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Monetary Policy 
as an Optimal Control Problem#### 

Jan KODERA* – Van Quang TRAN**   

1. Introduction 
The conduct of monetary policy can be considered as an optimal 

control task. As such, it has been an intensive research subject for many 
years. In the framework of macroeconometric models, the study of 
optimal monetary policy can be found, for example, in Chow’s work 
(1976). Today, under the dominance of the New Keynesian models, 
which is seen as the theoretical background for monetary policy, this 
study has re-emerged, see Levin and Williams (2003), Svensson and 
Tetlow (2006) and Orphanides and Williams (2008). As the position of 
New Keynesian models is so prevalent, every self-respected central bank 
in developed countries often claims that these models are their fundamental 
analytical tool of their monetary policy, and the final monetary policy 
decisions are based on the outputs of these models. In this regard, the 
Czech National Bank is no exception (see Anderle et al., 2009).  

In the literature, New Keynesian models often are presented in a 
discontinuous time fashion (Galí, 2008) which may have some 
advantages, but in a discrete time framework it has one disadvantage: 
discrete dynamic theory is not convenient for qualitative analysis of 
solutions (see Glass et al, 2008) time. To fill this gap in the literature, we 
propose a continuous time version of the New Keynesian model and 
investigate the impact of monetary policy conducted according to the loss 
function or to the Taylor rule by a central bank. In order to be able to do 
so, first we derive a deterministic and continuous non-linear two-equation 
New-Keynesian model. One of them is the IS equation of commodity 
market with a logistic investment function to make the dynamics richer. 
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The second one is the Phillips curve which connects both the real and 
nominal sector of the economy. Monetary policy in this model is 
performed in the inflation targeting regime first according to the loss 
function and then according to the Taylor rule.  

To show how such a model would work, we give two examples of 
their functioning. First we construct the optimal control problem using 
minimization of loss function. The problem formulated by this approach 
is a non-linear one. As such it can be solved by using the Pontryagin’s 
principle, whose theoretical background will be briefly discussed later. 
Since solving a non-linear control problem with the Pontryagin’s 
principle can be very difficult, sometimes even unsolvable, for this 
purpose we suggest the use of fuzzy control. Fuzzy control is a new 
control approach which may succeed when other traditional control 
methods are unable to deal with. An overview of possible applications in 
technical and other areas can be found in Driankov et al (1996) and 
Novak (2000). The application of fuzzy control in economics can be 
found in the work of Kukal and Tran Van Quang (2013).  

Then as an alternative way to investigate monetary policy as a control 
problem, we establish the model with the same structure of dynamics with 
the use of a modified Taylor rule. Taylor rule is a reaction function of a 
central bank to an actual state of an economy. Unlike the case with a loss 
function, which is a typical optimization problem, monetary policy in 
inflation targeting regime with the use of the Taylor rule is conducted in 
such a way that interest rate is continuously manipulated in order to get 
the whole system to reach a desirable state. This is in a sharp contrast to 
the case with the loss function. In this case, our control problem 
corresponds to the bang-bang principle. Here the interest rate is pre-
determined to move inside an interval. The optimal solution of the 
problem then requires the interest rate to switch from its maximum to 
minimum and vice versa. We will show how these two cases work 
through the numerical examples.   

2. Reduced form of New-Keynesian Model 
The dynamic of an economy with an active central bank can be 

described by two differential equations. The first one represents the 
dynamics of commodity market. The original mathematical description of 
commodity market is the continuous IS-LM model (Kodera and Málek, 
2008) as follows:  
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 �� � �����, 	
��  �
���  �
�
��, 	
��  �
���� , 
where Y  = production, 
 I  = investment, 
 R = nominal interest rate, 
 S = saving quantity, 

I and S are functions of Y, R and π. The dynamics of production is 
generated in this way. Let’s suppose S>I. It means the right hand side of 
the equation is negative. Then the left hand side must go negative too and 
vice versa. Dividing the above equation by Y, we get: 

�� 
��
�
�� � � ��
�
��, 	
��  �
���
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��  �
�
��, 	
��  �
���
�
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As �
�� � log �
��, we can rearrange the equation above as: 
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���
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Denoting  
�
.�
�� � �
. �,  
.�

�� � !
. �, the dynamics of production can be 

expressed as follows: 

�� 
�� � �����
��, 	
��  �
���  !��
��, 	
��  �
����, (1) 

where α > 0, 

and i and s are the so called propensity to invest function and propensity 
to save function respectively, but from now on we will call them as an 
investment and saving function for short.  

The second behavioral equation in our model is the Phillips curve in a 
slightly different form:  

�"#
�� � $%
��
%& '(

, (2) 

where πf (t), stand for the fundamental1 rate of inflation and rate of 
employment respectively, V0 is the rate of employment under zero 

                                                 
1 More precisely, the rate of inflation is defined by equation (2). 
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inflation. The firms’ demand of for labour is determined from the 
inversion of one factor production function 

�
�� � )
*
��� ,  

where Y(t), L(t) denotes production and level of employment respectively. 
The rate of employment is defined as labour demand-labour supply ratio, 
so we obtain: 

,
�� � -
��
. � /01
2
���

.   , (3) 

where F-1 denotes the inversion of production function and N is the 
households’ labour supply. In this model, labour supply is constant. Let 
us assume a geometrical adjustment process of actual inflation to its 
fundamental rate as: 

�� 
�� � �3�4
��  �
��5 .  

Using (3) in equation (2) and substituting in the above equation, after 
taking logarithms and some rearrangement, we get: 

�� 
�� � �67389:��
���  ;  <=5  �
��>,  (4) 

where 89:��
��� � log )9: ���
���, �
�� � log �
��, ; � log ?, and <= � log ,=. Equations (1) and (4) constitute an economic dynamic 
system which generates trajectories of production and inflation.  

3. Logistic Investment Function 
To make the dynamics of variables in the model more complex, we 

modify the investment function in the following way. Let @�	
��  �
��� 
be reciprocal function of real interest rate: 

@�	
��  �
��� � A
B
��9"
��  ,  

and production y is a logistic function  

C
�
��� � :
:DE�0F�
G�  .  

Investment function then is a product of u and y as 
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�
�
��, 	
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																																						 � H
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���. 

(5) 

The savings function is assumed to be linear in production and real 
interest rate 

!��
��, 	
��  �
��� � != J !:�
�� J !M�	
��  �
���. (6) 

where h, b, c in (5) !=,  !: and !M in (6) are positive parameters.  Plugging 
(5) and (6) into equation (1), we have 

�� 
�� � ��N
��  !=  !:�
��  !M�	
��  �
����, � O 0. (7) 

where J(t) = 
A

�B
��9"
����:DE�0F�
G��. 

We assume that in equation (4) production function is one-factor 
Cobb Douglas function as follows:  

�
�� � Q*:9R
��.  

Then the demand for labour is the inversion of Cobb-Douglas production 
function 

*
�� � 3Q9:�
��5 :
:9R.  

Taking logarithm of both sides, we obtain 

89:��
��� � C
�� � 1
1  S 
�
��  T�.  

Substituting it into equation (4), we have 

�� 
�� � U V7 $ :
:9R 
�
��  T�  ;  <='  �
��W , U O 0, (8) 

The system of equations (7) and (8) is a continuous time version of 
New-Keynesian model.   
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4. Loss function 
Inflation targeting problem is often specified as an optimal control 

problem. In this case behavior of the central bank is usually described by 
New Keynesian economics loss function. Mainly it is based on the shape 
of function introduced authors Barro and Gordon (1983): 

X
�
��, �
��� � ��
��  �Y�M J ��
��  �Y�M.  

As we decided for continuous approach to this problem, time variable 
t obtains values from infinite interval [0, ∞) and optimization in infinite 
horizon is expressed by minimization of improper integral of loss function 

N
�, �� � Z X
�
��, �
����9[�d� �]
=

 

Z �
�
��  �Y�M J 
�
��  �Y�M�]
=

�9[�d�. 
(9) 

Relations (7), (8) and (9) constitute continuous optimal control problem 
in infinite horizon. 

5. Zero Inflation Steady State  
The steady state solution of the problem (1), (4) and (9) is the 

solution, where state and control variables do not change in time, let �
�� � �̂, �
�� � 0, 	
�� � 	̂.	 It is essential for the structure of the task. 
Keeping these variables unchanged, the mentioned problem becomes a 
problem:  

Minimize 

N
�, �� � _ �
�̂  �Y�M J 
�̂  �Y�M�]
= �9[� 

� 1
` �
�̂  �Y�M J 
�̂  �Y�M�. 

 

Subject to 

0	 � �
�̂, 	̂  �̂�  !
�̂, 	̂  �̂�. (10) 

0 � :
:9R 
�̂  T�  ;  <=  �̂. (11) 
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We construct known Lagrangian for steady state problem  

* � 1
` �
�̂  �Y�M J 
�̂  �Y�M� 

     J a:S3�
�̂, 	̂  �̂�  !
�̂, 	̂  �̂�5 
     J aM 	 bU c 1

1  S 
�̂  T�  ;  <=d  �̂e 
 

Differentiating with respect to  �̂, �,f 		̂, denoting  λ1 =  ρµ1,  λ2 =  ρµ2, 
we get 

Ly=2��̂  �Y� J h: $ij
�̂,B̂9"f�i�̂  ik
�̂,B̂9"f�
i�̂ ' J hM :


:9R� � 0, (12) 

Lπ=2��̂  �Y� J h: $ij
�̂,B̂9"f�i"f  ik
�̂,B̂9"f�
i"f '  hM � 0, (13) 

LR=h: $ij
�̂,B̂9"f�iB̂  ik
�̂,B̂9"f�
iB̂ ' � 0. (14) 

As  
ij
�̂,B̂9"f�

iB̂ l 0	and	 ik
�̂,B̂9"f�iB̂ O 0, λ1=0, what results from equation 

(14). Further, from (12) and (13) we get 

�̂ � �Y  :
M hM

:
:9R ,			 �̂ � �Y J :

M hM	. (15) 

Unknown quantities 	̂, hM are computed from equations (10), (11). From 
equation (11) we express λ2: 

hM � 2
1

1op��q9r�9s9t&
u 1
1opv

wD:
.  (16) 

From (15) we get 

�̂ � �Y 
1

1 J S ��Y  T�  ;  x=1
1 J S J 1 J S

,			 
    
(17)
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�̂ � �Y J
11 J S ��Y  T�  ;  x=

u 11 J SvM J 1
	. 

Steady state problem has simple optimal solution �̂, �̂  given by (17) 
and 	̂ given by (5). Solving this problem and considering zero inflation 
steady state as an inflation target, we get instead of (17) 

�̂ � �Y	,					�̂ � �Y      

Steady state solution of the model is very important because it is 
usually the final continuing strategy in a model of optimal control with 
infinite horizon. 

6. Pontryagin principle 
To solve and analyse we choose Pontryagin principle as a relatively 

simple method for reaching of our objectives. For the solution of the 
problem given by equations (1)-(3) Pontryagin principle (Pontryagin et al. 
(1976), Jahn (2007)) is used. The Hamiltonian of the problem has a form 

y
�, �, 	� � �9[� $��
��  �Y�M J ��
��  �Y�M' J 

Jz:
��S����
��, 	
��  �
���  !��
��, 	
��  �
���� 
JzM
��U {7 b 1

1  S 
�
��  T�  ;
��  <=e  �
��|. 
(18) 

The Pontryagin principle among others states that if the solution of an 
optimal control problem minimizes objective functional, then the 
Hamiltonian reach maximum as a function of R.  But the expression 
����
��, 	
��  �
���  !��
��, 	
��  �
���� decreases in R, so the 
Hamiltonian reaches its maximum in R0 or in R1 which depends on 
positivity or negativity of z:
��. The optimal control solution thus takes 
either the extreme values of control variable and is called the bang-bang 
optimal control solution.    

The co-state equations are  

z�:
�� � 23�
��  �Y5�9[�  U7 1
1  S z:
��, 
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zM
�� b }�
}� ��
��, 	
��  �
���  }!

}� ��
��, 	
��  �
���e, 
z� M
�� � 23�
��  �Y5�9[�  U7z:
��. 

zM
�� b }�
}� ��
��, 	
��  �
���  }!

}� ��
��, 	
��  �
���e. 
As the system of co-state equations is a non-autonomous one, to re-

arrange it by multiplying the whole system with e ρt, we get 

�[�z�:
�� � 2��
��  �Y� 	 U7�[�zM
�� 
�[�z:
�� b}�}� ��
��, 	
��  �
��� 

}!
}� ��
��, 	
��  �
���e 

 

�[�z�M
�� � 2��
��  �Y�  U7�[�zM
�� 
																										  �[�z:
�� b}�}� ��
��, 	
��  �
���

 }!
}� ��
��, 	
��  �
���e 

 

Let us define ~�
�� � �[�z�
��, j=1, 2. Taking its derivative with 
respect to t we get    

~��
�� � `�[�z�
��J�[�z��
��.     

Plugging it to (18) and the co-state system equations, we get the 
Hamiltonian multiplied by �[� and new transformed co-state equations. 

�[�y
�, �, 	� � y[
�, �, 	�
� $��
��  �Y�M J ��
��  �Y�M' J 

											 J ~:
��S����
��, 	
��  �
���  !��
��, 	
��  �
���� 
											 J ~M
���7�
�� J 	U��
��  �Y��, 

    
(19)
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~�:
�� � 2�
��  7 :
:9R ~M
��. 

																										  	~:
�� b}�}� ��
��, 	
��  �
���
 }!
}� ��
��, 	
��  �
���  `e, 

    
(20) 

~�M
�� � �
��  
U7  `�~M
��
 ~:
�� b}�}� ��
��, 	
��  �
���
 }!
}� ��
��, 	
��  �
���e. 

    
(21)
  

The system of equations (19), (20) and (21) will be used to find the 
optimal solutions in the next section. 

Exclusion of evidently non-optimal regimes 

Solving analytically the whole system described by equations (19) – 
(21) is very complicated. Therefore, we only use the analytical approach  
to exclude some trajectories which are not optimal. Let begin with 
assumption y>yg. First we prove that it cannot be optimal to keep the 
interest rate at level R0 under condition y>yg. Let us assume the opposite 
statement, i.e. keeping the interest rate at R0. In accordance with 
Pontryagin principle R0 should maximize Hρ, which imply p1(t)>0.  Let 

Q
�� �  }�
}� ��
��, 	
��  �
��� J

}!
}� ��
��, 	
��  �
��� J `, 

K � 
7  `�, 
�
�� � }�

}� ��
��, 	
��  �
��� 
}!
}� ��
��, 	
��  �
���. 

 

Using the above expressions the system (20), (21) takes a form: 

~�:
�� � 2��
��  �Y� J ~:
��Q
��  U~M
��, 
~�M
�� � 2�
��  ~:
���
��  
7  `�~M
��. 

 

Linearizing it in the point (y, π, R,p1, p2)=( yg, 0, R0, 0, 0) we get:  
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~�:
�� � ~:
��Q  U~M
��, (22) 

~�M
�� � ~:
��� J K~M
��, (23) 

where A =  ij
i� ��Y , 	=� J ik

i� ��Y, 	=� J `, 

 c = K � 
7  `�, 

 B = 
ij
i" ��Y, 	=�  ik

i" ��Y, 	=�. 

The characteristic equation of the linearized system (22), (23) is 

hM  
Q J K�h J QK  U� � 0.  

The roots of characteristic equations are positive provided that  QK  U� O 0, thus the state in time t1 is not accessible, because p1(t)>0, 
and  ~�1(t)>0 for t<t1. Let QK  U� l 0,  p1(t)>0. Assume that p1(t) 
decrease to 0. In this case p2(t) increase and according to equation (22) 
p2(t)>0  and thus cannot reach 0. We can analogously prove that keeping 
R at R1 cannot be optimal.  As obtaining a complete analytical solution is 
theoretically challenging and time consuming we suppose that using 
fuzzy regulator to get an optimal solution is more appropriate approach in 
this case. 

7. Using Fuzzy Regulator 
The principle of fuzzy regulator is not so complex. Working with a 

fuzzy regulator system only requires to understand the basic principles of 
how to control this system. These basic principles are called control 
strategy (for more detailed explanation of this concept, see Driankov 
(1993) and Novák (2000)). Fuzzy regulator is a set of predicates of type If 
- Then. These predicates are formulated in natural language. Let us 
illustrate the use of fuzzy regulator in a simple model of central bank. 
Suppose that a central bank implements its chosen monetary policy with 
the inflation targeting regime. The central bank would change the short-
term interest rate one way or the other way whenever it recognizes that 
there would be some substantial future deviation of the product and 
inflation from its targets and the change in the short-term interest rate 
does not affect its primary task: keeping the price stability in the 
economy.  Optimal control of analyzed system requires using bang-bang 
regulator. It is considerable advantage lying in the fact that if  the central 
bank changes the interest rate it does not need to calculate the size of the 
change. For the central bank the bounds of the interest rate should be 
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known and the bank can set the interest rate either close to the lower 
bound or the upper bound. The list of optimal moves of interest rate taken 
by a central bank in the bang-bang fuzzy regulation framework is shown 
in Tab 1.   

Tab. 1: The list of optimal moves of interest rate  

Difference y-yn Difference π-πg Control variable R 
Big and negative Big and negative Lower bound R 

Small and negative Small and negative No small 
Zero Zero Use previous experience 
Small and positive Small and positive No big 
Big and positive Big and positive Upper bound R 

Now let’s proceed with a numerical model mimicking a real economy. 
We assume that the central bank targets potential product yn and zero 
inflation. Thus: 

�
�, 	  �� � T
�1 J 	  �
���
1 J �9L�
���,		 

!
�, 	  �� � != J !:�
�� J !M�	  �
���.	 
 

For this economy we suppose that in accordance with reality, this set 
of parameter values is valid: α = 0.87; a = 0.42; b = 6; s0 = 0.12; s1 = 0.8; 
s2 = 1.6; λ = 0.05; yn = 0; ρ = 0.05; R0 = 0.04; R1 = 0.06; 

Plugging them into equations (1)-(4) we get: 

N
�, �� � Z 3�
��M J �
��M5
]

=
�9=.=��, 

�� 
�� � S b =.�M
�:DB9"
����:D�0��
G�� 0.12  0.8�
��  1.6�	 

�
���e �� 
�� � U V7 $ :
:9R 
�
��  T�  ;  <='  �
��W , U O 0,

0.045 � 	 � 0.06. 

 

The initial conditions are �
0� � 0.5, �
0� � 0.06.  
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Suppose that central bank evaluates its policy at the end of each 
quarter and implements the approved policy after two months. It switches 
interest rate after two month whenever find that the difference y – yn have 
changed its sign. When solving the optimal control problem with infinite 
horizon by the bang-bang principle, we use the boundary interest rates for 
pre-stationary control until the steady state is reached.  The same strategy 
we choose when using fuzzy regulator. We start at time t = 0 with y = 0.5 
which is above its potential, so we set the interest rate at maximum 0.06. 
As the result, the production decreases. After 18 periods it reaches its 
potential y0. As we assume it takes other 2 periods for us to make the 
decision about the interest rate. At period 20, as the production is under 
its potential, we set the interest rate at its minimum of 0.045. With a low  

Figure 1: Smoothing output gap by using a fuzzy regulator 

 

Interest starts increasing and overpasses its potential at period 27. 
According to the assumption we make at the beginning, it takes another 
quarter for the central bank to evaluate its rate, the production monetary 
policy and 2 periods to reset the interest rate. Since the production is very 
close to the potential product, there is no need to set the interest rate at 
maximum and minimum. So, at period 32, we set the interest rate at 0.052 
at the middle of the interval. The change of interest rate causes the 
reversion of the product to its potential. As the product moves closely 
around its potential, the central bank only needs to fine-tune the interest 
rate to steer the product so that it converges smoothly to it potential. In 
our case the interest rate needs to be set at the value of 0.05. Fig. 1 shows 
how the product converges to its potential using fuzzy regulator. The 
vertical axis of the figure shows the size of the output gap and the 
horizontal axis represents the time in months.  As far as the difference 
between the real inflation and the inflation target is concerned, by the 
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nature of the Phillips curve, the inflation adapts very quickly and after 
several periods it approaches zero and stays unchanged from then on.  
Therefore, this simple model shows that using the Pontryagin principle 
combined with a fuzzy regulator, a central bank using an inflation 
targeting regime can reach its objectives in a relatively comfortable way.  

8. A modified Taylor rule 
The other approach to solve the problem of inflation targeting is with 

help of reaction function which is obviously given by Taylor rule. In our 
model, we have a central bank which tries to actively stabilize the 
economy to reach zero inflation in steady state. Its monetary policy is to 
target the real inflation rate by following a modified Taylor rule (1993) in 
this form: 

	
�� � 	̂ J ���
�� J �"�
��, 	�� O 0, �" O 0, (24) 

where 	̂ is the interest rate in steady state, �� and �" are parameters. As 
the system of differential equations (1) and (4) has 3 unknowns 	
��, 
�
��	and �
��, first we have to exogenously determine R so that the zero 
inflation steady state can be reached. Then the solutions of steady state 
denoted as 
�̂, 	̂�, meaning that in this state the production is time 
invariant and inflation is a zero, must be the solutions of the system of 
two equations (1) and (4): 

0 � S3�
�, 	�  !
�, 	�5, S O 0 

� �67389:
��  ;  <=5.  

9. Numerical example  
To show how the model works, we need to find a set of appropriate 

values for parameters included in the model. The main problem we face is 
that not all of them are observable, and others may vary with time. Many 
of them have not been tested in the literature so far, and it makes their 
choice some time very speculative. 

In equation (1) of investment function, we chose following numerical 
values H � 0.42, � � 10, K � 1. The parameters of savings function are 
!= � 0.12	;	 	!: � 0.8, 	!M � 1.6,	 	 � 0.05. The adjustment parameter 
� � 4.2. In equation (4) we calibrate its parameters as follows. In 
production function they are S � 0.4, T � 0	.	 For the labour supply, we 
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have ; � 0. The natural rate of employment <= � 0  and adjustment 
parameter of Phillips curve 7 � 0.1. Adjustment parameter of differential 
equation (4) U � 0.1. Putting them in equations (1) and (4), we obtain 

�� 
�� � ��N  0.12  0.8�
��  1.6�0.05  �
���� (25) 

�� 
�� � 0.1 {0.1 b 1
1  0.4 �
��e  �
��| (26) 

where J = =.�M
�=.=�9"
����:D�01&�
G��. 

As we choose �
�� = 0, equations (10) and (11) become: 

�
�, 0.05� � 0.42

0.05  �
���
1 J �9:=�� 

                      0.12  0.8�
��  1.6�0.05  �
���. 

Figure 2 Investment and saving functions 

 

In figure 2, the graphs of investment function depending on � (the 
dashed line) and savings function (the solid line) are displayed. We can 
observe the two curves intersect each other in three points which are the 
equilibria of commodity market. The middle point is the equilibrium in 
commodity market and it also is the point of steady state with zero 
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inflation. The first point on the left hand side is the depressive 
equilibrium in which deflation occurs in the economy. The third 
intersection is an equilibrium connected with positive inflation and we 
call it the point of booming equilibrium. The two outer points 
representing depressive and booming equilibrium are just partial 
equilibria because only commodity market clears.    

Now, let’s assume that the economy can be represented by equations 
(25) and (26) with stable interest rate 0.05. We calibrate such an economy 
and the dynamics of its variables are shown in Figures 3 and 4.  

Figure 3 Evolution of production, R=0.05 

 

 

Figure 4 Evolution of inflation, R=0.05 
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It can be seen that the trajectories of production converges to stable 
points of either depressive equilibrium or booming one depending on 
initial conditions. The dashed lines are the evolutions of production and 
inflation starting from some positive initial conditions of production and 
inflation and end up in the booming equilibrium. On the contrary, the 
solid lines mark out the evolutions of production and inflation (deflation) 
converging towards the depressive equilibrium. 

Figures 5 and 6 display the trajectories of production and inflation in 
the case when central bank continuously manages interest rate according 
to Taylor rule. By substituting expression (24) into equations (25) and 
(26) and using the set of parameters’ values described above, we obtain 
these two equations:  

�� 
�� � ��N  0.12  0.8�
��  1.6�0.05  �
����,  

�� 
�� � 0.1 {0.1 b 1
1  0.4 �
��e  �
��|  

As the central bank continuously changes the interest rate according 
to modified Taylor rule shown in (24) and with calibrating parameters 	̂ � 0.05, 	�� � 0.05, �" � 4.05, the trajectories of the variables of 
interest are much more complex than in previous case and either under-
shooting of production and over-shooting of inflation can occur.  

Figure 5 Evolution of production with R continuously managed by CB  
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Figure 6 Evolution of inflation when R is continuously managed by CB 

 

Figure 7 displays the evolution of interest rate managed continuously 
by the central bank. In figures 5, 6 and 7, two variables of our interest y(t) 
and π(t) as well as the interest rate start at their relatively high values, 
then they drop toward their equilibrium values. According to the sign of 
these values, one may think that it must be the stable depressive 
equilibrium linked with deflation (see Figure 2). We have experimented 
with several sets of parameters’ values and it turns out that the economy 
always ends up in this point. The answer to the question why it is so will 
be the subject of further research. 

Figure 7 Evolution of  R  continuously managed by CB 
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Conclusion 
In this work, we examine monetary policy conducted by a central bank as 
an optimal control problem. In order to do so, we have proposed a 
continuous alternative to the traditional discrete version of the New 
Keynesian model. We derive two principal equations of the continuous 
version of the model and use loss function and a modified Taylor-type 
rule to study the dynamics of the whole system. To find a solution of the 
system and analyse its behaviour, we select a set of suitable values for all 
parameters included in the model. Then we use Mathematica to solve this 
system of equations. 

The results of our experiments have confirmed the fact that monetary 
policy operating under two different regimes, one with the loss function, 
the other with the modified Taylor rule as a reaction function, leads to a 
different outcome. Though from the mathematical structure of the 
dynamics of the system, i.e. its dynamics IS curve and Phillips curve, and 
from its formal characteristics it should be the same, it turns out to not be 
the case. In the experiment with loss function, we have a continuous 
optimal control problem with bang-bang optimal control principle. Using 
the Taylor rule, the experiment has become a control problem. In order to 
analyse it we selected a set of suitable values for all parameters included 
in the model. The solution we have found differs from each other not only 
in its magnitude, but also more importantly the control principle are 
different.  

The results also show that monetary policy continuously managed interest 
rate brings relatively more complex dynamics in comparison with the 
case when loss function is used and the problem was analysed as a 
continuous optimal control problem. Further, in both analysed problems 
we have also found that using a relatively simple decision rule on interest 
rate sometime can bring unexpected results.  
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Monetary Policy as an Optimal Control Problem 
Jan KODERA – Van Quang TRAN  

ABSTRACT  

This paper analyses the monetary policy of a central bank in a simple 
deterministic and continuous dynamic non-linear New-Keynesian model 
with an active central bank conducting monetary policy within inflation 
targeting framework. To meet this purpose, first we derive two 
differential equations capturing the dynamics in the economy: the 
dynamic IS curve representing the commodity market and the Phillips 
curve capturing the connection between the real and nominal sectors of 
the economy in a continuous form. By introducing a quadratic loss 
function commonly used in New Keynesian Economics we get optimal 
control problem which solution will be analysed with the use of fuzzy 
control. Then we introduce a modified form of the Taylor rule and 
analyse the solution of the same differential equations capturing the 
dynamics of the economy using Taylor rule instead of loss function. The 
comparison of the solutions of both models will be demonstrated in 
examples in which the main characteristic of dynamics of production and 
inflation are displayed.  

Key words: Deterministic continuous model; Dynamic IS curve; New-
Keynesian Phillips curve; Loss function; Modified Taylor 
rule; Optimal control problem. 
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