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Abstract

Rating agencies report ordinal ratings in discrete classes. We question the mar-
ket’s implicit assumption that agencies define their classes on identical scales,
e.g., that AAA by Standard & Poor’s is equivalent to Aaa by Moody’s. To
this end, we develop a non-parametric method to estimate the relation between
rating scales for pairs of raters. For every rating class of one rater this, scale re-

lation identifies the extent to which it corresponds to any rating class of another
rater, and hence enables a rating-class specific re-mapping of one agency’s rat-
ings to another’s. Our method is based purely on ordinal co-ratings to obviate
error-prone estimation of default probabilities and the disputable assumptions
involved in treating ratings as metric data. It estimates all rating classes’ re-
lations from a pair of raters jointly, and thus exploits the information content
from ordinality.

We find evidence against the presumption of identical scales for the three
major rating agencies Fitch, Moody’s and Standard & Poor’s, provide the rela-
tions of their rating classes and illustrate the importance of correcting for scale
relations in benchmarking.
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1. Introduction

In the aftermath of the worldwide credit crisis in the late 2000s, credit rat-
ing agencies (CRAs) are once again in the spotlight. At least since Pinches
and Singleton (1978) CRAs have been repeatedly criticized:1 for a) their lack
of disclosure regarding the applied rating methodology, b) the potential conflict
of interest, c) their allegedly anti-competitive and unfair business practices,2

as well as d) lack of diligence and competence (see for example Frost, 2007;
Teather, 2003). Especially the admittedly poor performance3 in the rating of
structured credit products, in combination with the oligopoly structure of the
rating industry, has revived discussions among researchers as well as policymak-
ers and the general public (see for instance Hunt, 2009; Credit Rating Agency
Reform Act, 2006; Lowenstein, 2008).

However, independently of how far the criticism of CRAs has or has not
been justified, it is also essential to scrutinize all other involved agents and
thus to question the use of CRAs’ assessments by various market participants
who played a decisive role in exacerbating the ongoing crisis. We argue that
misconceptions (if not mis-uses) about the information provided via ratings were
widespread among their users.

First, modern pricing and risk-management models require absolute levels
of creditworthiness as expressed by probabilities of default (PD) as input pa-
rameters (Kliger and Sarig, 2000). A rating does not provide such a PD, but
an assessment expressed through a rating grade (commonly a combination of
letters with symbols or numbers as modifiers) and thus is inherently only a
relative and ordinal measure of an entity’s creditworthiness. To obtain the ab-
solute measure needed for pricing and risk management, many practitioners
and also academics simply estimate realized PDs per rating class on the basis
of vague statements by CRAs that the default likelihood is one of the param-
eters strongly influencing their assessments (Cantor and Packer, 1997). In the
most basic approach, these rating-based PDs are obtained directly from annual
historic default studies published by CRAs.

Such an approach has the major shortcoming that PD estimates are not
comparable across CRAs, for two reasons. On the one hand, ratings differ
across raters with respect to a) the underlying measure of creditworthiness (e.g.,
pure PD estimates vs. expected-loss (EL) estimates), b) the time horizon (e.g.,
long-term vs. short-term rating), c) the rating philosophy (e.g., point in time
vs. through the cycle) and d) the granularity employed in the assessment (e.g.,
with vs. without modifiers) (BIS, 2006; Elkhoury, 2008; Rösch, 2005).

On the other hand, even if all these defining characteristics were identical
among CRAs, PD estimation would still suffer from portfolio effects: as the

1Thirty-four years ago Pinches and Singleton (1978) observed: “In recent years bond rating
agencies have been under increasing scrutiny because of their obvious failures to accurately
predict and warn investors of impending firm-related financial difficulties.”

2The conspicuous rating history of Hannover Re, as detailed by Klein (2004), poses the
most prominent case due to the debate in S.Hrg. 109-465 (2005).

3“We’re very disappointed and embarrassed,” conceded the president of Standard & Poor’s,
Deven Sharma (Lippert, 2011, p. 90).
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sets of rated obligors differ, so do realized default rates. In the presence of
contagion or other correlation (like country effects due to currency devaluations)
the discrepancies can be arbitrarily large. Hence even if hypothetically rating
methodologies were identical and perfectly accurate, such PD estimates cannot
be compared across agencies unless focus is restricted to a common set of obligors
jointly rated by all CRAs.

A second misconception regarding the information content of ratings is ap-
parent when market participants implicitly treat rating assessments from differ-
ent CRAs as equal, based on their relative order or denomination. A rating of
Baa by Moody’s is deemed equivalent to BBB by Standard & Poor’s. This pre-
sumed equivalence of ratings is ubiquitous. Morgan (2002), as many researchers,
measures disagreement of raters by split ratings, and practitioners who demand
a minimum threshold of creditworthiness define investment grade as a rating
of at least BBB− by Standard & Poor’s or Fitch, of Baa3 by Moody’s or of
BBB(low) by DBRS. Another example are rating triggers, i.e., clauses in loan
contracts stipulating that the loan falls due in full if the company’s credit rating
declines below a certain level (see Atlas (2002) and S&P (2004) for their role
in Enron’s demise and Bhanot and Mello (2006) for a discussion when they are
optimal); the credit-quality threshold for eligible collateral in the Eurosystem’s
monetary policy operations is currently also investment grade (ECB, 2008).

The question how to correctly relate rating classes across agencies becomes
acute when the same entities are rated by more than one CRA. While agencies’
ratings generally show a high level of agreement (Cantor and Packer, 1995),4

there is no sound reason why risk per class should be equal; the fact that rating
technologies are kept secret alone casts doubt whether, say, a Standard & Poor’s
AA rating should be exactly equivalent to Moody’s Aa rating.

Moreover, the empirical studies of Cantor and Packer (1997) and Pottier
and Sommer (1999) find empirical evidence of systematic differences between
the credit risk associated with corresponding rating classes of the big rating
agencies. While they provide no remedy—which our contribution does—, their
findings are shown to go beyond selection bias and clearly contradict equivalent
rating classes.

If this equivalence fails, however, the implications are profound: Accurate
measures of obligors’ creditworthiness are crucial for numerous purposes and
participants, including developers of rating systems, financial institutions and
supervisory authorities. As Graham and Harvey (2001) have documented and
Kisgen (2006, 2009) has shown, credit ratings impact the capital structure even
of non-financial firms.

Developers of rating systems such as banks or rating agencies need to com-
pare ratings for at least two reasons: On the one hand, to contrast internal
estimates with outcomes of other rating sources when calibrating models, in
particular for segments where data are scarce (e.g., a bank relating internal
estimates to rating agency data in the calibration of models for low-default

4This agreement is sometimes attributed to the publicity of external ratings, see for example
Smith and Walter (2001).

3
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portfolios). On the other hand, raters desire to contrast the qualities of com-
peting rating prototypes. In this context benchmarking as proposed by Hui
et al. (2005) proves beneficial.

Commercial banks commonly use internal ratings not only to determine the
regulatory capital to be retained, but also for allocating economic capital and
pricing obligations. Hence they need to relate ratings from their internal systems
to ones from external sources like CRAs. After all, differences in risk-adjusted
prices ultimately impact a financial institution’s competitive position (Lingo
and Winkler, 2009).

Correctly relating ratings is also valuable in the validation of rating models.
Besides backtesting, benchmarking ratings from different sources is the primary
aspect of quantitative validation (BIS, 2005a), particularly for models for low-
default portfolios (BIS, 2005b).

The comparison of ratings across different sources needs a mapping, namely
from the domain of one rater’s symbols to that of another. However, the re-
ported grades are already the result of each rater mapping their (unknown)
primary estimates of credit risk via their (unknown) scale to ordinal values.
Hence, for the sake of clarity we refer to the mapping of those ordinal grades
across raters as a re-mapping.

If both raters’ systems coincide with respect to the four defining character-
istics (measure of creditworthiness, time horizon, philosophy and granularity)
as well as in their choice of scales for mapping risk estimates to ordinal grades,
the re-mapping corresponds to the identity.

For instance, in the context of Basel II commercial banks are obliged to
estimate standardized one-year PDs if they opt for the internal-ratings-based
approach to calculate capital requirements (BIS, 2006). Such a bank will employ
a master scale which associates each rating class with a distinct PD interval.
If then a PD estimate is available for each obligor and both master scales are
known, it is straightforward to (re-)map the entities across raters. In all other—
and all practically prevalent—cases a correct mapping is less straightforward.

Against this background our paper proposes a new, non-parametric approach
to make rating assessments from different sources comparable. Our method has
the advantage to allow a mapping even if the ratings differ with respect to
their four defining characteristics (measure of creditworthiness, time-horizon,
philosophy and granularity), since it obviates PD estimation. The proposed
methodology focuses on co-rated entities, i.e., obligors rated by more than one
CRA. Given a sufficient number of co-ratings, we are able to relate the rating
scales of different CRAs to each other. This scale relation enables us to compare
the rating outcomes by mapping the ratings from one CRA onto the scale of
another.

Based on data of all corporate long-term issuer ratings in G7 countries
from the three main rating agencies Fitch, Moody’s, and Standard & Poor’s
we demonstrate our procedure, and thereby uncover differences in the rating
behavior of these agencies. We find evidence which casts doubt on the mar-
ket’s implicit hypothesis that equally ranked rating grades are actually equal.
Furthermore, we provide a method for re-mapping the rating grades from the

4
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agencies onto each others’ scales. Finally, we are able to measure the unsystem-
atic rating heterogeneity, which can be interpreted as relative rating error.

The remainder of the paper is organized as follows. Section 2 describes the
effect and implications of ratings on different scales by illustrative examples.
Section 3 lays down the formal framework we propose for the study of the
relation between raters’ scales. Section 4 comprises the empirical application:
Co-ratings for the three major rating agencies are employed to estimate their
scale relations and the evidence against the assumption of identical scales is
discussed. Section 5 concludes and points to future research.

2. Intuition

Whenever the granularity of scales differs, it becomes obvious that in order to
achieve comparability of ratings a re-mapping is needed; nevertheless, even when
the granularity does not differ, there remains a major leap from an equal number
of classes to identical scales. To illustrate the intuition of informed comparisons,
also necessary when granularity among CRAs is equal, this section analyzes the
effects of systematic and unsystematic deviations in rating assessments.

The following simple example illustrates systematic deviations: Consider two
experienced CRAs providing ratings on an extensive common set of obligors,
both on a numerical scale from 1 to n, thus having exactly the same level of
granularity. Furthermore, assume it is known that both track precisely the same
measure of creditworthiness with the same time horizon, i.e., the four defining
characteristics are identical for both CRAs. Furthermore, assume it holds for
all co-ratings that whenever A assigns rating i, B reports i − 1.5

One natural interpretation is that at least one of the agencies suffers from
severe and systematic bias. Treating ratings as purely ordinal information, bias
is irrelevant because for any pair of obligors the same relative ranking is ob-
served. However, since the risk measure which is estimated and mapped to
the rating grades is not purely ordinal, rating bias can be important from an
economic perspective. For instance, rating bias between commercial banks us-
ing the internal-ratings-based (IRB) approach to calculate capital requirements
leads to a systematic deviation of one-year PD estimates, see Hornik et al.
(2007b). This can bias regulatory capital and borrower selection if the bank
uses the estimates in the pricing of loans as well (Jankowitsch et al., 2007).

Critically though, in contrast to the banks’ internal ratings in Hornik et al.
(2007b), assessments by CRAs are public information. Moreover, given a) that
ordinal class numbers are meaningless, b) how easy an agency can detect and
correct for systematic bias, and c) how extensive the sample of co-rated obligors
is for big CRAs and how robust the relation of their ratings, it follows that what
appears as rating bias is unlikely to be caused by differences in the absolute level
of creditworthiness. That level, given all other characteristics are equal, should

5Fringe classes require more careful treatment, which we introduce in the full method next
section; for this stylized illustration simply assume A never assigns 1, and neither does B

assign n.

5
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be equal as well—and consequently, that an i reported by A simply corresponds

to an i − 1 on B’s scale. This systematic deviation between experienced rating
agencies is much more likely to be caused by a difference of their scales, i.e.,
the relationship between the (cardinal) risk measure and the (ordinal) rating
classes.

To elaborate this idea further, we extend the previous example to the case
where ratings refer to an absolute level of creditworthiness. Assume that the PD
is known for all of B’s classes, and that an additional obligor is rated only by A

with the same technology as the other obligors before. If A assigns, say, class 4,
and we need to produce a PD estimate, which one should we quote? One would
naturally use the estimate for B’s class 3. This implies an intuitive correction
for the bias6 and converts A’s rating to B’s scale: it enables comparability by
employing the mapping that yields, in this case, perfect agreement.

In any practical application observed deviations are not only systematic.
Instead, also unsystematic deviations are observed, and re-mappings to perfect
agreement are impossible, unless ordinality is violated. If any pair of obligors is
not tied by A and ranked the opposite way by B, monotonic re-mappings7 can
never achieve full agreement; non-monotonic mappings, on the other hand, con-
tradict the ordinal character of the information. Due to differences with respect
to the four defining characteristics as well as to estimation errors, virtually any
credit-rating dataset contains such conflicting assessments.

However, with only few pairs in a large sample of high agreement,8 should
the above approach still be applied? We argue yes, especially when contrasted
with the two alternatives of a) matching classes by their rank, which are numbers
uninformative for inter-rater comparisons or b) using historical default rates as
proxies for PD estimates.

In essence, we argue that when relating ratings from different sources their
correspondence must not be blindly assumed, but—absent theoretical determi-
nation—estimated. Moreover, a re-mapping which significantly increases agree-
ment better captures the systematic relation between two raters’ classes, and
therefore the relation of their scales can be analyzed via re-mappings, by maxi-
mizing agreement.

We assume rating agencies produce unbiased estimates of credit quality. The
reason is not only the simplicity of detecting and correcting for bias, but more
fundamentally that biased estimates9 are equivalent to a difference (namely a

6Bias, as introduced by Hornik et al. (2007b) to the credit rating literature, and the
measures of association and agreement are related to the re-mapping of ratings as discussed
in detail in Appendix A.

7A re-mapping is monotonic if for any pair of obligors that is not tied the one rated better
is never re-mapped to a class worse than the other obligor is re-mapped to.

8We detail in Appendix A why it is not agreement (which can be 0 even if the raters
produce exactly the same risk scores, see below) but the measure of association (Kendall’s τx)
which is appropriate to judge whether a re-mapping can be meaningful (i.e., raters assess at
least similar risks) because it is scale-free: It does not require knowledge about the scale and
allows valid comparisons of raters applying different scales, even with different numbers of ˚
classes, thus eliminating the problem of differences with respect to granularity.

9To be precise, the relative bias of one rater as compared to the other is relevant. If
both raters are subject to the same bias vis-à-vis some absolute scale, for instance on PDs,

6
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shift) in scales and vice versa. In re-mapping from one scale to another it thus
is needless to account for rating bias and scale differences separately.

2.1. The direct approach to re-mapping

There exists a straightforward and intuitive approach to re-mapping. While
this approach may be inconvenient to extend and subject to some shortcom-
ings, it is ideally suited to convey the objective of the framework presented in
Section 3.

Suppose a rater A produces ratings σA
k for a set of obligors which are rated

σB
k by B, where A classifies into nA and B into nB classes, and k = 1, ..., NA,B

indexes the co-rated obligors. Assume A wishes to transform his ratings onto
B’s scale. Then his task is to sort the co-rated obligors into nB buckets based
on his own original ordering. There are two possible cases concerning how much
information is available to the re-rater.

In the case where A has estimated a continuous credit risk parameter sA
k

to assign his ratings σA
k = σA(sA

k ), he has obtained a total order over the
NA,B obligors via the order statistic sA

(1) > sA
(2) > ... > sA

(NA,B) of their credit

scores. Monotonicity requires any mapping σ yielding an ordinal ranking to
fulfill sk > sl ⇒ σ(sk) ≥ σ(sl). Thus A’s task of mapping his metric scores
onto B’s ordinal scale is equivalent to placing (nB − 1) delimiters in his own
ordering, defining for each obligor k the class of B he is assigned to—and thus
his rating σA→B

k on B’s scale. Note in this case it is irrelevant whether obligors
are in the same class in A’s reported ratings: Different scales will generally imply
that some sets of obligors with the same rating by A need “breaking up”, i.e.,
correspond to different ratings in B’s terms.10 The monotonicity requirement
operates on the more informative credit scores.

In the contrasting case, an outside observer is restricted to employ no other
information but the co-ratings. Consequently, (mapped) ordinal data need to be
re-mapped to a potentially different ordinal scale, and the input is only a weak
ordering. Now the monotonicity requirement becomes σA

k > σA
l ⇒ σA→B

k ≥
σA→B

l . Consequently, when classes are broken up, it remains undefined which
obligors of a given class of A should be re-mapped to higher and which to
lower classes (on B’s scale). While all combinatorically possible permutations
are consistent with the information contained in the ordinal credit ratings, it is
clear that with respect to the objective function, namely maximizing agreement,
it will always be preferred to take B’s assessments into account.

It is natural, then, to consider the partial ordering of obligors after sub-

sorting the tied obligors within each of A’s classes according to the assessments
reported by B. This results, as depicted in Figure 1, in a single weak ordering

this common bias cannot be detected by our method since it is designed to avoid estimating
creditworthiness; however, the re-mapping it yields will be as accurate as with unbiased scales.

10Mapping metric scores sA
k

onto B’s ordinal scale amounts to substituting σA(·) with an

appropriate mapping σA→B(·).

7
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of up to nA · nB steps11 within which creditworthiness of obligors is indistin-
guishable.

1 2 3 4

1 2 3 4

1 2 2 3 4 2 3 3 4

Figure 1: Illustration of a rating scale as a partition of the domain of the underlying risk
measure, which determines A’s ratings (above). With the information provided by B’s ratings,
the granularity of the weak ordering can be increased by sub-sorting A’s ratings by B’s (below).
If A assigns nA grades and B sorts into nB classes, the resulting ranking will contain at least
nA and up to nA · nB levels.

It is intuitively clear (and shown in Appendix B) that re-mapping obligors
from the same sub-sorted group into different classes cannot increase agreement.
Hence we can still consider re-mapping as placing nB − 1 delimiters in the
ordering, now simplified to at most nA · nB + 1 possible positions; often even
significantly fewer as experienced raters seldom disagree by more than a few
rating classes.

Effectively, this straightforward approach to re-mapping involves two steps:

1) Produce an ordering of at most nA · nB levels which is fully consistent
with A’s ratings, by sub-sorting within his classes according to σB

k .
2) There are at most nA · nB + 1 boundaries of these groups at which the

nB −1 delimiters of re-mapped classes can lie. For all these
(

nA·nB+nB−1
nB−1

)

cases, perform the re-mappings and find σA→B
k where agreement with σB

k

is maximal.

2.2. Beyond the direct approach

The most serious drawback of the direct approach is its lack of error treat-
ment. If at least one rater’s assessments are subject to noise, errors induce
non-systematic disagreement. However, the direct approach provides no at-
tempt to distinguish between the systematic relation of classes and the effect of
uninformative noise. Since re-mapping is costless, a single off-by-one co-rating is
sufficient to prevent the direct approach from identifying a bijective re-mapping
from class aA to the analogous aB, irrespective of any indication of noise or
identity of scales.

11More precisely, this is the maximum number of levels in the sub-sorted ordering, since
some combinations of ratings will likely be empty.

8
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Not only does the direct re-mapping lend itself badly to incorporate error
treatment (absent strong modeling assumptions on errors), it is moreover fairly
inadequate to study the relation of two raters’ scales since it immediately pro-
duces σA→B

k without addressing the relation of classes.

To deal with these concerns, we formalize a framework to study the scale
relations directly rather than the re-mapping. We thereby aim for strict logical
coherence and avoidance of both unwarranted assumptions and a concrete error
modeling (which can be implemented within the framework as a next step).

The underlying intuition is again illustrated best by a thought experiment:
assume two raters assess exactly the same continuous credit score, normalized
to the unit interval, for a common set of obligors. Further assume both know
to estimate this credit score completely without error, thus obtaining identical
scores. However, not the scores but the discrete ratings are reported. Therefore
they map their (identical) scores to classes denoted by integers. Now under the
condition of monotonicity, i.e., ruling out worse ratings for better scores, the
agencies effectively pick thresholds to delimit their classes. Assume both decide
on the same number of thresholds, i.e., classes.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

* ** ** *

R
a
te

r
A

R
a
te

r
B

Figure 2: Illustration of disagreement purely due to different rating scales. The lines for
each rater cover the domain of their observed risk measure, which is assumed to be identical.
The partition denoted by intervals determines the rating scales. Even identical error-free
assessments of the same risk measure (as depicted by asterisks) will disagree if classes are
defined differently in such a way that the same risk measure estimates do not correspond to
the same rating class.

Consider the case depicted in Figure 2, where A reports a rating of 1 for
values in the interval [0, .1), rating 2 in [.1, .2) and so on up to rating 9 above a
score of .8, while B announces rating 1 for any score below .2, rating 2 in [.2, .3),
rating 3 in [.3, .4) and so on up to a rating of 9 in [.9, 1). For the sake of simplicity,
rule out obligors with scores below .1 and above .9 to be observed. Then, all
these assumptions and identical credit risk assessment notwithstanding, we find
an (unweighted) agreement of 0 for these agencies’ co-ratings—for no obligor do
they report the same rating. The cause, however, is obviously not disagreement
about creditworthiness, since this is identical by construction. The reason is
(disregarding fringe classes 1 and 9) that A’s rating i corresponds to (i − 1) by
B.

The rest of the paper extends the logic from the last two paragraphs to the
case where the risk measures may not coincide and where both raters are subject

9
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to estimation error. The aim is to disentangle the effect of (unsystematic) errors
from the (systematic) relation between the respective rating classes of both.

3. A Framework for Re-Mapping

In essence, our framework addresses that what appear to be corresponding
classes (like Standard & Poor’s BBB+ and Baa1 from Moody’s) potentially dif-
fer, since agencies might apply different rating scales. The underlying insights
are twofold: First, the relation between their scales ought to be accounted for
by re-mapping to a common scale. Second, while reported ratings are ordi-
nal, if they stem from a technology monotone in some risk measure (e.g., PD)
this implies theoretical restrictions whose enforcing improves the estimation of
the re-mapping. We propose the following general framework to analyze rat-
ing scales and their relation. The concrete implementation employed in the
empirical part is presented in Section 3.2.

Conforming with industry practice, let every rater r produce a credit score

sr
k for any obligor k he assesses the creditworthiness of. Whenever there is no

risk of confusion we drop the superscript indicating the rater. While we allow
different raters to operate different rating technologies or evaluate different risk
measures, we assume sr

k is strictly monotonically decreasing in the probability
of default P Dr

k ∈ (0, 1]. However, neither scores nor PDs are reported; discrete
ratings on ordinal scales are.

A rating scale is a partition of the score range; or, due to the existence of
a unique bijective link function,12 equivalently of the unit PD range. Industry
practice commonly chooses R as score range and the link function decreasing, so
higher score corresponds to lower PD; however, we focus on the implications for
the PD unit interval. Thus, a scale denotes nr right-closed intervals (tr

a−1, tr
a]

for a = 1, ..., nr, with nr −1 thresholds tr
a (implicitly) defined by the rater, since

tr
0 = 0, tr

nr = 1. These intervals,13 called rating classes, are commonly labeled
from AAA to D in practice, and for clarity from 1 to nr in this paper. By the
definition of partitions the intervals are non-overlapping and exhaustive.

Alternatively to intervals or thresholds, rating scales can be specified by the
increasing, piecewise constant step function a · 1{P Dr

k
<tr

a} for the unit interval
as depicted in Figure 3 for two raters.

The relation between two scales is therefore fully captured by the relation
of their two implied step functions. We coin the term scale relation to capture
for every rating class aA of rater A how much it corresponds to any class aB of
rater B, aA = 1, ..., nA, aB = 1, ..., nB. To formalize this {aA} × {aB} 7→ [0, 1]
mapping, for the purpose of conceptual and computational convenience, define

12Uniqueness and bijection follow from the strict monotonicity of sr
k

in the PD.
13We thus adopt the convention to denote higher-PD classes with higher class numbers and

speak of “better” and “worse” classes referring to those of lower versus higher PD, respectively.
Also note that for rating technologies that do not produce continuous scores the link function
cannot be bijective; however, a partition of the PD range still exists as long as scores are
monotone in PDs.

10



s
t
a
t
u
s

i
d

1
3
6
2

S
S

R
N

ve
rs

io
n

,
h
t
t
p
:
/
/
s
s
r
n
.
c
o
m
/
a
b
s
t
r
a
c
t
=
1
8
3
6
8
7
7

A

B

C

D

E

F

G

I

II

III

IV

V

VI

VII

creditworthiness

R
a
te

r
B

R
a
te

r
A

1

0

1
0 1

Figure 3: A rating scale is a partition of the unit interval, as any different domain of a
continuous risk measure can be mapped w.l.o.g. to [0, 1). Equivalently, the scale of a rater
A can be represented by a step function mapping the risk measure’s domain, i.e., the unit
interval, to the integers up to the number of classes nA. The relation between two raters’
scales can thus be captured by the relation of their scales’ step functions, in particular by the
information which steps overlap and by what extent.

the scale relation ςA,B as the nA×nB matrix ςA,B = (fA,B
ij ), where f

A,B
ij denotes

the fraction of A’s rating class i coinciding with B’s class j.

Clearly, given the rating scale of a rater A and the scale relation ςA,B to
another rater B, the latter’s scale is exactly determined. Therefore knowledge
of the scale relation ςA,B enables a rater to re-map his score estimates sA

k and
convert his ratings to accord to B’s definition of rating classes.

For outside observers who do not know the scale but only observe ordinal
class ratings, a scale relation, while not sufficient to perfectly re-map on an
obligor-specific level, still specifies the distribution of one rater’s classes over
another’s; i.e., conveys for every class of A the fraction of ratings that correspond
to various classes of B. Consequently, ignoring some residual uncertainty that
we address in Section 3.2.2, scale relations define a re-mapping on the rating-
class level. Such a re-rating onto a common scale is essential both to test and to
correct for the presence of different rating scales, which needs to be disentangled
from rating error when calculating proximity.

3.1. Structure of scale relations

While we consciously abstain from requiring PD estimates, we conceptually
anchor ratings in partitions of the PD interval to the following end. The weak

11
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modeling assumptions made so far already impose considerable structure on the
scale-relation matrix ς = (fij):

1) f11 > 0 and fnAnB > 0. For P Dk → 0, both raters’ best classes must
overlap; likewise for P Dk → 1 and their worst classes.

2)
∑

i fij = 1 for all i. By definition of fij , all rows of ς must sum to one.

3) (fij > 0 ∧fi,j+1 = 0) ⇒ fi,j+k = 0 for k ≥ 1. If a class j + 1 of B contains
only obligors of higher PD than a given class i of A, then classes of still
higher PD cannot correspond to i. Analogously, (fij > 0 ∧ fi,j−1 = 0) ⇒
fi,j−k = 0 for k ≥ 1. In other words, every row of ςA,B contains exactly
one contiguous block of non-zero entries, conforming to the intuition that
any rating class can only correspond to one uninterrupted sequence of the
other’s classes.

4) (fij > 0 ∧ fi+1,j = 0) ⇒ fi+k,j = 0 for k ≥ 1. If a class of A no longer
corresponds to a given class of B, worse classes cannot, either. Similarly,
fij > 0 ∧ fi−1,j = 0 ⇒ fi−k,j = 0. This is the column analogue to point
3).

5) (fij > 0 ∧ fi,j+1 = 0) ⇒ (fi+1,j > 0 ∨ fi+1,j+1 > 0). Successive classes
have a common boundary: If j is the last class to correspond to i, then
either j or j + 1 must correspond to i + 1. The latter is the case if and
only if the thresholds tA

i = tB
j coincide. Additionally, (fij > 0 ∧ fi,j+1 =

0) ⇒ fi+1,j−1 = 0, i.e., B’s classes of lower PD cannot match A’s next
class i + 1. )

Taken together, this structure requires a scale relation to resemble a con-
nected “path” of non-zero elements through its matrix, beginning from f11 and
ending at fnAnB .

More precisely, these 5 restrictions stemming from the general framework
constrain the set of permissible scale relations, and hence can and should be
enforced in estimation. Table 1 illustrates the relation between the rating scales
from Figure 3.

Note that the assumption of identical rating scales is equivalent to assuming
all thresholds tA

a = tB
a coincide ∀a, which again is equivalent to assuming the

scale relation is the identity matrix, ςA,B = In, where n = nA = nB is the com-
mon number of rating classes. Thus, common market practice is nested within
our framework, and can be evaluated like any other potential scale relation.
From this point of view, we generalize existent work—where rating classes are
mapped across raters by the identity matrix—to allow for all permissible scale
relations, with permissibility defined by the constraints above, i.e., as conform-
ing with PD-linked score partitions.

While identical scales clearly imply a common number of rating classes n,
our framework applies as naturally with non-square matrices, when nA 6= nB.
In this case prior research was frequently forced to forfeit information by re-
mapping the ratings with higher granularity to the coarser scale, e.g., by omit-
ting modifiers. It is a straightforward application of our method to assess how

12
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Rater B

Rater A

I II III IV V VI VII

A 0.67 0.33 0 0 0 0 0

B 0 0.25 0.75 0 0 0 0

C 0 0 0 1 0 0 0

D 0 0 0 0 0.4 0.6 0

E 0 0 0 0 0 1 0

F 0 0 0 0 0 0.5 0.5

G 0 0 0 0 0 0 1

Table 1: The scale relation of the rating scales depicted in Figure 3, written as a matrix.
For each given row, this matrix details to what extent the respective rating class of rater A

corresponds to the rating classes of rater B across columns. For instance, two thirds of class
A denote the same credit risk as class I, and the remaining third as class II; at the same time,
classes C and IV are equivalent. Matrix entries of zero indicate that the respective two classes
do not share any range of creditworthiness.

justifiable this practice is. Moreover, we provide a means to perform this re-
mapping accurately, should it still be necessary.

It is important to emphasize the mutual dependence among elements fij

induced by the constraints: When comparing different scale relations, as detailed
in Section 3.2.3, their matrices need to be treated as atomic, in the sense that it
is in general not possible14 to draw conclusions based on some classes irrespective
of others.

3.2. Method

To address this question, we propose a non-parametric method, based exclu-
sively on co-ratings data which works in three main steps: a) Construct a list of
scale-relation candidates, b) re-map the co-ratings according to each candidate
onto a common scale, and c) evaluate them using the proximity measure for
agreement.

3.2.1. Constructing scale-relation candidates

Due to the strong interdependence of its elements it is in general not possible
to compare potential relations incrementally. An optimization over the space of
permissible scale relations that does not hinge upon heuristics therefore involves
exhaustively evaluating potential scale-relation candidates ς̃A,B = (f̃A,B

ij ).

To tackle the task of evaluating the infinite number of candidates, we split
the problem into two simpler parts: First, construct the patterns of zero and

14As an exception, there exists a class of dominated scale relations which can be ruled out
at the outset, see Section 3.2.1.

13



s
t
a
t
u
s

i
d

1
3
6
2

S
S

R
N

ve
rs

io
n

,
h
t
t
p
:
/
/
s
s
r
n
.
c
o
m
/
a
b
s
t
r
a
c
t
=
1
8
3
6
8
7
7

non-zero entries in the candidate matrices; second, estimate the fractions f̃ij

conditional upon those patterns.

Formally define a scale-relation pattern as the binary matrix

ς̊ = (f̊ij); f̊ij =

{

1 if f̃ij > 0,

0 if f̃ij = 0.
(1)

Given a candidate’s pattern, it is straightforward to estimate the necessary
fractions. This can be further simplified by excluding rating classes which only
have co-ratings that fall into one category. This task thus reduces to the finite
number of potential scale-relation candidate patterns.

The statement that all candidates need to be evaluated requires a minor
qualification: Let an offside pattern denote a candidate pattern which, in some
rating class, reaches far enough off the observed co-ratings so that it contains
f̊ij = 1 for at least one rating-class pair (i, j) where no co-ratings are actually
observed. Then it can be proved that such patterns imply relation candidates
that are dominated by non-offside patterns. For most practical applications
exploiting this property by not constructing and evaluating offside patterns is
crucial, since it reduces the number of candidates by orders of magnitude and
renders the exhaustive search computationally feasible.

The recursive procedure we devise to construct all permissible non-offside
patterns is available from the authors upon request.

3.2.2. Re-mapping ratings by scale relations

By definition, a scale relation identifies the mapping from one rater’s scale
to another’s. Therefore, given the relation ςA,B it is trivial to map scores sA

k

onto the scale of B, and rating agencies can employ our framework to accurately
assess their ratings on other agencies’ scales, e.g., for correct comparison.

However, since raters commonly neither report their scores nor scales, ob-
servers are constrained to re-map ordinal ratings that have already been mapped
via a scale. Clearly in the first mapping, which reduces to ordinal data, infor-
mation is lost; consequently no re-mapping can reproduce a direct mapping of
scores via ς exactly. This limitation notwithstanding, a scale relation is by con-
struction well suited to re-map ordinal ratings. Each row can be interpreted
as a conditional re-mapping rule: Consider all obligors rated into class i by A:
then the fraction fij belongs to class j in B’s terms, and should be re-rated
there for a correct comparison on an identical scale (in this case, B’s).

This defines the re-mapping for the aggregate class, while it does not tie
down on an obligor-specific level who should belong to which fraction—this is
the information lost with the first mapping to ordinal. Therefore, for fixed i,
the decision problem arises to separate i-rated obligors into as many ordered
subclasses as there are fractions fij which the relation specifies as non-zero.
Note that it is not necessary to produce an ordering of all those obligors, it
suffices to separate them into (mostly very few) lower-PD to higher-PD subsets.

Three basic approaches can be taken:

14
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1) Rely only on A’s published information; accordingly acknowledge that
obligors cannot be distinguished and sample randomly. In this case it is
imperative to integrate out sampling effects.

2) Also consider B’s published information; thus conclude that given an iden-
tical rating by A, ceteris paribus obligors with higher rating from B should
be classified into better classes.

3) Incorporate information by other raters, possibly excluding B. If co-
ratings of the obligors exist with other raters, it appears natural to exploit
this information. However, when more than one rater is taken as refer-
ence, the question arises how to construct their consensus opinion, which
is beyond the scope of this paper.

To motivate our approach, we consider the (hypothetical) case where we
know the rating scales of both A and B, so we can calculate their true scale
relation analytically. Assume furthermore that both assess true scores perfectly
accurately. Due to the absence of rating errors, all disagreement stems from
their different rating scales. Under these circumstances, as a design goal we
would want our algorithm to reproduce the analytical scale relation. This goal
requires approach 2) to re-rating.

In the presence of rating errors, the re-rating procedure suffers in proportion
to their magnitude: The higher the impact of noise on estimated scores, the
more the approach will resemble 1).

It is key to correct understanding of the proposed method to differentiate
between the rating information provided by B per se (on his scale), and its usage
in the conditional re-rating. Only the information from the partial ordering of B

is employed in the re-mapping, which moreover is carried out conditional both
upon the ratings of A and the scale relation.

To illustrate, assume A assigns 100 obligors to his class 5, and the scale
relation ςA,B indicates this class corresponds to B’s classes 3 and 4 in equal
proportion. Then B’s information will only be used to determine which 50
obligors should be re-mapped into the better class and which 50 into the worse.
If, for the sake of the argument, B classifies 50 of those obligors as (his) class
7, another 30 as class 8, and 20 as class 9, this does not imply that anyone is
re-rated to classes 7–9. Given the scale relation, the first 50 are considered as
rated 3 (on B’s scale) by A, while those in classes 8 and 9 (as reported by B)
to be rated 4 by A, again on B’s scale.

This illustration also makes clear that a re-mapping can easily decrease
agreement, and in particular elucidates that a scale relation too accommoda-
tion to one rating class, by virtue of the structure embedded in our framework,
impairs agreement through its need to impose harsh restrictions on the other
classes.

3.2.3. Evaluating scale relations

An exhaustive search over scale-relation candidates begs the question how
to judge them against each other and the identity matrix benchmark. We need
to capture the degree to which two raters assign obligors the same rating class.
This is exactly what is captured by the agreement measure κ, which is briefly
re-examined in Appendix A.
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4. Empirical Analysis

We compile a dataset of long-term corporate issuer ratings from the three
major rating agencies Fitch, Moody’s and S&P. Ratings for all companies head-
quartered in a G7 country are obtained from Reuters Credit Views as from
April 12, 2011. In total, 2570 obligors are co-rated, 368 thereof by all three
agencies; the exact number of co-ratings per pair is given in Table 2.

S&P Moody’s Fitch

S&P 2532
Moody’s 520 555

Fitch 2378 403 2413

Table 2: Sample size. Number of co-ratings by the three major rating agencies of long-term
corporate issuer ratings headquartered in a G7 country, as obtained from Reuters Credit Views
on April 12, 2011.

The basis of our approach is the discrete joint distribution of ratings for a
pair of raters, as specified by a cross tabulation. Table 3 shows the complete
co-ratings (without modifiers) for the agencies Standard & Poor’s and Moody’s.

Moody’s

S&P

Aaa Aa A Baa Ba B Caa

AAA 20 0 0 0 0 0 0
AA 7 56 14 2 0 0 0

A 0 35 143 20 0 0 0
BBB 0 0 47 147 4 1 0

BB 0 0 0 6 9 3 0
B 0 0 0 1 0 4 0

CCC 0 0 0 1 0 0 0

Table 3: Cross tabulation of the co-ratings (without modifiers) by the rating agencies S&P
and Moody’s. Intuitively, the impression arises that more mass is concentrated below than
above the main diagonal; the aim of our approach is to test this hypothesis and quantify the
effect, if present.

Our framework is static in the sense that it estimates the scale relation at
one point in time. Since the systematic relation should be fairly stable over
time, high volatility of the scale relation in the time series would cast doubt
on the estimation procedure. Moreover, if agencies do not adjust ratings si-
multaneously, this could contaminate the estimates. To safeguard against these
objections, we re-run our analyses on different earlier dates and find the results
qualitatively unchanged.

While the rating agencies abstain from an exact definition of the credit-
worthiness they estimate and keep their rating models secret, it is clear they
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assess at least highly related concepts. This can be seen in Figure 4 which shows
a scatterplot of the co-ratings from Moody’s and S&P,15 where the reported
ratings are plotted with jittering, i.e., an added random disturbance to make
the amount of individual data points visible on the discrete grid. Dotted boxes
indicate “corresponding” rating classes, grouping those which differ only by
modifier.

Scatterplot of co−ratings

Moody

S
nP

Aaa Aa A Baa Ba B Caa

A
A

A
A

A
A

B
B

B
B

B
B

C
C

C

Figure 4: Scatterplot of the co-ratings of Moody’s and Standard & Poor’s with jittering. This
means that each co-rating is plotted at the intersection of the two respective ratings on the
abscissa and the ordinate after a small disturbance term has been added, in order to prevent
plotting a discrete grid with no indication of how many co-ratings accumulate at any given
gridpoint. The fact that rating classes are spaced equidistantly on the axes does not imply
any metric relation between their associated credit risk, but is simply for ease of exposition.
The 45◦ line through the origin indicates corresponding classes, its parallels a given difference
of classes by their number; and the dotted boxes delineate corresponding classes without
modifiers.

Although the plot treats ordinal rating data as if it were metric (and as-
sumes equidistant adjacent classes), a treatment we criticize, we include it in
order to illustrate two important facts: First, unclarity about their construction
notwithstanding, agencies’ credit-risk measures are indeed highly related. We
quantify this prerequisite to meaningful scale relations appropriately (i.e., with
ordinal statistics) in Section 4.1.

15Scatterplots of the other pairs of raters are similar and thus available upon request.
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Second, the graph is suggestive of asymmetry and class-dependent variation.
For instance, note that while a reasonable number of Aaa-rated obligors exhibit
ratings from S&P of AA−, not a single AAA-rated entity received a Moody’s
rating worse than Aa+. Also, the variation around AA/Aa appears discernibly
lower than around e.g., BBB+/Baa+. Both effects would require a complex
structure on the measurement error if rating classes corresponded exactly, while
they arise naturally with non-identity scale relations.

4.1. Proximity measures

The following tables show the proximity measures calculated for the three
rating agencies and include bootstrapped standard errors. Table 5 shows agree-
ment, Table 4 association, and Table 6 bias as defined in Appendix A.

S&P Fitch Moody’s

S&P 1.0000000

Fitch 0.8729735 1.0000000
(0.006765346)

Moody’s 0.7541870 0.7688110 1.0000000
(0.013225623) (0.012114381)

Table 4: Association, as measured by τx, an extension of Kendall’s τ . A value of 1 would
indicate perfect association, i.e., no two co-rated obligors being ranked in an opposite way by
the respective two raters. Details on the measure are in Appendix A.1.2. Apparently, S&P
and Fitch tend to assess the relative credit risk of obligors more similarly to each other than
to Moody’s. Nonetheless, all agencies’ ratings are highly related, which is a prerequisite for
re-mapping, and bootstrapped standard errors (in parentheses below) are very narrow.

The association measures indicate that the major three rating agencies in-
deed assess the same or a highly correlated risk measure of creditworthiness.
Consequently, a re-mapping across their scales is meaningful.

S&P Fitch Moody’s

S&P 1.0000000

Fitch 0.9668129 1.0000000
(0.003118068)

Moody’s 0.8960261 0.9082134 1.0000000
(0.010086819) (0.009009064)

Table 5: Agreement, as measured by Cohen’s κ, where a value of 1 indicates perfect agreement.
Bootstrapped standard errors are included in parentheses. While agreement is generally high,
lending support to the claim that agencies assess creditworthiness similarly, tight standard
errors indicate that agreement is imperfect enough to allow for significant potential improve-
ments. Details about the agreement measure are found in Appendix A.1.1.
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Although the numbers for agreement appear high at first sight, their stan-
dard errors are extremely narrow, making differences between the rating agen-
cies highly significant. Therefore increases due to re-mapping that appear mod-
est in absolute terms can already constitute a significant improvement.

S&P Fitch Moody’s

S&P 0.000000000

Fitch -0.006331184 0.000000000
(0.000841172)

Moody’s -0.015384615 -0.005376344 0.000000000
(0.002921965) (0.002921949)

Table 6: Bias, as defined in Appendix A.1.3. Contrary to the other two, bias is a signed
measure, with negative numbers indicating that the column rater’s assessment, compared to
the row rater’s one for the same obligor, is on average lower. The value expresses the mean
number of rating classes of the deviation. While Appendix A.3 shows how to re-map by
correcting for bias, our approach generalizes this idea to correct for a relative shift in scales
beyond a simple linear translation of rating classes.

The bias measures indicate that there indeed is a significant difference in the
rating class numbers assigned by Standard & Poor’s and Moody’s, as well as
between Fitch and Standard & Poor’s. While this is consistent with a difference
in employed rating scales, it does not provide insight into the question whether
such differences are constant across classes. Our approach allows for different
biases for different rating classes, even of opposing sign. In any case, the data
suggest re-mapping across rating scales to be approriate.

4.2. Results

Table 7 shows the results of estimating the optimal scale relation for Fitch
and Moody’s according to our framework.16 We observe that at least for classes
of lower credit risk there is indication of a shift between the scales of Moody’s
and Fitch, although the fractions of classes re-mapped to classes of different
rank remain modest to small.

For the higher-risk classes the dataset is thinner, as seen in Figure 4, and
estimation becomes harder and more imprecise (which we show in the next
section). Since some fractions are small enough to be rounded to zero, we
indicate the path of the optimal scale relation by gray background.

However, the depicted values depend on the sample. If we acknowledge that
co-ratings contain a stochastic element due to noise, the observed sample is one
draw from the underlying (joint) distribution. This raises the question how
much this scale relation is subject to sample effects, or, in different words, how
robust it is to re-sampling from the empirical distribution of co-ratings. To
assess this crucial issue without an ad-hoc specification of the error structure
we employ a bootstrapping procedure.

16Results on scale relations between the other pairs of raters are similar.
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Moody’s

Fitch

Aaa Aa A Baa Ba B Caa

AAA 1 0 0 0 0 0 0

AA 0.077 0.923 0 0 0 0 0

A 0 0.141 0.859 0 0 0 0

BBB 0 0 0.145 0.855 0 0 0

BB 0 0 0 0.417 0.417 0.167 0

B 0 0 0 0 0 1 0

CCC 0 0 0 0 0 0 1

Table 7: Optimal scale relation on empirical co-ratings for Fitch and Moody’s. For each given
row, this matrix specifies to what extent the respective rating class corresponds to the rating
classes across columns. Matrix entries of zero indicate that the respective two classes do not
share any range of creditworthiness, while a gray background indicates those classes which do.

4.3. Bootstrapping

As mentioned, the scale relations estimated above depend on the samples
at our disposal. In order to account for noise in the ratings, we bootstrap the
cross-tables 1000 times each, i.e., draw 1000 same-size samples of co-ratings with
replacement from their empirical distribution. Note that this approach does not
require modeling the distribution of the errors but only independence between
co-ratings of different obligors.

We draw each run exactly NA,B times (and thus with replacement), since
this will match the bootstraps’ standard errors to the sampling error of the
original data.17

To gauge the sensitivity of the optimal scale relation to different draws from
the distribution of co-ratings, in Table 8 we report the percentage of times
(from the 1000 samples) that a scale relation passed through that position for
Fitch and Moody’s. Note that these percentages are based solely on the binary
information in order to pinpoint the variability in the structure of the relation.
Positions with entries close to one are contained in virtually all scale relations:
The (at least partial) correspondence of the respective classes is robust to the
variation in the co-ratings. If such elements are off the main diagonal this casts
doubt on the one-to-one mapping commonly assumed. Table 9 and Table 10
show the same results for Moody’s and S&P, as well as Fitch and S&P.

The results of the bootstrapping procedure elucidate that ideally the in-
formation obtained via the re-sampling procedure should be incorporated in
the estimation of the scale relations. Otherwise the scale relation is estimated
by just one optimization of agreement, and thus conditional on the sampling

17We are grateful to Tobias Berg for raising this question.
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Moody’s

Fitch

Aaa Aa A Baa Ba B Caa

AAA 1*** 0.179 0 0 0 0 0

AA 0.821 1*** 0.14 0 0 0 0

A 0 0.86 1*** 0.074 0 0 0

BBB 0 0 0.926* 1*** 0.385 0.185 0.012

BB 0 0 0 0.615 0.815 0.841 0.195

B 0 0 0 0 0.147 0.744 0.195

CCC 0 0 0 0 0.061 0.805 1***

Table 8: Fractions denoting how often the optimal scale relation linked any two rating classes
in 1000 bootstrapped crosstables for Fitch and Moody’s. The bootstrap accounts for sampling
error. One, two, or three stars are added if the fraction not linking the fields falls below the
0.10, 0.05, or 0.01 level, respectively.

distribution. By using the information obtained by bootstrapping this condi-
tionality can be addressed and a potential bias in the fractions of scale relations
prevented; this issue is detailed in future revisions of our paper.

In any case it is important to highlight that for all three pairs of rating
agencies we find that several positions off the main diagonal have values of 1,
indicating clearly a systematic relation between rating classes that differs from
identical rating scales. While the thresholds defining the classes on the scales of
S&P with respect to Fitch as well as to Moody’s appear shifted, the relation of
the scales of Moody’s to S&P seem to exhibit a more complicated pattern, with
some classes specified broader by one and some classes broader by the other
agency.

5. Conclusion

Rating agencies report ordinal ratings in discrete classes. We question
the common implicit assumption that agencies define their classes on identi-
cal scales. To this end, we develop a non-parametric method to estimate the
relation between rating scales for pairs of raters. This scale relation identifies
the extent to which every rating class of one rater corresponds to any rating
class of another, and hence enables a rating-class specific re-mapping of one
agency’s ratings to another’s scale.

In its simplest application, the re-mapping based on an estimated scale re-
lation is equivalent to a straightforward direct re-mapping: It produces a weak
ordering by sub-sorting one rater’s assessments according to the information
provided by another rater, then subdivides this ordering into as many classes
as the other’s scale encompasses. By maximizing agreement the re-mapping is
aligned with the external scale. However, this re-mapping is conditional upon
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S&P

Moody’s

AAA AA A BBB BB B CCC

Aaa 1*** 1*** 0 0 0 0 0

Aa 0 1*** 1*** 0 0 0 0

A 0 0 1*** 0.999*** 0 0 0

Baa 0 0 0.001 1*** 0.775 0 0

Ba 0 0 0 0.225 0.999*** 0.043 0

B 0 0 0 0.001 0.957** 0.985** 0

Caa 0 0 0 0 0.015 1*** 1***

Table 9: Fractions denoting how often the optimal scale relation linked any two rating classes
in 1000 bootstrapped crosstables for Moody’s and S&P. The bootstrap accounts for sampling
error. One, two, or three stars are added if the fraction not linking the fields falls below the
0.10, 0.05, or 0.01 level, respectively.

the concrete realization of co-ratings and thus does not model effects from ran-
dom noise.

In the presented framework for the estimation of scale relations it is straight-
forward to specify a given error model; but more importantly, it also allows to
draw inference without doing so by bootstrapping from the empirical distribu-
tion of co-ratings. In this way, we find that for the three major rating agencies
Fitch, Moody’s and Standard & Poor’s the deviations from identical scales of
long-term corporate issuer ratings of corporations in G7 countries are too pro-
nounced to be attributed to random chance.

We thus conclude that the ubiquitous implicit assumption of identical scales
for the big rating agencies, and therefore the common regulatory and industry
practice of equating rating outcomes from these agencies, is doubtful.

Due to the crucial importance of ratings as accurate measures of credit
risk for financial institutions, corporate borrowers, investors, and supervisors—a
reliance that was visibly exemplified once again in the ongoing credit crisis—an
adjustment when relating ratings from different sources as performed by our
method in particular, as well as a more critical assessment of the information
content of credit ratings in general, are in order.
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S&P

Fitch

AAA AA A BBB BB B CCC

AAA 1*** 0.982** 0 0 0 0 0

AA 0.018 1*** 0.999*** 0 0 0 0

A 0 0.001 1*** 1*** 0 0 0

BBB 0 0 0 1*** 0.92* 0 0

BB 0 0 0 0.08 1*** 0.538 0

B 0 0 0 0 0.462 1*** 0

CCC 0 0 0 0 0 1*** 1***

Table 10: Fractions denoting how often the optimal scale relation linked any two rating classes
in 1000 bootstrapped crosstables for Fitch and S&P. The bootstrap accounts for sampling
error. One, two, or three stars are added if the fraction not linking the fields falls below the
0.10, 0.05, or 0.01 level, respectively.
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Appendix A. Proximity measures and their relation to re-mapping

Appendix A.1. Proximity measures

As rating data is not metric but ordinal, consistency requires to rely on
appropriate measures for their relation. The application of contemporaneous
versions of the proximity measures Cohen’s κ and Kendall’s τ (as well as the
introduction of a measure for bias) was pioneered by Hornik et al. (2007b);
empirical results based on these measures can be found in Hornik et al. (2010)
and Hornik et al. (2007a). In the following we give a brief recollection of the
proximity measures used.

All measures are defined for pairs of raters A and B, where the calculations
build on those of their ratings σA

k and σB
k for which the obligors k = 1, ..., NA,B

are (co-)rated by both A and B.

Appendix A.1.1. Agreement

Agreement captures the degree to which two raters assign obligors into the
same rating class. Note that this only makes sense if the raters assign into
a common number of rating classes n.18 The classical measure, Cohen’s κ,
quantifies if agreement is better than (κ > 0), equal to (κ = 0), or worse (κ < 0)
than by chance. The intuition builds on a cross-tabulation of ratings: Let the
matrix C

A,B = (pA,B
ij ) tabulate the observed relative frequency of obligors rated

as class i by A and j by B, so

p
A,B
ij =

#{σA
k = i, σB

k = j}

NA,B
. (2)

Ratings on the main diagonal of C
A,B are clearly in agreement. However,

considering only them as agreeing would treat an obligor rated differently by
only one notch the same as one rated AAA by one agency and C by the other.
Thus the literature has often considered the first case fractional agreement rather
than complete disagreement. This implies, instead of weighing the main diago-
nal with 1 and the rest with 0 as Cohen’s κ does, weights that are a decreasing
function of the difference in rating classes, gradually falling from 1 on the main
diagonal to complete disagreement furthest from it. One common choice makes
the function linear; in the credit-rating literature Hornik et al. (2007b) suggest
the weights proposed by Fleiss and Cohen (1973), quadratic in the difference,

w = (wij) with wij = 1 −
(

i−j
n−1

)2

.

The agreement-weighted sum of observed relative frequencies of co-ratings
P A,B

o ,

P A,B
o (w) = w : C

A,B =

n
∑

i

n
∑

j

wijp
A,B
ij , (3)

however, does not consider that—even with independent ratings—some co-
ratings are expected to lie on or close to the main diagonal. Assuming the

18All matrices in the calculation of agreement have dimension n × n.
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agencies rated independently, the expected cross-table is C
A,B
x = (pi·p·j), com-

prising the products of the marginal proportions p·j =
∑n

i pij and pi· =
∑n

j pij .
Consequently, for given weights,

P A,B
e (w) = w : C

A,B
x =

n
∑

i

n
∑

j

wijpi·p·j. (4)

(Weighted) κ subtracts this correction before normalizing maximal agreement
to 1:

κA,B(w) =
P A,B

o (w) − P A,B
e (w)

1 − P
A,B
e (w)

(5)

Finally, it is important to note that the choice of a weight matrix implicitly
treats the data as if they were on an interval scale since it specifies relative
distances between classes. Only the unweighted case (where w is the identity
matrix) is theoretically fully consistent with ordinal—even nominal—data.

Appendix A.1.2. Association

We measure association (also denoted rank correlation) with τx, the extension
of Kendall’s τ developed by Emond and Mason (2002) as the unique rank corre-
lation coefficient to fulfill the elementary axioms outlined by Kemeny and Snell
(1962). It differs from τ only in the treatment of ties, yet ensures any ranking
to be perfectly correlated with itself,19 and the triangle inequality to hold, i.e.,
the distance of two objects cannot exceed the sum of their distances to a third
one.

Association quantifies the extent to which two agencies report the same
relative ordering of obligors. The ranking of rater A is condensed in the NA,B ×
NA,B score matrix A = (aij) where20

aij =











1 if obligor i is ranked ahead of or tied with obligor j,

−1 if obligor i is ranked behind obligor j,

0 if i = j.

(6)

Given the analogous definition of B = (bij), similarity with regard to a single
pair of obligors is indicated by aijbij > 0, while dissimilarity entails a negative
product. The measure τA,B

x is then defined as the sum of these products scaled
to the [−1, 1] interval; or, equivalently, as the Frobenius inner product of the
score matrices divided by its maximum possible value:

τA,B
x =

A : B

N(N − 1)
=

∑n
i=1

∑n
j=1 aijbij

N(N − 1)
(7)

19In fact, Kendall’s τ is undefined for all-ties rankings.
20The requirement that any ranking be perfectly correlated with itself implies that aij needs

to be defined as ±1 when i and j are tied. Only then will a2

ij
= 1 for all i 6= j and τ

A,A
x = 1

for any xA.
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The intuition of the measure is to consider the N2 − N pairs21 formed from
the co-rated obligors and compare the assessments of the two raters: Those
pairs where one rater ranks the first obligor below the other while the second
rater disagrees, decrease τA,B

x ; the other pairs, where the raters are considered
in accord, increase it. The denominator ensures τx maps to the interval [−1, 1],
where +1 indicates perfect association, i.e., all the pairwise ratings are in the
same order, and −1 indicates the opposite.

It is important to note that τx is scale-free: Because only relative orderings
are considered, no knowledge about the scale is required and valid comparisons
of raters with different scales, even with different numbers of ˚ classes, can be
drawn.

Finally, in the context of credit ratings high τx indicates the two agencies
assess identical or highly correlated risk measures. With a minor qualification22

this is independent of the scale they employ (and in particular independent of
using the same scale), and thus necessary for any re-mapping to make sense.

Appendix A.1.3. Rating bias

The average number of rating classes which A’s assessment lies above B’s,
scaled to the interval [−1, 1], was defined as rating bias:

θA,B =
n

∑

i

n
∑

j

i − j

n − 1
pij (8)

Equivalently, and likely simpler to calculate, θA,B equals the difference of
the mean ratings, divided by n − 1:

θA,B =
x̄AB − x̄BA

n − 1
(9)

Yet another way to obtain θA,B is as the intercept in a linear regression
of x

AB on x
BA, with the slope parameter restricted to 1.23 This perspective

allows, provided correct handling of standard errors, an analytical significance
test of rating bias.

Appendix A.2. Lack-of-proximity patterns and their interpretation

Lack of proximity arises in three cases: a) Raters estimate different risk
characteristics (eg., PD vs. EL), b) they map rating scores differently to rating
classes, or c) at least one of them estimates inaccurately.

21The “pairs” of obligors with themselves are excluded as they are trivially always tied and
thus contribute no information.

22Because of the treatment of ties even independent random ratings have no expected τx

of zero: it depends on the number of ties, and thus on the number of ˚ classes. Therefore a
potential discretization effect arises when continuous data (like a rating score or PD estimate)
are discretized (to rating classes) insofar as estimates close to the discretization thresholds
can be mapped to classes with different numbers of ties.

23Since the slope is restricted to 1, it is equivalent to regress xBA on xAB.
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Case a), with the risk characteristics closely correlated, can be treated econo-
metrically as if different scales were employed; the proposed method then yields
the mapping from one risk measure to the other. If the characteristics have only
a weak relation,24 the case is indistinguishable from c).

Case b), the focus of this paper, is indicated by high τx, low κ and potentially
high θ. Since the association measure does not require a common scale, τx can
be validly calculated directly on the raw rating data as provided by both raters.
If high, by definition of τx, the raters tend to judge the same obligor in any co-
rated pair less risky,25 which indicates that raters estimate the same (or highly
correlated) risk. After re-mapping, which puts the ratings on a common scale,
θ should get close to 0 and κ significantly higher.

Case c) implies both τx and κ are low (with arbitrary θ), and additionally
that no re-rating by a different scale will be able to significantly improve κ.

Appendix A.3. First step of re-rating: Correcting for bias

A first step to re-map the data to a common scale is to correct for θ. Since
θ is by definition the systematic difference in two sets of ratings, a shift of
α = θ(n−1) removes the bias. If α = 1, as in the example in Section 2, treating
all ratings of B as one class higher allows for an unbiased benchmarking of the
two raters. However, given the discrete nature of rating classes, a non-integer
shift of ratings is not meaningful. The appropriate interpretation of a fractional
α of, say, .5 in this context is not that all ratings are on average rated half a
class higher, but that, on average, ratings are one class higher for half of the
obligors. Therefore we argue that to correct for any bias a first step shifts ratings
by the integer part of α; the second step re-maps the number of obligors per
rating class given by the fraction of α. The question whom to select into this
percentage and how to employ co-rater information is covered in Section 2.1.

While treatment of the bias illustrates the underlying insight into the neces-
sity of re-mapping clearly, it is evident that the elementary correction stated in
the last paragraph implicitly imposes severe restrictions on the structure of the
bias which remains doubtful.26 The framework in Section 3 can be viewed as
per-class specific generalization of the bias correction.

24Negative correlation appears unlikely since raters commonly do not estimate sufficiently
different concepts of credit risk. The case would be indicated by τx ≪ 0 and could be dealt
with by our method slightly adapted.

25Note that nevertheless even identical scores generally produce τx < 1 when mapped to
different rating scales. Scores near the boundaries are mapped into different classes and
consequently tie with different obligors. For instance, PDs of (.01, .02, .03) can be mapped by

different scales to xAB = (1, 1, 2) and xBA = (1, 2, 2) and thus give τ
A,B
x = 1

3
.

26While it seemingly imposes a uniform distribution over rating classes, disputable in itself,
this is hard to reconcile with any (yet unspecified) treatment of fringe classes.
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Appendix B. Identically sub-sorted groups are re-mapped jointly

Sketch of proof: Assume that we have a cross-tabulation of co-ratings C =
(pij) such that there exist at least two co-ratings in an off-diagonal element pij >

1, i 6= j. Now it follows from the definition of the weights as non-increasing in
Appendix A.1.1—which follows from the transitivity property of ordinal data—
that re-mapping an off-diagonal element closer to the main diagonal cannot
decrease κ. Thus there remain two cases:

1) In the corner case where the re-mapping does not affect agreement, all
pij obligors can be re-mapped jointly without harming agreement (for
instance with unweighted κ when a re-mapping does not reach the main
diagonal).

2) In the base case where agreement is (strictly) improved by re-mapping a
subset of the pij ratees, it must be optimal to move all the others too,
because doing so would increase κ due to linearity in Equation (3).
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