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Abstract

In [5] (Int. J. Game Theory, 42:567-592, 2013) a general notion of perfect Bayesian equilib-
rium (PBE) was introduced for extensive-form games and shown to be intermediate between
subgame-perfect equilibrium and sequential equilibrium. The essential ingredient of the pro-
posed notion is the existence of a plausibility order on the set of histories that rationalizes a
given assessment. In this paper we study restrictions on the belief revision policy encoded in a
plausibility order and provide necessary and su¢ cient conditions for a PBE to be a sequential
equilibrium.
Keywords: plausibility order, belief revision, Bayesian updating, independence, sequential equi-
librium, consistency.

1 Introduction

In [5] a solution concept for extensive-form games was introduced, called perfect Bayesian equi-
librium (PBE), and shown to be a strict re�nement of subgame-perfect equilibrium ([18]); it was
also shown that, in turn, then notion of sequential equilibrium ([11]) is a strict re�nement of PBE.
The central elements of the de�nition of perfect Bayesian equilibrium are the qualitative notions
of plausibility order and AGM-consistency. As shown in [4], these notions can be derived from the
primitive concept of a player�s epistemic state, which encodes the player�s initial (or prior) beliefs
and her disposition to revise those beliefs upon receiving (possibly unexpected) information. The
existence of a plausibility order that rationalizes the epistemic state of each player guarantees that
the belief revision policy of each player satis�es the axioms for �rational�belief revision introduced
in [1]. In this paper we continue the study of PBE, in particular we explore the restrictions on belief
revision incorporated in the notion of sequential equilibrium and provide necessary and su¢ cient
conditions for a PBE to be a sequential equilibrium. There are two such conditions. One is the
qualitative notion of choice-measurable plausibility order, which was shown in [5] to be implied by
sequential equilibrium. Choice measurability requires that the plausibility order - on the set of
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histories that rationalizes the given assessment have a cardinal representation, in the sense that
there is an integer-valued representation F : H ! N of - such that F (h) � F (h0) if and only if
h - h0 (this is the ordinal part) and, if a is an action available at h and h0 (so that h and h0 belong
tot he same information set) then F (h)�F (h0) = F (ha)�F (h0a) (this is the cardinal part). Thus
a cardinal representation F measures the distance between histories and this distance is required to
be preserved by the addition of a common action. The notion of choice measurability corresponds
to the notion of labelling introduced in [11, p. 887] and further clari�ed in [19, 20]. The second
condition is a strengthening of the notion of �consistent Bayesian updating�which is part of the
de�nition of PBE.
The paper is organized as follows. The next section reviews the de�nition of PBE. Section 3

discusses choice measurability and provides two qualitative characterizations of it, one of which
is known from the theory of qualitative probabilities and makes essential use of the structure of
histories, and the other is, as far as I know, new and is more general, in the sense that it applies
to pre-orders on arbitrary sets. In Section 4 it is shown that choice measurability together with
a strengthening of the notion of �consistent Bayesian updating�are necessary and su¢ cient for a
PBE to be a sequential equilibrium. Section 5 discusses related literature and Section 6 concludes.
The proofs are given in Appendix B, while Appendix A reviews the notation of [5], which is used
throughout this paper.

2 AGM-consistency and perfect Bayesian equilibrium

We use the history-based de�nition of extensive-form game (see Appendix A). Recall that an
assessment is a pair (�; �) where � is a behavior strategy pro�le and � is a system of beliefs (that
is, a collection of probability distributions, one for every information set, over the elements of that
information set). An assessment encodes the beliefs and belief revision policy of the players: the
strategy pro�le � yields the initial beliefs as well as conditional beliefs about future moves, while �
gives conditional beliefs about past moves. The following de�nitions are taken from [5].
Given a set H, a total pre-order on H is a binary relation on H which is complete (8h; h0 2 H,

either h - h0 or h0 - h) and transitive (8h; h0; h00 2 H, if h - h0 and h0 - h00 then h - h00).

De�nition 1 Given an extensive form, a plausibility order is a total pre-order on the set of histo-
ries H that satis�es the following properties: for every h 2 D (D is the set of decision histories),

PL1: h - ha; 8a 2 A(h) (A(h) is the set of actions available at h),

PL2: (i) 9a 2 A(h) such that ha - h,
(ii) 8a 2 A(h); if ha - h then h0a - h0; 8h0 2 I(h)
(I(h) is the information set that contains h),

PL3: if history h is assigned to chance, then ha - h, 8a 2 A(h):

If h - h0 we say that history h is at least as plausible as history h0.1 Property PL1 says that
adding an action to a decision history h cannot yield a more plausible history than h itself. Property

1As in [5] we use the notation h - h0 for �h is at least as plausible as h0�, rather than the perhaps more natural
notation h % h0, for two reasons: (1) it is the standard notation in the extensive literature that deals with AGM-style
([1]) belief revision and (2) as shown below, it is convenient to assign lower values to more plausible histories (and the
value 0 to the most plausible histories). In light of this, an alternative reading of h - h0 is �h is not more implausible
than h0�, in which case one would think of - as an �implausibility� order.
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PL2 says that at every decision history h there is some action a such that adding a to h yields a
history which is at least as plausible as h and, furthermore, any such action a performs the same
role with any other history that belongs to the same information set. Property PL3 says that all
the actions at a history assigned to chance are �plausibility preserving�. We write h � h0 (with the
interpretation that h is as plausible as h0) as a short-hand for �h - h0 and h0 - h�(thus � is an
equivalence relation on H) and we write h � h0 (with the interpretation that h is more plausible
than h0) as a short-hand for �h - h0 and not h0 - h�. It follows from Property PL1 that, for every
h; h0 2 H, if h0 is a pre�x of h then h0 - h. Furthermore, by Properties PL1 and PL2, for every
decision history h, there is at least one action a at h such that h � ha, that is, ha is as plausible
as h and, furthermore, if h0 belongs to the same information set as h, then h0 � h0a. We call such
actions plausibility preserving.

A plausibility order encodes a qualitative description of the epistemic state of each player,
that is, the player�s initial beliefs (or prior beliefs: her beliefs before the game is played) and her
disposition to revise those beliefs when informed that it is her turn to move.

De�nition 2 Fix an extensive-form. An assessment (�; �) is AGM-consistent if there exists a
plausibility order - on the set of histories H such that:

(i) the actions that are assigned positive probability by � are precisely the plausibility-preserving
actions: 8h 2 D;8a 2 A(h),

�(a) > 0 if and only if h � ha; (P1)

(ii) the histories that are assigned positive probability by � are precisely those that are most
plausible within the corresponding information set: 8h 2 D;

�(h) > 0 if and only if h - h0;8h0 2 I(h): (P2)

If - satis�es properties P1 and P2 with respect to (�; �), we say that - rationalizes (�; �).

An assessment (�; �) is sequentially rational if, for every player i and every information set I of
hers, player i�s expected payo¤ - given the strategy pro�le � and her beliefs at I - cannot be increased
by unilaterally changing her choice at I and possibly at information sets of hers that follow I.2 In
order to de�ne sequential rationality more precisely we need additional notation. Let Z denote
the set of terminal histories and, for every player i, let Ui : Z ! R be player i�s von Neumann-
Morgenstern utility function. Given a decision history h, let Z(h) be the set of terminal histories
that have h as a pre�x. Let Ph;� be the probability distribution over Z(h) induced by the strategy
pro�le �, starting from history h (that is, if z is a terminal history and z = ha1:::am then Ph;�(z) =Qm
j=1 �(aj)). Let I be an information set of player i and let ui(Ij�; �) =

P
h2I

�(h)
P

z2Z(h)
Ph;�(z)Ui(z)

be player i0s expected payo¤ at I if � is played, given her beliefs at I (as speci�ed by �). We say
that player i�s strategy �i is sequentially rational at I if ui(Ij(�i; ��i); �) � ui(Ij(� i; ��i); �) for

2There are two de�nitions of sequential rationality: the weakly local one - which is the one adopted here -
according to which at an information set a player can contemplate changing her choice not only there but possibly
also at subsequent information sets of hers, and a strictly local one, according to which at an information set a
player contemplates changing her choice only there. If the de�nition of perfect Bayesian equilibrium (De�nition 6
below) is modi�ed by using the strictly local de�nition of sequential rationality, then an extra condition needs to be
added, namely the "pre-consistency" condition on � identi�ed in [8] and [15] as being necessary and su¢ cient for the
equivalence of the two notions. For simplicity we have chosen the weakly local de�nition.
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every strategy � i of player i (where ��i denotes the strategy pro�le of the players other than i,
that is, ��i = (�1; :::; �i�1; �i+1; :::; �n)).

De�nition 3 An assessment (�; �) is sequentially rational if, for every player i and for every
information set I of player i, �i is sequentially rational at I:

In conjunction with sequential rationality, the notion of AGM-consistency is su¢ cient to elim-
inate some Nash equilibria as �implausible�. Consider, for example, the extensive game of Figure
1 and the pure-strategy pro�le � = (c; d; f) (highlighted by double edges), which constitutes a
Nash equilibrium of the game (and also a subgame-perfect equilibrium since there are no proper
subgames). Can � be part of a sequentially rational AGM-consistent assessment (�; �)? Since, for
Player 3, choice f can be rational only if the player assigns (su¢ ciently high) positive probability
to history be, sequential rationality requires that �(be) > 0; however, any such assessment is not
AGM-consistent. In fact, if there were a plausibility order - that satis�ed De�nition 2, then, by
P1, b � bd (since �(d) = 1 > 0) and b � be (since �(e) = 0)3 and, by P2, be - bd (since - by
hypothesis - � assigns positive probability to be). By transitivity of -, from b � bd and b � be it
follows that bd � be, yielding a contradiction.

e

c

2

1

d

a
b

f fg ggf

3a bd be

1
0
2

0
0
0

0
1
0

2
1
1

0
0
0

2
0
1

0
0
1

The Nash equilibrium � = (c; d; f) cannot be part
of a sequentially rational AGM-consistent assessment.

Figure 1

On the other hand, the Nash equilibrium �0 = (b; d; g) together with �0(bd) = 1 forms a sequen-
tially rational, AGM-consistent assessment: it can be rationalized by several plausibility orders, for

3By de�nition of plausibility order, b - be and, by P1, it is not the case that b � be because e is not assigned
positive probability by �. Thus b � be.
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instance

0@ ;; b; bd; bdg most plausible
a; c; be; ag; beg
af; bdf; bef least plausible

1A, where each row represents an equivalence class of

-.
Throughout this paper we adopt the following representation of a total pre-order: if the row to

which history h belongs is above the row to which h0 belongs, then h � h0 (h is more plausible than
h0) and if h and h0 belong to the same row then h � h0 (h is as plausible as h0).

De�nition 4 Fix an extensive form. Let - be a plausibility order that rationalizes the assessment
(�; �). We say that (�; �) is Bayesian relative to - if for every --equivalence class E that contains
some decision history h with �(h) > 0, there exists a probability measure �E : H ! [0; 1] such that:

B1: Supp(�E) = fh 2 E : �(h) > 0g:

B2: If h; h0 2 Supp(�E) and h0 = ha1:::am (that is, h is a pre�x of h0) then

�E(h
0) = �E(h)� �(a1)� ::: � �(am):

B3: If h0 2 Supp(�E), then, 8h 2 I(h0)

�(h) = �E (h j I(h0)) =
�E(h)

�E(I(h0))
:

Property B1 requires that �E(h) > 0 if and only if h 2 E and �(h) > 0 (thus �E(h) = 0 if and
only if either h 2 HnE or �(h) = 0). Property B2 requires �E to be consistent with the strategy
pro�le � in the sense that if h; h0 2 E, �E(h) > 0, �E(h0) > 0 and h0 = ha1:::am then the probability
of h0 (according to �E) is equal to the probability of h multiplied by the probabilities (according to
�) of the actions that lead from h to h0.4 Property B3 requires the system of beliefs � to satisfy
Bayes�rule in the sense that if history h belongs to information set I then �(h) (the probability
assigned to h by �) is the probability of h conditional on I using the probability measure �E , where
E is the equivalence class of the most plausible elements of I. In fact, as shown in [5], Property
B3 is equivalent to the following (for every I � H, let Min- I denote the set of most plausible
histories in I, that is, Min- I = fh 2 I : h - h0;8h0 2 Ig):

For every information set I such that Min-I � E
and, for every h 2 I, �(h) = �E (h j I) = �E(h)

�E(I)
:

De�nition 5 An assessment (�; �) is Bayesian AGM-consistent if it is rationalized by a plausibility
order - on the set of histories H and it is Bayesian relative to -.

The last ingredient of the de�nition of perfect Bayesian equilibrium is the standard requirement
of sequential rationality.

De�nition 6 An assessment (�; �) is a perfect Bayesian equilibrium if it is Bayesian AGM-
consistent and sequentially rational.

4Note that if h; h0 2 E and h0 = ha1:::am, then �(aj) > 0, for all j = 1; :::;m. In fact, since h0 � h, every action
aj is plausibility preserving and therefore, by Property P1 of De�nition 2, �(aj) > 0.
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Remark 7 It is proved in [5] that if (�; �) is a perfect Bayesian equilibrium then � is a subgame-
perfect equilibrium and that every sequential equilibrium is a perfect Bayesian equilibrium (but the
converse is not true). The example of Figure 1 shows that PBE is a strict re�nement of subgame-
perfect equilibrium (since in that game every Nash equilibrium is subgame-perfect because there are
no proper subgames).

c1

f g

2
d d

3

f g

e e

0
1
0

0
0
0

2
2
1

0
0
0

0
1
0

1
1
1

a b

1
0
0

The assessment � = (c; d; g); �(a) = �(be) = 1
is a perfect Bayesian equilibrium.

Figure 2

For the game illustrated in Figure 2, a perfect Bayesian equilibrium is given by � = (c; d; g)
and �(a) = �(be) = 1 (� is highlighted by double edges and the histories that are assigned positive
probability by � are shown as black nodes). In fact (�; �) is sequentially rational and, furthermore,
it is rationalized by the following plausibility order and is Bayesian relative to it (as can be veri�ed
using the following measures on the equivalence classes of the plausibility order that contain histories
h with �(h) > 0): 0BBBBBBBB@

;; c
a; ad
b; bd
be; beg
ae; aeg
bef
aef

1CCCCCCCCA
;

0@ �0(;) = 1
�1(a) = 1
�3(be) = 1

1A (1)
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As explained below, the belief revision policy encoded in the PBE shown in Figure 2 may be criti-
cized as failing to be �minimal�. In the following sections we introduce restrictions on belief revision
that can be used to re�ne the notion of perfect Bayesian equilibrium and provide a characterization
of sequential equilibrium which is essentially qualitative.

3 Choice-measurable plausibility orders

The belief revision policy encoded in a perfect Bayesian equilibrium can be interpreted either as
the epistemic state of an external observer5 or as a belief revision policy which is shared by all the
players. For example, the perfect Bayesian equilibrium illustrated in Figure 2 re�ects the following
belief revision policy: the initial beliefs are that Player 1 will play c; conditional on learning that
Player 1 did not play c, the observer would become convinced that Player 1 played a (that is, she
would judge a to be strictly more plausible than b) and would expect Player 2 to play d; upon
learning that (Player 1 did not play c and) Player 2 did not play d, the observer would become
convinced that Player 1 played b and Player 2 played e, hence judging be to be strictly more plausible
than ae, thereby reversing her earlier belief that a was strictly more plausible than b. Although
such a belief revision policy does not violate the rationality constraints introduced in [1], it does
involve a belief change which is not �minimal�. Such �non-minimal�belief changes can be ruled
out by imposing the following restriction on the plausibility order: if h and h0 belong to the same
information set (h0 2 I(h)) and a is an action available at h (a 2 A(h)), then

h - h0 if and only if ha - h0a: (IND1)

IND1 says that if h is deemed to be at least as plausible as h0 then the addition of any action
a must preserve this judgment, in the sense that ha must be deemed to be at least as plausible
as h0a, and vice versa; it can also be viewed as an �independence� condition, in the sense that
observation of a new action cannot lead to a change in the relative plausibility of previous actions.
Any plausibility order that rationalizes the assessment shown in Figure 2 must violate IND1.
Another �minimality�or �independence" condition is the following, which says that if action a

is implicitly judged to be at least as plausible as action b conditional on history h then the same
judgment must be made conditional on any other history that belongs to the same information set
as h: if h0 2 I(h) and a; b 2 A(h), then

ha - hb if and only if h0a - h0b: (IND2)

These two properties of plausibility orders are independent of each other: see Lemma 9 below.
Rather than investigating re�nements of perfect Bayesian equilibrium induced by properties

such as IND1 and IND2, we will focus on one property of plausibility orders that implies both
IND1 and IND2 and is at the core of the notion of sequential equilibrium. The following de�nitions
are taken from [5].
Given a plausibility order - on a �nite set of histories H, a function F : H ! N (where N

denotes the set of non-negative integers) is said to be an ordinal integer-valued representation of -
if, for every h; h0 2 H,

F (h) � F (h0) if and only if h - h0: (2)

5For example, [9] adopt this interpretation. For a subjective interpretation of perfect Bayesian equilibrium and
an epistemic characterization of it see [4].
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Since H is �nite, the set of ordinal integer-valued representations is non-empty. A particular
ordinal integer-valued representation, which we will call canonical and denote by �, is de�ned as
follows.

De�nition 8 Let H0 = fh 2 H : h - x; 8x 2 Hg, H1 = fh 2 H n H0 : h - x; 8x 2 HnH0g
and, in general, for every integer k � 1, Hk = fh 2 H n H0 [ ::: [ Hk�1 : h - x; 8x 2
H n H0[ :::[ Hk�1g. Thus H0 is the equivalence class of - containing the most plausible histories,
H1 is the equivalence class containing the most plausible among the histories left after removing
those in H0, etc.6 The canonical ordinal integer-valued representation of -, � : H ! N, is given
by

�(h) = k if and only if h 2 Hk: (3)

We call �(h) the rank of history h:

Using �, property IND1 can be restated as follows: if h0 2 I(h) and a 2 A(h) then

�(h0)� �(h) � 0 if and only if �(h0a)� �(ha) � 0: (4)

Instead of an ordinal representation of the plausibility order - one could seek a cardinal repre-
sentation F : H ! N which, besides (2), satis�es the following property: if h0 2 I(h) and a 2 A(h),
then

F (h0)� F (h) = F (h0a)� F (ha): (IND1C)

IND1C can be viewed as a cardinal version of IND1 and it clearly implies the latter. If we think of
such a function F as measuring the �plausibility distance�between histories, then we can interpret
IND1C as a distance-preserving condition: the plausibility distance between two histories in the
same information set is preserved by the addition of the same action. The cardinal counterpart to
IND2 is given by: if h0 2 I(h) and a; b 2 A(h), then

F (hb)� F (ha) = F (h0b)� F (h0a) (IND2C)

Clearly IND2C implies IND2:
The proof of the following lemma is given in Appendix B.

Lemma 9 While the qualitative properties IND1 and IND2 are independent, IND1C holds if and
only if IND2C holds.

De�nition 10 A plausibility order - on the set of histories H is choice-measurable if there exists
an F : H ! N that satis�es (1) F (h) � F (h0) if and only if h - h0 and (2) property IND1C (which,
by the above lemma, is equivalent to IND2C). We call such a function F a cardinal integer-valued
representation of -. Note that, without loss of generality, we can set F (;) = 0.7

6Since H is �nite, there is an m 2 N such that fH0; :::; Hmg is a partition of H and, for every j; k 2 N, with
j < k � m, and for every h; h0 2 H, if h 2 Hj and h0 2 Hk then h � h0.

7 If F (;) > 0, de�ne F̂ : H ! N by F̂ (h) = F (h) � F (;). Then F is a cardinal representation of - if and only if
F̂ is. It is straightforward to show that, within the context of a set of histories, the notion of choice measurability
coincides with the notion of �additive plausibility� discussed in [20]. In Proposition 14 we will deal with a more
general notion that, unlike the notion of additive plausibility, can be applied to arbitrary sets.
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Note that even if a plausibility order is choice measurable there is no guarantee that the canonical
representation � is also a cardinal representation, that is, that � satis�es property IND1C. This
fact is illustrated in [5, Figure 4, p. 577].
IND1C implies both IND1 and IND2, but the converse is not true, as can be seen from the

game shown in Figure 3, which is based on an example discussed in [2] and [9].

L
M

R

l l l

1

2

3

m m
m

r r r

3

3

a a
b

b

c d c d

e f e f

0
1
0

1
1
1

0
0
0

0
0
0

0
0
0

0
1
0

1
1
0

1
1
0

0
0
1

1
1
1

0
1
0

1
0
1

1
1
1

0
0
1

1
1
1

The assessment � = (M; `; (a; c; e)); �(M) = �(Mr) = �(Lm) = �(R`) = 1
is a perfect Bayesian equilibrium but cannot be rationalized by a

choice-measurable plausibility order.
Figure 3

The assessment � = (M; `; (a; c; e)); �(M) = �(Mr) = �(Lm) = �(R`) = 1 is a perfect Bayesian
equilibrium, rationalized by the following plausibility order, which satis�es IND1 and IND2. For
simplicity we have omitted from the order the terminal histories, since they are not relevant for the
following discussion.8

8The complete order is as follows:
; � M � M` � R � R` � R`e � Mm � Mme � Mr � Mra � L � L` � L`a � Rm � Lm � Lmc � Rr � Rrc �
Lr �Mrb � R`f �Mmf � L`b � Lmd � Rrd:
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0BBBBBBBB@

;;M
R;R`
Mm
Mr
L;L`
Lm
Rr

1CCCCCCCCA
(5)

However, this plausibility order is not choice measurable as will be shown below.

Our objective is to �nd necessary and su¢ cient conditions for a plausibility order to be choice
measurable. We start with a discussion of the plausibility order (5), which is reproduced below
together with the canonical ordinal integer-valued representation � and the corresponding values of
the cardinal function F : H ! N that we are seeking. Thus, for example, F (L) = F (L`) = y4; in
general, if �(h) = i then F (h) is denoted by yi.

0BBBBBBBBBBBBBB@

- : � : F :

;;M 0 0

R;R` 1 y1

Mm 2 y2

Mr 3 y3

L;L` 4 y4

Lm 5 y5

Rr 6 y6

1CCCCCCCCCCCCCCA
(6)

Condition IND1C imposes the following constraints:

F (R)� F (M) = F (Rr)� F (Mr)
F (L)� F (M) = F (Lm)� F (Mm) (7)

which, using the notation of (6), can be written as

y1 = y6 � y3
y4 = y5 � y2

(8)

Thus the problem is to determine whether there exist positive integers yi (i = 1; :::; 6) such that
(1) yi < yi+1 for all i = 1; :::; 5 and (2) the system of equations (8) is satis�ed. The problem can be
further simpli�ed by de�ning new integers x1; :::; x6 as follows: for every i = 1; :::; 6; xi = yi � yi�1
(letting y0 = 0), so that, for k > j, yk � yj = xj+1 + xj+2 + ::: + xk (for example, y5 � y2 =
x3|{z}

=y3�y2

+ x4|{z}
=y4�y3

+ x5|{z}
=y5�y4

): With this transformation, the constraints (8) can be rewritten as

x1 = x4 + x5 + x6
x1 + x2 + x3 + x4 = x3 + x4 + x5 + x6

(9)

10



and the problem of �nding a cardinal representation of (5) reduces to determining whether there
are positive integers x1; :::; x6 that satisfy the system of equations (9). The answer is negative,
since subtracting the �rst equation from the second yields x2 + x3 + x4 = x3, that is, x2 + x4 = 0
which is not compatible with x2 and x4 being positive. Thus the plausibility order (5) is not choice
measurable.9

We now provide necessary and su¢ cient conditions for a plausibility order to be choice measur-
able. The �rst characterization of choice measurability, which is known, is given in Proposition 11
and exploits the structure of the elements of H as sequences (and thus sets) of actions, while the
second characterization is more general and, as far as I know, new.
For the �rst characterization we need to introduce some de�nitions. Given a �nite set of

histories H and a total pre-order - on H, let C = h(h1; h2) ; (h3; h4) ; :::; (hn�1; hn)i (with n �
2 and, clearly, n even), be a sequence in - (thus hi - hi+1, for all odd i). Let A(C) =
fa 2 A : a 2 hi for some i = 1; :::; ng be the set of actions that appear in at lest one history in
sequence C. For every a 2 A(C) de�ne Odd(a) = fi : a 2 hi and i is oddg and Even(a) =
fi : a 2 hi and i is eveng. We say that the sequence is cancelling if, for every a 2 A(C), the cardi-
nality of Odd(a) is equal to the cardinality of Even(a), that is, if every action in A(C) appears as
many times in the odd-numbered histories as in the even-numbered histories. A cancelling sequence
is strict if, for at least one pair (hi; hi+1) in C, hi � hi+1.
The following proposition is an application of a known result in qualitative probability theory

([10, 17, 7]) to the set of histories H, where each history is viewed as a set of actions. For a proof
see [20, Lemma 4.1, p. 19].

Proposition 11 A plausibility order - on H is choice measurable if and only there are no strict
cancelling sequences in -.

As an application of the above proposition, consider the plausibility order (5), which we al-
ready showed not to be choice measurable. Then, by Proposition 11, there must be a strict can-
celling sequence and indeed one such sequence is h(R;Mm); (Mr;L); (Lm;Rr)i. In fact, A(C) =
fL;M;R;m; rg, Odd(R) = f1g, Even(R) = f6g, Odd(M) = f3g, Even(M) = f2g, Odd(m) = f5g,
Even(m) = f2g, Odd(r) = f3g, Even(r) = f6g; Odd(L) = f5g, Even(L) = f4g and R �Mm.
The test for choice measurability provided by Proposition 11 has two drawbacks, one practical

and one conceptual. From a practical point of view, the larger the set H (and thus the more
complex the plausibility order - on H) the more di¢ cult it is to determine whether or not a
cancelling sequence exists. From a conceptual point of view, the necessary and su¢ cient condition
identi�ed in Proposition 11 makes no reference to (and no use of) the constraints corresponding
to condition IND1C, which are at the core of the notion of choice measurability (for example, the
constraints (7) for the plausibility order (5)). The following characterization, on the other hand,
makes explicit use of those constraints; furthermore, it applies to the more general case of a total
pre-order on an arbitrary �nite set S (whose elements need not have the structure of sets of atomes,
e.g. sequences of actions).

Let S be an arbitrary �nite set and let - be a total pre-order on S. Let Sn� be the set of
equivalence classes of S. If s 2 S; the equivalence class of s is denoted by [s] = ft 2 S : s � tg
(where, as before, s � t is a short-hand for �s - t and t - s�); thus Sn� = f[s] : s 2 Sg. Let
:
= be an equivalence relation on Sn� � Sn�. The interpretation of ([s1] ; [s2])

:
= ([t1] ; [t2]) is that

9 It can be shown that any plausibility order that rationalizes the assessment shown in Figure 3 is not choice
measurable.
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the distance between the equivalence classes [s1] and [s2] is required to be equal to the distance
between the equivalence classes [t1] and [t2]. The problem we are addressing is the following.

Problem 12 Given a pair (-; :=), where - is a total pre-order on a �nite set S and :
= is an

equivalence relation on the set of equivalence classes of -, determine whether there exists a function
F : S ! N such that, for all s; t; x; y 2 S, (1) F (s) � F (t) if and only if s - t and (2) if
([s]; [t])

:
= ([x]; [y]), with s � t and x � y, then F (t)� F (s) = F (y)� F (x).

Instead of expressing :
= in terms of pairs of elements of Sn�, we shall express it in terms of

pairs of numbers (j; k) obtained by using the canonical ordinal representation � of -.10 That is, if
s1; s2; t1; t2 2 S and ([s1] ; [s2])

:
= ([t1] ; [t2]) then we shall write this as (�(s1); �(s2))

:
= (�(t1); �(t2)).

For example, let S = fa; b; c; d; e; f; g; h; `;mg and let - be as follows, with the corresponding
canonical representation � (thus a � x for every x 2 Snfag, [b] = fb; cg, b � d, etc.):

0BBBBBBBBBB@

- : � :

a 0
b; c 1
d 2
e 3
f; g 4
h; ` 5
m 6

1CCCCCCCCCCA
(10)

If the equivalence relation :
= contains the following pairs:11

([a]; [b])
:
= ([h]; [m])

([a]; [b])
:
= ([e]; [f ])

([a]; [d])
:
= ([f ]; [m])

([b]; [e])
:
= ([e]; [f ])

([b]; [e])
:
= ([f ]; [m])

then we express them (using �) as

(0; 1)
:
= (5; 6)

(0; 1)
:
= (3; 4)

(0; 2)
:
= (4; 6)

(1; 3)
:
= (3; 4)

(1; 3)
:
= (4; 6)

(11)

A bag ( or multiset) is a generalization of the notion of set in which members are allowed to
appear more than once. An example of a bag is f1; 2; 2; 3; 4; 4; 5; 6g. Given two bags B1 and B2 their
union, denoted by B1dB2, is the bag that contains those elements that occur in either B1 or B2 and,
furthermore, the number of times that each element occurs in B1dB2 is equal to the number of times
it occurs in B1 plus the number of times it occurs in B2. For instance, if B1 = f1; 2; 2; 3; 4; 4; 5; 6g
and B2 = f2; 3; 6; 6g then B1 d B2 = f1; 2; 2; 2; 3; 3; 4; 4; 5; 6; 6; 6g. We say that B1 is a proper
sub-bag of B2, denoted by B1 @ B2; if B1 6= B2 and each element that occurs in B1 occurs also,
and at least as many times, in B2: For example, f1; 2; 4; 4; 5; 6g @ f1; 1; 2; 4; 4; 5; 5; 6g :
Now, given a pair (i; j) with i < j, we associate with it the set B(i;j) = fi+ 1; i+ 2; :::; jg. For

example, B(2;5) = f3; 4; 5g: Given a set of pairs P = f(i1; j1); (i2; j2); :::; (im; jm)g (with ik < jk; for
10As in De�nition 8, let S0 = fs 2 S : s - t; 8t 2 Sg, and, for every integer k � 1, Sk = fh 2 S n S0 [

::: [ Sk�1 : s - t; 8t 2 S n S0 [ ::: [ Sk�1g. The canonical ordinal integer-valued representation of -, � : S ! N,
is given by �(s) = k if and only if s 2 Sk:
11For example,

:
= is the smallest re�exive, symmetric and transitive relation that contains the pairs given in (11).
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every k = 1; :::;m) we associate with it the bag BP = B(i1;j1)dB(i2;j2)d :::dB(im;jm). For example,
if P = f(0; 2); (1; 4); (2; 5)g then BP = f1; 2g d f2; 3; 4g d f3; 4; 5g = f1; 2; 2; 3; 3; 4; 4; 5g:

De�nition 13 For every element of :=, expressed (using the canonical representation �) as (i; j) :=
(k; `) (with i � j and k � `), the equation corresponding to it is xi+1 + xi+2 + ::: + xj = xk+1 +
xk+2+:::+x`. By the system of equations corresponding to

:
= we mean the set of all such equations.

For example, consider the total pre-order given in (10) and the following equivalence relation :=
expressed in terms of � and omitting the re�exive pairs:

f(0; 3) := (2; 4); (2; 4) := (0; 3); (2; 4) := (3; 5); (3; 5) := (2; 4); (0; 3) := (3; 5); (3; 5) := (0; 3)g

Then the corresponding system of equations is given by:

x1 + x2 + x3 = x3 + x4
x3 + x4 = x1 + x2 + x3
x3 + x4 = x4 + x5
x4 + x5 = x3 + x4

x1 + x2 + x3 = x4 + x5
x4 + x5 = x1 + x2 + x3

(12)

which can also be expressed as

Ax = 0 where x = (x1; :::; x5) and A =

0BBBBBB@
1 1 0 �1 0
�1 �1 0 1 0
0 0 1 0 �1
0 0 �1 0 1
1 1 1 �1 �1
�1 �1 �1 1 1

1CCCCCCA (13)

Note that, because of symmetry of :=, for every row ak of the matrix A there is a row aj such that
aj = �ak:
We are now ready to state the solution to Problem 12. The proof is given in Appendix B.

Proposition 14 Given a pair (-; :=), where - is a total pre-order on a �nite set S and :
= is an

equivalence relation on the set of equivalence classes of -, the following are equivalent.
(A) There is a function F : S ! N such that, for all s; t; x; y 2 S, (1) F (s) � F (t) if and only

if s - t and (2) if ([s]; [t]) := ([x]; [y]), with s � t and x � y, then F (t)� F (s) = F (y)� F (x),12

(B) The system of equations corresponding to :
= (De�nition 13) has a solution consisting of

positive integers.

(C) There is no sequence in :
= (expressed in terms of the canonical representation

� of -) h((i1; j1)
:
= (k1; `1)) ; :::; ((im; jm)

:
= (km; `m))i such that Bleft @ Bright where

Bleft = B(i1;j1) d ::: dB(im;jm) and Bright = B(k1;`1) d ::: dB(km;`m).

12Using the canonical ordinal representation of -, condition (2) can also be expressed as follows: if (i; j) := (k; `)
(with i < j; and k < `) and �(s) = i, �(t) = j, �(x) = k and �(y) = `, then F (t)� F (s) = F (y)� F (x):

13



As an application of Proposition 14 consider the total pre-order given in (5).13 Two elements
of := are (M;Mr) := (R;Rr) and (L;Lm) := (M;Mm), which - expressed in terms of the canonical
ordinal representation � - can be written as

(0; 3)
:
= (1; 6)

(4; 5)
:
= (0; 2)

Then Bleft = f1; 2; 3g d f5g = f1; 2; 3; 5g and Bright = f2; 3; 4; 5; 6) d f1; 2g = f1; 2; 2; 3; 4; 5; 6g.
Thus, since Bleft @ Bright, by Part C of the above proposition - is not choice measurable (as we
had determined above with a di¤erent method).
As a further application of Proposition 14 consider the total pre-order - given in (10) together

with the subset of the equivalence relation := given in (11). Then there is no cardinal representation
of - that satis�es the constraints expressed by :=, because of Part C of the above proposition and
the following sequence:14

h((0; 1) := (3; 4)) ; ((1; 3) := (4; 6)) ; ((3; 4) := (1; 3)) ; ((4; 6) := (0; 2))i

where Bleft = f0; 1g d f1; 3g d f3; 4g d f4; 6g = f1; 2; 3; 4; 5; 6g @ Bright = f3; 4g d f4; 6g d f1; 3g d
f0; 2g = f1; 2; 2; 3; 4; 5; 6g:
In fact, the above sequence corresponds to the following system of equations:

x1 = x4 corresponding to (0; 1)
:
= (3; 4)

x2 + x3 = x5 + x6 corresponding to (1; 3)
:
= (4; 6)

x4 = x2 + x3 corresponding to (3; 4)
:
= (1; 3)

x5 + x6 = x1 + x2 corresponding to (4; 6)
:
= (0; 2)

Adding the four equations we get x1+ x2+ x3+ x4+ x5+ x6 = x1+2x2+ x3+ x4+ x5+ x6 which
simpli�es to 0 = x2, which is incompatible with a positive solution (in particular with x2 > 0).

Remark 15 In [6] an algorithm is provided for determining whether a system of linear equations
has a positive solution and for calculating such a solution if one exists. Furthermore, if the co-
e¢ cients of the equations are integers and a positive solution exists, then the algorithm yields a
solution consisting of positive integers.

4 Perfect Bayesian equilibrium and sequential equilibrium.

We now show that choice measurability of the underlying plausibility order is what essentially
is needed to go from perfect Bayesian equilibrium to sequential equilibrium. First we recall the
de�nition of sequential equilibrium. An assessment (�; �) is KW-consistent (�KW�stands for �Kreps-
Wilson�) if there is an in�nite sequence



�1; :::; �m; :::

�
of completely mixed strategy pro�les such

that, letting �m be the unique system of beliefs obtained from �m by applying Bayes� rule,15

13A more complete, but tedious, argument would make use of the full total pre-order given in Footnote 8.
14By symmetry of

:
=, we can express the fourth and third constraints as (3; 4)

:
= (1; 3) and (4; 6)

:
= (0; 2) instead

of (1; 3)
:
= (3; 4) and (0; 2)

:
= (4; 6), respectively.

15That is, for every h 2 D, �m(h) =

Q
a2h

�m(a)P
x2I(h)

Q
a2x

�m(a)
, where a 2 h means that action a occurs in history h. Since

�m is completely mixed, �m(a) > 0 for every a 2 A and thus �m(h) > 0 for all h 2 D:
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limm!1(�
m; �m) = (�; �). An assessment (�; �) is a sequential equilibrium if it is KW-consistent

and sequentially rational.
It is shown in [5] that if (�; �) is a KW-consistent assessment then there is a choice-measurable

plausibility order that rationalizes it and that the notion of sequential equilibrium is a strict re�ne-
ment of perfect Bayesian equilibrium. In this section we show that choice measurability together
with a strengthening of De�nition 4 is necessary and su¢ cient for a perfect Bayesian equilibrium
to be a sequential equilibrium.
Given a system of beliefs � we denote by D+

� the set of decision histories that are assigned
positive probability by �, that is, D+

� = fh 2 D : �(h) > 0g.

De�nition 16 Fix an extensive form. Let - be a plausibility order that rationalizes the assessment
(�; �). We say that (�; �) is uniformly Bayesian relative to - if there exists a function � : D ! (0; 1]
that satis�es the following properties:

UB1. 8h; h0 2 D, 8a 2 A(h) if h0 2 I(h) then �(ha)
�(h) =

�(h0a)
�(h0) :

UB2. 8h 2 D, 8a 2 A(h) if h � ha then �(ha) = �(h)� �(a):
UB3. If E � H is an equivalence class of - such that E \D+

� 6= ? then �E : H ! [0; 1] de�ned

by �E(h) =

8<: 0 if h =2 E \D+
�

�(h)P
h02E\D+

�
�(h0) if h 2 E \D+

�
satis�es Property B3 of De�nition 4.

The following lemma, proved in Appendix B, shows that De�nition 16 is a strengthening of
De�nition 4.

Lemma 17 Fix an extensive form. Let - be a plausibility order that rationalizes the assessment
(�; �). If (�; �) is uniformly Bayesian relative to - then it is Bayesian relative to -.

The following proposition, which is proved in Appendix B, makes use of a result proved in [19].

Proposition 18 Fix an extensive form and an assessment (�; �). The following are equivalent:

(A) (�; �) is a perfect Bayesian equilibrium which is rationalized by a choice measurable plausi-
bility order - and is uniformly Bayesian relative to -.
(B) (�; �) is a sequential equilibrium.

As an application of Proposition 18 consider the extensive game of Figure 4. Let (�; �) be an
assessment with � = ((a; f); T; L), �(b) > 0 and �(c) > 0. Then (�; �) can be rationalized by a
choice-measurable plausibility order only if � is such that16

either �(bB) = �(cBf) = 0, or �(bB) > 0 and �(cBf) > 0: (14)

16Proof. Let - be a choice measurable plausibility order that rationalizes (�; �) and let F be a cardinal rep-
resentation of it. Since �(b) > 0 and �(c) > 0, b � c and thus F (b) = F (c). By choice measurability,
F (bB) � F (cB) = F (b) � F (c) and thus F (bB) = F (cB), so that bB � cB. Since f is plausibility preserving,
cB � cBf and therefore, by transitivity of -, bB � cBf . Hence if �(bB) > 0 then bB 2Min-fbB; cBf; dg and thus
cBf 2Min-fbB; cBf; dg so that �(cBf) > 0. The proof that if �(cBf) > 0 then �(bB) > 0 is similar.

15



If, besides from being rationalized by a choice-measurable plausibility order -, (�; �) is also uni-
formly Bayesian relative to - (De�nition 16), then17

�(bB) > 0 ) �(cBf)

�(bB)
=
�(c)

�(b)
: (15)

Thus for example, continuing to assume that � = ((a; f); T; L), the assessment (�; ~�) with ~�(b) = 7
10 ,

~�(c) = 3
10 , ~�(bB) =

7
18 , ~�(cBF ) =

3
18 and ~�(d) =

8
18 is a sequential equilibrium,

18 while the
assessment (�; �̂) with �̂(b) = 7

10 , �̂(c) =
3
10 , �̂(bB) = �̂(cBF ) = �̂(d) = 1

3 is a perfect Bayesian
equilibrium but not a sequential equilibrium.19
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Figure 4

17Proof. Suppose that �(b) > 0, �(c) > 0 and �(bB) > 0: Let � be a function that satis�es the properties

of De�nition 16. Then, by UB1, �(bB)
�(b)

=
�(cB)
�(c)

so that �(c)
�(b)

=
�(cB)
�(bB)

and, since �(f) = 1 > 0, �(cBf) =

�(cB) � �(f) = �(cB). Let E be the equivalence class that contains b: Then fb; cg � E \ D+
� . By UB3, by

�(b) =
�(b)P

h2E\D+0
�

v(h0) and �(c) =
�(c)P

h2E\D+0
�

v(h0) , so that
�(c)
�(b)

=
�(c)
�(b)

: Let G be the equivalence class that contains

bB. Then, by (14), fbB; cBfg � G \D+
� and, by UB3, �(bB) = �(bB)P

h2G\D+0
�

v(h0) and �(cBf) =
�(cBf)P

h2G\D+0
�

v(h0) ,

so that �(cBf)
�(bB)

=
�(cBf)
�(bB)

: Thus, since �(cBf) = �(cB), �(cBf)
�(bB)

=
�(cB)
�(bB)

and, therefore, since - as shown above -
�(c)
�(b)

=
�(cB)
�(bB)

we have that �(cBf)
�(bB)

=
�(c)
�(b)

.
18 It follows from Proposition 18 and the fact that (�; �) is rationalized by the following choice-measurable plausi-

bility order:

0BBB@
- : F :
;; a 0
b; c; bT; cT 1
d; dB; cB; dL; dBL; cBf; cBfL 2
bBR; cBe; cBfR; dR 3

1CCCA and we can take the function � to be as follows: �(;) = 1,

�(b) = �(bB) = 7
18
, �(c) = �(cB) = �(cBf) = 3

18
, �(d) = 8

18
.

19Both (�; ~�) and (�; �̂) are rationalized by the choice measurable plausibility order given in Footnote 18.
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One can argue that the core of the characterization of sequential equilibrium provided in Propo-
sition 18 is the notion of choice measurability of the order that rationalizes the given assessment.
As shown in the above example, choice measurability constrains the support of �, while the addi-
tional condition that the assessment be uniformly Bayesian adds the requirement that the ratios
of probabilities be preserved (whenever meaningful). Hence, Proposition 18, in conjunction with
Proposition 14, provides an essentially qualitative characterization of sequential equilibrium.20

5 Related literature

The work which is most closely related to this paper is [19, 20]. In [20] the author shows the
following (using our notation). A set of actions and histories b � A[H is called a �basement�if it
coincides with the support of at least one assessment, that is, if there is an assessment (�; �) such
that a 2 b if and only if �(a) > 0 and h 2 b if and only if �(h) > 0. Given a basement, one can
construct a partial relation - on the set of histories H as follows: (1) if h and h0 belong to the same
information set then h � h0 if h; h0 2 b and h � h0 if h 2 b and h0 =2 b, (2) if h0 = ha then h � h0 if
a 2 b and h � h0 if a =2 b. Streufert calls this relation a �plausibility�relation. A total pre-order -�
on H is said to be �additively representable�if there exists a function � : A! R, which Streufert
calls a �mass function�, such that h -� h0 if and only if

P
a2h �(a) �

P
a2h0 �(a). Streufert proves

the following result.

Proposition 19 [20, Theorem 1 and Corollary 1, pp. 17 and 20] If the plausibility relation -
derived from a basement b can be extended to a total pre-order -� that has an additive representation,
then there exists a KW-consistent assessment (�; �) whose support coincides with b. Conversely,
given a KW-consistent assessment (�; �), the plausibility relation - derived from its basement can
be extended to a total pre-order -� that has an additive representation.

Streufert also proves [20, Lemma 4.1, p. 19] a result which is strictly related to Proposition 11
above, namely that if - is a binary relation on the set of subsets of a �nite set A then it has a
completion represented additively by a mass function � : A ! Z if and only if it there is no strict
canceling sequence.
There is a clear connection between Proposition 19 and Proposition 18. However, while Proposi-

tion 19 characterizes basements that are supported by a KW-consistent assessment, Proposition 18
focuses on a particular PBE (�; �) and on the conditions that are necessary and su¢ cient for (�; �)
to be a sequential equilibrium. One of these conditions is choice measurability of the plausibility
order that rationalizes (�; �), which coincides with the existence of an additive representation of
a total pre-order that extends the plausibility relation obtained from the support of (�; �). The
other condition is that (�; �) be uniformly Bayesian relative to -. As detailed in the proof of
Proposition 18, this condition is related to the existence of a pair of functions c : A ! (0; 1] and

20Kreps and Wilson themselves [11, p. 876] express dissatisfaction with their de�nition of sequential equilibrium:
�We shall proceed here to develop the properties of sequential equilibrium as de�ned above; however, we do so with
some doubts of our own concerning what �ought�to be the de�nition of a consistent assessment that, with sequential
rationality, will give the �proper�de�nition of a sequential equilibrium.� In a similar vein, Osborne and Rubinstein
[12, p. 225] write �we do not �nd the consistency requirement to be natural, since it is stated in terms of limits;
it appears to be a rather opaque technical assumption�. In these quotations �consistency� corresponds to what we
called �KW-consistency�.
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e : A ! Z� [ f0g that Streufert proves to be necessary and su¢ cient for KW-consistency (see
Proposition 23 in Appendix B).21

On the other hand, the characterization of choice measurability of a total pre-order provided in
Proposition 14 is new and more general than Proposition 11 because it applies to arbitrary sets,
whose elements do not necessarily have the structure of sets of atoms (such as actions).
Propositions 18, 19 and 23 are all related to two results provided in [11, Lemma A1, p. 887 and

Lemma A2, p. 888]. For a detailed discussion of those results (and how to correct a �aw in the
original proof) see [19].
The characterization of sequential equilibrium provided in Proposition 18 does not make any use

of sequences and limits. This is true also of the characterizations of KW-consistency provided in [9]
and [13], where it is shown how to derive a �nite system of algebraic equations and inequalities on
behavioral strategies and beliefs that characterizes the set of consistent assessments ([3] provides
an indirect proof of the fact that consistent assessments are determined by �nitely many algebraic
equations and inequalities). [9] makes use of relative probability spaces (
; �) (which express the
notion of an event being in�nitely less likely than another) and random variables si : 
 ! Si
(where Si is the set of pure strategies of player i), representing the beliefs of an external observer
(who can assess the relative probabilities of any two strategy pro�les, even those that have zero
probability). The authors provide a characterization of KW-consistency in terms of the notion
of strong independence for relative probability spaces (and, in turn, a characterization of strong
independence in terms of weak independence and exchangeability).22

The algebraic characterization of KW-consistency provided in [13] is based on a system of
equations and inequalities obtained from two functions: one de�ned on actions and the other on
histories. The function de�ned on actions implicitly de�nes an �order of likelihood� on actions,
with some actions being �in�nitely less likely�than others. Together the two functions provide an
�extended�behavioral conjecture pro�le. The characterization is essentially equivalent to the one
reported in Proposition 23 in Appendix B and for details the reader is referred to Footnote 28.

6 Conclusion

Besides sequential rationality, the notion of perfect Bayesian equilibrium introduced in [5] is based
on two elements: (1) the qualitative notions of plausibility order and AGM-consistency and (2)
the notion of Bayesian updating relative to the plausibility order (which captures the requirement
that Bayes�rule be used whenever possible, even after revision prompted by the observation of a
zero probability event). In this paper we showed (Proposition 18) that by strengthening these two
conditions one obtains a characterization of sequential equilibrium.
The strengthening of the �rst condition is that the plausibility order that rationalizes the given

assessment be choice measurable, that it, that there be a cardinal representation of it, which can be
interpreted as measuring the distance between histories in a way that is preserved by the addition
of a common action (condition IND1C). Proposition 14 provides a qualitative characterization of
choice measurability, which is very general, in that it applies to arbitrary sets (thus not only to sets
consisting of sequences of actions); for instance it can be applied to the problem of determining if

21That proposition, in turn, is essentially equivalent to a result in [13]: see Footnote 28 in Appendix B. At the 13th

SAET conference in July 2013 Streufert presented a characterization of the support of KW-consistent assessments in
terms of additive plausibility and a condition that he called �pseudo-Bayesian�which is essentially a reformulation
of one of the conditions given in Proposition 23 (see Appendix B).
22 [2] shows that in games with observable deviators weak independence su¢ ces for KW-consistency.
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there exists a cardinal utility function on a set of alternatives S under a set of constraints of the
form ([a]; [b])

:
= ([c]; [d]), interpreted as "the change from a to b is just as good (or just as bad) as

the change from c to d.
The strengthening of the second condition is called �uniform Bayesian updating�and amounts to

the requirement that the relative ratios of the probabilities of two histories be preserved (whenever
possible and meaningful: see the discussion of the example that follows Proposition 14).

A Appendix: history-based de�nition of extensive game

If A is a set, we denote by A� the set of �nite sequences in A. If h = ha1; :::; aki 2 A� and 1 � j � k,
the sequence h0 = ha1; :::; aji is called a pre�x of h. If h = ha1; :::; aki 2 A� and a 2 A, we denote
the sequence ha1; :::; ak; ai by ha.
A �nite extensive form is a tuple



A;H;N; �; f�igi2N

�
whose elements are:

� A �nite set of actions A.

� A �nite set of histories H � A� which is closed under pre�xes (that is, if h 2 H and h0 2 A�
is a pre�x of h, then h0 2 H). The null history hi ; denoted by ;, is an element of H and is
a pre�x of every history. A history h 2 H such that, for every a 2 A, ha =2 H, is called a
terminal history. The set of terminal histories is denoted by Z. D = HnZ denotes the set
of non-terminal or decision histories. For every history h 2 H, we denote by A(h) the set of
actions available at h, that is, A(h) = fa 2 A : ha 2 Hg. Thus A(h) 6= ? if and only if h 2 D.
We assume that A =

S
h2D A(h) (that is, we restrict attention to actions that are available

at some decision history).

� A �nite set N = f1; :::; ng of players. In some cases there is also an additional, �ctitious,
player called chance.

� A function � : D ! N [ fchanceg that assigns a player to each decision history. Thus �(h) is
the player who moves at history h. A game is said to be without chance moves if �(h) 2 N for
every h 2 D: For every i 2 N [ fchanceg, let Di = ��1(i) be the histories assigned to player
i. Thus fDchance; D1; :::; Dng is a partition of D: If history h is assigned to chance, then a
probability distribution over A(h) is given that assigns positive probability to every a 2 A(h).

� For every player i 2 N , �i is an equivalence relation on Di. The interpretation of h �i h0
is that, when choosing an action at history h 2 Di, player i does not know whether she is
moving at h or at h0. The equivalence class of h 2 Di is denoted by Ii(h) and is called an
information set of player i; thus Ii(h) = fh0 2 Di : h �i h0g. The following restriction
applies: if h0 2 Ii(h) then A(h0) = A(h), that is, the set of actions available to a player is the
same at any two histories that belong to the same information set of that player.

� The following property, known as perfect recall, is assumed: for every player i 2 N , if h1; h2 2
Di, a 2 A(h1) and h1a is a pre�x of h2 then for every h0 2 Ii(h2) there exists an h 2 Ii(h1)
such that ha is a pre�x of h0. Intuitively, perfect recall requires a player to remember what
she knew in the past and what actions she took previously.
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Given an extensive form, one obtains an extensive game by adding, for every player i 2 N , a
utility ( or payo¤ ) function Ui : Z ! R (where R denotes the set of real numbers; recall that Z is
the set of terminal histories).

Notation 20 If h and h0 are decision histories not assigned to chance, we often write h0 2 I(h) as
a short-hand for h0 2 I�(h)(h). Thus h0 2 I(h) means that h and h0 belong to the same information
set (of the player who moves at h). If h is a history assigned to chance, we use the convention that
I(h) = fhg.

Remark 21 In order to simplify the notation we assume that no action is available at more than
one information set: 8h; h0 2 H;8a 2 A; if a 2 A(h) \A(h0) then h0 2 I(h).

Given an extensive form, a pure strategy of player i 2 N is a function that associates with every
information set of player i an action at that information set, that is, a function si : Di ! A such
that (1) si(h) 2 A(h) and (2) if h0 2 Ii(h) then si(h0) = si(h). A behavior strategy of player i is
a collection of probability distributions, one for each information set, over the actions available at
that information set; that is, a function �i : Di ! �(A) (where �(A) denotes the set of probability
distributions over A) such that (1) �i(h) is a probability distribution over A(h) and (2) if h0 2 Ii(h)
then �i(h0) = �i(h). If the game does not have chance moves, we de�ne a behavior strategy pro�le
as an n-tuple � = (�1; :::; �n) where, for every i 2 N , �i is a behavior strategy of player i. If the
game has chance moves then we use the convention that a behavior strategy pro�le is an (n+1)-tuple
� = (�1; :::; �n; �chance) where, if h is a history assigned to chance and a 2 A(h) then �chance(h)(a)
is the probability associated with a. Given our assumption that no action is available at more than
one information set, without risking ambiguity we denote by �(a) the probability assigned to action
a by the relevant component of the strategy pro�le �. Note that a pure strategy is a special case
of a behavior strategy where each probability distribution is degenerate. A behavior strategy is
completely mixed at history h 2 D if, for every a 2 A(h), �(a) > 0.
An assessment is a pair (�; �) where � is a behavior strategy pro�le and � is a system of beliefs,

that is, a collection of probability distributions, one for every information set, over the elements
of that information set. Thus � : D ! �(H) (where �(H) is the set of probability distributions
over the set of histories H) such that if h 2 D then �(h) is a probability distribution over I(h) (the
information set that constains history h) and if h0 2 I(h) then �(h) = �(h0). If the game has chance
moves, then we use the convention that �(h) = 1 for every history h assigned to chance. With slight
abose of notation, we denote by �(h) the probability assigned to history h by the system of beliefs
� 23

B Appendix: proofs

Proof of Lemma 9. An example of a plausibility order that satis�es IND2 but violates IND1 is
given in (1) for the assessment illustrated in Figure 2 (IND1 is violated since a � b but be � ae).
On the other hand, the following example shows a plausibility order that satis�es IND1 but

not IND2 (the underlying game is a simultaneous game where Player 1 chooses between a and b
and Player 2 chooses among c; d and e; the plausibility-preserving actions are a and c; note that
I(a) = fa; bg and ad � ae but be � bd]:
23A more precise notation would be �(h)(h): if h 2 D then �(h) is a probability distribution over I(h) and, for

every h0 2 I(h), �(h) = �(h0) so that �(h)(h) = �(h0)(h). We denote this common probability by �(h)).
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Next we show that IND1C ) IND2C: Let - be a plausibility order on the set of histories

H and let F : H ! N be an integer-valued representation that satis�es IND1C. Without loss of
generality (see De�nition 10), we can assume that F (;) = 0: For every decision history h and action
a 2 A(h), de�ne

�(a) = F (ha)� F (h): (16)

The function � : A! N is well de�ned, since, by IND1C, h0 2 I(h) implies that F (h0a)� F (h0) =
F (ha)�F (h) (recall also, see Remark 21 in Appendix A, the assumption that no action belongs to
two di¤erent information sets). Then, for every history h = ha1; a2; :::; ami, F (h) =

Pm
i=1 �(ai). In

fact,
�(a1) + �(a2) + :::+ �(am) =
= (F (a1)� F (;)) + (F (a1a2)� F (a1)) + :::+ (F (a1a2:::am)� F (a1a2:::am�1)) =
= F (a1a2:::am) = F (h) (recall that F (;) = 0).

Thus, for every h 2 D and a 2 A(h), F (ha) = F (h)+�(a). Hence, F (hb)�F (ha) = F (h)+�(b)�
F (h)� �(a) = �(b)� �(a) and F (h0b)� F (h0a) = F (h0) + �(b)� F (h0)� �(a) = �(b)� �(a) and,
therefore, F (hb)� F (ha) = F (h0b)� F (h0a).
Finally, we show that IND2C ) IND1C: Let - be a plausibility order on the set of histories

H and let F : H ! N be an integer-valued representation that satis�es IND2C. Fix arbitrary
h0 2 I(h) and a 2 A(h). Let b 2 A(h) be a plausibility-preserving action at h (there must be at least
one such action: see De�nition 1); then, h � hb and h0 � h0b. Hence, since F is a representation of
-, F (hb) = F (h) and F (h0b) = F (h0) and thus

F (h0)� F (h) = F (h0b)� F (hb): (17)

By IND2C, F (h0b)� F (hb) = F (h0a)� F (ha). From this and (17) it follows that F (h0)� F (h) =
F (h0a)� F (ha). �
Proof of Proposition 14. (A) ) (B). Let F 0 : S ! N satisfy the properties of Part A. Fix

an arbitrary s0 2 S0 = fs 2 S : s - t;8t 2 Sg and de�ne F : S ! N by F (s) = F 0(s) � F 0(s0).
Then F is also a function that satis�es the properties of Part A (note that since, for all s 2 S,
F 0(s0) � F 0(s), F (s) 2 N; furthermore, F (s0) = 0 for all s0 2 S0). Let K = fk 2 N : k = �(s)
for some s 2 Sg (where � is the canonical ordinal representation of -: see Footnote 10). For every
k 2 K, de�ne

x̂0 = 0
and, for k > 0,
x̂k = F (t)� F (s) for some s; t 2 S such that �(t) = k and �(s) = k � 1:

(18)

Note that x̂k is well de�ned since, if x; y 2 S are such that �(y) = k and �(x) = k � 1, then x � s
and y � t and thus, by (1) of Property A, F (x) = F (s) and F (y) = F (t). Note also that, for all
k 2 Knf0g, x̂k is a positive integer, since �(t) = k and �(s) = k � 1 imply that s � t and thus,
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by (1) of Property A, F (s) < F (t). We want to show that the values fx̂kgk2Knf0g de�ned in (18)
provide a solution to the system of equations corresponding to := (Deinition 13). Fix an arbitrary
element of :=, ([s1]; [s2])

:
= ([t1]; [t2]) (with s1 � s2 and t1 � t2) and express it, using the canonical

ordinal representation � (see Footnote 10), as (i1; i2)
:
= (j1; j2) (thus i1 = �(s1), i2 = �(s2),

j1 = �(t1), j2 = �(t2), i1 < i2 and j1 < j2). Then the corresponding equation (see De�nition 13) is:
xi1+1 + xi1+2 + :::+ xi2 = xj1+1 + xj1+2 + :::+ xj2 . By (2) of Property A,

F (s2)� F (s1) = F (t2)� F (t1) (19)

Using (18), F (s2)�F (s1) = x̂i1+1+x̂i1+2+:::+x̂i2 : To see this, for every k 2 fi1 + 1; i1 + 2; :::; i2 � 1g,
�x an arbitrary rk 2 S such that �(rk) = k; then, by (18),

F (s2)� F (s1) = x̂i1+1| {z }
=F (ri1+1)�F (s1)

+ x̂i2+2| {z }
=F (ri1+2)�F (ri1+1)

+ :::+ x̂i2|{z} :
=F (s2)�F (ri2�1)

Similarly, F (t2) � F (t1) = x̂j1+1 + x̂j1+2 + ::: + x̂j2 . Thus, by (19), x̂i1+1 + x̂i1+2 + ::: + x̂i2 =
x̂j1+1 + x̂j1+2 + :::+ x̂j2 .

(B) ) (A). assume that the system of equations corresponding to := has a solution consisting
of positive integers x̂1; :::; x̂m. De�ne F : S ! N as follows: if �(s) = 0 (equivalently, s 2 S0) then
F (s) = 0 and if �(s) = k > 0 (equivalently, s 2 Sk for k > 0) then F (s) = x̂1 + x̂2 + :::+ x̂k (where
� and the sets Sk are as de�ned in Footnote 10). We need to show that F satis�es the properties of
Part A. Fix arbitrary s; t 2 S with s - t. Then �(s) � �(t) and thus F (s) = x̂1 + x̂2 + :::+ x̂�(s) �
F (t) = x̂1 + x̂2 + ::: + x̂�(s) + x̂�(s)+1 + ::: + x̂�(t). Conversely, suppose that s; t 2 S are such that
F (s) � F (t). Then x̂1 + x̂2 + ::: + x̂�(s) � x̂1 + x̂2 + ::: + x̂�(t) and thus �(s) � �(t), so that
s - t. Thus Property (1) of Part A is satis�ed. Now let s; t; x; y 2 S be such that s � t, x � y and
([s]; [t])

:
= ([x]; [y]) : Let �(s) = i, �(t) = j, �(x) = k and �(y) = ` (thus i < j and k < `). Then,

by (18), F (t) � F (s) = x̂i+1 + x̂i+2 + ::: + x̂j and F (y) � F (x) = x̂k+1 + x̂k+2 + ::: + x̂`. Since
xi+1 + xi+2 + :::+ xj = xk+1 + xk+2 + :::+ x` is the equation corresponding to ([s]; [t])

:
= ([x]; [y])

(which - using � - can be expressed as (i; j) := (k; `)), by our hypothesis x̂i+1 + x̂i+2 + ::: + x̂j =
x̂k+1 + x̂k+2 + :::+ x̂` and thus F (t)� F (s) = F (y)� F (x), so that (2) of Property A is satis�ed.

not (B)) not (C). Suppose that there is a sequence in :
= (expressed in terms of the canonical

representation � of -) h((i1; j1) := (k1; `1)) ; :::; ((im; jm) := (km; `m))i such that

Bleft @ Bright (20)

where Bleft = B(i1;j1) d ::: d B(im;jm) and Bright = B(k1;`1) d ::: d B(km;`m). Let E = fE1; :::; Emg
be the system of equations corresponding to the above sequence (for example, E1 is the equation
xi1+1 + xi1+2 + :::+ xj1 = xk1+1 + xk1+2 + :::+ x`1). Let L be the sum of the left-hand-side and R
be the sum of the right-hand-side of the equations E1; :::; Em. Note that for every integer i, nxi is
a summand of L if and only if i appears in Bleft exactly n times and similarly nxi is a summand
of R if and only if i appears in Bright exactly n times. By (20), if nxi is a summand of L then mxi
is a summand of R with m � n and, furthermore, L 6= R. Thus there cannot be a positive solution
of E, because it would be incompatible with L = R. Since E is a subset of the system of equations
corresponding to :=, it follows that the latter cannot have a positive solution either.

It only remains to prove that not (C)) not (B). We will return to this below after providing
an additional result. �
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First some notation. Given two vectors x; y 2 Rm we write (1) x � y if xi � yi, for every
i = 1; :::;m, (2) x < y if x � y and x 6= y and (3) x� y if xi < yi, for every i = 1; :::;m.

Lemma 22 Let A be an m� n matrix such that the system of equations corresponding to := (De-
inition 13) can be expressed as Ax = 0 (recall that, by symmetry of :=, for each row ai of A there
is another row ak such that ak = �ai; an example of such a matrix is given in (13); note also that
each entry of A is either �1, 0 or 1). If the system of equations Ax = 0 does not have a positive
integer solution then there exist r rows of A, ai1 ; :::; air with 1 < r � m

2 and r positive integers
�1; :::; �r 2 Nnf0g such that if B is the submatrix of A consisting of the r rows ai1 ; :::; air (thus for
every k = 1; :::; r, bk = aik , where bk is the k

th row of B) then
Pr

k=1 �kbk < 0.

Proof. By Stiemke�s theorem24 if the system of equations Ax = 0 does not have a positive
integer solution then there exists a y 2 Zm (where Z denotes the set of integers) such that yA < 0
(that is,

Pm
i=1 yiai < 0). Let K = fk 2 Z : yk 6= 0g. Let r be the cardinality of K; then, without

loss of generality, we can assume that r � m
2 .
25 Furthermore, again without loss of generality, we

can assume that for every k 2 K, yk > 0.26 Let B be the r � n submatrix of A consisting of those
rows ak of A such that k 2 K and for i = 1; :::; r let � = (�1; :::; �r) be the vector corresponding to
(yk)k2K .27 Then �B =

Pr
j=1 �jbj = yA < 0 and �i 2 Nnf0g for all i = 1; :::; r. �

Completion of proof of Proposition 14. It remains to prove that not (C)) not (B). Let A
be them�nmatrix such that the system of equations corresponding to := can be expressed as Ax = 0
and assume that Ax = 0 does not have a positive integer solution. Let B be the r�n submatrix of
A and � = (�1; :::; �r) the vector of positive integers of Lemma 22 such that �B =

Pr
j=1 �jbj < 0.

De�ne two r� n matrices C = (cij)i=1;:::;r; j=1;:::;n and D = (dij)i=1;:::;r; j=1;:::;n as follows (recall
that each entry of B is either �1, 0 or 1):

cij =

�
1 if bij = 1
0 otherwise

and dij =
�
1 if bij = �1
0 otherwise

:

Then, for every i = 1; :::; r, bi = ci � di and thus (since
Pr

i=1 �ibi < 0)Xr

i=1
�ici <

Xr

i=1
�idi: (21)

24See, for example, [16, p. 216] or [7, Theorem 1.1, p. 65].
25Proof. Recall that for each row ai of A there is a row ak such that ai = �ak. If yi 6= 0 and yk 6= 0 for some i

and k such that ai = �ak then

yiai + ykak =

8>>>>>>><>>>>>>>:

0 if yi = yk
(yk � yi)ak if 0 < yi < yk
(yi � yk)ai if 0 < yk < yi
(jyij+ yk) ak if yi < 0 < yk
(yi + jykj) ai if yk < 0 < yi
(jykj � jyij) ai if yi < yk < 0
(jyij � jykj) ak if yk < yi < 0

where all the multipliers (of ai or ak) are positive. Thus one can set one of the two values of yi and yk to zero
and replace the other value with the relevant of the above values while keeping yA unchanged. For example, if
yk < yi < 0 then one can replace yi with 0 and yk with (jyij � jykj) thereby reducing the cardinality of K by one.
This process can be repeated until the multipliers of half of the rows of A have been replaced by zero.
26Proof. Suppose that yk < 0 for some k 2 K. Recall that there exists an i such that ak = �ai. By the argument

of the previous footnote, yi = 0. Then replace yk by 0 and replace yi = 0 by ~yi = �yk.
27For example, if K = f3; 6; 7g and y3 = 2, y6 = 1, y7 = 3, then B is the 3�n matrix where b1 = a3; b2 = a6 and

b3 = a7 and �1 = 2, �2 = 1 and �3 = 3.
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Let C 0 be the matrix obtained from C by replacing each row ci of C with �i copies of it and let D0

be constructed from D similarly. Then, letting s =
Pr

i=1 �i, C
0 and D0 are s � n matrices whose

entries are either 0 or 1. It follows from (21) thatXs

i=1
c0i <

Xs

i=1
d0i: (22)

Consider the system of equations

C 0x = D0x: (23)

For every j = 1; :::; n, the jth coordinate of
Ps

i=1 c
0
i is the number of times that the variable xj

appears on the left-hand-side of (23) and the jth coordinate of
Ps

i=1 d
0
i is the number of times that

the variable xj appears on the right-hand-side of (23). Hence, by (22), for every j = 1; :::; n, the
number of times that the variable xj appears on the left-hand-side of (23) is less than or equal to the
number of times that it appears on the right-hand-side of (23) and for at least one j it is less. Thus,
letting h((i1; j1)

:
= (k1; `1)) ; :::; ((is; js)

:
= (ks; `s))i be the sequence of elements of

:
= corresponding

to the equations in (23), we have that Bleft @ Bright where Bleft = B(i1;j1) d ::: d B(im;jm) and
Bright = B(k1;`1) d ::: dB(km;`m). �
Proof of Lemma 17. Let (�; �) be rationalized by the plausibility order - and be uniformly

Bayesian relative to -. We need to show that (�; �) is Bayesian relative to -. Fix an arbitrary
equivalence class E of - that contains a history h such that �(h) > 0. Let �E : H ! [0; 1] be as
de�ned in UB3 of De�nition 16. Then, by construction, �E satis�es Property B1 of De�nition 4
and, by UB3, it also satis�es Property B3. Thus it only remains to show that �E satis�es Property
B2 of De�nition 4. Fix arbitrary h; h0 2 E\D+

� such that h
0 = ha1:::am. Since h; h0 2 E, h0 � h. By

Property PL1 of de�nition of plausibility order (De�nition 1), h - ha1 - ha1a2 - ::: - ha1:::am =
h0. Thus, since h0 � h, by transitivity of -, h � ha1 � ha1a2 � ::: � ha1:::am = h0 (that is,
ha1:::aj 2 E for all j = 1; :::;m) and therefore each action aj (j = 1; :::;m) is plausibility preserving;
hence, by Property P1 of De�nition 2, �(aj) > 0 for all j = 1; :::;m. It follows from Property UB2
of De�nition 16 that �(ha1) = �(h) � �(a1), �(ha1a2) = �(ha1) � �(a2) = �(h) � �(a1) � �(a2),
and so on. Hence

�(h0) = v(h)� �(a1)� :::� �(am): (24)

Since, by hypothesis, h; h0 2 E \ D+
� , �E(h) =

�(h)P
h02E\D+

�
�(h0) and �E(h

0) = �(h0)P
h02E\D+

�
�(h0) and

thus, using (24) we get that �E(h0) =
�(h)��(a1)�:::��(am)P

h02E\D+
�
�(h0) = �(h)P

h02E\D+
�
�(h0) ��(a1)� :::��(am) =

�E(h)� �(a1)� :::� �(am). �
In order to prove Proposition 18 we will make use of a result proved in [19]. First some notation.

If c : A ! (0; 1] and h = a1:::am is a history, we denote the product c(a1) � ::: � c(am) byQ
a2h c(a) (a 2 h means that a is an action that appears in history h). If e : A! Z� [ f0g (where

Z� denotes the set of negative integers) and h = a1:::am is a history, we de�ne e : H ! Z�[f0g by
e(h) =

P
a2h e(a) and if I(h) is the information set containing h, we denote Ie(h) = argmaxfe(h0) :

h0 2 I(h)g = fh0 2 I(h) : e(h0) � e(h00);8h00 2 I(h)g.
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The following proposition is proved in [19, Theorem 2.1, p. 11]. A very similar result is provided
in [13] and [14, p. 74].28

Proposition 23 Fix an extensive game and let (�; �) be an assessment. Then the following are
equivalent.
(A) There exist two functions c : A! (0; 1] and e : A! Z� [ f0g such that

(1) for every action a, e(a) = 0 if and only if �(a) > 0,

(2) for every action a, �(a) =

(
c(a) if e(a) = 0

0 if e(a) < 0 , and

(3) for every decision history h, �(h) =

8<:
Q

a2h c(a)P
h02Ie(h)

Q
a2h0 c(a)

if h 2 Ie(h)

0 if h =2 Ie(h)
:

(B) (�; �) is KW-consistent.

We can now proceed to the proof of Proposition 18.
Proof of Proposition 18. (A) ) (B). Let (�; �) be a perfect Bayesian equilibrium which

is rationalized by a choice measurable plausibility order - and is uniformly Bayesian relative to
-. We need to show that (�; �) is a sequential equilibrium. Since (�; �) is a perfect Bayesian
equilibrium, it is sequentially rational and thus we only need to show that (�; �) is KW-consistent.
Let v : D ! (0; 1] be the function given in De�nition 16 and de�ne c : A! (0; 1] as follows:

c(a) =

(
�(a) if a 2 A(;)
�(ha)
�(h) for some h 2 H such that a 2 A(h) otherwise.

(25)

By Property UB1, c(a) is well de�ned for every a 2 A. Next we show that, for every a 2 A,

if �(a) > 0 then c(a) = �(a): (26)

Fix an arbitrary a 2 A and let Ia be the information set at which a is available, that is, Ia =
fh 2 D : a 2 A(h)g (recall the assumption that no action is available at more than one information
set: see Remark 21). Assume that �(a) > 0; then, by P1 of the de�nition of AGM-consistency
(De�nition 2), a is plausibility preserving, that is, h � ha for every h 2 Ia. Hence, by Property
UB2 of De�nition 16, �(ha) = �(h)� �(a). Thus c(a) = �(ha)

�(h) = �(a). Next we show that,

for every history h = a1:::am, �(h) =
Ym

i=1
c(ai): (27)

We prove this by induction. First note that �(a1a2) = �(a1)� �(a1a2)
�(a1)

= c(a1)�c(a2) (recall that, by
(25), since a1 2 A(;), c(a1) = �(a1)). Now suppose that, for 2 � k < m, v(a1a2:::ak) =

Qk
i=1 c(ai).

Then v(a1a2:::akak+1) =
v(a1a2:::akak+1)
v(a1a2:::ak)

� v(a1a2:::ak) = c(ak+1)�
Qk
i=1 c(ai) =

Qk+1
i=1 c(ai).

28The �completely mixed pseudo behavioral strategy pro�le� �̂ de�ned in [13] is essentially equivalent to the
function c : A! (0; 1] of the following proposition; furthermore, the logarithms of the mistake probabilities " in [13]
play the same role as the values of the function e : A ! Z� [ f0g (the latter are used as exponents of monomials).
However, the values of the fuction e are integers, while [13] work with real numbers. It it also worth noting that the
proof of Proposition 23 makes use of linear algebra, while [13] uses the separating hyperplane theorem.
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Given a history h and the information set I(h) that contains it, let Min-I(h) = fh0 2 I(h) : h0 -
h00;8h00 2 I(h)g. Next we show that, for every decision history h

�(h) =

8<:
Q

a2h c(a)P
h02Min-I(h)

Q
a2h0 c(a)

if h 2Min-I(h)

0 if h =2Min-I(h)
: (28)

Fix an arbitrary decision history h. By P2 of the de�nition of AGM-consistency (De�nition 2),
�(h) > 0 (that is, h 2 D+

� ) if and only if h 2 Min-I(h), that is, Min-I(h) = I(h) \ D+
� . Thus

we only need to show that if h 2 Min-I(h) then �(h) =
Q

a2h c(a)P
h02Min-I(h)

Q
a2h0 c(a)

. Suppose that

h 2Min-I(h) = I(h)\D+
� . Let E be the equivalence class of - that contains h; thenMin-I(h) �

E \D+
� . Let �E(�) be the function given in De�nition 16; then, for every h0 2Min-I(h);

�E(h
0) =

�(h0)P
h002E\D+

�
�(h00)

: (29)

By Property UB3 of De�nition 16, for every h0 2 E \ D+
� , �(h

0) = �E(h
0)

�E(I(h))
= �E(h

0)
�E(Min-I(h))

and

thus, by (29),

8h0 2Min-I(h); �(h0) =
�(h0)

�(Min-I(h))
=

�(h0)P
h002Min-I(h)

�(h00)
: (30)

This, together with (27), yields (28).
By hypothesis - is choice measurable. Let F be a cardinal integer-valued representation of - (see
De�nition 10) and, for every action a, de�ne e(a) = F (h)� F (ha) for some h such that a 2 A(h).
Then e(a) � 0 for all a and e(a) = 0 if and only if a is plausibility preserving. Then, letting
e(h) =

P
a2h e(a), it follows that e(h) = �F (h) and thus, given an arbitrary decision history h,

Min-I(h) = argminfF (h0) : h0 2 I(h)g = argmaxfe(h0) : h0 2 I(h)g = Ie(h). It follows from this
and (28) that

for every decision history h; �(h) =

( Q
a2h c(a)P

h02Ie(h)
Q

a2h0 c(a)
if h 2 Ie(h)

0 if h =2 Ie(h)
: (31)

Thus, by (26) and (31), it follows from Proposition 23 that (�; �) is KW-consistent.

(B) ) (A). Let (�; �) be a sequential equilibrium. Then, by Proposition 14 in [5], (�; �) is a
perfect Bayesian equilibrium. Thus we only need to show that (�; �) is uniformly Bayesian relative
to a plausibility order - that rationalizes (�; �). By Proposition 23 there exist c : A ! (0; 1] and
e : A! Z� [ f0g such that

e(a) = 0 if and only if �(a) > 0; (32)

8a 2 A; �(a) =
(
c(a) if e(a) = 0

0 if e(a) < 0 ; (33)

and
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8h 2 D; �(h) =

8<:
Q

a2h c(a)P
h02Ie(h)

Q
a2h0 c(a)

if h 2 Ie(h)

0 if h =2 Ie(h)
(34)

where Ie(h) = argmaxfe(h0) : h0 2 I(h)g = fh0 2 I(h) : e(h0) � e(h00);8h00 2 I(h)g and e(h) =P
a2h e(a). De�ne the following total pre-order on H:

h - h0 if and only if � e(h) � �e(h0): (35)

First we show that - rationalizes (�; �) (De�nition 2). Fix an arbitrary action a and an arbitrary
h such that a 2 A(h). If �(a) > 0 then, by (32), e(a) = 0 and thus e(ha) = e(h) + e(a) = e(h)
and hence h � ha; conversely, if h � ha then e(ha) = e(h) + e(a) = e(h) and thus e(a) = 0,
so that, by (32), �(a) > 0. Thus P1 of De�nition 2 is satis�ed. Now �x an arbitrary decision
history h; then, by (34), �(h) > 0 if and only if h 2 Ie(h) if and only if �e(h) � �e(h0) for
all h0 2 I(h) if and only if h - h0 for all h0 2 I(h). Thus also P2 of De�nition 2 is satis�ed.
For every h 2 H de�ne �(h) =

Q
a2h c(a). We need to show that �(�) satis�es the properties of

De�nition 16. If h0 2 I(h) and a 2 A(h) then �(ha)
v(h) =

(
Q

a02h c(a
0))�c(a)Q

a02h c(a
0) = c(a) and, similarly,

�(h0a)
v(h0) = c(a); thus UB1 is satis�ed. If h � ha then e(a) = 0 and thus, by (33), c(a) = �(a) so that
�(ha) = �(h) � c(a) = �(h) � �(a) and hence UB2 is also satis�ed. Now �x an arbitrary decision
history h and let E be the equivalence class to which h belongs; de�ne �E : H ! [0; 1] as follows:

�E(h) =

8<:
�(h)P

h02E\D+
�
v(h0) if h 2 E and �(h) > 0

0 otherwise:
(36)

By (34)

�(h) > 0 if and only if h 2 Ie(h), that is, if and only if h - h0;8h0 2 I(h) (37)

and if �(h) > 0 then �(h) =
Q

a2h c(a)P
h02Ie(h)

Q
a2h0 c(a)

, that is, dividing numerator and denomina-

tor by
P

h02E\D+
�

Q
a2h0 c(a), �(h) =

�E(h)P
h02Ie(h) �E(h

0) . Thus Property B3 of De�nition 4 holds

if
P

h02Ie(h) �E(h
0) =

P
h02I(h) �E(h

0) but this is an immediate consequence of (37), since if
h0 2 I(h)nIe(h) then, by (37), �(h0) = 0 and thus, by (36), �E(h0) = 0: �
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