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1 Introduction

There is a widespread belief that innovation activities of young, small and medium-sized

enterprises (SMEs) might constitute the main driver of technological change and future

growth (Veugelers, 2008; Schneider and Veugelers, 2010; Czarnitzki and Delanote, 2013).

The increased attention from both scholars and policy makers towards these firms is not

only rooted in the expectation of a potential direct contribution to economic growth, but also

because of their expected indirect positive effects on large incumbent firms and their abil-

ity to create new markets. However, even among young SMEs the potential to successfully

innovate may be heterogeneous. The effects on growth for example have been found to be

most important in high-tech sectors. Audretsch (1995) for example, following upon Dunne

et al. (1988) who found differences in growth rates across different industries, touches upon

the importance of sectoral differentiation. The small start-ups active in a highly innovative

environment seem to perform better than the ones in a low-tech environment. In this line of

research, Westhead and Cowling (1995) and Almus and Nerlinger (1999) found that the new

technology based firms (NTBFs), i.e. independent, young firms in high-tech sectors, showed

the highest growth rates. Increasingly, scholars focused on these firms in high-tech sectors

as incubators of economic progress (see e.g. Bartelsman et al., 2004; Calvo, 2006; Colombo

and Grilli, 2010; Cozza et al., 2012).

This firm heterogeneity also gained increasing attention under the flagship initiative ’In-

novation Union’, established in context of the ’Europe 2020’ targets (EC-DG Research and

Innovation, 2011). Next to acknowledging the potentially important role of certain types

of firms for technological change and economic growth, policy also supports the innova-

tion activities of firms in order to overcome specific constraints faced disproportionately by

these firms. The focus on specific types of firms also fits within the objective to provide ’less

and better’ state aid. Moncada et al. (2010) state that at least size, age, innovativeness and

sectoral differentiation should play an important role in the choice of policy targets. The

authors claim that the granting process of innovation subsidies should be oriented towards

small, young, high-tech innovators.

A main reason is that the smallest and youngest companies are expected to suffer more

from the well-known market failures such as a weak appropriability (Schumpeter, 1942; Nel-

son, 1959; Arrow, 1962) and uncertainty (Pindyck, 1991; Dixit and Pindyck, 1994) that lead to

information asymmetries between firms and external suppliers of finance and result in un-
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derinvestment in R&D (Arrow, 1962; Stiglitz and Weiss, 1981). The hypothesis that especially

small, young innovators, and more specifically independent, high-tech ones, are seriously

hampered in their innovation activities is confirmed in literature (Lerner, 1999, 2002; Evans

and Jovanovic, 1989; Holtz-Eakin et al., 1994b,a; Czarnitzki and Hottenrott, 2011; Hall and

Lerner, 2010). Himmelberg and Petersen (1994) and Carpenter and Petersen (2002), focusing

on independent high-tech, small and young firms conclude that these firms are most finan-

cially constrained. Westhead and Storey (1997) explicitly compare the extent to which most

technologically sophisticated small firms are more financially constrained than less techno-

logically sophisticated ones and find that the former are more impeded in growth due to

financial constraints. Goodacre and Tonks (1995) state that innovation in high-tech indus-

tries is more likely to be of a new sort because of which it is more difficult for financiers

to evaluate the investment. Storey and Tether (1998) focus specifically on NTBFs and em-

phasize their higher need of external financing2, and others discuss their high innovative

performance and growth (Storey and Tether, 1998; Colombo and Grilli, 2010; Licht and Ner-

linger, 1998; Almus and Nerlinger, 1999).

Most scholars focus on independent young firms as non-independent firms are assumed

to benefit from their parent companies or the group of firms they are associated with. That

independent firms would be more in need of external funding is already suggested multiple

times in literature. In general, Hoshi et al. (1991), Schaller (1993) and Czarnitzki and Hotten-

rott (2011) confirm that large internal capital resources reduce underinvestment problems,

suggesting that this is even more true for R&D investments. In addition, especially small

and young firms have limited access to internal funds as they cannot use earlier profit ac-

cumulations or a steady cash inflow from a broad and established product portfolio for

financing their R&D projects (see also e.g. Berger and Udell, 2002; Carpenter and Petersen,

2002; Cassar, 2004).

The focus on these specific types of firms also gained increasing attention of several Eu-

ropean countries. In Germany, for example, the ’high-tech strategy 2020’ explicitly focuses

on key technologies as being the so-called ’drivers of innovation and the basis for new prod-

ucts, processes and services’ (BMBF (Federal Ministry of Education and Research), 2010).

In addition, as also specified by the European Commission, autonomous SME’s are distin-

guished from non-independent firms and the focus of several different policy measures is on

2NTBFs are, since the introduction of this term by the Arthur D. Little Consulting Group, an intensely
studied type of firms (Little, 1977).
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the former group (European Commission, 2008). Although the literature suggests a higher

lack of financing for these firms and governments seem to acknowledge this, there is no elab-

orated evaluation yet on whether these firms show higher treatment effects when receiving

subsidies.

In order to evaluate whether the subsidy granting process to young SMEs should be de-

termined by independence and sectoral differentiation, we compare the impact of subsidies

between four different types of young SMEs, (i) independent and high-tech (henceforth la-

beled as ’NTBFs’), (ii) non-independent, high-tech, (’group NTBFs’) (iii) independent and

low-tech, and (’LTBFs’) (iv) non-independent, low-tech (’group LTBFs’). Table 1 graphically

presents the four groups of firms analyzed in this study and recapitulates the differences

between the types of firms.

Table 1: Overview on the studied firm types as part of the population

NTBF

Independent, young SMEs
active in high-tech sectors

Group NTBF

Non-independent, young
SMEs active in high-tech

sectors Small Old firms

LTBF

Independent, young SMEs
active in low-tech sectors

Group LTBF

Non-independent, young
SMEs active in low-tech

sectors

Large young
firms

Large old firms
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We evaluate the impact of direct R&D subsidies granted to companies on several R&D in-

put measures and patents as R&D output measure. The remainder of the paper is organized

as follows: sections 2 and 3 review the evaluation literature and outline the econometric

method used for both the input and output analysis, section 4 discusses the data used and

presents descriptive statistics and section 5 presents the empirical results. Finally, a conclud-

ing section summarizes the findings and discusses policy implications.

2 Subsidy input evaluation

We first evaluate the impact of direct R&D grants on innovation input. It is possible that

the subsidies are subject to crowding–out effects. This might happen if firms replace their

privately financed R&D by the public funds. Furthermore, the empirical analysis could re-

veal heterogeneity in treatment effects among different firm types. For instance, many in-

novation subsidies to young SMEs are oriented towards independent firms. If our study,

however, would show higher treatment effects for non-independent firms, i.e. those hav-

ing parent companies or being associated with groups, it would suggest a misallocation of

public resources.

In order to measure the effect of public support on R&D input, several econometric mod-

els were proposed. However, estimating the effect of public subsidies is not that straight-

forward. Firms receiving a subsidy are presumably different from companies that do not

receive a subsidy. A first difference already emerges at the application stage as some firms

might be more likely to apply for public funding than others. Some firms might consider

the administrative burden or the information sharing through the submission of research

proposals as reasons to refrain from applying for a subsidy. In addition, there is a possibil-

ity that the funding agencies follow a picking-the winner strategy with respect to the firms

that applied for a subsidy. In other words, firms might have some characteristics that make

them more attractive to governments for funding. As a consequence, funding cannot be

considered as a random process and this selection should be accounted for when evaluating

subsidy schemes. In order to evaluate the impact of subsidies on the R&D investment of

the different firm types, caliper matching is performed in this study. Thus, we do not use a

random control group, but non-subsidized firms that are similar to the subsidy recipients in

several observed characteristics.
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2.1 Literature review

The impact of R&D policies on firms’ innovation behavior has already been extensively

covered in the economic literature. The main focus in literature is on input additionality

of subsidies. As a consequence, most of the literature addressed the issue of crowding-out

effects of subsidized R&D. David et al. (2000), Cerulli (2010) and Zúñiga Vicente et al. (2014)

survey the literature on subsidy effects and find that, in general, the results of the reviewed

literature vary; possibly also due to different data sources and methods.

Among the studies reviewed in the surveys, some focus on SMEs. Wallsten (2000), for

example, uses a 3SLS approach in order to evaluate the effect of grants to SMEs in the context

of the SBIR program. At first sight, he finds crowding–out of firm–financed R&D spending

dollar for dollar. However, Wallsten (2000) remarks that this result could be simply due to

the fact that firms would have cut back their R&D expenditures in case no public funding

was available. In other words, the R&D grants may have allowed firms to continue their

R&D at a constant level rather than cutting it back.

Alecke et al. (2012) apply a matching estimator any find that SMEs, especially the micro–

sized firms, show an increase in R&D intensity as a result of subsidies. Alecke et al. (2012)

also find that subsidies increase the probability of patent applications.

While the above studies focus on SMEs, the impact of subsidies on NTBFs has not been

discussed extensively in the literature so far. Some studies evaluated the effect of subsidies

on output measures. Colombo et al. (2012) for example show that especially young NTBFs

grow more after receiving public funds and especially if these are allocated through a se-

lective evaluation process. Colombo et al. (2011) and Grilli and Murtinu (2012) focus more

specifically on R&D subsidies and find that TFP growth of NTBFs is only enhanced if subsi-

dies are provided competitively and if they aim at enhancing R&D investments.

Apart from the current study, there are, to our knowledge, no papers that study the effect

of innovation subsidies on R&D input of NTBFs. Neither exist studies that investigate the

different subsidy effects on NTBFs, Group NTBFs, LTBFs and Group LTBFs.

2.2 Methodology

In this study, we apply Caliper Matching. The technique of matching has, among others,

been discussed by Angrist (1998); Dehejia and Wahba (1999); Heckman et al. (1998); Lechner

(2000). In the context of this paper, matching tries to address the following question: “What is
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the effect of a subsidy grant on a subsidized firm?”. Thus we estimate the difference between

the actual observed R&D of the subsidized firms and the counterfactual situation, where

these firms would have not gotten subsidized. The ’average treatment effect on the treated’,

αTT, can be written as:

αTT = E
(

YT|S = 1
)
− E

(
YC|S = 1

)
, (1)

where YT denotes the treatment outcome and YC the counterfactual outcome. S takes the

value 1 if the firm is subsidized and zero otherwise. However, it is impossible to observe YC

because it is impossible to observe a treated firm without treatment. Therefore, this coun-

terfactual outcome has to be estimated and is in this context constructed based upon a con-

trol group of non-subsidized firms. The idea is to balance the sample of subsidized firms

and comparable non-subsidized firms. The remaining differences in outcomes between the

matched subsidized and non-subsidized firms can then be attributed to the received treat-

ment.

When performing matching, we replicate the conditions of an experiment to the best

possible extent. Therefore, we determine a broad set of characteristics, X, that should be

similar among firms to be matched. In other words, we compare the treated firm with an

untreated firm that is basically identical to the treated firm with respect to the characteristics

that we define. This set of characteristics should be exhaustive. Rubin (1977) introduced this

as the Conditional Independence Assumption (CIA), which stipulates that the treatment and

the outcome of this treatment are independent for the observations having the same set of

exogenous characteristics. If this CIA is satisfied, the following equation is valid:

E
(

YC|S = 1,X
)
= E

(
YC|S = 0,X

)
(2)

Based upon this equality, the outcome of the non-subsidized firms can be used to esti-

mate the counterfactual situation of the subsidized firms and the treatment effect can then

be written as:

αTT = E
(

YT|S = 1,X=x
)
− E

(
YC|S = 0,X=x

)
(3)

Consequently, a two-sample t-test on the matched samples can be applied to test the hy-

pothesis whether αTT = 0. Usually, X contains many different variables in order to satisfy
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the CIA. This makes it almost impossible to find control variables that exactly fit the charac-

teristics of the subsidized firm. In other words, the so-called curse of dimensionality occurs

because the more dimensions that are included, the more difficult it becomes to find a good

match. Rosenbaum and Rubin (1983) showed that it is possible to reduce X to a single in-

dex, the propensity score, and match on this index instead of on all the individual X. The

propensity scores are constructed based upon a probit regression of treatment, in this case

subsidies, on the exogenous variables and then used as matching argument.

We thus implement propensity score matching, and search for the nearest neighbor in

propensity scores for each treated firm in the potential control group of non-subsidized

firms. As it may happen that the nearest neighbor is still quite different from a treated firm,

we perform Caliper Matching (Cochran and Rubin, 1973). This method is similar to near-

est neighbor matching but it adds the additional restriction that the propensity score of the

nearest neighbor is within a certain, pre-specified distance. Thus, by applying this method,

it is possible that a treated observation cannot be matched to a satisfactorily similar control.

We further require that the matched control observations correspond to the same sample

year and the same geographical region (Eastern versus Western Germany) as the treated

firm observations.

As we sample with replacement in the matching routine, i.e. the same control may be

used for multiple treated firms, we follow Lechner (2001) and calculate his estimator for an

asymptotic approximation of the standard errors of the sample t-test on αTT = 0.

3 Subsidy output evaluation: the patent production function

Even if full crowding-out is rejected, it does not imply that public efforts lead to new tech-

nologies.3 Subsidized projects might be associated with a higher chance of failure and/or

lower expected revenues than projects that the firms finance themselves even in the absence

of subsidies. Therefore the subsidized projects might also have lower technological output

(David et al., 2000). In addition, the additional money might be redirected to increase wages

of existing staff, which may not be translated in an increase in output (unless staff becomes

more productive) (Goolsbee, 1998; Howells, 2008).

In order to assess the effect of both privately and publicly funded R&D on technolog-

3The focus in this study is only on technological performance of the subsidized firm themselves. This cannot
account for any effects subsidies might have on other firms via possible spill-over effects that occur between
subsidized firms and other firms in the economy.
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ical performance, we estimate their effects on patent applications. Patents are extensively

discussed and acknowledged as an indicator of technological performance (see Pakes and

Griliches, 1984; Griliches, 1990, 1998 or OECD, 1994). More specifically, they point to imme-

diate output of the R&D process, i.e. successful R&D.4

In order to estimate the patent production function, count data models are used. QMLE

(Quasi-Maximum Likelihood Estimator) Poisson models are estimated in order to analyze

the impact of R&D on the number of patent applications. Using QML Poisson takes into ac-

count any form of over- or under-dispersion which would otherwise lead to incorrect stan-

dard errors (Wooldridge, 2002). In this setting, R&D is split into two components, purely

private R&D (the counterfactual situation) and publicly induced R&D (referring to both the

subsidies as well as possibly additionally induced private R&D because of the subsidies).

As these two variables cannot be directly observed, we construct them based upon the pre-

vious matching procedure by disentangling the R&D input into the R&D engagement of the

firm in the absence of a treatment, R&DC
i , and the additionally induced R&D by the subsidy

(including the subsidy itself), αTT
i . Note that the observed R&Di is thus decomposed accord-

ing to eq. 3: R&Di = R&DC
i + αTT

i . Therefore, the second equation to be estimated can be

written as

PATENTi = f
(

R&DC
i ,αTT

i ,other firm characteristics
)

(4)

If subsidies have a positive effect on technological performance, αTT
i should positively

influence the patent outcome.5

Although several scholars already investigated input additionality effects, not many

studies tried to establish an explicit link between a certain (government) intervention and

patenting behavior. Branstetter and Sakakibara (2002) focus on the effect of being a member

in a subsidized research consortium, and find that it has a positive effect on patenting. Czar-

nitzki et al. (2007) focus on the effect of subsidies and collaboration on patent outcome, but

as an output variable in the matching routine, thus not disentangling the counterfactual and

publicly induced R&D. In line with the current study, but focusing on all types of firms in

4In spite of being a direct indicator of technological progress, patents are a narrow measure of innovation
output. Other variables, like successful innovations in terms of sales with new products or cost reductions,
could serve as further indicators of innovation outcome. Also employment growth as the ultimate goal of
many policy initiatives would be a very interesting extension of our study. We choose patents, as they should
be the closest outcome of the corresponding research projects with respect to timing.

5Note that contemporaneous R&D is inserted in this equation as this has been found to have the strongest
effect on patenting (Hall et al., 1986; Pakes and Griliches, 1984).
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the economy, Czarnitzki and Hussinger (2004) and Czarnitzki and Licht (2006) implement

a matching estimator in order to estimate innovation input additionality and then estimate

output additionality in a second step as outlined here.

4 Data, variables and descriptive statistics

4.1 Data sources

The data used in this paper stem from the Mannheim Innovation Panel (MIP), the German

part of the Community Innovation Survey. Next to information on general firm-level charac-

teristics, this database contains specific information on innovation activities and the receipt

of subsidies. Our data are pooled cross–sections of the years (these years of the MIP data

include information on subsidies): 1994, 1996, 1998, 2000, 2002, 2003, 2004 and 2006. Patent

data are taken from the German Patent and Trade Mark Office (GPTO). Our version of the

database contains information on all patent applications in Germany from 1979 to 2005.

Patent and firm data were linked using a computer-supported text search algorithm and

potential matches were checked manually. Furthermore, some variables have been gathered

from the ’Creditreform’ database. Creditreform is the largest German credit rating agency

and the database includes information on firms’ ratings and other variables.

Unfortunately, we can use the data only as pooled cross-sections but not as a panel: of

the total sample of 3,272 observations, corresponding to 2,399 different firms, about 72% of

the firms are only observed once. As a consequence, panel econometric approaches are not

applicable as we would need to drop the 72% of the sampled firms that are only observed

once.

Our sample includes NTBFs, Group NTBFs, LTBFs and Group LTBFs. All these firm

classes have less than 250 employees and are less than 10 years old.6 NTBFs and Group

NTBFs belong to the high-tech or key-tech technologies as defined in the high-tech strategy

6In general, literature is ambiguous in defining NTBFs and small, young firms in general. With respect to
size, the threshold of 250 employees is the official threshold of SME’s, while small firms in the strict sense are
officially defined (as e.g. by the European Commission) as having less than 50 employees. In literature, either
one of the thresholds is used to define small firms (Schneider and Veugelers, 2010; Acs and Audretsch, 1989).
With respect to age, literature is even more ambiguous when it comes to determining ’young’ age. (Colombo
et al., 2012, 2011; Grilli and Murtinu, 2012). In order to test whether our results are robust to alternative criteria,
we also conducted the matching estimation for firms having less than 50 employees and being less than 5 years
old. The differences found between the different firm categories are robust. However, with the more restrictive
definition we run into small sample size problems for the second step of the analysis, the estimation of output
effects.
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(BMBF (Federal Ministry of Education and Research), 2010), while LTBFs and Group LTBFs

belong to medium low-tech and low-tech sectors (for an overview of the industry classifica-

tion, see table A1 in appendix).7 In addition, all the firms in the sample are innovative and

have thus introduced at least one new or significantly improved product or process, or have

ongoing or abandoned innovation projects during the period covered in the survey.

Table 2 presents the sizes of the different samples before and after matching. As can be

derived from the table, the sample initially consists of 1228 NTBFs, 609 Group NTBFs, 965

LTBFs and 470 Group LTBFs in total. Among those, the non-subsidized firms can poten-

tially serve as controls for matching. Table 2 shows that, in line with expectations, a larger

share of NTBFs receive subsidies than LTBFs. The table also shows how many of the treated

observations could be matched to nearest neighbors that were similar enough in observed

characteristics. For instance, out of 649 subsidized NTBFs, a close neighbor could be found

for 599.

4.2 Variables

4.2.1 Dependent variables

This study investigates the influence of subsidies on various outcome variables. The receipt

of subsidies is denoted by a dummy variable SUB, and covers subsidies from the national

or regional governments and from the EU. In order to evaluate the effect of subsidies on

the innovative behavior of firms, we investigate the impact on R&D intensity of these firms,

RDint. This variable is constructed as the ratio of internal R&D expenditures to turnover

(multiplied by 100). We also evaluate the subsidy effect on the level of R&D expenditures

(R&D).

A large part of R&D spending consists of salaries of R&D employees. If companies in-

crease their R&D expenditures after receiving R&D subsidies, a large fraction of this in-

creased spending might be due to hiring new R&D employees. However, as Goolsbee (1998)

states, R&D labor supply might be quite inelastic and the increased spending might instead

be redirected to higher wages for existing staff instead of resulting in new human capital

which is not the direct aim of government subsidies. If it would be the case that R&D sub-

7Note that this distinction between high-tech and low-tech industries also coincides with distinguishing
between the most and least R&D intensive sectors in the German economy based upon the survey data.
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Table 2: Numbers of observations in the different subsamples

NTBF

subsidized 649
potential controls 579

Matched subsidized firms: 599

Group NTBF

subsidized 306
potential controls 303

Matched subsidized firms: 262

Old firms (< 250
employees, ≥ 10

years old)
6432 obs

LTBF

subsidized 328
potential controls 637

Matched subsidized firms: 284

Group LTBF

subsidized 120
potential controls 350

Matched subsidized firms: 95

Large firms (≥
250 employees,
< 10 years old)

695 obs

Large and Old
firms (≥ 250

employees, ≥ 10
years old)
2936 obs

sidies lead to higher wages, a positive treatment effect found for R&D spending might thus

not mean that more knowledge is created in the economy. Only if either new R&D staff is

hired or higher wages lead to higher R&D productivity, the policy would have its desired

effects. Therefore, we first test whether not only R&D spending is related positively to the

subsidy receipt but also R&D employment. We use two variables, the number of R&D em-

ployees (RDemp) and the R&D employment intensity (RDEint) measured as the number of

R&D employees over the total number of employees (multiplied by 100).

In order to investigate the effect of subsidies on output, we disentangle RDEint into the

counterfactual situation RDEintC
i and the additionally induced R&D employment intensity,

αTT,i for all four firm groups. The dependent variable in this stage is the number of patent

applications (PAT). Note that this output stage also takes into account R&D productivity

boosts because of potentially increased wages of R&D personnel.
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4.2.2 Explanatory variables

Although we focus on SMEs, there might still be differences between the larger and smaller

firms within this subset. Therefore, we control for firm size by the log of total employment,

ln(EMP), and also its square, (ln(EMP))2, in order to capture possible nonlinearities. Simi-

larly, although we are already focusing on the youngest firms in the economy, we include the

logarithm of age (ln(AGE)) in the analysis in order to capture differences between younger

and older firms.

Firms that export to other countries might be more innovative than other companies.

The chance that they apply for innovation subsidies is thus also higher. As a consequence,

a dummy indicating whether a firm is an exporter or not, EXPORTER, is included in the

analysis. Another variable that may be correlated with subsidy receipt is capital intensity

(CAPINT), measured as (fixed assets/EMP). Capital intensive firms supposedly rely more

heavily on innovation activities than the less capital intensive ones.

Another variable that is included is the price-cost margin (PCM). Firms with a higher

price-cost margin are more likely to have financial resources for internal funding of R&D

projects. As a consequence, they might apply less for subsidies. However, a high price-cost

margin might be the result of successful past innovation activities and the likelihood to

receive subsidies might thus increase. The price-cost margin is constructed as suggested by

Collins and Preston (1969) and Ravenscraft (1983): ((sales - staff cost - material costs)/sales).

The history of (successful) R&D activities is likely to strongly influence both the probabil-

ity to receive subsidies, R&D expenditures and R&D employment. If a firm already has a lot

of experience in R&D activities, this firm is more likely to know how to apply for subsidies

and to invest more in new R&D activities. In addition, governments often adopt a picking-

the-winner strategy and firms with previous successful innovations might thus be favored

in the granting process. In order to capture the influence of past R&D, we include the patent

stock in our regression as patent stock per employee (PS/EMP). We divide by employees in

order to reduce potential multicollinearity with firm size. Patent stock is defined as

PSit = (1− δ)PSi,t−1 + PAit,

where PS is the patent stock of firm i in period t and t-1 respectively, PA is the number

of patent applications filed in period t. The patent stock in period t-1 is depreciated at a
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constant rate, with δ set to 0.15 (see e.g. Jaffe, 1986; Hall, 1990; Griliches and Mairesse, 1984).

As already elaborated, credit constraints might also have an influence on subsidy receipt

and the outcome variables. In order to capture the access a firm has to external capital, we

use the firm’s credit rating, RATING, lagged one period. The rating is an index ranging from

100 to 600, where 600 is the worst and essentially corresponds to bankruptcy of the firm.

The dummy variable EAST indicates firms that are located in Eastern Germany. Eastern

Germany is still in transition from a planned to a market economy, and firm behavior may

thus be different. In addition, Eastern German firms are preferred in the policy incentive

schemes, and special schemes have been launched exclusively for these firms in order to

accelerate the catching up process in this region.

In addition, we control for differences in technological opportunities with industry dum-

mies (see Table A1 in the appendix for details). These industry dummies are based on

the NACE codes, the European industry standard classification system. Finally, seven time

dummies control for business cycle effects.

For the variables PCM, CAPINT and RATING, we have some missing values. In order to

account for these missing values, we construct dummy variables equal to 1 if the values are

missing (D(PCM), D(CAPINT) and D(RATING)). In addition, we set the missing values in

the original variables to zero. Including both the dummy variable and the adjusted original

variables in the analysis corrects for missing values and avoids the imputation of unknown

values.

Also note that all time-varying variables (except AGE) enter the regression as lagged

values to avoid simultaneity bias.

4.3 Descriptive statistics

Table 3 displays the descriptive statistics of the variables used for the four different firm

types. The t-tests reveal that there are some significant differences between subsidized firms

and the potential control groups. The subsidized firms are, on average, more export-oriented,

are more often situated in Eastern Germany and have more patents per employee. Some av-

erage differences are only significant for specific firm types. For example, only the indepen-

dent subsidized firms have, on average, significant more employees than the non-subsidized

independent firms. Similarly, only the class of high-tech subsidized firms has, on average, a

significant lower price cost margin than the non-subsidized class and only the independent
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high-tech firms have a lower credit rating (thus higher values of the RATING variable) for

subsidized firms than for the potential control group.

Table 3: Descriptive statisticsa

NTBFs Group NTBFs
subsidized firms potential control group p-value of two- subsidized firms potential control group p-value of two-

N1=649 N1=579 sided t-test on N1=306 N1=303 sided t-test on
Mean Std. Dev. Mean Std. Dev. mean equality Mean Std. Dev. Mean Std. Dev. mean equality

EMP 42.515 52.871 36.546 48.737 p=0.041 80.330 72.048 90.185 159.540 p=0.326
AGE 6.131 2.034 6.195 2.112 p=0.588 6.075 2.086 6.092 2.129 p=0.920
EXPORTER 0.629 0.484 0.390 0.488 p < 0.0001 0.752 0.433 0.581 0.494 p < 0.0001
CAPINT∗ 0.064 0.110 0.129 1.261 p=0.290 0.238 1.644 0.064 0.103 p=0.174
PCM∗ 0.032 0.950 0.226 0.622 p=0.001 0.044 0.673 0.186 0.778 p=0.042
EAST 0.678 0.468 0.427 0.495 p < 0.0001 0.663 0.473 0.294 0.456 p < 0.0001
PS/EMP 0.040 0.078 0.013 0.045 p < 0.0001 0.038 0.069 0.019 0.052 p < 0.0001
RATING∗ 251.777 55.770 243.727 49.940 p=0.011 238.257 39.115 235.948 37.201 p=0.489
D(CAPINT) 0.337 0.473 0.509 0.500 p=0.000 0.255 0.437 0.452 0.499 p=0.000
D(PCM) 0.250 0.433 0.444 0.497 p=0.000 0.209 0.407 0.376 0.485 p=0.000
D(RATING) 0.074 0.262 0.090 0.286 p=0.311 0.098 0.298 0.175 0.381 p=0.006

P̂(X) 0.635 0.209 0.408 0.203 p < 0.0001 0.628 0.222 0.376 0.211 p < 0.0001

RDint 19.573 29.217 3.568 11.419 p < 0.0001 16.808 28.774 4.510 15.550 p < 0.0001
RDEint 32.568 29.865 9.639 18.113 p < 0.0001 25.734 27.599 9.082 18.382 p < 0.0001
R&D 1.013 4.945 0.147 0.579 p < 0.0001 1.804 4.770 0.868 2.515 p=0.003
R&Demp 8.957 14.786 1.875 3.913 p < 0.0001 15.779 25.637 6.344 17.444 p < 0.0001
PATb 0.444 1.253 0.128 1.224 p < 0.0001 0.682 1.805 0.244 1.191 p < 0.0001

Low-Tech NTBFs Low-Tech Group NTBFs
subsidized firms potential control group p-value of two- subsidized firms potential control group p-value of two-

N1=328 N1=637 sided t-test on N1=120 N1=350 sided t-test on
Mean Std. Dev. Mean Std. Dev. mean equality Mean Std. Dev. Mean Std. Dev. mean equality

EMP 57.845 55.165 43.848 46.898 p < 0.0001 87.533 62.246 78.140 68.088 p=0.183
AGE 6.290 2.133 6.055 2.118 p=0.104 6.400 2.056 6.040 2.162 p=0.112
EXPORTER 0.506 0.501 0.273 0.446 p < 0.0001 0.567 0.498 0.423 0.495 p=0.006
CAPINT∗ 0.104 0.165 0.106 0.176 p=0.914 0.131 0.402 0.299 0.926 p=0.100
PCM∗ 0.138 0.696 0.210 0.686 p=0.200 0.147 0.676 0.207 0.858 p=0.549
EAST 0.872 0.335 0.641 0.480 p < 0.0001 0.742 0.440 0.414 0.493 p < 0.0001
PS/EMP 0.015 0.054 0.004 0.025 p < 0.0001 0.016 0.051 0.003 0.017 p < 0.0001
RATING∗ 244.379 38.679 245.960 54.059 p=0.653 232.290 29.518 236.263 55.912 p=0.484
D(CAPINT) 0.293 0.456 0.540 0.499 p=0.000 0.242 0.430 0.491 0.501 p=0.000
D(PCM) 0.195 0.397 0.462 0.499 p=0.000 0.217 0.414 0.446 0.498 p=0.000
D(RATING) 0.082 0.275 0.104 0.305 p=0.289 0.108 0.312 0.157 0.364 p=0.190

P̂(X) 0.506 0.224 0.256 0.188 p < 0.0001 0.426 0.224 0.200 0.161 p < 0.0001

RDint 4.620 11.313 0.668 1.625 p < 0.0001 3.492 6.903 1.178 5.226 p < 0.0001
RDEint 11.232 17.374 3.693 10.809 p < 0.0001 6.894 12.046 3.439 9.309 p=0.001
R&D 0.195 0.348 0.074 0.634 p=0.001 0.471 1.028 0.224 1.144 p=0.036
R&Demp 3.768 5.796 1.001 2.513 p < 0.0001 3.938 5.851 1.797 6.135 p=0.001
PATb 0.121 0.528 0.029 0.227 p < 0.0001 0.581 2.372 0.120 1.120 p=0.006

a : Industry dummies and time dummies not reported
b : Patent descriptives only shown for observations for which this variable is available
∗ : For the variables Capint, PCM and Credit rating, the descriptive statistics are based on the actual observed observations. The observations for which the dummy
was set to 1 and the missings to zero are thus not included.

With respect to the outcome variables, the NTBFs and Group NTBFs show the highest

values in general. In addition, all outcome variables differ significantly between subsidized

firms and their respective control groups. In all cases, the subsidized firms have higher inten-

sities and more R&D expenditures and employees. The question whether these differences

can be attributed to the subsidies will be empirically investigated subsequently.
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5 Estimation and results

5.1 Subsidy effect on small young firms

In order to apply the matching estimator, we first estimate a probit model on the receipt of

subsidies for obtaining propensity scores. Table 4 presents the results of this estimation in

columns 2, 3, 4 and 5 of this table for the different firm categories. The first column estimates

the likelihood of receiving subsidies for the full sample, introducing the different firm class

dummies, with NTBF as reference category, in the estimation. This reveals that NTBFs are

more likely to receive subsidies than all other firm categories defined. In addition, when

testing the equality of the coefficients of the other firm categories, we find that high-tech

firms in general are more likely to receive subsidies. Within each broader group of high-tech

and low-tech firms, the independent ones also seem to be more likely to receive subsidies.

In addition, we find that companies located in Eastern Germany have a higher prob-

ability to receive subsidies. In addition, the results also confirm the higher probability of

receiving subsidies if the patent stock is larger. Except for Group LTBFs, being an exporter

has a positive effect on subsidy receipt.

Having obtained a propensity score based on the estimation results of the probit estima-

tion on subsidy receipt, we restrict the sample to common support. The matching estimator

is not appropriate for regions of the distribution where the propensity scores of the samples

of treated and controls do not overlap. Table 5 shows how many observations have to be

dropped for each firm class in order to assure a sufficient overlap between the treated and

untreated firms under consideration. Next to the restriction of common support, we also

impose a similarity threshold as we apply caliper matching. This caliper threshold defines

the tolerated maximum distance between treated and untreated firms. We chose a threshold

of 0.05. The third column of table 5 presents the number of observations that are lost after

setting this threshold. The last column of that table shows how many treated observations

can be successfully matched.

After setting the different thresholds, we pick the nearest neighbor from the control

group. After matching, there are no statistically significant differences in the exogenous

variables anymore. In line with this, the propensity score is also not significantly different

between the two groups (results not shown here). Table 6 shows the outcome of the tests on

overall model significance of the probit models on subsidy receipt after matching as a test on
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Table 4: Probit estimation on subsidy (SUB)

(1) (2) (3) (4) (5)
full sample NTBF Group NTBF LTBF Group LTBF

ln(AGE) -0.077 -0.104 -0.264* -0.135 0.215
(0.064) (0.102) (0.136) (0.118) (0.184)

EXPORTER 0.408*** 0.543*** 0.420*** 0.397*** -0.028
(0.059) (0.090) (0.139) (0.107) (0.168)

ln(EMP) 0.045 0.041 -0.059 0.026 0.329
(0.116) (0.164) (0.249) (0.231) (0.361)

ln(EMP)2 -0.000 0.001 0.000 0.016 -0.036
(0.017) (0.025) (0.034) (0.034) (0.050)

D(CAPINT) -0.273*** -0.163 -0.226 -0.303* -0.416
(0.092) (0.139) (0.218) (0.181) (0.285)

CAPINT -0.008 -0.126 0.836 0.400 -0.179
(0.036) (0.343) (0.750) (0.353) (0.174)

PCM -0.091 -0.134* -0.138 0.005 -0.074
(0.056) (0.074) (0.088) (0.085) (0.107)

D(PCM) -0.186** -0.223 -0.122 -0.375** 0.124
(0.093) (0.140) (0.204) (0.190) (0.280)

EAST 0.958*** 0.989*** 1.094*** 1.053*** 0.966***
(0.065) (0.091) (0.120) (0.127) (0.164)

PS/EMP 3.831*** 3.310*** 3.301*** 5.365*** 8.982***
(0.587) (0.692) (1.020) (1.349) (2.744)

RATING -0.000 0.000 -0.001 -0.002* -0.002
(0.001) (0.001) (0.002) (0.001) (0.002)

D(RATING) -0.205 0.184 -0.623 -0.436 -0.555
(0.169) (0.244) (0.446) (0.316) (0.539)

GroupNTBF -0.177**
(0.080)

LTBF -0.457***
(0.166)

GroupLTBF -0.641***
(0.170)

Constant -0.286 -0.119 -0.122 -0.534 -3.075**
(0.303) (0.402) (0.716) (0.677) (1.201)

Test on joint significance of

-industry dummies χ2(11) = 37.71*** χ2(4) = 6.63 χ2(4) = 7.34 χ2(8)= 25.26*** χ2(8)= 11.38
-time dummies χ2(7) = 46.08*** χ2(7) = 48.92*** χ2(7) = 4.35 χ2(7) = 23.60*** χ2(7) = 9.02
test: GNTBF = LTBF = GLTBF χ2(2) = 9.45***
test: GNTBF = LTBF χ2(1) = 2.73*
test: GNTBF = GLTBF χ2(1) = 7.38***
test: LTBF = GLTBF χ2(1) = 4.36**

N 3272 1228 609 965 470
Log-Likelihood -1786.094 -694.532 -336.673 -490.595 -212.636
Pseudo R2 0.20 0.18 0.20 0.21 0.20

Standard errors in parentheses
* p<0.10, ** p<0.05, *** p<0.01
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Table 5: Loss of subsidized observations due to a lack of common support and due to caliper
threshold

sample Initial sample
size of subsidized
firms

lack of common
support

out of caliper
threshold 0.05

final sample size
of subsidized
firms

NTBF 649 -4 -46 599
Group NTBF 306 -4 -40 262
LTBF 328 -8 -36 284
Group LTBF 120 -8 -17 95

the quality of the matching routine. As can be seen in the table, the null hypothesis that all

coefficients in the regressions are jointly zero is not rejected for any type of firm, as expected

in case of successful matching.

Table 6: Significance of probit regressions after matching

sample # obs Waldχ2(23) p-value

NTBFs 1198 5.17 1.0000
Group NTBFs 524 8.76 0.9967
Low-tech NTBFs 568 16.87a 0.9342
Group low-tech NTBFs 190 15.99a 0.9531
a: Due to different industry classification of low-tech NTBFs: Waldχ2(27)

Table 7 presents the matching results concerning the outcome variables. Almost all treat-

ment effects are positive and significant, which can, after matching, be attributed to the re-

ceipt of subsidies. As a consequence, full crowding-out effects are rejected for all firm types.

However, the table also suggests that the treatment effects may differ across the different

firm categories. In order to analyze the heterogeneity in treatment effects in more detail, we

apply an auxiliary regression analysis in the following subsection.

5.2 Further evaluation of the treatment effects

In order to investigate possible heterogeneity across firm types in more detail, we obtain

αTT,i for each treated firm from the matching routine. As we are interested in testing whether

the effects differ across firm types, we run the following supplemental regression after the

matching where we pool the four samples of different firm types.
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Table 7: Treatment effects after matching

NTBF

Matched subsidized firms: 599

R&Dint 14.103***
R&DEint 20.555***
R&D 0.702***
R&D emp 5.241***

Group NTBF

Matched subsidized firms: 262

R&Dint 8.292**
R&DEint 11.840***
R&D 0.344
R&D emp 7.167***

Small Old firms

LTBF

Matched subsidized firms: 284

R&Dint 3.132***
R&DEint 3.901**
R&D 0.094***
R&D emp 1.630***

Group LTBF

Matched subsidized firms: 95

R&Dint 1.628*
R&DEint 3.934***
R&D 0.205**
R&D emp 1.897**

Large young
firms

Large old firms

αTT,i = β0 + β1GroupNTBFi + β2LTBFi + β3GroupLTBFi + εi (5)

The constant term β0 then reflects the treatment effect for NTBFs and the other coeffi-

cients show the difference in treatment effects relative to NTBFs. In order to evaluate the

differences of the treatment effects with respect to other firm types, we perform F-tests on

the equality of their coefficients.

While simply regressing the treatment effect on the different firm type dummies indicates

to what extent the differences in treatment effects are significant, this does not account for

other factors that might influence these differences. In order to control for other effects, we

include extra control variables, Xi, in the regressions on the treatment effects.

αTT,i = β0 + β1GroupNTBFi + β2LTBFi + β3GroupLTBFi + βXXi + εi (6)

As already shown above, young high-tech SMEs seem to be more likely to receive sub-
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sidies. If these firms thus get funding from multiple sources, it might actually explain why

they seem to have higher treatment effects than low-tech firms. All firms included in the es-

timation of the treatment effect are subsidized firms, having received funding from at least

one source. However, it is possible that some firms included in the sample received subsidies

from both the European Union, the federal government and local governments. Similarly,

some firms might have been subsidized by two different funding sources. Czarnitzki and

Lopes Bento (2014) differentiate between firms having received national funding, European

funding and funding at both the national and the European level and find that, in terms of

input, getting funding from both sources yields the highest impact. As a consequence, we

control for these multiple sources of subsidies. We do so by including two dummies 2SUB

and 3SUB, referring to firms that received subsidies from 2 funding sources and all 3 fund-

ing sources respectively; firms that received funding from only one source are the reference

category.

Another factor, very specific to the German case is the difference between Eastern and

Western Germany. Czarnitzki and Licht (2006) found that input additionality has been more

pronounced in Eastern Germany during the transition period than in Western Germany.

In addition, Eastern German firms were preferred in several subsidy schemes in order to

accelerate the transition process after the German re-unification in 1991. It is thus possible

that the differences in treatment effects between different firm types can be attributed to the

fact that the firm type with higher treatment effects is mainly present in Eastern Germany.

In order to control for potential different location effects, we include a dummy EAST in the

regressions.

Although we already focus on SMEs, we still control for heterogeneity in total employ-

ment. Next to controlling for size, we also control for age by including age in the estimation.

Finally, we include time dummies in the estimation in order to control for business cycle

effects. The patent stock per employee controls for heterogeneity in past R&D success.8

8Information on the different subsidy sources is not available for all years in the analysis. As a consequence,
we had to drop one year (1996) because of missing information on the subsidy sources.
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Table 8 presents the results of the treatment effect regressions for the different dependent

variables: R&D intensity, R&D employment intensity, R&D expenditures and R&D employ-

ment. For each treatment effect, both the basic regression without additional control vari-

ables and the extended regression are presented. Note that all standard errors are clustered

at the firm level. The table reveals that the differences between high-tech and low-tech young

SMEs in table 8 are only confirmed for independent firms. NTBFs always have a higher input

additionality than both LTBFs and Group LTBFs, even after including the control variables

in the regressions. For Group NTBFs, we initially also find significant differences compared

to LTBFs and Group LTBFs for almost all treatment effects, as can be seen in the tests on

differences between coefficients at the bottom of table 8. However, after including the addi-

tional control variables in the regression framework, these results change. First, the signifi-

cant higher increase in R&D intensity that was found for Group NTBFs compared to LTBFs

and Group LTBFs after receiving subsidies becomes insignificant. Similarly, the higher treat-

ment effect for RDEint when comparing Group NTBFs and Group LTBFs becomes insignifi-

cant. Only the subsidy-induced increase in R&D employment remains (weakly) significantly

higher when comparing Group NTBFs to all low-tech firm categories.

When focusing solely on low-tech firms, we find at most a very weak significant differ-

ence between effects of subsidies on independent and group firms (see tests on differences

between coefficients at the bottom of table 8). As a consequence, for low-tech firms, a pol-

icy focus on independent young SMEs does not seem to be warranted. For young high-tech

SMEs, however, the differentiation between independent firms and group firms seems to

matter, although not for all treatment effects. In the basic regressions, the differences are only

significant for the treatment effects on the intensity measures (see coefficient of Group NTBF,

indicating the relative difference in treatment effects to the reference category of NTBFs, in

columns 1 and 3 of Table 8). In the extended regressions, the difference between the R&D

expenditures’ treatment effect also become significant (see column 6 of table 8). The results

also reveal that the lower treatment effect that was found on R&D employment for NTBFs

as compared to Group NTBFs is insignificant in the basic regression (see column 7). This

suggests that Group NTBFs do not make more efficient use of R&D subsidies in terms of

R&D employment, as was initially indicated by the treatment effects. 9

9It has to be noted that the differences between group and independent firms have to be interpreted with
caution, as we can only assess the effect of subsidies on the firm surveyed, independent of its other group
members. It might well be the case that the effect of subsidies reaches beyond the single group member sur-
veyed and also has an effect on R&D input of other group members. However, spillover effects are difficult to
tackle in input additionality studies and they might as well flow from independent firms to others. It is very
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In general, the above findings suggest that high-tech firms and especially the indepen-

dent ones within this category have higher treatment effects. These findings are re-assuring,

as policy makers often target small, young independent firms when launching new policy

instruments. Here it is also revealed that it might be relevant to base this decision in a first

stage on sector of activity. Only when the focus shifts to high-tech firms, results suggest that

NTBFs make more effective use of subsidies than Group NTBFs. However, this latter re-

sult should be interpreted with caution as spill-overs to other group members could not be

taken into account. In addition, table 7 revealed that full crowding out could be rejected for

all firm types studied. As a consequence, although results suggest that high-tech firms in-

crease their R&D inputs more after receiving subsidies, none of these groups seem to merely

replace their private R&D inputs by public money or seem to simply give higher wages to

existing staff without increasing current R&D employment.

5.3 The effect on technological progress

We now turn to the second major research question in this paper, that is, if additionally

induced R&D input leads to technological progress. As already explained above, an increase

in R&D inputs does not necessarily lead to technological progress of the firm. We measure

technological progress or performance as the patent activity at the firm level, i.e. the number

of patent applications per year (PAT). In this setting, we use R&D employment intensity as

an input factor for the patent production function.

The R&D employment intensity input factors are based upon the estimated treatment

and counterfactual from the matching procedure. RDEintC
i represents the part of the total

R&D employment intensity that the firms would have had in absence of subsidies. This

component of R&D employment intensity is just equal to the total R&D employment inten-

sity for the non-subsidized firms. In addition, the treatment effect on the treated αTT
i is the

additionally induced R&D employment intensity, as was already introduced in section 5.2.

For the non-subsidized firms this variable takes the value zero by construction. In addition

to these two R&D-related variables, we control for industry differences in patenting behav-

ior, and also include time dummies. In addition, we include the log of lagged employment,

log(EMP), and log of age, log(AGE), to take possible size and age effects into account. The

dummy variable EAST is also inserted in this framework in order to take into account that

difficult to evaluate this in our context, however, as we do not have complete information on all other group
affiliates.
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patenting activity in the still developing Eastern German region might be lower.

In addition to a pooled cross-sectional QMLE Poisson model, we also estimate the so-

called pre-sample mean QMLE poisson model (henceforth PSM) (Blundell et al., 1995, 2002).

Unlike in the R&D input equation where we cannot control for firm-specific effects due to

the cross-sectional nature of our database, we can do so when patents are considered, as we

were able to collect information on firms’ pre-sample patenting activity. One can control for

unobserved time-invariant firm-heterogeneity if pre-sample information on the dependent

variable is available. Blundell et al. (1995, 2002) showed that the unobserved heterogeneity

can be approximated by implementing the pre-sample mean of the dependent variable as

an additional regressor. This basically amounts to controlling for ’quasi fixed effects’. The

pre-sample mean patenting is denoted by PSM.

Table 9 shows the results of this estimation. Note that we lose some observations due to

the fact that we only have access to the patent data until 2005. Columns 1-2 show results

when not differentiating between different firm categories and columns 3-4 show results

when measures of the counterfactual and treatment are inserted separately for the different

firm categories. We present bootstrapped standard errors as the R&D measures of the treated

firms are estimated. We used 200 replications of the whole matching procedure and the

subsequent estimation of the patent production function to estimate the bootstrap standard

errors.

When first focusing on the broad results in columns 1-2, a similar picture as in previous

studies emerges (Czarnitzki and Hussinger, 2004). The estimated coefficients of the coun-

terfactual R&D and the subsidy-induced R&D are both significantly positive, both for the

QMLE poisson and PSM QMLE Poisson estimation. In addition, our results indicate that the

coefficient of the counterfactual R&D is slightly larger than the one of subsidy-induced R&D,

although this result is only weakly significant under the PSM QMLE poisson estimation as

shown by the χ2’s from a likelihood ratio (LR) test.

In columns 3-4, we make a distinction between the four different firm categories by in-

troducing counterfactual R&D and the subsidy-induced R&D for all firms separately. All

estimated coefficients are positive and significantly different from zero except the one of the

subsidy-induced R&D of Group LTBFs.

Tests show that the hypothesis of equal coefficients of counterfactual and treatment can

in general not be rejected within the different firm groups, except for NTBFs. This difference

becomes however only weakly significant in the PSM QMLE poisson estimation.
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The more interesting comparison in the context of our study is, however, the different

among the coefficients of the subsidy-induced R&D across the four categories of firm types.

There we find that the marginal effect of subsidy-induced R&D is highest for LTBFs. This,

however, does not imply that subsidizing R&D in this type of firms promises the highest

absolute output effects. It has to be taken into account that LTBFs have a lower level of R&D

than e.g. NTBFs and that the estimated input additionality is higher for NTBFs.

In order to get an impression on absolute rather than marginal effects, it is instructive to

calculate patent-R&D elasticities, for instance. The Poisson model has the form y = exp(x′b).

Thus, the elasticity can e.g. be calculated at the mean as

ε(̂̄y, RD) = b̂RD exp(x̄′b̂)
RD

exp(x̄′b̂)
= b̂RDRD (7)

In our context, we e.g. obtain for the case that an NTBF would not have been subsidized:

Counterfactual output for NTBF: 0.027× 12.013 = 0.324410

Because of the subsidy, however, we should add the coefficient of the treatment effect times

additionally induced R&D to the calculation:

0.027× 12.013 + 0.02× 20.555 = 0.7355.

The subsidy-induced absolute effect in terms of elasticity is thus an increment of 0.411.

The corresponding effect for LTBFs is, however, only

0.04× (11.232− 3.901) + 0.031× 3.901 = 0.4142,

or in other words the increment due to subsidies is only 0.121 here (0.031× 3.901).

Consequently the absolute output gain is larger when subsidizing NTBFs rather than LTBFs

despite the larger marginal effect of the additionally induced R&D for LTBFs.11

6 Conclusion

Governments acknowledge the fact that especially smaller and younger firms are in need

of R&D subsidies. In light of the ’Europe 2020’ strategy, they increasingly focus on ’less

and better’ state aid, thereby trying to target firms that will most effectively make use of

their grants. Frequently, firms in high-tech sectors are preferred in public schemes. Further-

more, the European Commission since recently also emphasizes that especially small- and

1012.013 is the result of taking average R&D of subsidized NTBFs, 32.568 (see table 3, descriptive statistics),
minus the estimated treatment effect 20.555 (see Table 7).

11As already noted multiple times throughout this paper, we abstain from drawing any conclusions on the
potential spill-over effects generated by subsidized firms.

24



Table 9: Estimation of the patent equation for all firm groups (N=2292)

(1) (2) (3) (4)

αTT
i 0.020*** 0.020***

(0.004) (0.004)
RDEintC

i 0.024*** 0.024***
(0.005) (0.005)

αTT
i NTBF 0.020*** 0.020***

(0.005) (0.005)
αTT

i Group_NTBF 0.017** 0.018**
(0.008) (0.008)

αTT
i LTBF 0.031** 0.032**

(0.012) (0.013)
αTT

i Group_LTBF 0.022 0.022
(0.082) (0.082)

RDEintC
i NTBF 0.027*** 0.026**

(0.011) (0.011)
RDEintC

i Group_NTBF 0.012*** 0.013***
(0.004) (0.004)

RDEintC
i LTBF 0.040*** 0.040***

(0.005) (0.005)
RDEintC

i Group_LTBF 0.046 0.044
(5.450) (5.192)

EAST -0.491* -0.521* -0.480* -0.503*
(0.288) (0.223) (0.289) (0.278)

ln(EMP) 0.676*** 0.649*** 0.749*** 0.715***
(0.099) (0.101) (0.101) (0.102)

ln(AGE) 0.154 0.086 0.155 0.090
(0.271) (0.273) (0.265) (0.268)

PRESAM 0.197 0.185
(0.203) (0.203)

Constant -4.246*** -3.986*** -4.331*** -4.051***
(0.921) (0.907) (0.915) (0.895)

χ2 test on joint significance of time dummies 42.42*** 63.13*** 50.01*** 68.92***
χ2 test on joint significance of industry dummies 176.87*** 150.84*** 186.44*** 163.35***

χ2 LR test: αTT
i = RDEintC

i 4.70** 3.56*
χ2 LR test: RDEintC

i NTBF = αTT
i NTBF 4.76** 2.86*

χ2 LR test: RDEintC
i Group_NTBF = αTT

i Group_NTBF 1.90 2.07
χ2 LR test: RDEintC

i LTBF = αTT
i LTBF 1.60 1.24

χ2 LR test: RDEintC
i Group_LTBF = αTT

i Group_LTBF 0.27 0.24
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medium-sized, young, stand-alone high-tech firms make possibly the most effective use

of public funds. Thus, firms associated with groups of firms have less access to subsidies

than in the past. While these policies thus give a clear preference to a certain type of firms,

it is surprising that so far no systematic impact evaluation of such policies exists. Conse-

quently, in this study, we compare the effect of innovation subsidies on New Technology

Based Firms (NTBF), Low Technology Based Firms (LTBFs) and their group counterparts

for a sample of German firms. NTBFs are young independent high-tech SMEs, while LTBFs

are the corresponding firms in low-tech sectors. We denote their non-independent counter-

parts by ’Group NTBFs’ and ’Group LTBFs’.

In a first stage, we estimate the input additionality effects for each of these firm types, i.e.

we analyze the policy impact on firms’ R&D intensity, R&D expenditures, R&D employment

intensity and R&D employment numbers. Considering these firm types separately in our

empirical analysis also enables us to compare the estimated treatment effects among these

groups. In a second stage, we turn to the effect subsidies have on innovation output as

measured by patents.

In order to evaluate the impact of innovation subsidies on the innovation input of NTBFs,

Group NTBFs, LTBFs and Group LTBFs, caliper matching with replacement is applied in

order to correct for a potential selection bias. In general, our results reveal that full crowding-

out with regard to public funding can be rejected for all firm types studied.

In order to assess the potential differences in subsidy effects, we compare the treatment

effects of the different firm types by regressing the individual treatment effects on the differ-

ent firm types and additional control variables. Our results reveal that the treatment effects

on independent NTBFs are actually highest, as presumed by policy makers. Thus our em-

pirical study does not only support the currently common choice to give a preferential treat-

ment to small, young and independent firms active in high-tech sectors, but also provides

evidence that previous estimations of innovation policy impacts might have been partly mis-

leading as usually no distinction between preferential firm profiles in policy schemes have

been made.

In a second step, we carry the results of the treatment effects analysis over to the esti-

mation of a patent production function, where R&D employment intensity is disentangled

into two components: on the one hand, the purely privately R&D employment intensity in

the absence of subsidies and, on the other hand, the additionally induced R&D employment

intensity that is stimulated by the subsidy. Results of this estimation reveal that due to in-
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creased R&D input that was found in a first step, also higher R&D output is achieved by the

subsidized firms.

Of course, our study has a number of limitations that remain for further research. First,

we only consider Germany as an example of a European economy. It is questionable whether

our results hold for other countries within the European community. In addition, the anal-

ysis on input additionality would benefit from the availability of panel data to control for

firm fixed effects. Longer time series of data would allow investigating the effect of R&D

subsidies on a wider range of R&D output indicators. Next to these limitations related to

the time-structure of the data, we could only assess whether a firm has received a subsidy

or not, without being able to assess potential heterogeneities in the grants. Although we al-

ready introduced information on different subsidy sources, we do not know how much aid

is actually given to a firm. Introducing this latter aspect in the estimations would be very

interesting for further research.
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Appendix

Table A1: Industry structure

Industry Description NTBF group
NTBF

1 Manufacture of chemicals and chemical products ;Man-
ufacture of pharmaceuticals, medicinal chemicals and
botanical products

88 61

2 Manufacture of machinery and equipment n.e.c.; Manu-
facture of motor vehicles, trailers and semi-trailers; Manu-
facture of other transport equipment; Building and repair-
ing of ships and boats ; Manufacture of aircraft and space-
craft;

235 132

3 Manufacture of office machinery and computers; Manu-
facture of electrical machinery and apparatus n.e.c.; Manu-
facture of radio, television and communication equipment
and apparatus; Manufacture of medical, precision and op-
tical instruments, watches and clocks;

272 141

4 Research and development; Other Business activities 465 179
5 Computer and related activities 168 96

Total number of Observations: 1288 609

LTBF Group
LTBF

6 Manufacture of food products, beverages and tobacco 42 23
7 Manufacture of textiles 61 21
8 Manufacture of wood and wood products; manufacture of

pulp, paper and paper products; publishing and printing;
65 35

9 Manufacture of coke, refined petroleum products and nu-
clear fuel; Manufacture of rubber and plastic products

89 48

10 Manufacture of basic metals and fabricated metal products 179 59
11 Fishing; mining and quarrying; Mineral products; Furni-

ture; other industries; Waste collection, treatment and dis-
posal activities; materials recovery; Other services

243 132

12 Wholesale and retail trade and repair of motor vehicles
and motorcycles

133 50

13 Transportation, storage ; Financial and insurance activities 137 89
14 Communication services 16 13

Total number of Observations: 965 470
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