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1. Introduction 

 

Abundant research has documented the pitfalls of overconfidence in financial decision-

making.  For example, investors so affected are likely to trade too much (e.g., Barber 

and Odean (2000)) and under-diversify (Goetzmann and Kumar (2008)), while 

susceptible managers are prone to excessive M&A activity (Malmendier and Tate 

(2008)) and market entry (Camerer and Lovallo (1999)).  Daniel Kahneman, in his recent 

bestseller Thinking, Fast and Slow (2011), argues that professional forecasters are often 

bested by simple algorithms because they “try to be too clever, think outside the box, 

and consider complex combinations of features in making their predictions (p. 224).” 

This is another way of saying that they are overconfident: they believe they know more 

than they actually do. 

 

While forecast disagreement can occur because of heterogeneity in information, 

information-updating frequency and model choice (Capistran and Timmermann 

(2009a)), behavioral bias might also contribute. The purpose of this paper is to explore 

the impact of overconfidence on forecasting stock market returns in the context of 

surveys of professional forecasters. The questions we ask ourselves are these. Does 

overconfidence weaken forecast accuracy?  And, given that there is heterogeneity in 

performance in part induced by heterogeneity in overconfidence, is there a payoff to 

filtering out weaker forecasters to improve survey accuracy, where weakness is based 

either on past performance or the tendency to exhibit markers of overconfidence? 

 

Excess market returns have proved to be notoriously difficult to predict out of sample.  

While there is an extensive literature documenting return predictability within sample 

using such fundamental variables as dividend yields, interest rates and term spreads, as 

pointed out by Goyal and Welch (2008), this has not translated into out-of-sample 

performance as (typically) measured by out-of-sample R2 (OS-R2) relative to a naïve 
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benchmark such as the historical average equity premium. 1  Nevertheless Rapach, 

Strauss and Zhou (2010) have shown that a combination forecast methodology whereby 

several predictive variables are optimally combined can lead to a modicum of out-of-

sample success. The same holds in Ferreira and Santa-Clara (2011) where the 

components of stock market returns are predicted separately. Nevertheless 

predictability is modest, in the former case being less than 4% (using quarterly data) 

and in the latter case less than 2% (using monthly). 

 

While it is logical to expect that panels of professional forecasters, not only with such 

predictive variables at their disposal but also armed with experiential judgment, should 

easily be able to outperform naïve benchmarks, the Kahneman perspective encourages 

skepticism in this regard. Take the ZEW survey in Germany, which since February 2003 

has solicited point forecasts for the DAX.2  While the mean forecast of the excess market 

return coming from this survey produces OS-R2 of 6.19% (with p-value=0.073) for 

March 2003-June 2010, success is concentrated in the first year as OS-R2 = 1.09% (p-

value=0.239) during February 2004-June 2010.3  

 

Some forecasters are weaker than others and these may skew the consensus. We 

conjecture that weak forecasters may be weak in part because they are more 

overconfident than other forecasters. One possibility is that, relying too much on 

intuition, they have a tendency to make extreme forecasts. Denrell and Fang (2010) 

document that those who have made a very accurate recent prediction – since markets 

are volatile this often implies an extreme prediction – are likely to be inferior forecasters 

going forward.  Indeed our data indicate that survey respondents with higher forecast 

standard deviations have higher mean squared prediction errors (MSPEs).  

                                                           
1 See Neely, Rapach, Tu and Zhou (2010) for many references on return predictability. 
2 The DAX is an index composed of the 30 largest and most important German companies traded on the 
German Stock Exchange in Frankfurt. 
3 The ZEW survey actually requests six-month DAX forecasts.  The reported OS-R2s are based on imputed 
one-month forecasts (as described below) so (given this imputation) the February 2003 survey solicits 
forecasts for March 2003. 
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Overconfidence can also manifest itself in the tendency to be too sure of one’s views, 

leading to overly narrow confidence intervals.4  This tendency is echoed in the model of 

Daniel, Hirshleifer and Subrahmanyam (1998), where overconfident investors put too 

much stock in private information and exert pressure on prices in the direction of their 

information, with the result that if such investors dominate markets overreaction and 

eventual reversal in security prices can ensue.  We further document that forecasters 

whose confidence intervals are wide enough to contain the eventual DAX realization 

more often than other forecasters are better forecasters in the sense that they have lower 

MSPEs.  This is not tautological because better forecasters actually have narrower 

confidence bounds. 

   

Next consensus forecast improvement is considered.  We show that filtering out from 

the survey inferior forecasters can lead to modest but statistically significant 

improvements in accuracy.  For example, if we drop the 30% of forecasters whose prior 

MSPEs over the preceding three forecasts was highest, OS-R2 reaches 4.18%, which is 

significant at 2%.  It is not obvious that this should be so since one might expect that 

inferior forecasts would be as likely to be too high (relative to the realization) as too 

low.  Evidently, some error clustering is occurring, consistent with what has been found 

for analysts (Hirshleifer and Teoh (2003)).  We also document that there is a payoff to 

dropping forecasters without regard to past performance but who exhibit one marker of 

overconfidence, namely the tendency to make extreme forecasts.  For example, if we 

drop the 70% of forecasters whose prior forecast volatility is highest over the preceding 

12 months, OS-R2 reaches 4.43%, which is significant at 3%.       

 

In what follows, we begin by providing appropriate background on the ZEW DAX 

survey. In section 3 we explore the characteristics of successful forecasters and the 

contributing role of overconfidence. In the penultimate section, we document that 
                                                           
4  Deaves, Lüders and Schröder (2010) have previously documented that the ZEW forecasters are 
overconfident in this sense.  Ben-David, Graham and Harvey (2013) have performed a similar exercise 
using a U.S. panel of market forecasts.  
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filtering out weaker forecasters can lead to meaningful out-of-sample predictability.  

Finally, in section 5, we discuss our findings and sum up.   

 

2. ZEW survey 

 

The ZEW Finanzmarkttest is a monthly survey of over 300 private sector forecasters in 

Germany.  From 1991 to the present it has solicited predicted directional changes 

(rise/fall/unchanged) in a series of key macroeconomic and financial market variables 

for the key industrialized economies as of six months in the future. 5   Starting in 

February 2003, ZEW survey respondents were also asked to provide quantitative 

forecasts and confidence intervals for the DAX.  Specifically, point estimates for the 

DAX six months in the future, as well as lower and upper bounds forming 90% 

confidence intervals began to be solicited.  These are the forecasts that we investigate 

here. 6   The cleaned dataset has over 20,000 forecaster-survey observations, with a 

survey minimum/mean/maximum of 135/228/269.       

 

To avoid the overlapping data problem inherent in the fact that forecasts are made 

monthly for six-month-ahead DAX levels, we here follow the methodology of Deaves, 

Lüders and Schröder (2010), where one-month point forecasts and 90% confidence 

intervals are imputed from six-month. It is assumed that forecasters believe that the 

growth rate in the DAX will be constant over the next six months.  More specifically, 

letting L6, F6 and U6 be the six-month interval lower bound, forecast point estimate and 

interval upper bound respectively, the one-month forecast point estimate (F1) is 

calculated as: 

 

                                                           
5  Most of these individuals work for a commercial bank, investment bank, insurance company or 
investment department of a large German company.  For example, participants are asked to predict the 
inflation rate, long-term and short-term interest rates, economic activity, and stock market levels for these 
countries.   
6 The final survey in our dataset is May 2010. 
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(1)   𝐹𝐹1 = (
𝐹𝐹6

𝐷𝐷𝐷𝐷𝐷𝐷0
)1/6 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷0, 

 

where DAX0 is the (respondent-specific) current level of the DAX.  On the assumption 

of i.i.d. DAX one-month returns, the standard deviation of one-month returns is 1/√6 

times the six-month standard deviation.  Confidence intervals are chosen to reflect what 

is believed to be the correct number of standard deviations on each side of the point 

estimate, as follows:  

(2)   𝑈𝑈1 = 𝐹𝐹1 ∗ �
𝑈𝑈6
𝐹𝐹6
�
1
√6, 

(3)   𝐿𝐿1 = 𝐹𝐹1 ∗ �
𝐿𝐿6
𝐹𝐹6
�
1
√6. 

Respondents typically are given several weeks to make their forecasts, with first 

solicitation occurring usually near the end of the preceding month.  For example, for the 

September 2004 survey the first received response was on August 28, and the last on 

September 14.  For these reasons, equations (1)-(3) require adjustment.  Since they are 

not told to do otherwise, logically respondents would be making their forecasts for 

exactly six months in the future.  If we use these equations without adjustment, 

respondents’ imputed one-month forecasts (and intervals) would be for different DAX 

dates and thus would not be comparable. The way to obviate this problem is to use a 

respondent-specific imputation that doesn’t generate a one-month ahead forecast (and 

interval) but rather yields a one-month-ahead-of-the-end-of-forecast-month forecast 

(and interval), as follows: 

 

(1𝑎𝑎)   𝐹𝐹1𝑎𝑎 = (
𝐹𝐹6

𝐷𝐷𝐷𝐷𝐷𝐷0
)(30+𝑑𝑑)/180 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷0, 

(2𝑎𝑎)   𝑈𝑈1𝑎𝑎 = 𝐹𝐹1𝑎𝑎 ∗ �
𝑈𝑈6
𝐹𝐹6
�
�30+𝑑𝑑180

, 
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(3𝑎𝑎)   𝐿𝐿1𝑎𝑎 = 𝐹𝐹1𝑎𝑎 ∗ �
𝐿𝐿6
𝐹𝐹6
�
�30+𝑑𝑑180

, 

 

where d is the number of days from forecast receipt to the end of the forecast month.  

Averaging subsets of these imputed forecasts provides the ZEW consensus forecasts that 

are investigated here. 

 

3. Characteristics of successful forecasters  

 

In this section we explore the characteristics of successful forecasters, where forecast 

success is calculated using MSPE. Certain of the variables considered are logical ex ante 

markers of superior performance, while others are potentially linked to overconfidence.  

Table 1 summarizes our expectations.   

 

Beginning with logical ex ante markers of superior performance, as described in section 

2, forecasts are made at different times. Those made later, when more information is 

likely to be available, would be expected to be better forecasts. Cross-sectionally, 

individuals tend to have different survey response habits, with some tending to forecast 

early and others doing so towards the end of the survey month.  STALENESS_MEAN,  

which is defined as the average number of days prior to the end of the survey month 

the forecaster in question submits her forecast, captures this.  The expectation is that 

those contributing early and thus having higher STALENESS_MEAN will tend to have 

higher MSPE. 

 

Second, forecasters submit not only point forecasts (which are used to assess MSPE) but 

also 90% confidence intervals surrounding their point forecasts. Logically those who 

feel they have a better sense of where the DAX is going should submit narrower 

confidence intervals. Thus average (scaled) confidence interval width 

(CONF_INT_MEAN), defined as (U6-L6)/DAX0, provides information on confidence.  
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Importantly, this is not the same as overconfidence, which requires a comparison of 

perceived and revealed ability. The expectation is that those with lower 

CONF_INT_MEAN will tend to have lower MSPE. Of course it is possible that their 

confidence is entirely unfounded, in which case there will be no impact. 

 

Third, the tendency to produce extreme forecasts thereby relying to a great extent on 

one’s own intuition points in the direction of overconfidence. Consistent with Denrell 

and Fang (2010), the expectation is that those whose forecasts tend to be more variable 

(i.e., have a higher standard deviation (SD)) will be weaker forecasters. Such a 

relationship is far from obvious, since, given the volatility that exists in stock indexes, a 

“perfect foresight” forecaster will have extremely variable forecasts.  It is expected that 

SD and MSPE are positively related. 

 

Finally, frequent submission is likely to be a signal of attention. On the other hand, 

consistent with the inattention model of Peng and Xiong (2006), those participating 

sporadically are signaling inattention and perhaps a reduced ability to see where 

markets are moving. We define EXPERIENCE as the overall number of forecasts 

submitted during the sample, with the expectation that higher EXPERIENCE is 

associated with lower MSPE. Diminishing returns seem likely: logically going from 10 

forecasts to 20 is a stronger incremental signal of interest than going from 50 to 60, since 

everyone responding 50 times or more is exhibiting commitment. For these reasons we 

perform not only regressions with EXPERIENCE but also those including a squared 

term (EXPERIENCE_2), with the expectation that the coefficient on the latter should be 

positive to reflect convexity vs. MSPE. 

 

Table 2 reveals whether the data conform to expectations.7  Its four panels differ in the 

minimum number of forecasts that a forecaster must submit in order to remain in the 

                                                           
7 In unreported results, a version of Table 2 that excludes 2007-08, a tumultuous period in financial 
markets, is broadly similar to what is reported here. 
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sample, with minima ranging from n=5 to n=30.  While each panel displays three 

regressions, initially we focus on the first two, with the first positing a linear 

relationship for EXPERIENCE, and the second by including a squared term allowing for 

diminishing returns.  Turning to regression (2) in Panel B (where forecasters are only 

included if they have made at least 10 forecasts over the full sample and non-linearity in 

EXPERIENCE is allowed for), we see the coefficients line up exactly as anticipated, with 

all variables being of the anticipated sign and statistically significant at 1% or very close 

to it.  Regression (1) from the same panel is comparable, with a reduced significance 

level for EXPERIENCE because linearity is imposed.   

 

The other panels can be thought of as robustness checks. STALENESS_MEAN, 

CONF_INT_MEAN, and the overconfidence marker SD are extremely robust, with all 

other coefficients indicating significance in the anticipated direction at 10% or better.  

As for EXPERIENCE, both the unsquared and squared terms become insignificant for 

n=30, which should perhaps not be surprising because given non-linearity most of the 

meaningful impact of EXPERIENCE comes for more moderate EXPERIENCE levels. 

 

As a further robustness check, we re-estimate regression (2) by replacing 

CONF_INT_MEAN with average relative imputed individual volatility, or 

RELATIVE_IMPUTED_IND_VOL_MEAN.  The latter variable begins with 

IMPUTED_IND_VOL, namely the conversion of respondents’ confidence intervals into 

individual volatility estimates by using the Davidson and Cooper (1976) method to 

recover respondent-specific probability distributions under normality:8   

 

(4)     𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝐼𝐼𝐼𝐼𝐷𝐷𝑉𝑉𝑉𝑉𝑉𝑉 =
(𝑈𝑈1𝑎𝑎 − 𝐿𝐿1𝑎𝑎)
3.2 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷0

. 

 

                                                           
8 See Pearson and Tukey (1965), Moder and Rodgers (1968), and Ben-David, Graham, and Harvey (2013).  
Equation (4) is based on the fact that respondents’ confident intervals are 90%.   
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This variable is calculated for each forecaster in every survey month.  We then 

standardize relative to all forecasters participating in the same survey month.  Finally, 

we calculate for all forecasters the average across all months for which there was 

participation.  Regression (3) appears in the third column.  Consistent with regression 

(2), survey respondents with higher average relative imputed individual volatilities 

have higher MSPEs.   

 

The miscalibration-based variant of overconfidence, which exists when x% confidence 

intervals (subject to sampling error) contain fewer than x% correct answers, can be 

directly calculated from the data. Using the first two years of the ZEW forecasts, 

Deaves, Lüders and Schröder (2010) found that the average forecaster in this dataset 

was egregiously overconfident in this sense, but, consistent with learning, they adjusted 

their confidence interval widths depending on past success. Here we take a different 

perspective.  If overconfidence gets in the way of judicious forecasting, then we would 

expect more overconfident forecasters to have higher MSPEs. Letting 

HIT_PERCENTAGE be defined as the percentage of the time one’s (imputed) one-

month confidence interval contains the eventual value of the DAX, with lower values 

indicating higher overconfidence, according to this argument HIT_PERCENTAGE 

should be negatively related to MSPE. 

 

While on the surface it might appear viable to introduce HIT_PERCENTAGE as an 

additional explanatory variable in the MSPE regressions, there is a problem in doing so. 

Once we control for the average confidence width (CONF_INT_MEAN), 

HIT_PERCENTAGE will by construction be negatively related to MSPE.  This is because 

holding constant interval width a successful forecaster will almost certainly have more 

“hits” than an unsuccessful one. Matters are quite different however if we relate 

HIT_PERCENTAGE to MSPE without controlling for CONF_INT_MEAN.  It is helpful to 

roughly partition overconfidence as follows: 
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(5)   𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾. 

 

Overconfidence exists when one’s perception of knowledge (i.e., one’s confidence) 

exceeds one’s actual knowledge.  More precisely, an increase in KNOWLEDGE 

PERCEPTION (in the present context, confidence interval shrinkage) reflects ceteris 

paribus higher overconfidence, while an increase in ACTUAL KNOWLEDGE (in the 

present context, lower MSPE) reflects ceteris paribus lower overconfidence.  Since the 

regression results show that confidence interval width and MSPE are positively related 

(i.e., low-MSPE forecasters not only have high perceptions of their knowledge but also 

high levels of actual knowledge), the relationship between overconfidence (i.e., lower 

HIT_PERCENTAGE) and revealed MSPE is an open question.  We conjecture a negative 

relationship between overconfidence and forecast performance (revealed MSPE), which 

is logical if the tendency to be overly certain of one’s view induces one to economize on 

effort.   

   

To test this conjecture, terciles based on MSPEs are formed.  These terciles are 

designated as ‘High,’ ‘Medium,’ and ‘Low’ based on MSPEs, with the High group 

containing the highest-MSPE forecasters and the Low group containing the lowest-

MSPE forecasters.  For each tercile, in Table3 HIT_PERCENTAGEs are calculated for the 

same four cross-sectional samples as in Table 2.  Further, the last column shows a t-test 

for the difference in means between the extreme groups.  If overconfident forecasters 

tend to make weak forecasts, then this would imply that High forecasters will have a 

lower HIT_PERCENTAGE than Low forecasters.  There is evidence to this effect.  In all 

four cases, Low has a higher average HIT_PERCENTAGE than does High.  When there 

are at least 5-20 survey responses, the difference is statistically significant at 10% or 

better.      

  

 

 



12 
 

4. Filtering the ZEW survey 

 

There are compelling reasons to pool forecasts (Timmermann (2009)).  For example, if 

different forecasts use non-matching sources of information, efficient information 

aggregation may result.  And diverse forecasting techniques may be affected differently 

by structural breaks.  While in theory weighting individual forecasts is appealing, a 

simple equal-weighted approach often dominates because of parameter estimation 

error.  Moreover, more subtle techniques such as least squares estimation of weights are 

difficult to operationalize with an unbalanced panel such as the one studied here 

(Capistran and Timmermann (2009b)).  Trimming or filtering out poor forecasters (or 

models) who mostly contribute noise has been shown to improve forecast combinations 

(e.g., Aiolfi and Favero (2005)).9 

 

Here we consider the mean ZEW DAX forecast either with or without filtering based on 

prior performance.10  The purpose is to investigate whether elimination of some of the 

weaker forecasters improves forecast combination accuracy.  While we later document 

that one factor driving inferiority is overconfidence, for now the focus is merely on 

unconditional performance.  In order to generate out-of-sample forecasts it is important 

that filtering be based on known information.  Specifically we eliminate the z% of 

forecasters whose prior MSPEs fall in the bottom z% of all forecasters participating in a 

given month.  We consider increments of 10% (10-90%) along with 95%, 99% and “All 

but best.”   The latter means that only the forecaster with the lowest prior MSPE is 

kept.11 

 

When utilizing past information, the two choices are a recursive or rolling window.12   

                                                           
9 Though unexplored here, further improvement may also arise by combining survey data with time 
series models (Pesaran and Weale (2006)). 
10 All results presented here are little affected by using the median instead of the mean. 
11 For the 99% filter, typically two forecasters remain, though with ties the number can reach seven. 
12 Note that we say “window” we mean the number of monthly forecasts that we look back at to assess 
performance prior to the forecast in question.  Thus this forecast is not included in the window. 
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In the former case, all previous data are conditioned on while in the latter a constant-

length window is maintained.  The advantage of the former is that all information is 

used, but the disadvantage is some of this information might be so stale that it is best 

ignored.  For example, suppose there are two ways to forecast the DAX, one primarily 

technical and the other primarily fundamental, with some forecasters employing the 

first approach and others the second.13  Further suppose that the return generating 

function for the DAX is regime-dependent.  Under the first regime, a technical approach 

would generate better forecasts, while under the second regime a fundamental 

approach would outperform.  The problem with using a recursive approach is that it is 

less sensitive to the current regime since it could well be the case that a forecaster looks 

good because her technique performed well early in the sample when one regime was 

in place but her recent performance has been weaker now that a second regime is in 

effect.  By varying the length of the rolling window one can get a sense of the optimal 

amount of past data to condition on.  In truth, however, such a comparison is going to 

have an in-sample flavor, as there is no guarantee that this optimal window length will 

continue to be optimal going forward. 

 

To evaluate the out-of-sample performance of the ZEW mean equity premium forecast, 

we calculate OS-R2, after Campbell and Thompson (2008).  This calculation requires a 

forecast methodology against which the ZEW forecast is compared.  The simplest 

benchmark is the mean realized equity premium.  Against such a benchmark, OS-R2 is 

calculated as follows: 

 

(6) 𝑅𝑅𝑂𝑂𝑂𝑂2 = 1 −
∑ �𝑟𝑟𝑚𝑚+𝑘𝑘 − 𝑟̂𝑟𝑚𝑚+𝑘𝑘

𝑍𝑍𝑍𝑍𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�
2𝑞𝑞

𝑘𝑘=𝑞𝑞0+1

∑ �𝑟𝑟𝑚𝑚+𝑘𝑘 − 𝑟̅𝑟𝑚𝑚+𝑘𝑘
𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�

2𝑞𝑞
𝑘𝑘=𝑞𝑞0+1

, 

 

where m is the number of in-sample observations; q is number of out-of-sample 

                                                           
13 Dick and Menkhoff (2013) use this categorization in investigating ZEW exchange rate forecasts. 
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observations; 𝑞𝑞0 is the initial out-of-sample forecast of the equity premium; 𝑟𝑟𝑚𝑚+𝑘𝑘 is the 

realized equity premium at m+k in the out-of-sample period; 𝑟̂𝑟𝑚𝑚+𝑘𝑘
𝑍𝑍𝑍𝑍𝑍𝑍_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  is the ZEW 

mean out-of-sample equity premium forecast at m+k; and 𝑟̅𝑟𝑚𝑚+𝑘𝑘
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  is the historical 

mean equity premium calculated using data up to m+k.  Note that 𝑅𝑅𝑂𝑂𝑂𝑂2  gauges the 

proportional reduction in MSPE for the ZEW mean forecast relative to the benchmark.14   

 

When 𝑅𝑅𝑂𝑂𝑂𝑂2 > 0, the ZEW forecast on average outperforms the historical mean forecast 

according to the MSPE metric.15  Based on Clark and West (2007), the null hypothesis 

that 𝑅𝑅𝑂𝑂𝑂𝑂2 ≤ 0  is tested against the alternative hypothesis that 𝑅𝑅𝑂𝑂𝑂𝑂2 > 0 in two steps. First, 

define the MSPE-adjusted statistic as follows: 

 

(7)𝑓𝑓𝑡𝑡+1 = �𝑟𝑟𝑡𝑡+1 − 𝑟̅𝑟𝑡𝑡+1
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�

2
− ��𝑟𝑟𝑡𝑡+1 − 𝑟̂𝑟𝑡𝑡+1

𝑍𝑍𝑍𝑍𝑍𝑍_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�
2
− �𝑟̅𝑟𝑡𝑡+1

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑟̂𝑟𝑡𝑡+1
𝑍𝑍𝑍𝑍𝑍𝑍_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�

2
�. 

 

Second, regress {𝑓𝑓𝑠𝑠+1}𝑠𝑠=𝑚𝑚+𝑞𝑞0
𝑇𝑇−1 on a constant.  And, finally, calculate the t-statistic of this 

constant.  A p-value for a one-sided (upper-tail) test is then obtained with the standard 

normal distribution.  

 

Figure 1 displays both OS-R2s and corresponding p-values for one-, two- and three-year 

recursive windows. Specifically, in the (say) two-year case, for possible inclusion in the 

consensus respondents are ranked based on MSPE over the first 24 surveys and if they 

are in the lowest z% they remain in the sample for the 25th survey.  Moving forward one 

period, to form the 26th survey consensus, the holdout sample is based on the first 25 

forecasts, and so on.  Note that to be considered for inclusion we impose the screen that 

at least 10 forecasts must have been made by a forecaster during the holdout window 

(i.e., prior to the forecast to be evaluated).  It can be observed in Figure 1 that while 

                                                           
14 The benchmark forecast is the historical average of monthly excess returns. It is the historical mean 
taken over all available excess returns at each point of time for recursive windows. For rolling windows, 
the historical mean benchmark is computed over a corresponding fixed window size.   
15 Throughout this paper, monthly rate of 3-month Frankfurt Interbank Offered Rate (FIBOR3M) is used 
as the risk-free rate to calculate the mean one-month-ahead forecast of the excess market return. 
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filtering improves matters somewhat the OS-R2 is never significant even at 10%.16  

Evidently, there is little obvious value added in using a recursive approach.17 

 

In Figure 2 the same one-, two- and three-year windows as in Figure 1 are utilized, this 

time though using a rolling methodology.  Again, we employ the screen that at least 10 

forecasts over the rolling window must have been made.  The first evaluated forecast is 

done in an identical fashion to the recursive approach, but moving forward the window 

size is kept constant, implying that early observations are ignored in forecast 

evaluation.  Again, in all cases at least 10 observations over the preceding one, two or 

three years are required in order to be considered for inclusion.  A rolling one-year 

approach reveals some improvement vs. no filtering with OS-R2s for 30-50% filters 

ranging from 2.66-3.38% with p-values at 10% or better.  The superiority of a one-year 

vs. two- and three-year windows suggests that it is best to limit the window length so 

that forecasting success in the more distant past is ignored.     

 

Figure 3 investigates how narrow the window should be in order to maximize 

combination forecast improvement. Four approaches are displayed. The first 

(Min_10_for_12) repeats the rolling one-year window used in Figure 2 as a point of 

departure.  The other three filters employ rolling windows of six months (Min_5_for_6), 

three months (Min_2_for_3) and one month (Min_1_for_1).  It is also necessary to 

specify a minimum number of prior forecasts in the rolling window (again noting that 

the window does not include the forecast under consideration).  For six months/three 

months/one month, the minimum is five/two/one.  To interpret the Min_1_for_1 case, 

included forecasters must participate in two consecutive surveys, the one whose success 

is being examined as well as the one immediately preceding (where past success is 

based on how close the latter forecast was to the eventual DAX). 

                                                           
16 As it were, there are two filters.  The first, which to avoid confusion we call a screen, requires a 
sufficiently long track record so that past performance can be assessed, and the second drops people 
based on poor past performance. 
17 Note that even the 0% filter is based on the “minimum of 10” restriction.  
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Beginning with Min_1_for_1, the highest OS-R2 observed in Figure 3 (6.75%, p-

value=0.063) is without filtering.  Thus, exclusion of forecasters is not helpful: in fact it 

worsens matters, and for filters of 70% or more it is very much counterproductive.  This 

should not be surprising since a track record of a single previous forecast (beyond the 

one under examination) is naturally rife with noise, and is clearly subject to the Denrell 

and Fang (2010) extreme-forecast success critique.  Nevertheless it should be noted that 

there is a marginal gain from attention due to the fact that only those forecasters 

participating twice in a row are considered.  The reference point in this regard is an OS-

R2 of 6.19% (p-value = 0.073), which applies to the case when we only assess the mean 

forecast without any past history requirement.         

 

As for the other two (new) cases in Figure 3, filtering improves matters for both the 

rather short 6-month and 3-month rolling windows. For example, for the very narrow 

three-month window (where we insist that a forecaster was active for the majority (i.e., 

2 of 3) of prior forecasts), the OS-R2s range from 3.35-4.18% for 10-50% filters.  These 

values are statistically significant at the 5% level when compared to the historical mean. 

 

Related to Figure 3 is Figure 4.  Figure 4 ascertains the success of filtering, utilizing the 

same four approaches, but now the unfiltered mean forecast (rather than the historical 

mean) is the benchmark against which we compare filtered mean forecasts (which is 

why we begin at 10%).  Broadly speaking, filtering out inferior forecasters is somewhat 

helpful, with a moderate amount of filtering producing the best results.  Again, for the 

Min_2_for_3 case, the OS-R2 (vs. no filtering) at a 10% filter is 1.45% with a p-value of 

0.090.18    

                                                           
18 For the Min_5_for_6 case, the OS-R2 (vs. no filtering) at a 20% filter is 2.11% with a p-value of 0.087.  For 
the Min_10_for_12 case, the OS-R2 (vs. no filtering) at a 10% filter is 1.50% with a p-value of 0.078.  For 
brevity, we do not provide the “vs. 0% filter” analogous (to Figures 1 and 2) charts.  In a nutshell 10% 
filtering is effective (at 10% or close to it) for the three recursive approaches.  On the other hand, filtering 
does not pay off for the 24-month and 36-month rolling windows.  
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Next we investigate whether those weaker forecasters who are filtered out are dropped 

in part because of their overconfidence.  Turning to Table 4, which employs the screen 

that a forecaster for potential inclusion must have made at least five forecasts over the 

previous six months, we provide the average levels (both mean and median) of relevant 

variables for three groups of forecasters, designated as ‘Most,’ ‘Between’ and ‘Least,’ 

based on the percentage of the time that a forecaster is filtered out over the sample 

period (where the Most group contains individuals who are filtered out the most and 

the Least group contains individuals who are filtered out the least).  Focusing on 

variables from Table 2, it is salient that forecasters with narrow forecast intervals – 

recall such forecasters are signaling confidence – are less likely to be filtered out.  Further, 

one indicator of overconfidence, the standard deviation of point estimates, is also 

positively associated with a reduced likelihood to be included in the survey.  While 

Table 2 suggests that overconfident forecasters (in the sense that they release extreme 

forecasts) are weak forecasters (i.e., they have higher MSPEs), Table 4 suggests that 

those forecasters who are often filtered out based on prior MSPEs also turn out to be 

overconfident forecasters (in the sense that their forecasts are too extreme). 

   

Apart from academic interest, what if were considering hiring various individuals in a 

forecasting capacity, but while we had no track record of their forecasting performance 

we did possess proxies (perhaps obtained through the administration of a 

questionnaire) for various manifestations of overconfidence.  The results presented here 

impel us to think twice before retaining applicant forecasters who reveal themselves to 

be overconfident. 

 

Corroboration of this view exists in Figure 5, where forecasters are filtered out not 

because of previous forecasting performance but because of prior point forecast 

standard deviation.  It is apparent that there is a payoff to filtering out forecasters who 

display overconfidence through their past tendency to make extreme forecasts.  In 

Figure 5, six-month to three-year rolling windows are used.  Take the one-year rolling 
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window: while the OS-R2 is close to zero, using 60-90% filters generates OS-R2s of 3.92-

4.43% which are statistically significant at less than 5%.  

 

5. Discussion and concluding remarks 

 

The ability to forecast market returns is critical for many decision-makers.  It matters for 

market timing, asset allocation, pension fund deficit calculation and corporate planning. 

While it is recognized that returns have at best a modest predictable component, any 

improvements that can be garnered over such naïve models as the short rate plus the 

average realized equity premium are without doubt worth pursuing.  Panels of expert 

forecasters are a ready source of informed opinion, but it is not clear how to make the 

best use of panel data. 

 

We have considered how overconfidence impacts forecast performance.  

Overconfidence as proxied by the tendency to make extreme forecasts leads to poor 

performance.  Further, controlling for the fact that good forecasters have some 

knowledge of their skill which causes them to generate more narrow confidence 

intervals, it is still true that overconfidence as proxied by the hit ratio (i.e., percentage of 

the time that an interval contains the eventual realization) is associated with poor 

performance.  It is beneficial to have information on the sources of forecast weakness 

because if one has such information but the forecaster under the microscope has an 

insufficient track record one can still make educated guesses about future performance.   

 

Given forecaster heterogeneity it is logical to explore whether filtering out weak 

forecasters is a viable strategy.  Filtering can be done directly by conditioning on past 

performance.  Particularly useful when performance information is sparse is the fact 

that conditioning can also be done indirectly by taking into account overconfidence 

markers.  Fairly short rolling windows, which delicately balance ignoring relevant 

information and noise reduction, work best.     
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TABLE 1: Sign expectations of determinants of MSPE 
 

This table presents sign expectations of determinants of MSPEs.  STALENESS_MEAN is 
the average number of days prior to the end of the survey month the forecaster in 
question submits his or her forecast.  CONF_INT_MEAN is defined as (U6-L6)/DAX0, or 
the difference between the six-month interval upper bound and lower bound deflated 
by the current level of the DAX.  SD is the standard deviation of point forecasts. 
EXPERIENCE is the overall number of forecasts submitted during the sample. 
EXPERIENCE_2 is EXPERIENCE squared.   
 
 

Independent variables Expected sign 
  
STALENESS_MEAN + 
  
CONF_INT_MEAN + 
  
SD  + 
  
EXPERIENCE - 
  
EXPERIENCE_2 + 
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TABLE 2: Cross-sectional MSPE regressions 
 

This table reports the estimated coefficients from the cross-sectional regressions of 
MSPE on various potential determinants.  The dependent variable is scaled by 104. 
STALENESS_MEAN is the average number of days prior to the end of the survey 
month the forecaster in question submits his or her forecast.  CONF_INT_MEAN is 
defined as the average of (U6-L6)/DAX0, the difference between the six-month interval 
upper bound and lower bound deflated by the current level of the DAX for each 
forecaster.  SD is the standard deviation of point forecasts over the sample. 
EXPERIENCE is the overall number of forecasts submitted during the sample. 
EXPERIENCE_2 is EXPERIENCE squared.  RELATIVE_IMPUTED_IND_VOL_MEAN is 
calculated in two steps (as in Ben-David, Graham, and Harvey (2013)).  First, for each 
forecaster in every survey month, we convert respondents’ confidence intervals into 
individual volatility estimates by using the Davidson and Cooper (1976) method to 
recover respondent-specific probability distributions under normality.  Second, we 
standardize them relative to all forecasters participating in the same survey month and 
then average across all months for which there was participation.  Panels A through D 
differ in the minimum number of forecasts that a forecaster must submit in order to 
remain in the sample, with minima of n=5, 10, 20, and 30, respectively. The t-statistics 
are reported below the coefficients and corrected for heteroscedasticity using the White 
(1980) correction.  Note that ***, **, and * indicate significance at 1%, 5%, and 10%, 
respectively. 
 

Panel A: At least 5 survey responses 
Independent variables (1) (2) (3) 
    
STALENESS_MEAN 0.740*** 0.817*** 0.751*** 
 (4.274) (4.621) (4.473) 
CONF_INT_MEAN 30.769*** 28.518***  
 (2.979) (2.920)  
SD 0.012*** 0.013*** 0.013*** 
 (2.830) (3.248) (3.253) 
EXPERIENCE -0.108*** -0.701*** -0.731*** 
 (-2.754) (-3.838) (-3.962) 
EXPERIENCE_2  0.006*** 0.006*** 
  (3.640) (3.765) 
RELATIVE_IMPUTED_IND_VOL_MEAN   2.766** 
   (2.409) 
Constant 7.585 16.659*** 23.776*** 
 (1.525) (3.013) (4.372) 
    
Observations 381 381 381 
Adj. R-squared 0.085 0.115 0.117 
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Panel B: At least 10 survey responses 
Independent variables (1) (2) (3) 
    
STALENESS_MEAN 0.619*** 0.685*** 0.634*** 
 (4.201) (4.689) (4.412) 
CONF_INT_MEAN 24.189*** 22.262**  
 (2.672) (2.570)  
SD 0.013*** 0.015*** 0.015*** 
 (3.677) (3.987) (3.965) 
EXPERIENCE -0.094** -0.661*** -0.689*** 
 (-2.244) (-3.594) (-3.721) 
EXPERIENCE_2  0.005*** 0.006*** 
  (3.551) (3.687) 
RELATIVE_IMPUTED_IND_VOL_MEAN   2.043** 
   (2.261) 
Constant 8.227 17.373*** 23.142*** 
 (1.642) (3.276) (4.849) 
    
Observations 347 347 347 
Adj. R-squared 0.093 0.122 0.122 
    

Panel C: At least 20 survey responses 
Independent variables (1) (2) (3) 
    
STALENESS_MEAN 0.621*** 0.724*** 0.687*** 
 (4.146) (4.735) (4.553) 
CONF_INT_MEAN 17.781** 16.699**  
 (2.051) (1.974)  
SD 0.013*** 0.015*** 0.015*** 
 (3.431) (3.670) (3.684) 
EXPERIENCE -0.080* -0.944*** -0.960*** 
 (-1.692) (-3.178) (-3.215) 
EXPERIENCE_2  0.008*** 0.008*** 
  (3.245) (3.285) 
RELATIVE_IMPUTED_IND_VOL_MEAN   1.518* 
   (1.852) 
Constant 8.018 25.912*** 29.883*** 
 (1.463) (3.266) (3.871) 
    
Observations 296 296 296 
Adj. R-squared 0.090 0.133 0.133 
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Panel D: At least 30 survey responses 
Independent variables (1) (2) (3) 
    
STALENESS_MEAN 0.613*** 0.647*** 0.610*** 
 (4.242) (4.350) (4.176) 
CONF_INT_MEAN 17.028** 16.188*  
 (1.972) (1.923)  
SD 0.014*** 0.014*** 0.014*** 
 (3.612) (3.671) (3.706) 
EXPERIENCE 0.014 -0.380 -0.383 
 (0.306) (-0.951) (-0.961) 
EXPERIENCE_2  0.003 0.003 
  (1.063) (1.076) 
RELATIVE_IMPUTED_IND_VOL_MEAN   1.610** 
   (1.976) 
Constant 1.455 10.997 14.407 
 (0.270) (0.982) (1.293) 
    
Observations 264 264 264 
Adj. R-squared 0.123 0.125 0.130 
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TABLE 3: Hit percentages for MSPE groups 
 

This table investigates whether more overconfident forecasters have higher MSPEs. 
HIT_PERCENTAGE is defined as the percentage of the time one’s (imputed) one-month 
confidence interval contains the eventual value of the DAX, with lower values 
indicating higher overconfidence.  High, Medium, and Low groups based on MSPE are 
formed, with the High group containing the highest-MSPE forecasters and the Low 
group the lowest-MSPE forecasters.  The last column reports the difference in means 
between High and Low with a t-test for equality.  Note that ***, **, and * indicate 
significance at 1%, 5%, and 10%, respectively. 
 

 
Group based on MSPE 

 
Low Medium High Difference 

(High-Low) 

     
Panel A: At least 5 survey responses 
     
HIT_PERCENTAGE (%) 51.88 51.70 47.38 -4.50** 
     
Panel B: At least 10 survey responses 
     
HIT_PERCENTAGE (%) 52.54 50.78 48.49 -4.05* 
 
Panel C: At least 20 survey responses 
     
HIT_PERCENTAGE (%) 51.54 50.51 46.54 -5.00** 
     
Panel D: At least 30 survey responses 
     
HIT_PERCENTAGE (%) 51.96 49.49 48.79        -3.17 
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TABLE 4: Characteristics of filtered out forecasters 
 

This table investigates the characteristics of filtered out (ex post weaker) forecasters 
based on historical MSPE.  We employ the screen that at least five forecasts over the 
rolling window of six months must have been made.  We form Most, Between, and 
Least groups based on the percentage of the time that each forecaster is filtered out over 
the sample period, with the High group containing those filtered out most often.  The 
sample sizes for Least, Between, and Most are 126, 123, and 130, respectively. The last 
column reports the difference in means and medians of the characteristics of filtered out 
forecasters between Most and Least with both a t-test and a Wilcoxon Z-test for equality.  
Note that ***, **, and * indicate significance at 1%, 5%, and 10%, respectively. 
 

 
Group based on percentage of time 
forecasters are filtered out 

 

 

Least Between Most Difference 
(Most-Least) 

      
STALENESS_MEAN Mean 20.957 21.711 21.760 0.803** 
 Median 20.146 21.226 20.988 0.841** 
      
CONF_INT_MEAN Mean 0.166 0.162 0.193 0.027** 
 Median 0.153 0.154 0.170 0.017*** 
      
SD Mean 1,194 1,302 1,293 99*** 
 Median 1,312 1,349 1,329 16** 
      
RELATIVE_IMPUTED_IND_VOL_MEAN Mean -0.107 -0.104 0.258 0.365*** 
 Median -0.204 -0.191 0.059 0.262*** 
      



FIGURE 1: OS-R2s and p-values for one-year to three-year recursive screens 

This figure investigates whether filtering out weaker forecasters based on prior performance (MSPE) improves forecast 
combination accuracy.  This figure displays both OS-R2s and corresponding p-values for one-, two- and three-year 
recursive windows.  For forecast evaluation, OS-R2 is calculated based on Campbell and Thompson (2008).  This statistic 
gauges the proportional reduction in MSPE for a competing model relative to the historical average benchmark.  P-values 
are computed based on the MSPE-adjusted statistic of Clark and West (2007).  We employ the screen that at least 10 
forecasts over the rolling window must have been made.   

Panel A: OS-R2s 
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Panel B: P-values 
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FIGURE 2: OS-R2s and p-values for one-year to three-year rolling screens 

This figure investigates whether filtering out weaker forecasters based on prior performance (MSPE) improves forecast 
combination accuracy.  This figure displays both OS-R2s and corresponding p-values for one-, two- and three-year rolling 
windows.  For forecast evaluation, OS-R2 is calculated based on Campbell and Thompson (2008).  This statistic gauges the 
proportional reduction in MSPE for a competing model relative to the historical average benchmark.  P-values are 
computed based on the MSPE-adjusted statistic of Clark and West (2007).  We employ the screen that at least 10 forecasts 
over the rolling window must have been made. 
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FIGURE 3: OS-R2s and p-values for short rolling screens 

This figure investigates how narrow the window should be in order to maximize combination forecast improvement. 
Four approaches are displayed.  The first (Min_10_for_12) repeats the rolling one-year window used in Figure 2 as a point 
of departure.  The other three filters employ rolling windows of six months (Min_5_for_6), three months (Min_2_for_3) 
and one month (Min_1_for_1).  OS-R2 is calculated based on Campbell and Thompson (2008).  P-values are computed 
based on the MSPE-adjusted statistic of Clark and West (2007). 
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Panel B: P-values 
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FIGURE 4: OS-R2s and p-values for short rolling screens (against 0% filter benchmark) 

This figure investigates the economic significance of the forecast improvement by filtering out weaker forecasters based 
on prior performance (MSPE).  The same four windows as in Figure 3 are used, but now the unfiltered mean forecast is 
the benchmark against which we compare filtered mean forecasts.  
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Panel B: P-values 
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FIGURE 5: Filtering out forecasters based on SDs  

This figure investigates whether filtering out forecasters based on SD improves forecast combination accuracy.  This 
figure displays both OS-R2s and corresponding p-values for six-month, one-, two- and three-year rolling windows.  Each 
forecaster’s SD is calculated over the rolling window.  We eliminate the z% of forecasters whose prior SD falls in the top 
z% of all forecasters who make a forecast in a given month.  We consider increments of 10% (10-90%) along with 95%, 
99% and “All but best.”  OS-R2 is calculated based on Campbell and Thompson (2008).  P-values are computed based on 
the MSPE-adjusted statistic of Clark and West (2007). 
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Panel B: P-values 

 


