a test statistic of 34.05 for the null hypothesis the error structure is not
GARCH. This test statistic will be distributed as a Chi-squared random variable with 5 degrees of freedom
under the null hypothesis. As our test statistic greatly exceeds 15.1, the 1% critical value for probability
that a Chi-squared random variable with 5 degrees of freedom, we reject the null hypothesis, in favor of the
alternative hypothesis that the error structure exhibits GARCH features. (A similar conclusion emerges from
a calculation based on a GARCH(4,4) model).
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described by a second-order differential equation when the damage function is based on

temperatures. For the assumption that damages are tied to carbon stocks to be plausible,

there must be a link between levels of temperatures and levels of carbon (which would

then imply a link between changes in carbon and changes in temperature). But our empir-

ical analysis points to a clear link between levels of carbon and changes in temperatures;

there is virtually no role for carbon levels to influence temperature levels. Accordingly, our

results are strongly supportive of the temperature-based damage representation.

Weitzman (2009) has argued that we need to pay close attention to the relative size of

the tails in whatever probability distribution is deemed to characterize the salient uncer-

tainty in modeling optimal climate policy. One aspect of our empirical analysis is support-

ive of the “fat tail” concept. In modeling the underlying uncertainty that impacts the state

equation for temperatures, our robustness analysis points to the likely role played by time-

varying volatility, as captured by a “generalized autoregressive conditional heteroskedastic”

(GARCH) framework. The GARCH framework implies a kurtosis that is larger than that

of a Normal random variable, and so is consistent with the fat tail concept.
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Table 1: Regression results: global mean temperatures

variable Regression 1 Regression 2 Regression 3 Regression 4 Regression 5

Tt−1 -0.2585∗∗ -0.2589∗∗ -.0.0592∗∗ -0.2579∗∗ -0.2574∗∗

(0.0258) (0.0259) (0.0172) (0.0132) (0.0259)

ln(Ct) 0.8704∗∗ 0.8658∗∗ — 0.8672∗∗ 0.8655∗∗

(0.0980) (0.0984) (0.1201) (0.0985)

Ct−Ct−1 — 0.0096 0.0128 — 0.0750
(0.0135) (0.0157) (0.2328)

constant -1.766∗∗ -1.726∗∗ 1.055∗∗ -1.754∗∗ -1.748∗∗

(0.3826) (0.3867) (0.2351) (0.3844) (0.3844)

N 677 676 676 676 676
R2 0.130 0.129 0.029 0.129 0.129

Dependent variable: Tt−Tt−1
Standard errors in parentheses
*: significant at 5% level
**: significant at 1% level
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Table 2: Information criteria for various GARCH lag structures

GARCH(p,q) Akaike Information Criterion Bayesian Information Criterion
(1,1) -1112.76 -1085.65
(1,2) -1109.73 -1078.11
(1,3) -1124.78 -1088.64
(2,1) -1113.20 -1081.58
(2,3) -1139.57 -1098.91
(2,4) -1123.59 -1078.41
(3,1) -1113.39 -1077.25
(3,3) -1138.05 -1092.87
(3,4) -1121.83 -1072.14
(3,5) -1123.02 -1068.81
(4,1) -1130.89 -1090.23
(4,3) -1131.14 -1081.44
(4,4) -1140.44 -1086.23
(5,1) -1130.92 -1081.22
(5,2) -1130.92 -1081.22
(5,3) -1132.90 -1078.69
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Table 3: GARCH regression results: global mean temperatures

variable Regression 1 Regression 2 Regression 3 Regression 4

Tt−1 -0.2598∗∗ -0.2691∗∗ -0.2655∗∗ -0.2675∗∗

(0.0241) (0.0157) (0.0255) (0.0231)

ln(Ct) 0.8758∗∗ 0.9168∗∗ 0.9016∗∗ 0.8956∗∗

(0.0933) (0.1017) (0.0892) (0.0888)

Ct−Ct−1 — 0.0087 — 0.0154
(0.0157) (0.0138)

constant -1.785∗∗ -1.919 ∗∗ -1.872 ∗∗ -1.794 ∗∗

(0.3716) (0.4127) (0.3588) (0.3590)

Dependent variable: Tt−Tt−1
Standard errors in parentheses
*: significant at 5% level
**: significant at 1% level
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