Ducanes, Geoffrey; Cagas, Marie Anne; Qin, Duo; Quising, Pilipinas; Magtibay-Ramos, Nedelyn

Working Paper
A Small Macroeconometric Model of the Philippine Economy

ERD Working Paper Series, No. 62

Provided in Cooperation with:
Asian Development Bank (ADB), Manila

Suggested Citation: Ducanes, Geoffrey; Cagas, Marie Anne; Qin, Duo; Quising, Pilipinas; Magtibay-Ramos, Nedelyn (2005) : A Small Macroeconometric Model of the Philippine Economy, ERD Working Paper Series, No. 62, Asian Development Bank (ADB), Manila, http://hdl.handle.net/11540/1891

This Version is available at:
http://hdl.handle.net/10419/109270

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

http://creativecommons.org/licenses/by/3.0/igo

www.econstor.eu
ERD Working Paper
Series No. 62

A Small Macroeconometric Model of the Philippine Economy

Geoffrey Ducanes, Marie Anne Cagas, Duo Qin, Pilipinas Quising, Nedelyn Maglibay-Ramos

January 2005
A Small Macroeconometric Model of the Philippine Economy

Geoffrey Ducanes, Marie Anne Cagas, Duo Qin, Pilipinas Quising, and Nedelyn Magtibay-Ramos

January 2005

Geoffrey Ducanes and Marie Anne Cagas are consultants, Duo Qin is an economist, and Pilipinas Quising and Nedelyn Magtibay-Ramos are economic analysts in the Economics and Research Department, Asian Development Bank.
FOREWORD

The ERD Working Paper Series is a forum for ongoing and recently completed research and policy studies undertaken in the Asian Development Bank or on its behalf. The Series is a quick-disseminating, informal publication meant to stimulate discussion and elicit feedback. Papers published under this Series could subsequently be revised for publication as articles in professional journals or chapters in books.
CONTENTS

Abstract vii

I. INTRODUCTION 1

II. BRIEF OVERVIEW OF THE ECONOMY AND THE DATA 3

III. THE STRUCTURE OF THE MODEL 4
 A. Private Consumption Block 4
 B. Investment Block 4
 C. Government Block 4
 D. Trade Block 5
 E. Production Block 5
 F. Price Block 6
 G. Monetary Block 7
 H. Employment Block 7

IV. SIMULATION EXPERIMENTS 8
 A. Model Evaluation 8
 B. Impact Analysis 12

V. CONCLUSION 18

Appendix: Specification and structure of the model 21
References 46
ABSTRACT

This paper describes a small quarterly macroeconometric model of the Philippine economy. The model consists of sectors of private consumption, investment, government, trade, production, prices, money, and labor. The equilibrium-correction form is used for all the behavioral equations. The tracking performance of the model, both within-sample and out-of-sample, is evaluated and found satisfactory. Policy simulations indicate it is crucial that the Philippine government address its debt problem for it to achieve higher future growth. Oil price simulations also show the country is highly vulnerable to external shocks.
I. INTRODUCTION

This paper presents a model of the Philippine economy, which was developed as part of the Asian Development Bank’s (ADB) project to develop macroeconometric models of its major debt member countries. These models are to be used for forecasting and policy simulation.

There are several existing Philippine macroeconometric models. The major ones still in use are the PIDS-NEDA Annual Model, NEDA Quarterly Macroeconomic Model (NEDA QMM), and Ateneo Macroeconomic Forecasting Model (AMFM). The PIDS-NEDA Annual Model is the oldest of the group having been started in the mid-1980s but later modified into several versions, the latest of which is reported in Yap (2000). The main objective of the model is to guide the formulation of the Medium Term Development Plan of the government. Its 2000 version is divided into four blocks: the real sector including output, expenditure, employment, prices, and wages; the fiscal sector; the financial sector; and the external sector. The model is estimated in levels and is basically static with static theories. In many of the equations, serial correlation is addressed by specifying the error term as an autoregressive process.

The NEDA QMM likewise has several versions, the first version having been an intergovernment agency effort completed in 1996, and the most recent one still under revision, see Bautista et al. (2004). The previous version used the Engle-Granger two-step procedure in constructing the model. The most recent one, however, adopts the same econometric approach as the annual model (in levels, mostly static, and essentially the same structure) but tries to improve on the use of economic theories, such as rational expectations.

The AMFM, also a quarterly model, was constructed in 2002 and is also divided into the four major blocks of the real sector, government sector, financial sector, and external sector. The equations for some key variables (such as output, labor demand, import demand, and export supply) are constructed in two stages. The first stage involves solution of the equilibrium values for the key variables using an optimization framework (as in a computable general equilibrium [CGE] model), while the second stage depicts the adjustment of economic variables to these equilibrium values (as in an equilibrium correction model). Other key variables are estimated in levels so that the key equations of the model are a mix of ECM equations and level equations.

A common criticism that can be attached to all these previous models is their frequent use of dummy variables, thus casting doubt on the robustness of their parameter estimates. Some of the

1 See Yap (2002) for more detailed descriptions, including computable general equilibrium models of the Philippine economy.
2 The National Economic and Development Authority (NEDA) is the government agency in charge of coordinating the economic policies of the different agencies of government. The Philippine Institute for Development Studies (PIDS) is a government think tank. The Ateneo de Manila University is a private university.
3 The model is currently undergoing revisions.
behavioral equations in their models also appear poorly specified. We addressed these issues by ensuring that behavioral equations are always economically meaningful and that the parameter estimates are relatively robust and time-invariant. We also use dummy variables as rarely as possible and see to it that variables representing policy instruments have valid properties of exogeneity. We believe our model is a significant improvement in comparison to the three aforementioned Philippine models, especially from the following two aspects.

1. Economic Structure

To reflect the high degree of marketization of the Philippine economy, most equations are demand-oriented especially in the short run. However, several long-run equilibrium equations are supply equations. Gross domestic product (GDP) is modeled from both the production and expenditure sides. The economic link of the two sides is assured by incorporating demand side variables as explanatory variables in the production-side equations and vice versa. For example, whereas second-sector value added is determined by the level of capital and labor in the sector in the long run, in the short run it also depends on private and government consumption and export demand. Since we consider the fiscal sector as the most crucial sector for this economy, we also took extra effort to extend it and link it with other sectors. For instance, the government debt-to-GDP ratio is one of the variables explaining investments, and government tax revenue is one of the determinants of private consumption. Long-run equilibrium equations are only partially estimated and we impose strong but data permissible parameter restrictions where we believe that theory should dominate.3

2. Econometric Methods

The equilibrium/error correction model (ECM) form is used for all the behavioral equations to embed long-run economic theories into adequately specified dynamic equations. The modeling process follows the dynamic specification approach; see Hendry (1995 and 2002). To ensure coefficient invariance, we used recursive estimation methods and/or parameter constancy tests especially for the sample periods where significant policy shifts are known to have occurred. All the behavioral equations in the Philippine model are estimated individually by recursive OLS to ensure within-sample coefficient constancy. We also kept to a minimum the use of dummy variables, except for seasonal dummies, as imposition of occasional dummies often indicates lack of super exogeneity4 and significantly reduces the policy simulation capacity of the model.

The rest of the paper is organized as follows. Section II gives a brief overview of the evolution of the Philippine economy in the last two decades and a description of the data set used in the model. Section III discusses the structure of the model and describes all the behavioral equations. Section IV presents two sets of simulation experiments. The first set details the results of ex post static and dynamic simulations as well as ex ante stochastic simulations to evaluate the predictive accuracy of the model. The second set comprises the evaluation of the future economic effects of three kinds of shock to the economy: an interest rate shock, a fiscal shock, and an oil price shock. The final section concludes.

3 See Pagan (1999 and 2003) for more methodological discussion about blending imposed theoretic parameters within estimated structural equations.

4 For a detailed description of different types of exogeneity, see Engle et al. (1983). Failure in super exogeneity will make the model suffer from Lucas critique (1976).
II. BRIEF OVERVIEW OF THE ECONOMY AND THE DATA

The Philippines has been largely a market-driven economy especially since the 1980s, which have seen the deregulation of many previously government-controlled industries as well as various reforms in trade, monetary, and exchange rate policies.

A brief background of how the Philippine economy has evolved in recent years follows. (See Gochoco-Bautista and Canlas 2003, Hill 2003, and Sicat and Abdula 2003 for a more comprehensive discussion of the country’s recent economic history.) Debt-funded, import-substituting industrialization was the main economic thrust of the pre-Marcos and Marcos years, the latter lasting two decades from the mid-1960s to the mid-1980s. This entailed government creation and takeover of many vital corporations such as for energy, water, and even banking. During this period, the central bank was not truly independent but was instead more like a development bank involved in lending to government corporations. When this strategy failed because of inefficiency, corruption, and external shocks, the government was stuck with a huge amount of debt that up to now is the biggest burden in its budget.

The post-Marcos years beginning 1986 saw the reversal of many of these policies. Privatization of many government corporations was widely pursued (and still ongoing). A new, truly more independent central bank was created in 1993 to replace the old one, with the government absorbing the massive debts incurred by the latter. The exchange rate, which was nominally free-floating but was actually a managed float with a very narrow band, was made after the Asian crisis to be more truly free-floating, or at least a managed float with a much larger band. Tariffs are much lower and near World Trade Organization commitment. The banking, insurance, retail sectors have also been opened to foreign competition.

At present what appears to be the crucial sector for this economy is the fiscal sector where reforms have conspicuously failed to take place. The country is caught in a vicious cycle of fiscal deficits caused in large part by huge interest payments on debts, and huge interest payments on ever-growing debts caused by consistent budget deficits and the absorption by the central government of the losses of still extant state-owned corporations. Interest payments consume about a third of total central government expenditure. If personnel services and maintenance expenditures are added to interest payments, they eat up almost four fifths of total expenditure thus limiting government budget flexibility. This means that modeling the fiscal sector is of paramount importance for the Philippines and thus this macroeconomic model goes into some detail toward that goal.

The data used in the model are quarterly series from 1990 to 2004 and make up most of the data set. For a few variables, data series begin later than 1990. The data is culled mostly from different government statistical agencies such as National Statistical Coordination Board (national accounts variables); National Statistics Office (employment, population, and consumer price index [CPI] variables); Bangko Sentral ng Pilipinas (monetary variables); Bureau of Treasury (government revenue and expenditure variables); and Philippine Atmospheric, Geophysical and Astronomical Services Agency (weather variables). The International Financial Statistics and Datastream are additional sources of data. The national accounts constant variables were rebased to 1994 from 1985 to make the base year more recent and to coincide with the consumer price index (CPI) base year.5

5 This was done by applying to the 1994 current values the growth rates (backward and forward) from the 1985-based series. The government is set to release in 2005 national income account figures based on 2000 prices.
III. THE STRUCTURE OF THE MODEL

The present model is a small, compact, and highly aggregate macro model. It can be divided into eight blocks: private consumption, investment, government, trade, production, prices, monetary, and labor sectors. There are 48 behavioral and technical equations, 17 identities, and 81 variables in total. The behavioral and technical equations are specified and estimated using PcGive and PcGets software; see Doornik and Hendry (2001) and Hendry and Krolzig (2001). A brief description of the behavioral and technical equations in each block is given below.6

A. Private Consumption Block

Constant-price private consumption is formulated in the long run as a homogenous demand function of income and “wealth”, while also being affected by the deposit rate and the unemployment rate. Income is measured as the gross national product (GNP) net of government tax; and wealth is loosely measured by the sum of domestic debt, currency in circulation, and net foreign assets all deflated to real prices. Because foreign remittances have become a significant source of income for many households in the country, we incorporated the ratio of net factor income from abroad to GNP as a short-run factor affecting changes in constant-price private consumption.

Current price private consumption is modeled via its deflator. The deflator is formulated as a function of the consumer price index and the import price deflator.

B. Investment Block

Constant-price investment is formulated as a demand function with long-run unit elasticity with respect to GDP. In the short run, it is also affected by changes in the real domestic lending rate and the total government debt to GDP ratio (proxy for risk). The latter is of particular importance as the country is now experiencing record high debt-to-GDP ratio.

C. Government Block

Government tax revenue is modeled in the long run as linear with respect to gross national product (GNP) while also depending on the tax rate. Government total revenue is modeled as a simple function of government tax revenue.

Total government expenditure is divided between interest payment on debt and noninterest expenditure. Interest expenditure is modeled as a fraction of total debt and depends on the Treasury bill rate and the exchange rate. Noninterest expenditure is formulated in the long run as linear with respect to government total revenue while also being affected by the debt-to-GDP ratio negatively and the unemployment rate positively. When the debt ratio is high, government expenditure shifts to interest payments, while when unemployment is high, the government engages in expansionary spending. In the short run, changes in noninterest expenditures depend on changes in government total revenues and the unemployment rate.

5 See the Appendix for the detailed variable list and equation list together with the main test results at the end of each estimated equation.
Central government debt was not modeled as an identity using the deficit because a significant portion of the debt is due to nondeficit financing factors, such as the debt incurred by state-owned enterprises. As such, we decided to model debt as a behavioral equation. Because different variables possibly enter into the determination of foreign and domestic debt (the exchange rate for example has a much bigger impact on foreign debt level), we modeled each separately. Change in government domestic debt is formulated in the long run as linear with respect to the government deficit. In the short run, the acceleration of domestic debt depends on changes in the government deficit and the 91-day T-bill rate. Change in government foreign debt is modeled in the long run as likewise linear with respect to the government deficit while also depending on the exchange rate. In the short run, the acceleration of foreign debt depends on changes in the US lending rate, the interest differential between domestic and US lending rates, and the exchange rate.

The average tax rate of the government is modeled as depending negatively on the revenue-to-GNP ratio and positively on the debt-to-GNP ratio.

The national account component government consumption in current price is explained by government noninterest expenditure with a linear long-run relationship.

Constant-price government consumption is modeled through its deflator. The deflator is explained by the price deflator of the third sector with a linear long-run relationship.

In order to facilitate fiscal policy simulation, alternative equations to the government noninterest payment expenditure and government tax revenue equations are also built. The alternative tax revenue equation incorporates a rule by which the government reduces its usual expenditure once it breaches a certain debt-to-GDP ratio or deficit-to-GDP ratio (user-adjustable). The amount of expenditure reduction is related to the size of the breach. The alternative tax revenue equation allows the model user to fix future tax revenue growth by setting the number of years it will take the government to achieve its optimal tax effort ratio (equivalent to the tax rate).

D. Trade Block

Dollar exports is formulated as a simple function of a world trade variable—defined as the imports of the world from the Philippines. The latter is computed from a world trade matrix comprising 30 countries that historically has accounted for about 85 percent of Philippine exports. Current imports is modeled in the long run as a homogenous demand function of domestic demand (sum of private consumption, government consumption, and investments) and external demand (exports), while also depending on relative prices between domestic products (proxied by producer price index) and foreign products (price of world exports). A significant portion of domestic imports is in intermediate and capital goods used by the export industry. Dollar current account balance is formulated as a linear function of the trade balance.

E. Production Block

The long-run supply trend of GDP in constant price is modeled as a homogenous Cobb-Douglas production function (capital in constant prices and employment as arguments).

The primary sector value added in constant price is modeled as a function of the weather (proxied by the rainfall index) and the growth of demand for agricultural output as represented by the sum
of the value added in the secondary and tertiary sectors. This is because the agriculture sector of the Philippines is still relatively backward and depends more on the vagaries of the weather than the level of capital and/or labor in the sector. Agriculture is considered the residual labor sector where workers who cannot find better paying jobs in the other sectors go. Primary sector value added in current price is modeled via its deflator. The deflator depends on the price of imports, world price of exports, and a measure of trade openness (exports plus imports over GDP).

Secondary sector value added in constant price is formulated in the long run as a homogenous production function. In the short run, changes in private consumption (the share of exports to GDP and relative prices among the sectors) also influence second sector value added. Secondary sector value added in current price is modeled via its deflator. The deflator is in the long run a homogenous function of wage, price of investments, and price of imports. In the short run, changes in wage affect current-price secondary sector value added through its deflator.

Tertiary sector value added in constant price is modeled in the long run as linear with respect to constant-price GNP. In the short run, it is affected by relative prices among the three sectors. Tertiary sector value added in current price is also modeled via its deflator. The deflator is modeled in the long run as linear to the secondary sector price deflator. In the short run, its changes depend on changes in import prices and the price deflator of the secondary sector.

Net factor income from abroad in current price is modeled as linear with respect to the unemployment rate. The idea is that high unemployment within the country induces workers to find overseas jobs and thus increases foreign remittances, which comprise the bulk of the factor income of the country.

Constant-price GNP is modeled via its deflator, which depends only on the price deflator of GDP.

F. Price Block

The price deflator of GDP is formulated as a function of the price deflators of its expenditure side components (private consumption, government consumption, investments, exports, and imports). The consumer price index is modeled in the long run as a homogenous function of the price deflators of the secondary and the tertiary sectors, and the money supply (M1) to GDP ratio. In the short run, changes in the consumer price index depend on changes in the price deflators of the three sectors and the import price index.

The producer price index (PPI) is modeled in the long run as a linear function of the second sector price deflator. In the short run, changes in the PPI are due to changes in the price deflators of the first and tertiary sectors as well as the price of imports.

The price deflator of investments is formulated in the long run as a homogenous function of the price deflators of the primary and secondary sectors while also depending on the real interest rate (defined as the lending rate minus the inflation rate). Changes in sector prices affect changes in investment price in the short run.

Export price index is modeled in the long run as a homogenous function of the import price deflator. In the short run, its changes are affected by changes in the price of imports and primary and secondary sector prices.
The import price deflator is modeled as linear with respect to domestic and world export prices.

G. Monetary Block

Currency in circulation (M0) is explained by narrow money (M1) with a nonlinear long-run relationship to reflect the impact of technical progress, such as electronic transactions, on cash demand.

M1 is formulated as a real money demand function with long-run unit elasticity with respect to GNP while also being affected by the overnight borrowing rate.

Net foreign assets (NFA) is modeled in the long run as linear with respect to the balance of trade. In the short run, changes in NFA are influenced by net factor income from abroad and the exchange rate, in addition to changes in the trade balance.

Changes in domestic credit of deposit money banks are modeled in the long run as linear with respect to investments while depending also on the exchange rate. The real lending rate joins in as an additional short-run explanatory variable.

Changes in domestic credit of the central bank are modeled in the long run as linear with respect to the government deficit while depending also on the exchange rate. In the short run, it depends on changes on the Treasury bill rate.

The interest rate on overnight borrowing, considered the country’s benchmark rate, is modeled on past period inflation rates and US interest rate, following the Taylor rule (1993). Other interest rates (91-day Treasury bill rate, lending rate, deposit rate) are modeled as a function of the overnight borrowing rate and the depreciation rate of the domestic currency.

H. Employment Block

The labor force is modeled as linear with respect to population but in addition is further influenced by the share of the employed in the population. In the short run, changes in employment level affect changes in the labor force.

Total employment is modeled in the long run as a homogenous demand function of the constant value added in the three sectors while also being affected by the estimated real wage and the share of the primary sector in total GDP. In the short run, changes in total employment are affected by changes in the primary sector value added and changes in the share of the primary and tertiary sectors in total GDP.

Employment in the secondary sector is modeled as a factor demand function in terms of the value added in the secondary sector and the wage rate. In the short run, changes in the price deflator of the second sector, and changes in the share of the primary sector in total employment join in as additional explanatory variables.

Employment in the tertiary sector is modeled via its aggregate with the secondary sector and is linear with respect to the value added in the secondary and tertiary sectors while also being affected by the real wage rate.
IV. SIMULATION EXPERIMENTS

Model simulations are performed in the software package *Winsolve*, see Pierse (2001). Two sets of simulation experiments are carried out here. The first set is designed to evaluate the predictive accuracy of the model. The second set is mainly designed to evaluate the policy simulation capacity of the model.

A. Model Evaluation

The model is evaluated for both within-sample and out-of-sample predictive performance. The evaluation of within-sample performance is mainly via conventional statistics such as the root mean square percentage errors (RMSPE) and the mean percentage errors (MPE). Out-of-sample forecasting performance is evaluated using stochastic simulations.

1. Within-sample Performance

Using historical data, both static and dynamic solutions of the model are obtained. The RMSPE and MPE of both solutions as compared to the actual values for key macroeconomic variables are reported in Table 1. As easily seen from the table, the model is able to track the historical development of the Philippine economy reasonably well. This even if the simulation runs smack into the Asian financial crisis and hardly any dummy for this period was used. Figures 1 and 2 depict the trajectories of the static and dynamic ex post simulations over the period 1997-2003 along with the actual values of 16 macroeconomic variables. These variables are: constant-price value added in the primary sector, constant-price value added in the secondary sector, constant-price value added in the tertiary sector, constant-price private consumption, constant-price investments, employment level, constant-price imports, current account balance, government revenue, government expenditure, domestic debt, foreign debt, money supply (M1), net foreign assets, GDP price deflator, and consumer price index. It can be seen from the figures that both static and dynamic simulations track the actual time paths of the variables reasonably well.

2. Out-of-sample Performance

Out-of-sample performance of the model is evaluated through stochastic simulations. Unlike dynamic simulation that simply projects the variables into the future, stochastic simulations introduce uncertainty into forecasts by adding random shocks into each estimated equation during forecast simulations. The bootstrap method is used here, which draws random shocks from individual equation residuals for a specified sample period. By carrying out a large number of stochastic simulations, we are able to obtain an empirical distribution of the forecasts under the assumption that the uncertainty during the forecasting period resembles that embodied by the residuals of the specified sample period.

7 With static solution, the model is solved simultaneously but lagged actual values are used in place of lagged forecast values. As a result, forecast errors do not cumulate dynamically. With dynamic solution, the equations of the model are solved simultaneously, period by period, with the solution values for previous periods being used as lagged values in subsequent periods (see Pierse 2001).
Table 1
Prediction Statistics of the Filipino Model, Q21997 to Q42003

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>RMSPE Static</th>
<th>RMSPE Dynamic</th>
<th>MPE Static</th>
<th>MPE Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary sector value added constant price</td>
<td>0.018</td>
<td>0.027</td>
<td>-0.001</td>
<td>-0.004</td>
</tr>
<tr>
<td>Secondary sector value added constant price</td>
<td>0.018</td>
<td>0.064</td>
<td>0.000</td>
<td>-0.048</td>
</tr>
<tr>
<td>Tertiary sector value added constant price</td>
<td>0.006</td>
<td>0.009</td>
<td>0.001</td>
<td>0.004</td>
</tr>
<tr>
<td>Private consumption constant price</td>
<td>0.004</td>
<td>0.011</td>
<td>-0.001</td>
<td>-0.009</td>
</tr>
<tr>
<td>Investments constant price</td>
<td>0.054</td>
<td>0.078</td>
<td>-0.002</td>
<td>-0.035</td>
</tr>
<tr>
<td>Imports constant price</td>
<td>0.077</td>
<td>0.096</td>
<td>-0.004</td>
<td>-0.007</td>
</tr>
<tr>
<td>Current account balance(^b)</td>
<td>5.932</td>
<td>4.617</td>
<td>1.576</td>
<td>0.940</td>
</tr>
<tr>
<td>Employment</td>
<td>0.012</td>
<td>0.021</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Government expenditure</td>
<td>0.057</td>
<td>0.020</td>
<td>-0.005</td>
<td>-0.001</td>
</tr>
<tr>
<td>Government revenue</td>
<td>0.049</td>
<td>0.018</td>
<td>0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>Domestic debt</td>
<td>0.021</td>
<td>0.030</td>
<td>0.000</td>
<td>-0.005</td>
</tr>
<tr>
<td>Foreign debt</td>
<td>0.052</td>
<td>0.075</td>
<td>-0.009</td>
<td>-0.068</td>
</tr>
<tr>
<td>Money supply (M1)</td>
<td>0.033</td>
<td>0.021</td>
<td>0.006</td>
<td>-0.002</td>
</tr>
<tr>
<td>Net foreign assets(^b)</td>
<td>4.271</td>
<td>0.487</td>
<td>-0.859</td>
<td>-0.348</td>
</tr>
<tr>
<td>GDP price deflator</td>
<td>0.009</td>
<td>0.023</td>
<td>0.000</td>
<td>0.014</td>
</tr>
<tr>
<td>Consumer price index</td>
<td>0.006</td>
<td>0.034</td>
<td>0.001</td>
<td>0.018</td>
</tr>
</tbody>
</table>

\(^a\) The RMSPE and MPE are computed as follows:
where \(Y^s\) and \(Y^a\) are the simulated and actual values of an endogenous variable, respectively, and \(T\) is the number of simulation periods.

\[
RMSPE = \left(\frac{1}{T} \sum_{t=1}^{T} \left(\frac{Y^t - Y^s}{Y^s} \right)^2 \right)^{\frac{1}{2}}, \quad MPE = \frac{1}{T} \sum_{t=1}^{T} \left(\frac{Y^t - Y^s}{Y^s} \right)
\]

\(^b\) The current account balance and net foreign assets take values very close to zero and change from negative to positive (and vice versa) in the estimation period, which account for their large RMSPE and MPE. See Figures 1 and 2 for the fit.
Figure 1
Static and Dynamic Simulation Results: Selected Real Sector Variables

See Appendix A for the variable units.
FIGURE 2
STATIC AND DYNAMIC SIMULATION RESULTS: SELECTED FISCAL, MONETARY AND PRICE VARIABLES

Note: Actual — Static — Dynamic

See Appendix A for the variable units.
Quantiles are computed to represent the distribution. Figures 3 and 4 present the forecasts, generated by 200 stochastic simulations, of 16 selected variables from the model. Three curves are plotted for each variable: the simulated values at 2 percent quantile, 50 percent quantile, and 97 percent quantile. We could regard the series at the 50 percent quantile as the approximate mean forecasting values, and the series at the 2 percent quartile and at the 97 percent quartile approximately as the 95 percent confidence interval. As illustrated in the figures, the model generally exhibits good forecasting performance.

B. Impact Analysis

We look at the impact of three sets of shocks. We first look at a nominal shock as represented by a shock on the benchmark rate of the central bank. Then we consider a fiscal shock in the form of a change in the revenue and expenditure patterns of the government. Finally, we look at an external shock in the form of rising oil prices.

1. Interest Rate Shock

This simulation looks at the impact of raising the benchmark central bank overnight borrowing rate to 10 percent, first for only two quarters, 2004Q4 and 2005Q1, and then for the entire forecast period from 2004Q4 to 2010Q4 from a base value of 8 percent for the entire forecast period. The former is what is referred to here as the impulse shock and the latter the step shock.

Figure 5 shows the effect of the interest rate shock on investments, GDP, and inflation. Note that in the model investments depend negatively on the lending rate, which in turn follows the movement of the overnight borrowing rate. As the figure shows, the impulse shock reduces the growth rate of investments immediately after the shock although it recovers after about a year and then growth is higher than it would have been for about a year also, before finally tapering off. The effect of the step shock lingers but also erodes and, unlike in the impulse shock, there is no period when growth would have been significantly higher than it would have been without the shock.

The impulse shock lowers GDP growth very slightly for about 4 years (around 0.03 of a percentage point) before tapering off. The effect of the step shock is higher (average of slightly higher than one tenth of one percentage point) and lingers before showing signs of leveling off at the end of the simulation period.

The impulse shock reduces inflation slightly compared to the base run for about a year after the shock, but this is short-lived as inflation becomes higher for about two years after that before declining again and leveling off toward the end of the simulation period. The step shock reduces inflation initially for about two years but then inflation increases after that before declining again.

The effects of the interest rate hike on the real variables appear high, especially compared to a similar experiment done with ADB’s PRC model (see He et al. 2004). The high debt levels in the

8 The distribution should be approximately symmetric, as we have allowed for the use of antithetic stochastic shocks. For the detailed description of the stochastic simulations, see Pierse (2001).
9 This involved exogenizing the overnight borrowing rate, which is endogenous in the model.
FIGURE 3

STOCHASTIC SIMULATION RESULTS: SELECTED REAL SECTOR VARIABLES

See Appendix A for the variable units.
FIGURE 4
STOCHASTIC RESULTS: SELECTED FISCAL, MONETARY AND PRICE VARIABLES

Note: 2% quantile – – – 50% quantile – – 97% quantile – – –

See Appendix A for the variable units.
country and persistent public deficits may account for this. Favero and Giavazzi (2003) in the case of Brazil suggest that when the country's fundamentals are weak and the risk of default high, monetary policy can have perverse effects. Following their framework and applying it to the Philippines with modifications, the mechanism can be described as follows: With a significant portion of the public debt short term, an increase by the central bank of its benchmark rate raises domestic debt service payments. As budget deficits continue, the debt level further rises and so does the risk of default. This results in a higher risk perception and higher interest rates on debts sourced from abroad, and thus even higher debt, especially if currency depreciation also occurs. Investments also decline as a result of the higher risk. The currency depreciation exerts inflationary pressure, which would cause the central bank to further raise interest rates, and so on. The result is a lingering and even perverse (higher inflation) effect of an interest rate hike.

2. Fiscal Simulations

As noted above, the fiscal situation is deemed most critical for the Philippine economy. The central government debt-to-GDP ratio is at an all-time high of about 78 percent, and with no immediate solution to the chronic budget deficit, it is feared a fiscal crisis is looming. Very high debt levels affect the country negatively on several fronts. First, it raises the perceived risk of default of the country and as a result, investments go down. Second, higher debt levels mean increasingly higher interest payment allocations by the government and thus lower allocation for other more important items such as infrastructure and social expenditures. These are reflected in the model.

Two simulation scenarios, illustrating two ways the government could address the budget deficit problem, are run and compared to the base run where the government is assumed to just continue on its current path.

(i) **Simulation Scenario 1:** Government sets an upper-bound limit for the debt-to-GDP ratio of 70 percent and for the government deficit to GDP ratio of 4 percent. The government reacts to a breach of either of these upper bounds by reducing government noninterest payment expenditure by the fraction of the excess, or in case both are breached by the fraction of the higher excess. For instance, if government deficit for a quarter is 6 percent of GDP and the debt-to-GDP ratio is less than 70 percent, then government expenditure in the following quarter is reduced by 2 percent.

(ii) **Simulation Scenario 2:** In addition to what is in Scenario 1, the government is also able to maintain an annual increase in tax collection of 15 percent. This is not unreasonably high as figures higher than these have been achieved in the mid-1990s, moreover, tax efficiency is so low that there is a very large room for improvement.

Figure 6 shows the evolution of the debt-to-GDP ratio under the base run and the two alternative simulation scenarios as well as the effect of the two simulations on GDP growth and investment growth. As the dashed lines in the second graph show, GDP growth would be initially (slightly) lower when government expenditure is reduced as a response to too-high debt or deficit

10 The model allows for these bounds to be easily adjusted.
FIGURE 5
IMPACT ANALYSIS: INTEREST RATE SIMULATIONS

Note: Simulation 1 — Simulation 2
FIGURE 6
IMPACT ANALYSIS: FISCAL SIMULATIONS

Debt-to-GDP ratio

Annual growth rate of GDP
(as deviation from base-run growth rate)

Annual growth rate of Investments
(as deviation from base-run growth rate)

Note: Base Simulation 1 Simulation 2
but then afterward becomes significantly higher. At the end of the forecast period GDP growth is about 0.15 of a percentage point higher. Under Scenario 2, when an increase in tax collection accompanies the reduction in expenditure, GDP growth is even initially slightly lower than in Scenario 1 but then also catches up and becomes much higher than base growth although not as high as in Scenario 1. These show the importance of reining in the government’s deficit problems. The increase in GDP growth under the two scenarios can be traced primarily to the increase in investments for most of the period as shown in the last graph.

3. Oil Price Shock

As a final simulation exercise, we look at the effects of both impulse and step oil price shocks to the economy. The Philippines, being a small open economy highly dependent on oil imports, is seen as highly vulnerable to drastic upward swings in world oil prices. The base run assumes that Brent oil price per barrel is at $45 for 2004Q4 and then declines to $35 per barrel by 2005Q1 up to the end of the simulation period. The impulse shock assumes the $45 dollar per barrel lasts for two quarters from 2004Q4 to 2005Q1 then down to $35 per barrel in Q22005 up to the end of the simulation period, while the step shock assumes the $45 dollar per barrel is constant from Q42004 to the end of the simulation period.

Figure 7 shows the effects of the oil shocks to GDP growth, inflation, and private consumption. The impulse shock reduces GDP growth by about a fifth of a percentage point for about a year after the shock before tapering off. The step shock reduces GDP growth by an average of about six tenths of a percentage point up to the end of the simulation period.

The impulse shock increases inflation by about a tenth of a percentage point for three years before tapering off. The effect of the step shock is much larger and pervasive, reaching a high of almost two percentage points before settling at about a third of a percentage point by the end of the simulation period. The average increase in inflation for the entire simulation period due to the step shock is 0.55 percentage point.

The impulse shock reduces private consumption growth slightly by about a tenth of a percentage point for about 3 years before tapering off. However, the step shock has a huge effect on private consumption growth, cutting it increasingly until it settles at about half a percentage point at the end of the simulation period.

5. CONCLUSION

This paper describes an ADB quarterly macroeconometric model of the Philippines. The model exhibits a number of desirable properties that the authors believe accords it distinct advantage over other existing macroeconometric models of the Philippines. During the modeling process, great efforts have been made to try to achieve the best possible blend of well-established a priori long-run theories, short-run shock variables through a posteriori data guidance, and special features

11 The lower growth under Scenario 2 compared to Scenario 1 (at least up to 2010) can be attributed to the lower private consumption growth that occurs in the former as disposable incomes decline because of higher taxes. Historically, private consumption has been a strong driving force of the Philippine economy.
Figure 7
Impact Analysis: Oil Price Simulations

Annual growth rate of GDP
(as deviation from baseline growth)

Annual growth rate of CPI
(as deviation from baseline growth)

Annual growth rate of Private Consumption
(as deviation from baseline growth)

Note: Impulse ——— Step
of the Philippine economy. The resulting model demonstrates good forecasting capacity and versatile potential for policy simulations.

The satisfactory within-sample forecasting capacity of the model is illustrated by conventional measures of the predictive accuracy of the model such as root mean square percentage error and mean absolute percentage error, which were computed for several key variables in both static and dynamic runs of the model. The out-of-sample forecasting capacity of the model is illustrated by the reasonably narrow uncertainty bands of the forecasts generated by stochastic simulations.

The policy simulation potential of the model is illustrated by three types of simulations: interest rate shocks, fiscal policy shocks, and world oil price shocks. The first set of simulations shows the importance of maintaining a low interest rate regime in the country. The second set of simulations shows that addressing the deficit and debt problems is very important if the Philippine government hopes to achieve and maintain higher growth of its economy in the medium and longer term. The oil price simulations show the vulnerability of the Philippine economy to external shocks.
APPENDIX

SPECIFICATION AND STRUCTURE OF THE MODEL

A. List of Variables

1. Endogenous Variables

Consumption block

PCONc_PHI Private consumption in constant price (million 1994 pesos)
PCON_PHI Private consumption in current price (million pesos)

Investment block

INVC_PHI Investments in constant price (million 1994 pesos)
STKc_PHI Inventories in constant price (million 1994 pesos)
STK_PHI Inventories in current price (million pesos)

Government block

GREV_PHI Government total revenue (million pesos)
GTAX_PHI Government tax revenue (million pesos)
GCON_PHI Government consumption in current price (million pesos)
GCONc_PHI Government consumption in constant price (million 1994 pesos)
GPAY_PHI Government expenditure less interest payments (million pesos)
GINT_PHI Government interest payments (million pesos)
DDEBT_PHI Domestic debt (million pesos)
FDEBT_PHI Foreign debt (million pesos)

Trade block

X$_PHI Exports (million US dollars)
M_PHI Imports (million pesos)
CABS$_PHI Current account balance (million US dollars)

Production block

GDPcLR_PHI Long-run supply trend of constant GDP (million 1994 pesos)
VA1c_PHI Value added of primary sector in constant price (million 1994 pesos)
VA1_PHI Value added of primary sector in current price (million pesos)
VA2c_PHI Value added of secondary sector in constant price (million 1994 pesos)
VA2_PHI Value added of secondary sector in current price (million pesos)
VA3c_PHI Value added of tertiary sector in constant price (million 1994 pesos)
VA3_PHI Value added of tertiary sector in current price (million pesos)
NFIA_PHI Net factor income from abroad in current price (million pesos)
GNPC_PHI Gross national product in constant price (million 1994 pesos)
Price block

P#GDP_PHI Price deflator of GDP (1994=1)
P#C_PHI Consumer price index (1994=1)
P#P_PHI Producer price index (1994=1)
P#INV_PHI Price deflator of investments (1994=1)
P#X_PHI Price deflator of exports (1994=1)
P#M_PHI Price deflator of imports (1994=1)
P#WX_PHI World price of exports

Monetary block

M0_PHI Currency in circulation (million pesos)
M1_PHI Narrow money (million pesos)
M3_PHI Broad money (million pesos)
NFA_PHI Net foreign assets (million pesos)
DCDMB_PHI Domestic credit of deposit money banks (million pesos)
DCCB_PHI Domestic credit of central bank (million pesos)
IROB%_PHI Overnight borrowing rate of the central bank
IRD%_PHI Deposit rate
IRL%_PHI Lending rate
IRTB%_PHI 91-day Treasury bill rate

Employment block

LF_PHI Labor force (thousands)
EMP_PHI Total employed (thousands)
EMP2_PHI Employed in the second sector (thousands)
EMP3_PHI Employed in the third sector (thousands)

Identities

GDPc_PHI Gross domestic product in constant price (million 1994 pesos)
GDP_PHI Gross domestic product
GNP Gross national product
NFIAc Net factor income from abroad in constant price (million 1994 pesos)
INV_PHI Investments in fixed assets in current price
K_PHI Stock of fixed investment assets in current price
Kc_PHI Stock of fixed investment assets in constant price (million 1994 pesos)
UCC%_PHI User cost of capital (percent)
GEXP_PHI Government expenditure (million pesos)
GDEF_PHI Government deficit (million pesos)
X PHI Exports in current price (million pesos)
Xc_PHI Exports in constant price (million 1994 pesos)
Mc_PHI Imports in constant price (million 1994 pesos)
M$_PHI Imports in current price (million dollars)
P#PS_PHI Producer price index dollarized
WAGE_PHI Unit wage cost
MQ_PHI Quasi-money (million pesos)
UEMP%_PHI Unemployment rate
2. Exogenous Variables

DEPK%_PHI Annual depreciation rate of fixed assets
ER_PHI Peso-dollar exchange rate
IRL%_USA US lending rate
P#C_USA Consumer price index, US
P#OIL$ Brent oil price spot rate (US dollars per barrel)
P#WX$ World export price index dollarized
POP_PHI Population (thousands)
RAIN_PHI Rainfall index
TAX%_PHI Tax rate
WT$_PHI World imports from the Philippines

B. Estimated Model

The estimated behavioral and linking equations and the identities of the Philippine model are presented below. In the equations, a vector of the standard error (SE) and stability statistic is provided for each parameter estimate. Below the equations, the standard deviation of the residuals (sigma) and the coefficient of determination (R^2) are reported. In addition, the test-statistic and the probability value (bracketed number) for five diagnostic tests are also reported. These tests are (i) Lagrange-multiplier test for r^{th} residual correlation, (ii) Doornik and Hansen test for normality of residuals, (iii) White’s test for heteroskedasticity using squares, (iv) Ramsey RESET test for model misspecification, and (v) parameter instability tests for the variance and for all parameters in the model simultaneously based on Hansen (1992). Note that in the equations, the variable SQ denotes a dummy for quarter 1, SQ_2 a dummy for quarter 2, and so on. Variables that begin with DSH followed by a date denote one quarter dummies while those that begin with DST followed by a date denote dummies for more than one quarter.

1. Consumption Block

(i) Private Consumption in Constant Price

\[\Delta \ln(\text{PCONc}_\text{PHI}) = 0.1227 - 0.2611 \times SQ_1 - 0.0474 \times SQ_2 - 0.1168 \times SQ_3 + 0.0906 \times \left(\frac{\text{NFIc}_\text{PHI}}{\text{GNPc}_\text{PHI}} \right) \\
- 0.0327 \times \text{DEBTr}_\text{PHI} - 0.0027 \times \text{M0}_\text{PHI} - 0.0031 \times \text{NFA}_\text{PHI} + 0.0017 \times \text{P#C}_\text{PHI} \]

\[\text{PCONcECM}_\text{PHI} = \ln(\text{PCONc}_\text{PHI}) - 0.8 \times \ln(\text{GNPc}_\text{PHI} - \frac{\text{GTAX}_\text{PHI}}{\text{GNPc}_\text{PHI}}) - 0.2 \times \ln(\text{DEBTr}_\text{PHI} + \text{M0}_\text{PHI} + \text{NFA}_\text{PHI}) + 0.05 \times (0.5 \times (\text{UEMP}_\text{PHI} + \text{UEMP}_\text{PHI}_1) + 0.005 \times \text{IRL}_\text{PHI}_1 - 100 \times D4 \ln(\text{P#C}_\text{PHI}_1) \]
A SMALL MACROECONOMETRIC MODEL OF THE PHILIPPINE ECONOMY
GEORGE DUCAHES, MARIE ANNE CAGAS, DUO QIN, PILIPINAS QUESING, AND NEDELIN MAGTIBAY-RAMOS

\[\sigma = 0.0036 \]
\[R^2 = 0.9988 \]
\[\text{Autocorrelation } F(3, 29) = 3.1041 [0.0582] \]
\[\text{Normality } \chi^2(2) = 1.4000 [0.4966] \]
\[\text{RESET } F(1, 34) = 1.2779 [0.2662] \]
\[\text{Stability variance} = 0.1049 \]
\[\text{joint parameter constancy} = 2.4605 \]

(ii) **Private Consumption in Current Price**

\[\Delta_4 \ln(\text{PCON}_\text{PHI}) = \Delta_4 \ln(\text{PCONc}_\text{PHI}) + 0.9779 \cdot \Delta_4 \ln(\text{P#C}_\text{PHI}) + 0.0249 \cdot \Delta \ln(\text{P#M}_\text{PHI}_1) \]
\[- 0.03345 \cdot \Delta_4 \ln(\text{P#M}_\text{PHI}) - 0.1640 \cdot \text{PCONECM}_\text{PHI} \]

\[\text{PCONECM}_\text{PHI} = \ln(\text{PCON}_\text{PHI}) - \ln(\text{PCONc}_\text{PHI}) - 0.86 \cdot \ln(\text{P#C}_\text{PHI}) - 0.07 \cdot \ln(\text{P#M}_\text{PHI}_5) \]

\[\sigma = 0.0049 \]
\[R^2 = 0.7920 \]
\[\text{Autocorrelation } F(3, 36) = 0.5541 [0.6487] \]
\[\text{Normality } \chi^2(2) = 0.6156 [0.7351] \]
\[\text{RESET } F(1, 38) = 0.3620 [0.5510] \]
\[\text{Stability variance} = 0.2813 \]
\[\text{joint parameter constancy} = 1.0662 \]

2. **Investment Block**

(i) **Investment in Constant Price**

\[\Delta \ln(\text{INVc}_\text{PHI}) = -0.5198 + 1.1086 \cdot \Delta_4 \ln(\text{GDPc}_\text{PHI}) - 0.3114 \cdot \Delta_4 \ln(\text{DDEBT}_\text{PHI}(-3) + \text{FDEBT}_\text{PHI}(-3))/\text{GDP}_\text{PHI}(-3) \]
\[- 0.0080 \cdot \Delta_4 \ln(\text{IRI}_\text{PHI}(-1) - \Delta_4 \ln(P\#C(-1))) - 0.3405 \cdot \text{INVcECM}_\text{PHI} \]

\[\text{INVcECM}_\text{PHI} = \ln(\text{INVc}_\text{PHI}) - \ln(\text{GDPc}_\text{PHI}) \]

\[\sigma = 0.0578 \]
\[R^2 = 0.6920 \]
\[\text{Autocorrelation } F(3, 25) = 0.0918 [0.9640] \]
\[\text{Normality } \chi^2(2) = 2.2117 [0.3309] \]
\[\text{Homoscedasticity } F(6, 21) = 0.5443 [0.8115] \]
RESET F(1,27) = 0.0684 [0.7953]
Stability
variance 0.1133
joint parameter constancy 0.8749

(ii) Inventories in Constant Price

\[\Delta STKc_{\text{PHI}} = \frac{GDPc_{\text{PHI}} \cdot \{ \{STKc_{\text{PHI}} \cdot 1 / GDPc_{\text{PHI}} \cdot 1 \} + 0.0297 - 0.4778 \cdot \Delta ln(P \# GDPc_{\text{PHI}} \cdot 4) \\ 0.0061 \ 0.0839 \\ 0.1768 \ 0.1188 \} \cdot \Delta ln(P \# GDPc_{\text{PHI}} \cdot 4) - 0.1889 \cdot STKcECM_{\text{PHI}} \cdot 1 \\ 0.0305 \ 0.0498 \\ 0.1041 \ 0.2839 \} + 0.1674 \cdot \Delta ln(PCOnc_{\text{PHI}} \cdot 3 + GCONc_{\text{PHI}} \cdot 3 + INVc_{\text{PHI}} \cdot 3 - Xc_{\text{PHI}} \cdot 3 - M_{\text{PHI}} \cdot 3) \\ 0.0635 \ 0.1306 \\ 0.0305 \ 0.0498 \\ 0.1041 \ 0.2839 \} - \ln(GDPcLR_{\text{PHI}} \cdot 3) \]
\[+ 0.1153 \cdot \Delta ln(PCOnc_{\text{PHI}} \cdot 5 + GCONc_{\text{PHI}} \cdot 5 + INVc_{\text{PHI}} \cdot 5 + Xc_{\text{PHI}} \cdot 5 - M_{\text{PHI}} \cdot 5) \\ 0.0635 \ 0.1306 \\ 0.0305 \ 0.0498 \\ 0.1041 \ 0.2839 \} - \ln(GDPcLR_{\text{PHI}} \cdot 5) \]

STKcECM_{\text{PHI}} = \frac{STKc_{\text{PHI}} / GDPc_{\text{PHI}} - [\ln(PCOnc_{\text{PHI}} + GCONc_{\text{PHI}} + INVc_{\text{PHI}} + Xc_{\text{PHI}} - M_{\text{PHI}}) - \ln(GDPcLR_{\text{PHI}})]}{sigma 0.0141
R2 0.5884
Autocorrelation F(3,27) = 0.3309 [0.8031]
Normality Chi^2(2) = 0.4832 [0.7854]
Homoscedasticity F(10,19) = 1.1909 [0.3553]
RESET F(1,29) = 1.0383 [0.3167]
Stability
variance 0.2123
joint parameter constancy 1.2020

(iii) Inventories in Current Price

\[\Delta STK_{\text{PHI}} = 729.422 + 0.6698 \cdot \Delta (STKc_{\text{PHI}} \cdot P \# INVc_{\text{PHI}}) - 1.1425 \cdot STKcECM_{\text{PHI}} \cdot 1 \\ 478.3 \ 0.0337 \\ 0.1312 \ 0.0965 \]
STKcECM_{\text{PHI}} = STK_{\text{PHI}} - 0.70 \cdot (STKc_{\text{PHI}} \cdot P \# INVc_{\text{PHI}})

sigma 2810.05
R2 0.9349
Autocorrelation F(3,30) = 0.4185 [0.7410]
Normality Chi^2(2) = 0.4600 [0.7644]
Homoscedasticity F(4,28) = 1.0383 [0.3167]
RESET F(1,32) = 0.2639 [0.6110]
Stability
variance 0.2023
joint parameter constancy 0.6152
3. Government Block

(i) Government Revenue

\[
\Delta \ln(GREV_PHI) = 0.1161 + 0.9347 \times \Delta \ln(GTAX_PHI) + 0.0316 \times DST2000 + 0.9745 \times GREVECM_PHI - 1
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \ln(GREV_PHI))</td>
<td>0.1161</td>
<td>0.0223</td>
</tr>
<tr>
<td>(\Delta \ln(GTAX_PHI))</td>
<td>0.9347</td>
<td>0.0431</td>
</tr>
<tr>
<td>(DST2000)</td>
<td>0.0316</td>
<td>0.1373</td>
</tr>
<tr>
<td>(GREVECM_PHI)</td>
<td>0.9745</td>
<td>0.0682</td>
</tr>
</tbody>
</table>

\[GREVECM_PHI = \ln(GREV_PHI) - \ln(GTAX_PHI) \]

Sigma: 0.0346
R2: 0.9442
Autocorrelation F(3, 25) = 1.3762 [0.2730]
Normality Chi^2(2) = 3.8701 [0.1444]
Homoscedasticity F(5, 22) = 2.2084 [0.0900]
RESET F(1, 27) = 3.5454 [0.0705]

Stability

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance</td>
<td>0.4598</td>
</tr>
<tr>
<td>Joint parameter constancy</td>
<td>1.3423</td>
</tr>
</tbody>
</table>

(ii) Government Tax Revenues

\[
\Delta \ln(GTAX_PHI) = -0.2710 \times (\ln(GTAX_PHI) - \ln(GTAX_PHI))^2 - 0.2110 \times SQ1 + 0.1753 \times SQ2 + 0.0929 \times \Delta \ln(GNP_PHI) + 0.0538 \times 0.1097 + 0.06116 \times 0.3045 + 0.0687 \times 0.0374 + 0.0807 + 0.0584 + 0.4470 \times \Delta \ln(GNP_PHI) - 0.5769 \times GTAXECM + 0.1569 \times 0.1023 + 0.1217 \times 0.0513 + 5.17
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Coefficient</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \ln(GTAX_PHI))</td>
<td>-0.2710</td>
<td>0.0929</td>
</tr>
<tr>
<td>(\ln(GTAX_PHI))</td>
<td>-0.2110</td>
<td>0.0538</td>
</tr>
<tr>
<td>(SQ1)</td>
<td>0.1753</td>
<td>0.06116</td>
</tr>
<tr>
<td>(SQ2)</td>
<td>0.0929</td>
<td>0.1097</td>
</tr>
<tr>
<td>(\Delta \ln(GNP_PHI))</td>
<td>0.0538</td>
<td>0.06116</td>
</tr>
<tr>
<td>(\ln(GNP_PHI))</td>
<td>-0.2110</td>
<td>0.0538</td>
</tr>
<tr>
<td>(\Delta \ln(GNP_PHI))</td>
<td>0.1753</td>
<td>0.06116</td>
</tr>
<tr>
<td>(GTAXECM)</td>
<td>0.4470</td>
<td>0.1097</td>
</tr>
<tr>
<td>(\ln(GNP_PHI))</td>
<td>0.0929</td>
<td>0.06116</td>
</tr>
<tr>
<td>(\Delta \ln(GNP_PHI))</td>
<td>0.1753</td>
<td>0.06116</td>
</tr>
<tr>
<td>(\Delta \ln(GNP_PHI))</td>
<td>0.4470</td>
<td>0.1097</td>
</tr>
</tbody>
</table>

\[GTAXECM_PHI = \ln(GTAX_PHI) - \ln(GNP_PHI) - 0.095 \times TAX\%_PHI + 5.17 \]

Sigma: 0.0333
R2: —
Autocorrelation F(3, 22) = 0.5576 [0.6808]
Normality Chi^2(2) = 2.9366 [0.2303]
Homoscedasticity F(10, 14) = 1.1246 [0.3831]
RESET F(1, 24) = 0.0946 [0.7600]

Stability

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance</td>
<td>0.25084</td>
</tr>
<tr>
<td>Joint parameter constancy</td>
<td>1.6218</td>
</tr>
</tbody>
</table>
(iii) Government Tax Revenues (alternative)

\[
\ln(\text{GTAX}_\text{PHI}) = \text{ifles(200402)*} (\ln(\text{GTAX}_\text{PHI}_1) - 0.2710 * (\ln(\text{GTAX}_\text{PHI}) - \ln(\text{GTAX}_\text{PHI}_2)) - 0.2110 * SQ1 \\
+ 0.1753 * SQ2 + 0.6448 * \Delta \ln(\text{GDP}_\text{PHI}) + 0.8331 * \Delta \ln(\text{GDP}_\text{PHI}_1) + 0.4470 * \Delta \ln(\text{GDP}_\text{PHI}_2) \\
+ 0.0279 \begin{bmatrix} 0.1097 \\ 0.0374 \end{bmatrix} \begin{bmatrix} 0.3045 \\ 0.0753 \end{bmatrix} 0.1217 \\
- 0.5769 * \text{GTAXECM} + (\text{DST200402} * \ln((\% \text{PHI}_4 / \text{BEFT}_\text{PHI})) ^ (1 / \text{YRSTGAP} * \\
+ 0.1023 \begin{bmatrix} 0.0513 \end{bmatrix} 0.0513 \end{bmatrix} \\
+ \text{GTAXECM}_\text{PHI} = \ln(\text{GTAX}_\text{PHI}) - \ln(\text{GDP}_\text{PHI}) - 0.095*\text{TAX\%}_\text{PHI} + 5.17
\]

\[
\Delta \ln(\text{GCON}_\text{PHI}) = -0.5480 * \Delta \ln(\text{GCON}_\text{PHI}_1) - 0.0997 + 0.2911 * \Delta \ln(\text{PAY}_\text{PHI}) - 0.0312 * \text{DST2003Q3} \\
+ 0.0285 \begin{bmatrix} 0.0779 \\ 0.0173 \end{bmatrix} \begin{bmatrix} 0.1882 \\ 0.0116 \end{bmatrix} \\
- 0.5896 * \text{GCONECM}_\text{PHI}_4 \\
+ 0.2012 \begin{bmatrix} 0.1096 \end{bmatrix} \begin{bmatrix} 0.0513 \end{bmatrix} \\
+ \text{GCONECM}_\text{PHI} = \ln(\text{GCON}_\text{PHI}) - \ln(\text{PAY}_\text{PHI})
\]

Sigma 0.0321
R2 0.8118
Autocorrelation F(3,20) 1.1620 [0.3489]
Normality Chi^2(2) 0.6760 [0.3201]
Homoscedasticity F(7,15) 0.2606 [0.9602]
RESET F(1,22) 0.2826 [0.6004]
Stability
 variance 0.2242
 joint parameter constancy 1.1232

(i) Government Noninterest Payment Expenditure

\[
\ln(\text{PAY}_\text{PHI}) = \ln(\text{PAY}_\text{PHI}_4) + 0.0285 + 0.6166 * \Delta \ln(\text{REV}_\text{PHI}) + 0.0272 * \Delta \text{UEMP\%}_\text{PHI}_3 \\
+ 0.1527 \begin{bmatrix} 0.0665 \\ 0.0989 \end{bmatrix} \begin{bmatrix} 0.063 \\ 0.0736 \end{bmatrix} \begin{bmatrix} 0.1448 \\ 0.0795 \end{bmatrix} \\
+ \text{PAYECM}_\text{PHI} = \ln(\text{PAY}_\text{PHI}) - \ln(\text{REV}_\text{PHI}) + 0.24 * [(\text{DDEBT}_\text{PHI}_4 + \text{FDEBT}_\text{PHI}_4) / \text{GDP}_\text{PHI}_4] - 0.04 * \text{UEMP\%}_\text{PHI}_1
\]
(ii) Government Noninterest Payment Expenditure (alternative)

\[
\ln(GPAY_PHI) = \ln(GPAY_PHI) + 0.0825 + 0.6166 \times \Delta \ln(GREV_PHI) + 0.0027 \times \Delta UEMP\%_PHI_3 \\
- 0.9088 \times \text{GPAYECM}_PHI_4 + (DST2004Q2) \times \min[1,(TDEBTr_PHI - 0.75 + GDEFr_PHI + 0.04)] \\
0.1448 \\
0.0795
\]

GPAYECM_PHI = \ln(GPAY_PHI) - \ln(GREV_PHI) + 0.24 \times \left\{ \frac{(DDEBT_PHI_4 + FDEBT_PHI_4)}{GNP_PHI_4} \right\} - 0.04 \times UEMP\%_PHI_1

5. Government Interest Payment Expenditure

\[
\frac{GINT_PHI \times 100}{DDEBT_PHI + FDEBT_PHI} = 0.0283 \times ER_PHI + 0.0394 \times IRTB\%_PHI + 0.2107 \times SQ3 \\
0.0013 \\
0.0064 \\
0.01395 \\
0.1699 \\
0.0962
\]

sigma 0.1376
R2 —
Autocorrelation F(3,36) = 0.4748 [0.7033]
Normality Chi^2(2) = 4.7449 [0.0933]
Homoscedasticity F(4,34) = 0.9600 [0.4691]
RESET F(1,38) = 0.1527 [0.6997]
Stability

variance 0.4417
joint parameter constancy 0.9410

6. Domestic Debt

\[
\Delta^2 DDEBT_PHI = 7388.86 + 1.4700 \times \Delta GDEFr_PHI_1 - 1.1947 \times DDEBT_{ECM}_PHI_1 \\
3828.0 \\
0.3093 \\
0.3093 \\
0.3119 \\
4462.0 \\
0.3979
\]

\[
+ 8489.14 \times \Delta (0.25 \times (IRTB\%_PHI_3 + IRTB\%_PHI_4 + IRTB\%_PHI_5 + IRTB\%_PHI_6))
4462.0 \\
0.3979
\]

sigma 0.2765
R2 0.6128
Autocorrelation F(3,25) = 0.8108 [0.4999]
Normality Chi^2(2) = 4.9365 [0.0847]
Homoscedasticity F(6,21) = 0.2500 [0.9538]
RESET F(1,27) = 0.4187 [0.5230]
Stability

variance 0.2765
joint parameter constancy 0.9869
DDEBTECM_PHI = ΔDDDEBT_PHI + GDEF_PHI_1

σ = 21355.9
R² = 0.7076
Autocorrelation F(3, 27) = 1.0733 [0.3769]
Normality Chi²(2) = 0.2554 [0.9945]
Homoscedasticity F(6, 23) = 1.6129 [0.1887]
RESET F(1, 29) = 0.1523 [0.6992]

Stability

7. Foreign Debt

Δ²DFDEBT_PHI = 7638.41 + 15125 * Δ²ER_PHI + 5504.4 * Δ(IRL%_PHI - IRL%_USA) + 54321.7 * ΔIRL%_USA
- 1.74598 * FDEBTECM_PHI_1

FDEBTECM_PHI = ΔDFDEBT_PHI + GDEF_PHI - 10021*ΔER_PHI

σ = 35268.6
R² = 0.7527
Autocorrelation F(3, 26) = 0.4736 [0.7033]
Normality Chi²(2) = 5.0872 [0.0786]
Homoscedasticity F(8, 20) = 0.3681 [0.9253]
RESET F(1, 28) = 1.3708 [0.2515]

Stability

8. Government Consumption in Constant Price

ln(GCONc_PHI) = ln(GCON_PHI) - ln(GCONc_PHI / GCONc_PHI_1) = 0.1968 + 0.3537 * SQ1 + 0.1671 * SQ2
+ 0.13397 * SQ3 - 1.7417 * Δln(VA3c_PHI / VA3c_PHI) + 0.3970 * GCONcECM_PHI_1

GCONcECM_PHI = ln(GCONc_PHI) - ln(GCONc_PHI) - ln(VA3c_PHI)
Stability
variance 0.1937
joint parameter constancy 1.6331**

D. Trade Block

1. Exports

\[
\ln(\text{X}_{\text{PHI}}) = 0.0527 + 0.7389 \times \ln(\text{WTS}_{\text{PHI}}) + 0.1727 \times D5700Q19704 - 0.1068 \times D5700Q11004
\]

\[
- 0.5786 \times (\ln(\text{X}_{\text{PHI}}) - \ln(\text{WTS}_{\text{PHI}}))
\]

\[
\begin{bmatrix}
0.0236 & 0.0932 & 0.0323 & 0.0313 \\
0.0949 & 0.3133 & 0.0397 & 0.1591 \\
0.1046 & 0.0949 & 0.3133 & 0.1591 \\
0.0690 & 0.0949 & 0.3133 & 0.1591
\end{bmatrix}
\]

\[
\text{sigma} = 0.0496
\]

R2 = 0.7058

Autocorrelation F(3,20) = 0.3425 [0.8474]

Normality Chi^2(2) = 0.5798 [0.7483]

Homoscedasticity F(5,17) = 0.4233 [0.8581]

RESET F(1,22) = 0.0559 [0.8143]

Stability
variance 0.1293
joint parameter constancy 1.0285

2. Imports

\[
\Delta \ln(\text{M}_{\text{PHI}}) = -0.2730 + 0.1707 \times \Delta \ln(\text{X}_{\text{PHI}}) + 0.5040 \times \Delta \ln(\text{X}_{\text{PHI}}) - 0.6095 \times \text{MECM}_{\text{PHI}}
\]

\[
+ 0.1391 \times \Delta \ln(\text{PCONF}_{\text{PHI}} + \text{GCONF}_{\text{PHI}} + \text{INV}_{\text{PHI}})
\]

\[
\begin{bmatrix}
0.0601 & 0.0919 & 0.1391 \\
0.2073 & 0.0877 & 0.1529 \\
0.2110 & 0.2303
\end{bmatrix} \times
\]

\[
\text{MECM}_{\text{PHI}} = \ln(\text{M}_{\text{PHI}}) - 0.6 \times \ln(\text{X}_{\text{PHI}}) - 0.4 \times \ln(\text{PCONF}_{\text{PHI}} + \text{GCONF}_{\text{PHI}} + \text{INV}_{\text{PHI}}) - 6 \times \left[\frac{P#P_{\text{PHI}}}{P#WX_{\text{PHI}} \times \text{ER}_{\text{PHI}}} \right]
\]

\[
\text{sigma} = 0.0631
\]

R2 = 0.6446

Autocorrelation F(3,28) = 0.7928 [0.5082]

Normality Chi^2(2) = 4.2113 [0.1218]

Homoscedasticity F(8,22) = 0.5447 [0.8103]

RESET F(1,30) = 0.6133 [0.4397]

Stability
variance 0.1231
joint parameter constancy 0.8399
3. Current Account Balance

\[\Delta \text{CAB}_\text{PHI} = 281.602 + 0.9578 \cdot \Delta \ln(X_\text{PHI} - M_\text{PHI}) - 0.6937 \cdot \text{CAB}_\text{ECM}_\text{PHI} \]

\[
\begin{bmatrix}
94.360 & 0.0801 & 0.1777 \\
0.1311 & 0.1144 & 0.1373
\end{bmatrix}
\]

\[\text{CAB}_\text{ECM}_\text{PHI} = \text{CAB}_\text{PHI} - (X_\text{PHI} - M_\text{PHI}) \]

\[\text{sigma} = 382.196 \]

\[\text{R2} = 0.8278 \]

Autocorrelation \(F(3,27) = 1.4714 \) [0.2445]

Normality Chi^2(2) = 5.5125 [0.0635]

Homoscedasticity \(F(4,25) = 0.6799 \) [0.6124]

RESET \(F(1,29) = 0.9634 \) [0.3344]

Stability

\[
\begin{bmatrix}
0.2082 \\
0.5228
\end{bmatrix}
\]

E. Production Block

1. Long-run Supply Trend of GDP in Constant Price

\[\ln(\text{GDPcLR}_\text{PHI}) = 0.95 + 0.0689 \cdot \ln(\text{TIME}) + 0.64 \cdot \ln(\text{EMP}_\text{PHI}) + 0.36 \cdot \ln(\text{Kc}_\text{PHI}) + 0.0286 \cdot \text{DST}(2000Q1) \]

2. Value Added in the Primary Sector in Constant Price

\[\Delta \ln(\text{VAc}_\text{PHI}) = -0.8101 + 0.0916 \cdot \Delta \ln(\text{RAIN}_\text{PHI}) + 1.8134 \cdot \Delta \ln(\text{VAc}_\text{PHI}) + 0.2418 \cdot \Delta \ln(\text{VAc}_\text{PHI}) + 0.0087 \cdot \Delta \ln(\text{VAc}_\text{PHI}) + 0.0012 \cdot \Delta \ln(\text{VAc}_\text{PHI}) \]

\[\text{VAc}_\text{ECM}_\text{PHI} = \ln(\text{VAc}_\text{PHI}) - 0.31 \cdot \ln(\text{RAIN}_\text{PHI}) - \ln(\text{VAc}_\text{PHI}) + \text{VAc}_\text{PHI} \]

\[\text{sigma} = 0.0195 \]

\[\text{R2} = 0.8411 \]

Autocorrelation \(F(3,23) = 1.0295 \) [0.3980]

Normality Chi^2(2) = 0.5826 [0.7473]

Homoscedasticity \(F(10,15) = 0.8513 \) [0.5920]

RESET \(F(1,25) = 1.3205 \) [0.2614]

Stability

\[
\begin{bmatrix}
0.1251 \\
0.9690
\end{bmatrix}
\]
3. **Value Added in the Primary Sector in Current Price**

\[
\Delta \ln(\text{VA}_\text{PHI}) = \Delta \ln(\text{VA}_{1\text{c}}_\text{PHI}) - 0.3642 - 0.0277 * \text{SQ2} + 0.0594 * \text{SQ3} + 0.1592 * \ln(\text{PHI}_\text{M} / \text{PHI}_\text{1}) \\
(0.1338) (0.0148) (0.0203) (0.0954)
\]

\[
- 0.10997 * \Delta(X _\text{PHI} + M _\text{PHI}) / GDP _\text{PHI}) + 0.1314 * \ln(P # WXS _2 * ER _\text{PHI} _2) \\
(0.0536)
\]

\[
- 0.5155 * \ln(\text{VA}_1 _\text{PHI} _1 / \text{VA}_{1\text{c}} _\text{PHI} _1) \\
(0.1809)
\]

\[
\text{sigma} = 0.0249 \\
\text{R2} = 0.7455 \\
\text{Autocorrelation} F(3,22) = 2.3965 [0.0955] \\
\text{Normality Chi}^2(2) = 0.9507 [0.6217] \\
\text{Homoscedasticity} F(11,13) = 2.0427 [0.1107] \\
\text{RESET} F(1,24) = 9.7810 [0.0046]** \\
\text{Stability} \\
\text{variance} = 0.0949 \\
\text{joint parameter constancy} = 2.0085
\]

4. **Value Added in the Secondary Sector in Constant Price**

\[
\Delta \ln(\text{VA}_{2\text{c}}_\text{PHI}) = - 0.1132 + 0.7775 * \Delta \ln(\text{PCONC}_\text{PHI}) - 0.2109 * \Delta(X _\text{PHI} / GDP _\text{PHI}) + 0.1139 * \text{SQ4} \\
(0.0168) (0.0464) (0.0682) (0.0072)
\]

\[
+ 0.2247 * (X _\text{PHI} / GDP _\text{PHI}) - (X _\text{PHI} / GDP _\text{PHI}) \text{DIV} + 0.0657 * (DSH2000Q1 - DSH2000Q2) \\
(0.0727)
\]

\[
+ 0.3194 * \Delta \ln(\text{VA}_{3 \text{c}}_\text{PHI} / \text{VA}_{2 \text{c}}_\text{PHI} / \text{VA}_{2 \text{c}}_\text{PHI}) \\
(0.1411)
\]

\[
+ 0.6463 * \Delta \ln((\text{VA}_{3 \text{c}}_\text{PHI} / \text{VA}_{3 \text{c}}_\text{PHI} / \text{VA}_{2 \text{c}}_\text{PHI} / \text{VA}_{2 \text{c}}_\text{PHI})) - 0.2236 * \text{VA}_{2 \text{c}}\text{ECM} _\text{PHI} _1 \\
(0.1260)
\]

\[
\text{VA}_2\text{cECM} _\text{PHI} = \ln(\text{VA}_2 \text{c} _\text{PHI}) - 0.64* \ln(K\text{c} _\text{PHI} *(\text{VA}_2 \text{PHI} / \text{GDP} _\text{PHI})) - 0.36* \ln(\text{EMP}_2 _\text{PHI}) \\
- 0.15* \ln(\text{TIME})
\]

\[
\text{sigma} = 0.0128 \\
\text{R2} = 0.9887 \\
\text{Autocorrelation} F(3,21) = 1.0010 [0.4119] \\
\text{Normality Chi}^2(2) = 1.5609 [0.4582] \\
\text{Homoscedasticity} F(12,11) = 0.436 [0.9161] \\
\text{RESET} F(1,23) = 0.5403 [0.4697] \\
\text{Stability: tests not performed because of impulse dummy among explanatory variables}
\]

5. **Value Added in the Secondary Sector in Current Price**

\[
\ln(\text{VA}_2 _\text{PHI}) = \ln(\text{VA}_{2\text{c}} _\text{PHI}) + \ln(\text{VA}_{2 \text{c}} _\text{PHI} 2 / \text{VA}_{2 \text{c}} _\text{PHI} 2) - 0.2437 * \Delta \ln(\text{VA}_{2 \text{c}} _\text{PHI} 1 / \text{VA}_{2 \text{c}} _\text{PHI} 1) \\
\begin{bmatrix}
0.0702 \\
0.0679
\end{bmatrix}
\]

\[
- 0.4723 * \Delta \ln(\text{VA}_{2 \text{c}} _\text{PHI} 2 / \text{VA}_{2 \text{c}} _\text{PHI} 2) - 0.2557 + 0.0859 * \text{SQ4} + 0.18905 * \Delta \ln(\text{P # INV PH} _\text{PHI}) \\
\begin{bmatrix}
0.05798 \\
0.0590 \\
0.2803 \\
0.0967
\end{bmatrix}
\]

\[
- 0.0315 * \Delta \ln(WAGE _\text{PHI} 2) - 0.1891 * \text{VA}_{2 \text{c}}\text{ECM} _\text{PHI} _1 \\
\begin{bmatrix}
0.0157 \\
0.03897 \\
0.29105
\end{bmatrix}
\]
6. Value Added in the Tertiary Sector in Constant Price

\[
\Delta \ln(\text{VA}_3_\text{PHI}) = -0.0328 - 0.2501 \times \text{SQ1} - 0.0453 \times \text{SQ2} - 0.0993 \times \text{SQ3} - 0.0161 \times \text{DSH2000Q4} + 0.0074 \times \text{DSH2001Q1} + 0.1911 \times \Delta \ln[\text{GNP}_\text{PHI}/(\text{VA}_2_\text{PHI}/\text{VA}_2c_\text{PHI})] - 0.0326 \times \Delta \ln[(\text{VA}_1_\text{PHI}/\text{VA}_1c_\text{PHI})/(\text{VA}_2_\text{PHI}/\text{VA}_2c_\text{PHI})] - 0.1016 \times \Delta \ln[(\text{VA}_3_\text{PHI}/\text{VA}_3c_\text{PHI})/(\text{VA}_2_\text{PHI}/\text{VA}_2c_\text{PHI})] - 0.1177 \times \text{VA}_3_\text{ECM}_\text{PHI} - 0.13 \times \ln(\text{TIME}) + \ln[(\text{VA}_3_\text{PHI}/\text{VA}_3c_\text{PHI})/(\text{VA}_2_\text{PHI}/\text{VA}_2c_\text{PHI})]
\]

Value Added in the Tertiary Sector in Current Price

\[
\ln(\text{VA}_3_\text{PHI}) = \ln(\text{VA}_3c_\text{PHI}) + 0.4286 \times \Delta \ln(\text{VA}_3_\text{PHI}/\text{VA}_3c_\text{PHI}) + 0.0097 + 0.0653 \times \text{SQ1} - 0.0583 \times \text{SQ3} + 0.1055 \times \Delta \ln(\text{VA}_2_\text{PHI}/\text{VA}_2c_\text{PHI}) + 0.0424 \times \Delta \ln(\text{P}_\text{M}_\text{PHI}) - 0.0560 \times \text{VA}_3_\text{ECM}_\text{PHI} - 0.04775 \times 0.0869
\]

Stability: tests not performed because of impulse dummy among explanatory variables

APPENDIX

\[
\text{VA2ECM}_\text{PHI} = \ln(\text{VA2}_\text{PHI}) - \ln(\text{VA2c}_\text{PHI}) - 0.65 \times \ln(\text{P}_\text{INV}_\text{PHI}) - 0.2 \times \ln(\text{P}_\text{M}_\text{PHI}_1) - 0.15 \times \ln(\text{WAGE}_\text{PHI})
\]

Value Added in the Tertiary Sector in Constant Price

\[
\text{VA3ECM}_\text{PHI} = \ln(\text{VA3}_\text{PHI}) - \ln(\text{VA3c}_\text{PHI}) - \ln(\text{VA2}_\text{PHI}/\text{VA2c}_\text{PHI}) - 0.13 \times \ln(\text{TIME}) + \ln[(\text{VA3}_\text{PHI}/\text{VA3c}_\text{PHI})/(\text{VA2}_\text{PHI}/\text{VA2c}_\text{PHI})]
\]

Value Added in the Tertiary Sector in Constant Price

\[
\text{VA3ECM}_\text{PHI} = \ln(\text{VA3}_\text{PHI}) - \ln(\text{VA3c}_\text{PHI}) - \ln(\text{VA2}_\text{PHI}/\text{VA2c}_\text{PHI})
\]

Stability:

\[
\text{variance} = 0.1623 \quad \text{joint parameter constancy} = 1.2881
\]
8. Net Factor Income from Abroad in Current Price

\[
\Delta(\text{NFIA} _\Phi) = -0.6368^* \text{NFIA} _\Phi + 18808.2 + 10526.8^* \text{SO1} + 7736.38^* \text{SO2} + 12795.9^* \text{DSH2000004} \\
+ 1353.62^* \text{UEMP}\% _\Phi - 0.0496^* \text{NFIAECM} _\Phi
\]

NFIAECM _\Phi = NFIA _\Phi - 38000^* \text{UEMP}\% _\Phi

\begin{align*}
\text{sigma} & = 4717.1 \\
\text{R2} & = 0.6200
\end{align*}

Autocorrelation F(3,30) = 0.3319 [0.8023]
Normality Chi^2(2) = 37.356 [0.0000]**
Homoscedasticity F(9,23) = 0.6932 [0.7081]
RESET F(1,32) = 0.0562 [0.8140]
Stability: tests not performed because of impulse dummy among explanatory variables

9. Gross National Product in Constant Price

\[
\ln(\text{GNPc} _\Phi) = \ln(\text{GNP} _\Phi) - 0.0134 + 0.9914^* \Delta\ln(\text{P\#GDP} _\Phi) - 0.0606^* \text{SO1} + 0.0094^* \text{SO3} \\
- 0.1732^* \ln(\text{GNPcECM} _\Phi) _1 \\
\text{GNPcECM} _\Phi = \ln(\text{GNP} _\Phi) - \ln(\text{GNPc} _\Phi) - 0.98326^* \ln(\text{P\#GDP} _\Phi)
\]

\begin{align*}
\text{sigma} & = 0.0005 \\
\text{R2} & = 0.9984
\end{align*}

Autocorrelation F(3,26) = 2.2927 [0.1016]
Normality Chi^2(2) = 4.4759 [0.1067]
Homoscedasticity F(6,22) = 0.4358 [0.8470]
RESET F(1,28) = 0.1031 [0.7506]
Stability
\begin{align*}
\text{variance} & = 0.3947 \\
\text{joint parameter constancy} & = 0.8819
\end{align*}
F. Price Block

1. GDP Deflator

\[
\Delta \ln(P \# GDP _ PHI) = 0.0580 \cdot SQ1 + 0.0335 \cdot \Delta \ln(P \# X _ PHI / P \# M _ PHI) - 0.2124 \cdot \Delta \ln(P \# GDPECM _ PHI _ 1) \\
+ 0.0026 \cdot 0.0139 \cdot 0.0374 \cdot 1.01271 \cdot 0.12185 \cdot \Delta \ln[P_CON _ PHI + GCON _ PHI + INV _ PHI] / [P_CONc _ PHI + GCONc _ PHI + INVc _ PHI]
\]

\[
P\#GDPECM _ PHI = \ln(P\#GDPECM _ PHI) - \ln[(P_CON _ PHI + GCON _ PHI + INV _ PHI) / (P_CONc _ PHI + GCONc _ PHI + INVc _ PHI)] + 0.14 + 0.15 \cdot (P\#X _ PHI / P\#M _ PHI)
\]

\[
sigma \quad 0.0060 \\
R2 \quad 0.8828 \\
Autocorrelation F(3,28) = 0.9853 \quad [0.4139] \\
Normality \chi^2(2) = 7.0421 \quad [0.0296]^* \\
Homoscedasticity F(7,23) = 1.9538 \quad [0.1066] \\
RESET F(1,30) = 0.2014 \quad [0.6569] \\
Stability \variance \quad 0.5804^* \\
joint parameter constancy \quad 1.0694
\]

2. Consumer Price Index

\[
\Delta \ln(P \# CPI _ PHI) = 0.3074 \cdot \Delta \ln(P \# CPI _ PHI _ 1) - 0.0175 \cdot SQ1 - 0.0193 \cdot SQ2 + 0.0206 \cdot \Delta \ln(P \# M _ PHI) \\
+ 0.0083 \cdot 0.0075 \cdot 0.0084 \cdot 0.0115 \cdot 0.1117 \cdot 0.0529 \cdot 0.1571 \\
+ 0.0212 \cdot 0.0977 \cdot 0.0819 \cdot 0.0778 \cdot 0.0319 \cdot 0.0778 \cdot 0.1969 \\
- 0.1208 \cdot P \# CECM _ PHI _ 1
\]

\[
P\#CECM _ PHI = \ln(P\#C _ PHI) - 0.16 \cdot \ln(VA1 _ PHI / VA1c _ PHI) - 0.30 \cdot \ln(VA2 _ PHI / VA2c _ PHI) - 0.54 \cdot \ln(VA3 _ PHI _ 3 / VA3c _ PHI _ 3) - 0.05 \cdot (M1 _ PHI _ 3 / GDP _ PHI _ 3)
\]

\[
sigma \quad 0.0080 \\
R2 \quad 0.6903 \quad [0.5651] \\
Autocorrelation F(3,30) = 0.6903 \quad [0.5651] \\
Normality \chi^2(2) = 3.5516 \quad [0.5050] \\
Homoscedasticity F(16,16) = 0.9046 \quad [0.5783] \\
RESET F(1,32) = 0.2014 \quad [0.6569] \\
Stability \variance \quad 0.3911 \\
joint parameter constancy \quad 1.4386
\]
3. Producer Price Index

\[
\Delta \ln(P_{#P_PHI}) = -0.1248 + 0.0325 \times \Delta \ln(P_{#M_PHI}) + 0.2358 \times \Delta \ln(VA1_{_PHI} / VA1c_{_PHI}) + 0.0327 \times \Delta \ln(VA3_{_PHI} / VA3c_{_PHI}) - 0.2091 \times P_{#PECM_PHI} + 0.0627 \times \Delta \ln(P_{#INV_PHI} / 3)
\]

\[
P_{#PECM_PHI} = \ln(P_{#P_PHI}) - \ln(VA2_PHI / VA2c_PHI)
\]

\[
\text{sigma} = 0.0126
\]

\[
\text{R2} = 0.7311
\]

\[
\text{Autocorrelation F(3,22)} = 0.5591 \ [0.6476]
\]

\[
\text{Normality Chi}^2(2) = 3.9676 \ [0.1375]
\]

\[
\text{Homoscedasticity F(10,14)} = 0.3491 \ [0.9500]
\]

\[
\text{RESET F(1,24)} = 0.6748 \ [0.4195]
\]

\[
\text{Stability variance} = 0.0452
\]

\[
\text{joint parameter constancy} = 0.14507
\]

4. Investment Deflator

\[
\Delta \ln(P_{#INV_PHI}) = -0.0335 + 0.3544 \times \Delta \ln(VA1_{_PHI} / VA1c_{_PHI}) - 0.0514 \times \Delta \ln(VA3_{_PHI} / VA3c_{_PHI}) + 0.0677 \times \Delta \ln(P_{#INVECM_PHI} / 1)
\]

\[
P_{#INVECM_PHI} = \ln(P_{#INV_PHI}) - 0.46\times \ln(VA2_{_PHI} / VA2c_{_PHI}) - 0.54\times \ln(VA2_{_PHI} / VA2c_{_PHI}) - 0.005\times (0.25\times [(IRL\%_{_PHI} - 100\times \Delta \ln(P_{#C_PHI} / 3)) + (IRL\%_{_PHI} - 100\times \Delta \ln(P_{#C_PHI} / 4)) + (IRL\%_{_PHI} - 100\times \Delta \ln(P_{#C_PHI} / 5))])
\]

\[
\text{sigma} = 0.0188
\]

\[
\text{R2} = 0.9020
\]

\[
\text{Autocorrelation F(3,21)} = 0.3429 \ [0.7945]
\]

\[
\text{Normality Chi}^2(2) = 0.0577 \ [0.9716]
\]

\[
\text{Homoscedasticity F(12,11)} = 1.5452 \ [0.2041]
\]

\[
\text{RESET F(1,23)} = 5 \ [0.0062]
\]

\[
\text{Stability variance} = 0.1210
\]

\[
\text{joint parameter constancy} = 0.1495
\]
5. Exports Deflator

\[
\Delta \ln(P\#X_PHI) = 0.3009 \times \Delta \ln(P\#X_PHI)_1 - 0.2989 \times \Delta \ln(P\#X_PHI)_2 + 0.0740 \times \Delta \ln(P\#M_PHI) - 0.2989 \\
+ 0.3009 \times \Delta \ln(P\#X_PHI)_1 - 0.2989 \times \Delta \ln(P\#X_PHI)_2 + 0.0740 \times \Delta \ln(P\#M_PHI) \\
+ 1.6025 \times \Delta \ln(\text{VA2c}_PHI)_1 / \text{VA2c}_PHI _1 \\
+ 0.1357 \times \Delta \ln(\text{VA2c}_PHI)_1 / \text{VA2c}_PHI _1 \\
- 0.5399 \times P\#XECM_PHI _1 \\
\]

\[
P\#XECM_PHI = \ln(P\#X_PHI) - \ln(P\#M_PHI) - 0.14\times\ln(\text{TIME})
\]

- **sigma**: 0.0537
- **R2**: 0.7379

Autocorrelation F(3,27) = 0.8958 [0.4560]
Normality Chi^2(2) = 0.8986 [0.6381]
Homoscedasticity F(15,14) = 0.5836 [0.8439]
RESET F(1,29) = 0.4467 [0.5092]
Stability
- variance: 0.1043
- joint parameter constancy: 1.6733

6. Imports Deflator

\[
\Delta \ln(P\#M_PHI) = -0.0475 \times (\text{SO1} + \text{SO2} + \text{SO3}) + 0.5993 \times \Delta \ln(P\#WXS_PHI) + 0.2382 \times \Delta \ln(P\#X_PHI) - 0.2872 \times \Delta \ln(P\#WXS_2_PHI) _2 \\
- 0.2872 \times \Delta \ln(P\#WXS_2_PHI) _2 - 0.2196 \times P\#MECM_PHI _1 \\
\]

\[
P\#MECM_PHI = \ln(P\#M_PHI) - 0.67\times\ln(P\#X_PHI_3) - 0.33\times\ln(P\#OILS$)
\]

- **sigma**: 0.0462
- **R2**: —

Autocorrelation F(3,34) = 0.6358 [0.5971]
Normality Chi^2(2) = 4.0345 [0.8526]
Homoscedasticity F(9,27) = 0.8147 [0.6074]
RESET F(1,36) = 0.1212 [0.7298]
Stability
- variance: 0.2183
- joint parameter constancy: 0.8595
7. World Price of Exports

\[
\Delta \ln(P\#WX_PHI) = 0.1506 + 0.4739 + \Delta \ln(P\#WX_PHI_1) + 0.3463 + \Delta \ln(P\#WX_PHI_2) - 0.1880 \cdot \Delta \ln(P\#OILS_PHI \cdot ER_PHI) - 0.0933 \cdot \Delta \ln(P\#OILS_PHI_2 \cdot ER_PHI_2) - 0.0456 \cdot SQ2 - 0.0425 \cdot SQ3 - 0.0516 \cdot P\#WXECM_PHI_1
\]

\[
P\#WXECM_PHI = \ln(P\#WXa_PHI) - 0.4065 \cdot \ln(P\#OILS_2 \cdot ER_PHI_2)
\]

\[
\sigma = 0.0417
\]

\[
R^2 = 0.5094
\]

\[
\text{Autocorrelation } F(3,27) = 1.5976 [0.2173]
\]

\[
\text{Normality } \chi^2(2) = 2.5325 [0.2819]
\]

\[
\text{Homoscedasticity } F(9,20) = 2.0188 [0.1117]
\]

\[
\text{RESET } F(1,29) = 0.0185 [0.8928]
\]

\[
\text{Stability}
\]

\[
\text{variance} = 0.4055
\]

\[
\text{joint parameter constancy} = 1.2082
\]

G. Monetary Block

1. Currency in Circulation

\[
\Delta \ln(M0_PHI) = 0.1545 + 0.5262 \cdot \Delta \ln(M1_PHI) - 0.2364 \cdot SQ1 - 0.1879 \cdot SQ2 - 0.1816 \cdot SQ3 + 0.1860 \cdot DSH1999Q4 - 0.1720 \cdot DSH2000Q1 - 0.2435 \cdot MOECM_PHI_1
\]

\[
M0ECM_PHI = \ln(M0_PHI) - \ln[(1 - 0.14 \cdot \ln(TIME)) \cdot M1_PHI]
\]

\[
\sigma = 0.0248
\]

\[
R^2 = 0.9795
\]

\[
\text{Autocorrelation } F(4,36) = 1.1831 [0.3347]
\]

\[
\text{Normality } \chi^2(2) = 0.3897 [0.8230]
\]

\[
\text{Homoscedasticity } F(9,30) = 0.5047 [0.8594]
\]

\[
\text{RESET } F(1,39) = 0.0314 [0.8603]
\]

\[
\text{Stability: tests not performed because of impulse dummy among explanatory variables}
\]

2. Narrow Money

\[
\Delta \ln(M1_PHI) = \Delta \ln(P\#C_PHI) - 0.4492 + 0.7888 \cdot \Delta \ln(GNPC_PHI) - 0.01385 \cdot \Delta ROB_PHI + 0.1518 \cdot DSH199904 - 0.5692 \cdot M1ECM_PHI_1
\]

\[
\sigma = 0.0945
\]

\[
R^2 = 0.9795
\]

\[
\text{Autocorrelation } F(4,36) = 1.1831 [0.3347]
\]

\[
\text{Normality } \chi^2(2) = 0.3897 [0.8230]
\]

\[
\text{Homoscedasticity } F(9,30) = 0.5047 [0.8594]
\]

\[
\text{RESET } F(1,39) = 0.0314 [0.8603]
\]

\[
\text{Stability: tests not performed because of impulse dummy among explanatory variables}
\]
\[M1ECM_{\Phi} = \ln\left(\frac{M1_{\Phi}}{\text{PHI}}\right) - \ln(GNPc_{\Phi}) + 0.0146\times IROB\%_{\Phi} \]

\[\text{sigma} = 0.0332 \]
\[R2 = 0.8872 \]
\[\text{Autocorrelation F}(2,17) = 2.0339 \ [0.1615] \]
\[\text{Normality Chi}^2(2) = 2.5186 \ [0.2838] \]
\[\text{Homoscedasticity F}(7,11) = 0.6564 \ [0.7040] \]
\[\text{RESET F}(1,18) = 0.0454 \ [0.8836] \]
\[\text{Stability: tests not performed because of impulse dummy among explanatory variables} \]

3. **Broad Money**

\[\Delta \ln(M3_{\Phi}) = -0.1521 + 0.0588 \times \Delta \ln(\text{NFA}_{\Phi} + \text{DCMB}_{\Phi} + \text{DCCB}_{\Phi}) - 0.01377 \times \text{M3ECM}_{\Phi} \]

\[\text{sigma} = 0.0282 \]
\[R2 = 0.5896 \]
\[\text{Autocorrelation F}(3,29) = 1.0146 \ [0.4005] \]
\[\text{Normality Chi}^2(2) = 2.6285 \ [0.2687] \]
\[\text{Homoscedasticity F}(4,27) = 1.8102 \ [0.1560] \]
\[\text{RESET F}(1,31) = 0.0203 \ [0.8878] \]
\[\text{Stability variance} = 0.1802 \]
\[\text{joint parameter constancy} = 0.6234 \]

4. **Net Foreign Assets**

\[\Delta^2 \text{NFA}_{\Phi} = 7460.3 + 8182.1 \times \Delta \text{ER}_{\Phi} - 2 + 3.5674 \times \Delta \text{NFIA}_{\Phi} - 2 + 0.5107 \times \Delta(\text{X}_{\Phi} - \text{M}_{\Phi}) \]
\[+ 0.1911 \times \Delta(\text{X}_{\Phi} - 1 - \text{M}_{\Phi} - 1) - 0.7477 \times \text{NFAECM}_{\Phi} - 1 \]

\[\text{NFAECM}_{\Phi} = \Delta \text{NFA}_{\Phi} - \text{X}_{\Phi} + \text{M}_{\Phi} \]

\[\text{sigma} = 33755.7 \]
\[R2 = 0.7628 \]
\[\text{Autocorrelation F}(3,22) = 1.9034 \ [0.1586] \]
\[\text{Normality Chi}^2(2) = 5.6163 \ [0.1560] \]
\[\text{Homoscedasticity F}(10,14) = 5.6163 \ [0.1560] \]
\[\text{RESET F}(1,24) = 0.0202 \ [0.8881] \]
\[\text{Stability variance} = 0.1939 \]
\[\text{joint parameter constancy} = 1.0515 \]
5. Domestic Credit of Deposit Money Banks

\[\Delta^2 \text{DCDMB_PHI} = 60961 + 1.5865 \cdot \Delta \text{INV_PHI} - 8082.16 \cdot \Delta \left(\text{IRL_PHI}_1 - \Delta \text{CPI_PHI} \right) \]
\[
\begin{pmatrix}
13460 \\
0.1756
\end{pmatrix}
\begin{pmatrix}
0.5704 \\
0.1068
\end{pmatrix}
\begin{pmatrix}
2836.5 \\
0.0696
\end{pmatrix}
\]
\[
-5847.51 \cdot \Delta \text{ER_PHI} + 1.0781 \cdot \Delta \text{DCDMBECM_PHI}_1
\]
\[
\begin{pmatrix}
1943.0 \\
0.1197
\end{pmatrix}
\begin{pmatrix}
0.1739
\end{pmatrix}
\begin{pmatrix}
0.2119
\end{pmatrix}
\]

\[\text{DCDMBECM_PHI} = \Delta \text{DCDMB_PHI} - \text{INV_PHI}_1 + 4862 \cdot \text{ER_PHI}_3 \]

\[\text{sigma} = 40218.7 \]
\[\text{R}^2 = 0.6505 \]
\[\text{Autocorrelation F(3,24)} = 1.0349 \[0.3949]\]
\[\text{Normality Chi}^2(2) = 0.2924 \[0.8640]\]
\[\text{Homoscedasticity F(8,18)} = 0.9013 \[0.5360]\]
\[\text{RESET F(1,26)} = 0.0505 \[0.5045]\]
\[\text{Stability variance} = 0.0784 \]
\[\text{joint parameter constancy} = 0.8710 \]

6. Domestic Credit of Central Bank

\[\Delta^2 \text{DCCB_PHI} = 79544.4 - 5308.48 \cdot \Delta \text{IRTB_PHI}_2 - 8091.30 \cdot \Delta \text{IRTB_PHI}_5 - 1.3638 \cdot \Delta \text{DCCBECM_PHI}_1 \]
\[
\begin{pmatrix}
9994.0 \\
0.0722
\end{pmatrix}
\begin{pmatrix}
3047.0 \\
0.0897
\end{pmatrix}
\begin{pmatrix}
2852.0 \\
0.1985
\end{pmatrix}
\begin{pmatrix}
0.1369 \\
0.0723
\end{pmatrix}
\]

\[\text{DCCBECM_PHI} = \Delta \text{DCCB_PHI} - \text{GDEF_PHI}_1 + 2088 \cdot \text{ER_PHI}_1 \]

\[\text{sigma} = 32811.5 \]
\[\text{R}^2 = 0.7697 \]
\[\text{Autocorrelation F(3,29)} = 1.3933 \[0.2671]\]
\[\text{Normality Chi}^2(2) = 0.7274 \[0.6951]\]
\[\text{Homoscedasticity F(6,25)} = 0.8050 \[0.6270]\]
\[\text{RESET F(1,28)} = 0.0002 \[0.9893]\]
\[\text{Stability variance} = 0.1120 \]
\[\text{joint parameter constancy} = 0.6541 \]
7. Overnight Borrowing Rate

\[\Delta \text{IROB}_\text{PHI} = \begin{bmatrix} 2.7506 & + & 1.0977 \end{bmatrix} \times \Delta \left(\frac{P_{\#C}_{\text{PHI} - 1}}{P_{\#C}_{\text{PHI} - 5}} \right) \times 100 \\
\begin{bmatrix}
0.9203 \\
0.2215 \\
0.2237 \\
0.3522
\end{bmatrix}
\begin{bmatrix}
0.2104 \\
0.2956
\end{bmatrix}
\]

\[= 0.7410 \times \Delta \left(\frac{P_{\#C}_{\text{PHI} - 2}}{P_{\#C}_{\text{PHI} - 6}} \right) \times 100 + 0.7137 \times \text{IRL\%}_\text{US4 - 1} \\
\begin{bmatrix}
0.1459 \\
0.2283
\end{bmatrix}
\begin{bmatrix}
0.7410 \\
0.7137
\end{bmatrix}
\]

\[\text{sigma} = 1.1100 \\
R^2 = 0.8482 \\
\text{Autocorrelation F}(3,19) = 0.4501 \quad [0.6446] \\
\text{Normality Chi}^2(2) = 0.3551 \quad [0.1694] \\
\text{Homoscedasticity F}(8,13) = 1.0972 \quad [0.4141] \\
\text{RESET F}(1,21) = 7.9738 \quad [0.0108] \\
\text{Stability} \\
\text{variance} = 0.2085 \\
\text{joint parameter constancy} = 0.9674
\]

8. Deposit Rate

\[\Delta \text{IRD}_\text{PHI} = \begin{bmatrix} -1.2098 & + & 0.3246 \end{bmatrix} \times \Delta \text{IROB}_\text{PHI} \begin{bmatrix}
0.5739 \\
0.0790 \\
0.0308 \\
0.02705
\end{bmatrix}
\begin{bmatrix}
0.1052 \\
0.02866 \\
0.02866 \\
0.0307
\end{bmatrix}
\begin{bmatrix}
0.0774 \\
0.04997
\end{bmatrix}
\]

\[+ 0.28785 \times \Delta \text{ER}_\text{PHI - 1} \\
\begin{bmatrix}
0.0774 \\
0.04997
\end{bmatrix}
\begin{bmatrix}
0.0774 \\
0.04997
\end{bmatrix}
\]

\[\text{sigma} = 0.7644 \\
R^2 = 0.7386 \\
\text{Autocorrelation F}(3,19) = 2.4514 \quad [0.0948] \\
\text{Normality Chi}^2(2) = 0.5230 \quad [0.7699] \\
\text{Homoscedasticity F}(8,13) = 2.0263 \quad [0.1240] \\
\text{RESET F}(1,21) = 0.2017 \quad [0.6579] \\
\text{Stability} \\
\text{variance} = 0.1702 \\
\text{joint parameter constancy} = 0.7474
\]

(i) Lending Rate

\[\Delta \text{IRL}_\text{PHI} = \begin{bmatrix} 1.3062 & - & 0.3031 \end{bmatrix} \times \Delta \text{IRL}_\text{PHI - 1} \begin{bmatrix}
0.7300 \\
0.1416 \\
0.1422 \\
0.1422
\end{bmatrix}
\begin{bmatrix}
0.0829 \\
0.1633 \\
0.1633 \\
0.1633
\end{bmatrix}
\begin{bmatrix}
0.0919 \\
0.1061 \\
0.1061 \\
0.1061
\end{bmatrix}
\begin{bmatrix}
8.0652 \\
4.4860 \\
4.4860 \\
4.4860
\end{bmatrix}
\]

\[+ 0.3621 \times \Delta \text{IRTB}_\text{PHI} \begin{bmatrix}
0.1355 \\
0.3587
\end{bmatrix}
\begin{bmatrix}
0.1972 \\
0.1972
\end{bmatrix}
\begin{bmatrix}
0.3036 \\
0.3036
\end{bmatrix}
\begin{bmatrix}
4.4860 \\
4.4860
\end{bmatrix}
\]

\[\text{IRL\%ECM}_\text{PHI} = \text{IRL\%}_\text{PHI} - 0.8 \times \text{IRTB\%}_\text{PHI} \]

\[\text{sigma} = 0.8639 \\
R^2 = 0.7614 \\
\text{Autocorrelation F}(3,18) = 0.5168 \quad [0.6760] \]
A SMALL MACROECONOMETRIC MODEL OF THE PHILIPPINE ECONOMY
GEOFFREY DUCANES, MARIE ANNE CAGAS, DUO QIN, PILIPINAS QUISING, AND NEDELYN MAGTIBAY-RAMOS

Normality $\chi^2(2) = 3.2919 [0.1928]$
Homoscedasticity $F(10,10) = 1.1910 [0.3938]$
RESET $F(1,20) = 0.0330 [0.8577]$

Stability
- variance 0.1023
- joint parameter constancy 1.0672

(ii) 91-day T-bill Rate

\[
\Delta\text{IRTB}\%_{\text{PHI}} = -0.9605 + 0.3696 \times \Delta\text{IROB}\%_{\text{PHI}} + 23.1942 \times \Delta\ln(\text{ER}_{\text{PHI}}) + 13.0883 \times \Delta^2\ln(\text{ER}_{\text{PHI}})
\]

\[
= 0.1983 \\ 0.0906 \\ 3.6900 \\ 3.5510 \\
0.0638 \\ 0.3907 \\ 0.0462 \\ 0.08598
\]

\[
- 0.5344 \times \text{IRTB}_\text{ECM}\%_{\text{PHI}}
\]

\[
= [0.1011] \\
[0.0333]
\]

\[
\text{ITRB}_\text{ECM}\%_{\text{PHI}} = \text{IRTB}\%_{\text{PHI}} - \text{IROB}\%_{\text{PHI}}
\]

sigma 0.8490
R2 0.8057
Autocorrelation $F(3,18) = 1.6235 [0.2191]$
Normality $\chi^2(2) = 0.4909 [0.7824]$
Homoscedasticity $F(8,12) = 0.5685 [0.7849]$
RESET $F(1,20) = 0.1420 [0.7103]$
Stability
- variance 0.1008
- joint parameter constancy 1.1877

H. Employment Block

1. Labor Force

\[
\Delta\ln(\text{LF}_{\text{PHI}}) = -1.5835 + 0.7521 \times \Delta\ln(\text{EMP}_{\text{PHI}}) + 0.0353 \times \text{SQ2} - 0.9117 \times \text{LFECM}_{\text{PHI}}
\]

\[
= [0.1292] \\
[0.0961] \\
[0.0875] \\
[0.3164]
\]

\[
- 0.0032 \\ 0.0032 \\ 0.0032 \\ 0.0032
\]

\[
- 0.9117 \\ 0.9117 \\ 0.9117 \\ 0.9117
\]

\[
\text{LFECM}_{\text{PHI}} = \ln(\text{LF}_{\text{PHI}}) - \ln(\text{POP}_{\text{PHI}}) - 0.3\ln(\text{EMP}_{\text{PHI}})
\]

sigma 0.0074
R2 0.9531
Autocorrelation $F(3,29) = 1.3190 [0.2872]$
Normality $\chi^2(2) = 3.4265 [0.1803]$
Homoscedasticity $F(5,26) = 1.2920 [0.2976]$
X-Homoscedasticity $F(8,23) = 1.2090 [0.3371]$
RESET $F(1,31) = 0.6049 [0.4426]$
Stability
- variance 0.2114
- joint parameter constancy 0.9721
2. Total Employed

\[\Delta \ln(\text{EMP} _ \text{PHI}) = -0.2837 + 0.1661 \times \Delta \ln(\text{VA1c} _ \text{PHI}) + 1.2169 \times \Delta \left(\frac{\text{VA1c} _ \text{PHI}}{\text{GDPc} _ \text{PHI}}\right)_1 \\
+ 0.7745 \times \Delta \left(\frac{\text{VA3c} _ \text{PHI}}{\text{GDPc} _ \text{PHI}}\right)_1 - 0.2886 \times \text{EMPECM} _ \text{PHI} _1 \]

\[
\text{EMPECM} _ \text{PHI} = \ln(\text{EMP} _ \text{PHI}) - 0.26 \times \ln(\text{VA1c} _ \text{PHI}) - 0.37 \times \ln(\text{VA2c} _ \text{PHI}_2) - 0.37 \times \ln(\text{VA3c} _ \text{PHI}_1) + 0.13 \times \ln(\text{WAGE} _ \text{PHI}_2/\text{P#GDP} _ \text{PHI}_2) - 2.2 \times \left(\frac{\text{VA1c} _ \text{PHI}_3}{\text{GDPc} _ \text{PHI}_3}\right) \\
\sigma = 0.0095 \\
R^2 = 0.7187 \\
\text{Autocorrelation F}(3,32) = 0.1771 [0.9111] \\
\text{Normality Chi}^2(2) = 2.7159 [0.2572] \\
\text{Homoscedasticity F}(8,26) = 2.2639 [0.0551] \\
\text{RESET F}(1,34) = 0.0337 [0.8555] \\
\text{Stability variance} = 0.2484 \\
\text{Joint parameter constancy} = 1.2865

3. Employed in the Tertiary Sector

\[\text{EMP3} _ \text{PHI} = -\text{EMP2} _ \text{PHI} + \exp[\ln(\text{EMP2} _ \text{PHI} + \text{EMP3} _ \text{PHI}) - 0.3120 - 0.0320 \times \text{DSH1998Q3} - 0.1240 \times \text{EMPECM} _ \text{PHI} _1] \]

\[
\text{EMP3ECM} _ \text{PHI} = \ln(\text{EMP3} _ \text{PHI}+\text{EMP2} _ \text{PHI}) - \ln(\text{VA2c} _ \text{PHI}_1 + \text{VA3c} _ \text{PHI}_1) + 0.06 \times [\ln(\text{WAGE} _ \text{PHI}_1) - \ln (\text{P#GDP} _ \text{PHI}_1)] \\
\sigma = 0.0114 \\
R^2 = 0.4931 \\
\text{Autocorrelation F}(3,34) = 1.8257 [0.1611] \\
\text{Normality Chi}^2(2) = 5.0232 [0.0811] \\
\text{Homoscedasticity F}(3,33) = 0.6663 [0.5788] \\
\text{RESET F}(1,36) = 0.0593 [0.8089] \\
\text{Stability: tests not performed because of impulse dummy among explanatory variables}

4. Employed in the Secondary Sector

\[\Delta \ln(\text{EMP2} _ \text{PHI}) = 0.161996 + 0.0797 \times \Delta \ln(\text{VA2c} _ \text{PHI}) - 1.0152 \times \Delta \left(\frac{\text{EMP1} _ \text{PHI}}{\text{EMP} _ \text{PHI}}\right) \\
+ 0.4613 \times \Delta \left(\frac{\text{EMP2ECM} _ \text{PHI}}{\text{EMP} _ \text{PHI}}\right) \\
\]

\[
\text{EMP2ECM} _ \text{PHI} = \ln(\text{EMP2} _ \text{PHI}) - 0.64 \times \ln(\text{VA2c} _ \text{PHI}_1) - 0.4 \times \ln(\text{WAGE} _ \text{PHI}) \\
\sigma = 0.0168 \\
R^2 = 0.7193
A SMALL MACROECONOMETRIC MODEL OF THE PHILIPPINE ECONOMY
GEOFFREY DUCANES, MARIE ANNE CAGAS, DUO QIN, PILIPINAS QUISING, AND NDELYN MAGTIBAY-ROMOS

Autocorrelation F(4,38) = 0.3088 [0.8703]
Normality Chi^2(2) = 6.8307 [0.0329]*
Homoscedasticity F(10,31) = 0.6155 [0.7888]
RESET F(1,41) = 1.3625 [0.2498]
Stability
 variance 0.0664
 joint parameter constancy 0.8788

I. Identities

1. Investment Block

INV_PHI = INVc_PHI*P#INV_PHI
K PHI = K PHI(-1)*[1 - DEPK%_PHI/400] + INV PHI
Kc PHI = K PHI/P#INV PHI
UCC%_PHI = [IRL%_PHI/4 - 100*(P#INV PHI(-1) + P#INV PHI(-2) + P#INV PHI(-3))/P#INV PHI

2. Government Block

GEXP PHI = GPAY PHI + GINT PHI
GDEF PHI = GREV PHI - GEXP PHI
TDEBTr PHI = (DDEBT PHI_1*SQ1 + DDEBT PHI_2*SQ2 + DDEBT PHI_3*SQ3 + DDEBT PHI_4*SQ4 + FDEBT PHI_1*SQ1 + FDEBT PHI_2*SQ2 + FDEBT PHI_3*SQ3 + FDEBT PHI_4*SQ4) / [(GDP PHI_1 + GDP PHI_2 + GDP PHI_3 + GDP PHI_4)*SQ1 + (GDP PHI_2 + GDP PHI_3 + GDP PHI_4 + GDP PHI_5)*SQ2 + (GDP PHI_3 + GDP PHI_4 + GDP PHI_5 + GDP PHI_6)*SQ3 + (GDP PHI_4 + GDP PHI_5 + GDP PHI_6 + GDP PHI_7)*SQ4]
GDEFr PHI = [(GDEF PHI_1 + GDEF PHI_2 + GDEF PHI_3 + GDEF PHI_4)*SQ1 + (GDEF PHI_2 + GDEF PHI_3 + GDEF PHI_4 + GDEF PHI_5)*SQ2 + (GDEF PHI_3 + GDEF PHI_4 + GDEF PHI_5 + GDEF PHI_6)*SQ3 + (GDEF PHI_4 + GDEF PHI_5 + GDEF PHI_6 + GDEF PHI_7)*SQ4] / [(GDP PHI_1 + GDP PHI_2 + GDP PHI_3 + GDP PHI_4)*SQ1 + (GDP PHI_2 + GDP PHI_3 + GDP PHI_4 + GDP PHI_5)*SQ2 + (GDP PHI_3 + GDP PHI_4 + GDP PHI_5 + GDP PHI_6)*SQ3 + (GDP PHI_4 + GDP PHI_5 + GDP PHI_6 + GDP PHI_7)*SQ4]
TEFT%_PHI = 100*[(GTAX PHI_1 + GTAX PHI_2 + GTAX PHI_3 + GTAX PHI_4)*SQ1 + (GTAX PHI_2 + GTAX PHI_3 + GTAX PHI_4 + GTAX PHI_5)*SQ2 + (GTAX PHI_3 + GTAX PHI_4 + GTAX PHI_5 + GTAX PHI_6)*SQ3 + (GTAX PHI_4 + GTAX PHI_5 + GTAX PHI_6 + GTAX PHI_7)*SQ4] / [(GDP PHI_1 + GDP PHI_2 + GDP PHI_3 + GDP PHI_4)*SQ1 + (GDP PHI_2 + GDP PHI_3 + GDP PHI_4 + GDP PHI_5)*SQ2 + (GDP PHI_3 + GDP PHI_4 + GDP PHI_5 + GDP PHI_6)*SQ3 + (GDP PHI_4 + GDP PHI_5 + GDP PHI_6 + GDP PHI_7)*SQ4]
BEFT%_PHI = DST90Q104Q1*TEFT%_PHI + DST2004Q1*BEFT%_PHI_1
3. **Trade Block**

\[X_{\text{PHI}} = X_{\text{PHI}} \times \text{ER}_{\text{PHI}} \]

\[X_{c_{\text{PHI}}} = \frac{X_{\text{PHI}}}{P}\times X_{\text{PHI}} \]

\[M_{c_{\text{PHI}}} = \frac{M_{\text{PHI}}}{P}\times M_{\text{PHI}} \]

\[M_{\text{PHI}} = \frac{M_{\text{PHI}}}{\text{ER}_{\text{PHI}}} \]

4. **Production Block**

\[\text{GDP}_{c_{\text{PHI}}} = \text{VA1}_{c_{\text{PHI}}} + \text{VA2}_{c_{\text{PHI}}} + \text{VA3}_{c_{\text{PHI}}} \]

\[\text{GDP}_{\text{PHI}} = \text{GDP}_{c_{\text{PHI}}} \times \text{P}\times \text{GDP}_{\text{PHI}} \]

\[\text{GNP}_{\text{PHI}} = \text{GDP}_{\text{PHI}} + \text{NFIA}_{\text{PHI}} \]

\[\text{NFIA}_{c_{\text{PHI}}} = \text{GNP}_{c_{\text{PHI}}} - \text{GDP}_{c_{\text{PHI}}} \]

5. **Price Block**

\[\text{P}\times \text{INV}_{\text{PHI}}(-2) + \text{P}\times \text{INV}_{\text{PHI}}(-3) + \text{P}\times \text{INV}_{\text{PHI}}(-4) - 1 \) + \text{DEPK}_{\text{PHI}}/4\] * \[0.25*(\text{P}\times \text{INV}_{\text{PHI}} + \text{P}\times \text{INV}_{\text{PHI}}(-1) + \text{P}\times \text{INV}_{\text{PHI}}(-2) + \text{P}\times \text{INV}_{\text{PHI}}(-3))] / \text{P}\times \text{GDP}_{\text{PHI}} / (1 - \text{TAX}_{\text{PHI}}/100) \]

\[\text{P}\times \text{P}_{\text{PHI}} = \text{P}\times \text{P}_{\text{PHI}} / \text{ER}_{\text{PHI}} \]

\[\text{WAGE}_{\text{PHI}} = \frac{\left[\text{GDP}_{\text{PHI}} - \text{UCC}_{\text{PHI}} \times \text{K}_{\text{PHI}}/100 \right]}{\left(\text{EMP}_{\text{PHI}}/1000 \right)} \]

\[\text{P}\times \text{WX}_{\text{PHI}} = \text{DST90Q104Q2} \times \text{P}\times \text{WX}_{\text{PHI}} + \text{DST2504Q2} \times \text{P}\times \text{WX}_{\text{PHI}} / \text{ER}_{\text{PHI}} \]

6. **Monetary Block**

\[\text{MQ}_{\text{PHI}} = \text{M3}_{\text{PHI}} - \text{M1}_{\text{PHI}} \]

7. **Employment Block**

\[\text{UEMP}_{\text{PHI}} = (\text{LF}_{\text{PHI}} - \text{EMP}_{\text{PHI}}) / \text{LF}_{\text{PHI}} \times 100 \]

\[\text{EMP1}_{\text{PHI}} = \text{EMP}_{\text{PHI}} - \text{EMP2}_{\text{PHI}} - \text{EMP3}_{\text{PHI}} \]
REFERENCES

No. 1 Capitalizing on Globalization
—Barry Eichengreen, January 2002

No. 2 Policy-based Lending and Poverty Reduction: An Overview of Processes, Assessment and Options
—Richard Bolt and Manabu Fujimura
January 2002

No. 3 The Automotive Supply Chain: Global Trends and Asian Perspectives
—Francisco Veloso and Rajiv Kumar
January 2002

No. 4 International Competitiveness of Asian Firms: An Analytical Framework
—Rajiv Kumar and Doren Chadee
February 2002

No. 5 The International Competitiveness of Asian Economies in the Apparel Commodity Chain
—Gary Gereffi
February 2002

No. 6 Monetary and Financial Cooperation in East Asia—The Chiang Mai Initiative and Beyond
—Pradumna B. Rana
February 2002

No. 7 Probing Beneath Cross-national Averages: Poverty, Inequality, and Growth in the Philippines
—Arsenio M. Balisacan and Ernesto M. Pernia
March 2002

No. 8 Poverty, Growth, and Inequality in Thailand
—Anil B. Deolalikar
April 2002

No. 9 Microfinance in Northeast Thailand: Who Benefits and How Much?
—Brett E. Coleman
April 2002

No. 10 Poverty Reduction and the Role of Institutions in Developing Asia
—Anil B. Deolalikar, Alex B. Brilliante, Jr., Raghav Go, Ernesto M. Pernia, Mary Racelis with the assistance of Marita Conception Castro-Guerra, Liza L. Lim, Filipinas F. Quising
May 2002

No. 11 The European Social Model: Lessons for Developing Countries
—Asrar Lindbeck
May 2002

No. 12 Costs and Benefits of a Common Currency for ASEAN
—Srinivasa Madhur
May 2002

No. 13 Monetary Cooperation in East Asia: A Survey
—Raul Fabello
May 2002

No. 14 Toward A Political Economy Approach to Policy-based Lending
—George Abonyi
May 2002

No. 15 A Framework for Establishing Priorities in a Country Poverty Reduction Strategy
—Ron Duncan and Steve Pollard
June 2002

No. 16 The Role of Infrastructure in Land-use Dynamics and Rice Production in Viet Nam’s Mekong River Delta
—Christopher Edmonds
July 2002

No. 17 Effect of Decentralization Strategy on Macroeconomic Stability in Thailand
—Kanokpan Lao-Araya
August 2002

No. 18 Poverty and Patterns of Growth
—Rana Hasan and M. G. Quibria
August 2002

No. 19 Why are Some Countries Richer than Others? A Reassessment of Mankiw-Romer-Weil’s Test of the Neoclassical Growth Model
—Jesus Felipe and John McCombie
August 2002

No. 20 Modernization and Son Preference in People’s Republic of China
—Robin Burgess and Juzhong Zhuang
September 2002

No. 21 The Doha Agenda and Development: A View from the Uruguay Round
—J. Michael Finger
September 2002

No. 22 Conceptual Issues in the Role of Education Decentralization in Promoting Effective Schooling in Asian Developing Countries
—Jere R. Behrman, Anil B. Deolalikar, and Lee-Ying Son
September 2002

No. 23 Promoting Effective Schooling through Education Decentralization in Bangladesh, Indonesia, and Philippines
—Jere R. Behrman, Anil B. Deolalikar, and Lee-Ying Son
September 2002

No. 24 Financial Opening under the WTO Agreement in Selected Asian Countries: Progress and Issues
—Yun-Hwan Kim
September 2002

No. 25 Revisiting Growth and Poverty Reduction in Indonesia: What Do Subnational Data Show?
—Arsenio M. Balisacan, Ernesto M. Pernia, and Abuzar Asra
October 2002

No. 26 Causes of the 1997 Asian Financial Crisis: What Can an Early Warning System Model Tell Us?
—Juzhong Zhuang and J. Malcolm Dowling
October 2002

No. 27 Digital Divide: Determinants and Policies with Special Reference to Asia
—M. G. Quibria, Shamsun N. Ahmed, Ted Tschang, and Mari-Len Reys-Macasquof
October 2002

No. 28 Regional Cooperation in Asia: Long-term Progress, Recent Retrogression, and the Way Forward
—Rangopal Agarwala and Brahm Prakash
October 2002
No. 29 How can Cambodia, Lao PDR, Myanmar, and Viet Nam Cope with Revenue Lost Due to AFTA Tariff Reductions?
—Kanokpan Lao-Araya
November 2002

No. 30 Asian Regionalism and Its Effects on Trade in the 1980s and 1990s
—Ramon Clarete, Christopher Edmonds, and Jessica Seddon Wallack
November 2002

No. 31 New Economy and the Effects of Industrial Structures on International Equity Market Correlations
—Cyn-Young Park and Jaejoon Woo
December 2002

No. 32 Leading Indicators of Business Cycles in Malaysia and the Philippines
—Wenda Zhang and Juzhong Zhuang
December 2002

No. 33 Technological Spillovers from Foreign Direct Investment—A Survey
—Emma Xiaoqin Fan
December 2002

No. 34 Openness and Regional Development in the Philippines
—Ernesto M. Pernia and Pilipinas F. Quising
January 2003

No. 35 Bond Market Development in East Asia: Issues and Challenges
—Raul Fabella and Srinivasa Madhur
January 2003

No. 36 Environment Statistics in Central Asia: Progress and Prospects
—Robert Ballance and Bishnu D. Pant
March 2003

No. 37 Electricity Demand in the People's Republic of China: Investment Requirement and Environmental Impact
—Bo Q. Lin
March 2003

No. 38 Foreign Direct Investment in Developing Asia: Trends, Effects, and Likely Issues for the Forthcoming WTO Negotiations
—Douglas H. Brooks, Emma Xiaoqin Fan, and Lea R. Sumulong
March 2003

No. 39 The Political Economy of Good Governance for Poverty Alleviation Policies
—Narayan Lakshman
April 2003

No. 40 The Puzzle of Social Capital
—M. G. Quibria
May 2003

No. 41 Industrial Structure, Technical Change, and the Role of Government in Development of the Electronics and Information Industry in Taipei, China
—Yeo Lin
May 2003

No. 42 Economic Growth and Poverty Reduction in Viet Nam
—Arsenio M. Balisacan, Ernesto M. Pernia, and Gemma Esther B. Estrada
June 2003

—Taizo Motonishi
June 2003

No. 44 Welfare Impacts of Electricity Generation Sector Reform in the Philippines
—Natsuko Toba
June 2003

No. 45 A Review of Commitment Savings Products in Developing Countries
—Nava Ashraf, Nathalie Gons, Dean S. Karlan, and Wesley Yin
July 2003

No. 46 Local Government Finance, Private Resources, and Local Credit Markets in Asia
—Roberto de Vera and Yun-Huan Kim
October 2003

No. 47 Excess Investment and Efficiency Loss During Reforms: The Case of Provincial-level Fixed-Asset Investment in People's Republic of China
—Duo Qin and Haiyan Song
October 2003

No. 48 Is Export-led Growth Passe? Implications for Developing Asia
—Jesus Felipe
December 2003

No. 49 Changing Bank Lending Behavior and Corporate Financing in Asia—Some Research Issues
—Emma Xiaoqin Fan and Akiko Terada-Hagiwara
December 2003

No. 50 Is People's Republic of China's Rising Services Sector Leading to Cost Disease?
—Duo Qin
March 2004

No. 51 Poverty Estimates in India: Some Key Issues
—Sanita Sharma
May 2004

No. 52 Restructuring and Regulatory Reform in the Power Sector: Review of Experience and Issues
—Peter Choynowski
May 2004

No. 53 Competitiveness, Income Distribution, and Growth in the Philippines: What Does the Long-run Evidence Show?
—Jesus Felipe and Grace C. Sipin
June 2004

No. 54 Practices of Poverty Measurement and Poverty Profile of Bangladesh
—Faizuddin Ahmed
August 2004

No. 55 Experience of Asian Asset Management Companies: Do They Increase Moral Hazard?
—Evidence from Thailand
—Akiko Terada-Hagiwara and Gloria Pasadilla
September 2004

No. 56 Viet Nam: Foreign Direct Investment and Postcrisis Regional Integration
—Vittorio Leproux and Douglas H. Brooks
September 2004

No. 57 Practices of Poverty Measurement and Poverty Profile of Nepal
—Devendra Chhetry
September 2004

No. 58 Monetary Poverty Estimates in Sri Lanka: Selected Issues
—Neranjana Gunetilleke and Dinushka Senanayake
October 2004

No. 59 Labor Market Distortions, Rural-Urban Inequality, and the Opening of People's Republic of China's Economy
—Thomas Hertel and Fan Zhai
November 2004
No. 60 Measuring Competitiveness in the World's Smallest Economies: Introducing the SSMECI
—Ganeshan Wignaraja and David Joiner
November 2004

No. 61 Foreign Exchange Reserves, Exchange Rate Regimes, and Monetary Policy: Issues in Asia
—Akiko Terada-Hagiwara
January 2005

No. 62 A Small Macroeconomic Model of the Philippine Economy
—Geoffrey Ducanes, Marie Anne Cagas, Duo Qin, Filipinas Quising, and Nedelyn Magtibay-Ramos
January 2005

ERD TECHNICAL NOTE SERIES (TNS)
(Published in-house; Available through ADB Office of External Relations; Free of Charge)

No. 1 Contingency Calculations for Environmental Impacts with Unknown Monetary Values
—David Dole
February 2002

No. 2 Integrating Risk into ADB’s Economic Analysis of Projects
—Nigel Rayner, Anneli Lagman-Martin, and Keith Ward
June 2002

No. 3 Measuring Willingness to Pay for Electricity
—Peter Choynowski
July 2002

No. 4 Economic Issues in the Design and Analysis of a Wastewater Treatment Project
—David Dole
July 2002

No. 5 An Analysis and Case Study of the Role of Environmental Economics at the Asian Development Bank
—David Dole and Piya Abeygunawardena
September 2002

No. 6 Economic Analysis of Health Projects: A Case Study in Cambodia

No. 7 Strengthening the Economic Analysis of Natural Resource Management Projects
—Keith Ward
September 2003

No. 8 Testing Savings Product Innovations Using an Experimental Methodology
—Nava Ashraf, Dean S. Karlan, and Wesley Yin
November 2003

No. 9 Setting User Charges for Public Services: Policies and Practice at the Asian Development Bank
—David Dole
December 2003

No. 10 Beyond Cost Recovery: Setting User Charges for Financial, Economic, and Social Goals
—David Dole and Ian Bartlett
January 2004

No. 11 Shadow Exchange Rates for Project Economic Analysis: Toward Improving Practice at the Asian Development Bank
—Anneli Lagman-Martin
February 2004

ERD POLICY BRIEF SERIES (PBS)
(Published in-house; Available through ADB Office of External Relations; Free of Charge)

No. 1 Is Growth Good Enough for the Poor?
—Ernesto M. Pernia, October 2001

No. 2 India’s Economic Reforms
What Has Been Accomplished? What Remains to Be Done?
—Arvind Panagariya, November 2001

No. 3 Unequal Benefits of Growth in Viet Nam
—Indu Bhushan, Erik Bloom, and Nguyen Minh Thang, January 2002

No. 4 Is Volatility Built into Today’s World Economy?
—J. Malcolm Dowling and J.P. Verbiest, February 2002

No. 5 What Else Besides Growth Matters to Poverty Reduction? Philippines
—Arsenio M. Balisacan and Ernesto M. Pernia, February 2002

No. 6 Achieving the Twin Objectives of Efficiency and Equity: Contracting Health Services in Cambodia
—Indu Bhushan, Sheryl Keller, and Brad Schwartz, March 2002

No. 7 Causes of the 1997 Asian Financial Crisis: What Can an Early Warning System Model Tell Us?
—Juzhong Zhuang and Malcolm Dowling, June 2002

No. 8 The Role of Preferential Trading Arrangements in Asia
—Christopher Edmonds and Jean-Pierre Verbiest, July 2002

No. 9 The Doha Round: A Development Perspective
—Jean-Pierre Verbiest, Jeffrey Liang, and Lea Sarmulang
July 2002
1. Asian Development Outlook (ADO; annual)
 $36.00 (paperback)

2. Key Indicators of Developing Asian and Pacific Countries (KI; annual)
 $35.00 (paperback)

JOURNAL
(Published in-house; Available commercially through ADB Office of External Relations)

1. Asian Development Review (ADR; semiannual)
 $5.00 per issue; $8.00 per year (2 issues)
MONOGRAPH SERIES
(Published in-house; Available through ADB Office of External Relations; Free of charge)

EDRC REPORT SERIES (ER)

No. 1 ASEAN and the Asian Development Bank
—Seiji Naya, April 1982

No. 2 Development Issues for the Developing East and Southeast Asian Countries and International Cooperation
—Seiji Naya and Graham Abbott, April 1982

No. 3 Aid, Savings, and Growth in the Asian Region
—I. Malcolm Dowling and Ulrich Hiemenz, April 1982

No. 4 Development-oriented Foreign Investment and the Role of ADB
—Kiyoshi Kojima, April 1982

No. 5 The Multilateral Development Banks and the International Economy's Missing Public Sector
—John Lang, June 1982

No. 6 Notes on External Debt of DMCs
—Evelyn Go, July 1982

No. 7 Grant Element in Bank Loans
—Dal Hyun Kim, July 1982

No. 8 Shadow Exchange Rates and Standard Conversion Factors in Project Evaluation
—Peter Worr, September 1982

No. 9 Small and Medium-Scale Manufacturing Establishments in ASEAN Countries: Perspectives and Policy Issues
—Mathias Bruch and Ulrich Hiemenz, January 1983

No. 10 A Note on the Third Ministerial Meeting of GATT
—Jungsoon Lee, January 1983

No. 11 Macroeconomic Forecasts for the Republic of China, Hong Kong, and Republic of Korea
—I. Malcolm Dowling, January 1983

No. 12 ASEAN: Economic Situation and Prospects
—Seiji Naya, March 1983

No. 13 The Future Prospects for the Developing Countries of Asia
—Seiji Naya, March 1983

No. 14 Energy and Structural Change in the Asia-Pacific Region, Summary of the Thirteenth Pacific Trade and Development Conference
—Seiji Naya, March 1983

No. 15 A Survey of Empirical Studies on Demand for Electricity with Special Emphasis on Price Elasticity of Demand
—Wisarn Pupphavesa, June 1983

No. 16 Determinants of Paddy Production in Indonesia: 1972-1981—A Simultaneous Equation Model Approach
—T.K. Jayaraman, June 1983

No. 17 The Philippine Economy: Economic Forecasts for 1983 and 1984
—I. Malcolm Dowling, E. Go, and C.N. Castillo, June 1983

No. 18 Economic Forecast for Indonesia

No. 19 Relative External Debt Situation of Asian Developing Countries: An Application of Ranking Method
—Jungsoon Lee, June 1983

No. 20 New Evidence on Yields, Fertilizer Application, and Prices in Asian Rice Production
—William James and Teresita Ramirez, July 1983

No. 21 Inflationary Effects of Exchange Rate Changes in Nine Asian LDCs
—Pradumna Rana and I. Malcolm Dowling, Jr., December 1983

No. 22 Effects of External Shocks on the Balance of Payments, Policy Responses, and Debt Problems of Asian Developing Countries
—Seiji Naya, December 1983

No. 23 Changing Trade Patterns and Policy Issues: The Prospects for East and Southeast Asian Developing Countries
—Seiji Naya and Ulrich Hiemenz, February 1984

No. 24 Small-Scale Industries in Asian Economic Development: Problems and Prospects
—Seiji Naya, February 1984

No. 25 A Study on the External Debt Indicators Applying Logit Analysis
—Jungsoon Lee and Clarita Barretto, February 1984

No. 26 Alternatives to Institutional Credit Programs in the Agricultural Sector of Low-Income Countries
—Jennifer Soar, March 1984

No. 27 Economic Scene in Asia and Its Special Features
—Kedar N. Kohli, November 1984

No. 28 The Effect of Terms of Trade Changes on the Balance of Payments and Real National Income of Asian Developing Countries
—Jungsoon Lee and Litgarda Labios, January 1985

—Yoshihiro Iwasaki, February 1985

No. 30 Sources of Balance of Payments Problem in the 1970s: The Asian Experience
—Pradumna Rana, February 1985

No. 31 India’s Manufactured Exports: An Analysis of Supply Sectors
—Ifzal Ali, February 1985

No. 32 Meeting Basic Human Needs in Asian Developing Countries
—Jungsoon Lee and Emma Banaria, March 1985

No. 33 The Impact of Foreign Capital Inflow on Investment and Economic Growth in Developing Asia
—Evelyn Go, May 1985

No. 34 The Climate for Energy Development in the Pacific and Asian Region: Priorities and Perspectives
—V.V. Desai, April 1986

No. 35 Impact of Appreciation of the Yen on Developing Member Countries of the Bank
—Jungsoon Lee, Pradumna Rana, and Ifzal Ali, May 1986

No. 36 Smuggling and Domestic Economic Policies in Developing Countries
—A.H.M.N. Choedhury, October 1986

No. 37 Public Investment Criteria: Economic Internal Rate of Return and Equalizing Discount Rate
—I. Ali, November 1986

No. 38 Review of the Theory of Neoclassical Political Economy: An Application to Trade Policies
—M.G. Qubria, December 1986

No. 39 Factors Influencing the Choice of Location: Local and Foreign Firms in the Philippines
—E.M. Pernia and A.N. Herrin, February 1987

No. 40 A Democratic Perspective on Developing Asia and Its Relevance to the Bank
—E.M. Pernia, May 1987

No. 41 Emerging Issues in Asia and Social Cost Benefit Analysis
—I. Ali, September 1988

No. 42 Shifting Revealed Comparative Advantage:
ECONOMIC STAFF PAPERS (ES)

No. 1 International Reserves: Factors Determining Needs and Adequacy
 —Evelyn Go, May 1981

No. 2 Domestic Savings in Selected Developing Asian Countries
 —Burnham Campbell, September 1981

No. 3 Changes in Consumption, Imports and Exports of Oil Since 1973:
 A Preliminary Survey of the Domestic Member Countries
 —Ulrich Hiemenz, September 1981

No. 4 By-Passed Areas, Regional Inequalities, and Development Policies in
 Selected Southeast Asian Countries
 —William James, October 1981

No. 5 Asian Agriculture and Economic Development
 —William James, March 1982

No. 6 Inflation in Developing Member Countries: An Analysis of Recent Trends

No. 7 Industrial Growth and Employment in Developing Asian Countries: Issues and
 Perspectives for the Coming Decade
 —Ulrich Hiemenz, March 1982

 Part I: Regional Adjustments and the World Economy
 —Burnham Campbell, April 1982

No. 9 Developing Asia: The Importance of Domestic Policies
 —Economics Office Staff under the direction of Seiji Naya, May 1982

No. 10 Financial Development and Household Savings: Issues in Domestic Resource
 Mobilization in Asian Developing Countries
 —Han Soo Kim, July 1982

No. 11 Industrial Development: Role of Specialized Financial Institutions
 —Kedar N. Kohli, August 1982

 Part II: Debt Problems and an Evaluation of Suggested Remedies
 —Burnham Campbell, September 1982

No. 13 Credit Rationing, Rural Savings, and Financial Policy in Developing Countries
 —William James, September 1982

No. 14 Small and Medium-Scale Manufacturing
Establishments in ASEAN Countries: Perspectives and Policy Issues
—Mathias Bruch and Ulrich Hiemenz, March 1983

No. 15 Income Distribution and Economic Growth in Developing Asian Countries
—I. Malcolm Dowling and David Soo, March 1983

No. 16 Long-Run Debt-Servicing Capacity of Asian Developing Countries: An Application of Critical Interest Rate Approach
—Jungsoo Lee, June 1983

No. 17 External Shocks, Energy Policy, and Macroeconomic Performance of Asian Developing Countries: A Policy Analysis
—William James, July 1983

No. 18 The Impact of the Current Exchange Rate System on Trade and Inflation of Selected Developing Member Countries
—Pradumna Rana, September 1983

No. 19 Asian Agriculture in Transition: Key Policy Issues
—William James, September 1983

No. 20 The Transition to an Industrial Economy in Monosoon Asia
—Harry T. Oshima, October 1983

No. 21 The Significance of Off-Farm Employment and Incomes in Post-War East Asian Growth
—Harry T. Oshima, January 1984

No. 22 Income Distribution and Poverty in Selected Asian Countries
—John Malcolm Dowling, Jr., November 1984

No. 23 ASEAN Economies and ASEAN Economic Cooperation
—Narongchai Akrasanee, November 1984

No. 24 Economic Analysis of Power Projects
—Nitin Desai, January 1985

No. 25 Exports and Economic Growth in the Asian Region
—Pradumna Rana, February 1985

No. 26 Patterns of External Financing of DMCs
—E. Go, May 1985

No. 27 Industrial Technology Development in the Republic of Korea
—S.Y. Lo, July 1985

No. 28 Risk Analysis and Project Selection: A Review of Practical Issues
—J.K. Johnson, August 1985

No. 29 Rice in Indonesia: Price Policy and Comparative Advantage
—I. Ali, January 1986

No. 30 Effects of Foreign Capital Inflows on Developing Countries of Asia
—Jungsoo Lee, Pradumna B. Rana, and Yoshihiro Iwasaki, April 1986

No. 31 Economic Analysis of the Environmental Impacts of Development Projects
—John A. Dixon et al., EAPI, East-West Center, August 1986

No. 32 Science and Technology for Development: Role of the Bank
—Kedar N. Kohli and Ifzal Ali, November 1986

No. 33 Satellite Remote Sensing in the Asian and Pacific Region
—Mohan Sundara Rajan, December 1986

No. 34 Changes in the Export Patterns of Asian and Pacific Developing Countries: An Empirical Overview
—Pradumna B. Rana, January 1987

No. 35 Agricultural Price Policy in Nepal
—Gerald C. Nelson, March 1987

No. 36 Implications of Falling Primary Commodity Prices for Agricultural Strategy in the Philippines
—I. Ali, September 1987

No. 37 Determining Irrigation Charges: A Framework
—Prabhakar B. Ghaete, October 1987

No. 38 The Role of Fertilizer Subsidies in Agricultural Production: A Review of Select Issues
—M.G. Quibria, October 1987

No. 39 Domestic Adjustment to External Shocks in Developing Asia
—Jungsoo Lee, October 1987

No. 40 Improving Domestic Resource Mobilization through Financial Development: Indonesia
—Philip Erquiaga, November 1987

No. 41 Recent Trends and Issues on Foreign Direct Investment in Asian and Pacific Developing Countries
—P.B. Rana, March 1988

No. 42 Manufactured Exports from the Philippines: A Sector Profile and an Agenda for Reform
—I. Ali, September 1988

No. 43 A Framework for Evaluating the Economic Benefits of Power Projects
—I. Ali, August 1989

No. 44 Promotion of Manufactured Exports in Pakistan
—Jungsoo Lee and Yoshihiro Iwasaki, September 1989

No. 45 Education and Labor Markets in Indonesia: A Sector Survey
—Ernesto M. Pernia and David N. Wilson, September 1989

No. 46 Industrial Technology Capabilities and Policies in Selected ADCs
—Harry T. Oshima, January 1990

No. 47 Designing Strategies and Policies for Managing Structural Change in Asia
—Ifzal Ali, June 1990

No. 48 The Completion of the Single European Community Market in 1992: A Tentative Assessment of its Impact on Asian Developing Countries
—J.P. Verbiest and Min Tang, June 1991

No. 49 Economic Analysis of Investment in Power Systems
—I. Ali, June 1991

No. 50 External Finance and the Role of Multilateral Financial Institutions in South Asia: Changing Patterns, Prospects, and Challenges
—Jungsoo Lee, November 1991

No. 51 The Gender and Poverty Nexus: Issues and Policies
—M.G. Quibria, November 1993

No. 52 The Role of the State in Economic Development: Theory, the East Asian Experience, and the Malaysian Case
—Jason Brown, December 1993

No. 53 The Economic Benefits of Potable Water Supply Projects to Households in Developing Countries
—Dale Whittington and Venkateswarlu Swarna, January 1994

No. 54 Growth Triangles: Conceptual Issues and Operational Problems
—Min Tang and Myo Thant, February 1994

No. 55 The Emerging Global Trading Environment and Developing Asia
—Arvind Panagariya, M.G. Quibria, and Narhari Rao, July 1996

No. 56 Aspects of Urban Water and Sanitation in the Context of Rapid Urbanization in Developing Asia
—Ernesto M. Pernia and Stella LF. Alabastro, September 1997

No. 57 Challenges for Asia’s Trade Environment

No. 58 Economic Analysis of Health Sector Projects: A Review of Issues, Methods, and Approaches
—Ramesh Adhikari, Paul Gertler, and Anneli Lagman, March 1999

No. 59 The Asian Crisis: An Alternate View
—Rajiv Kumar and Birhan Debruy, July 1999

No. 60 Social Consequences of the Financial Crisis in Asia
—James C. Knooles, Ernesto M. Pernia, and Mary Racelis, November 1999
OCCASIONAL PAPERS (OP)

No. 1 Poverty in the People’s Republic of China: Recent Developments and Scope for Bank Assistance
—Pradumna B. Rana, November 1992

No. 2 The Eastern Islands of Indonesia: An Overview of Development Needs and Potential
—Brien K. Parkinson, January 1993

No. 3 Rural Institutional Finance in Bangladesh and Nepal: Review and Agenda for Reforms
—A.H.M.N. Choudhury and Marcella C. Garcia, November 1993

No. 4 Fiscal Deficits and Current Account Imbalances of the South Pacific Countries: A Case Study of Vanuatu
—T.K. Jayaraman, December 1993

No. 5 Reforms in the Transitional Economies of Asia
—Pradamna B. Rana, December 1993

No. 6 Environmental Challenges in the People’s Republic of China and Scope for Bank Assistance
—Elisabetta Capannelli and Omkar L. Shrestha, December 1993

No. 7 Sustainable Development Environment and Poverty Nexus
—K.F. Jalal, December 1993

No. 8 Intermediate Services and Economic Development: The Malaysian Example
—Sutanu Behuria and Rahal Khullar, May 1994

No. 9 Interest Rate Deregulation: A Brief Survey of the Policy Issues and the Asian Experience
—Carlos J. Glower, July 1994

No. 10 Some Aspects of Land Administration in Indonesia: Implications for Bank Operations
—Sutanu Behuria, July 1994

No. 11 Demographic and Socioeconomic Determinants of Contraceptive Use among Urban Women in the Melanesian Countries in the South Pacific: A Case Study of Port Vila Town in Vanuatu
—T.K. Jayaraman, February 1995

No. 12 Managing Development through Institution Building
—Hilton L. Root, October 1995

No. 13 Growth, Structural Change, and Optimal Poverty Interventions
—Shiladitya Chatterjee, November 1995

No. 14 Private Investment and Macroeconomic Environment in the South Pacific Island Countries: A Cross-Country Analysis
—T.K. Jayaraman, October 1996

No. 15 The Rural-Urban Transition in Viet Nam: Some Selected Issues
—Sudipto Mundle and Brian Van Arkadie, October 1997

No. 16 A New Approach to Setting the Future Transport Agenda
—Roger Allport, Geoff Key, and Charles Melhuish, June 1998

No. 17 Adjustment and Distribution: The Indian Experience
—Sudipto Mundle and V.B. Tulasidhar, June 1998

No. 18 Tax Reforms in Viet Nam: A Selective Analysis
—Sudipto Mundle, December 1998

No. 19 Surges and Volatility of Private Capital Flows to Asian Developing Countries: Implications for Multilateral Development Banks
—Pradamna B. Rana, December 1998

No. 20 The Millennium Round and the Asian Economies: An Introduction
—Dilip K. Das, October 1999

No. 21 Occupational Segregation and the Gender Earnings Gap
—Joseph E. Zoglisch, Jr. and Yana van der Meulen Rodgers, December 1999

No. 22 Information Technology: Next Locomotive of Growth?
—Dilip K. Das, June 2000

STATISTICAL REPORT SERIES (SR)

No. 1 Estimates of the Total External Debt of the Developing Member Countries of ADB: 1981-1983
—I.P. David, September 1984

No. 2 Multivariate Statistical and Graphical Classification Techniques Applied to the Problem of Grouping Countries
—I.P. David and D.S. Maligalig, March 1985

No. 3 Gross National Product (GNP) Measurement Issues in South Pacific Developing Member Countries of ADB
—S.G. Tiwari, September 1985

No. 4 Estimates of Comparable Savings in Selected DMCs
—Hananto Sigit, December 1985

No. 5 Keeping Sample Survey Design and Analysis Simple
—I.P. David, December 1985

No. 6 External Debt Situation in Asian Developing Countries
—I.P. David and Jungsoo Lee, March 1986

No. 7 Study of GNP Measurement Issues in the South Pacific Developing Member Countries. Part I: Existing National Accounts of SPDMCs—Analysis of Methodology and Application of SNA Concepts
—P. Hodgkinson, October 1986

No. 8 Study of GNP Measurement Issues in the South Pacific Developing Member Countries. Part II: Factors Affecting Intercountry Comparability of Per Capita GNP
—P. Hodgkinson, October 1986

No. 9 Survey of the External Debt Situation

No. 10 A Survey of the External Debt Situation in Asian Developing Countries, 1986
—Jungsoo Lee and I.P. David, April 1988

No. 11 Changing Pattern of Financial Flows to Asian and Pacific Developing Countries
—Jungsoo Lee and I.P. David, March 1989

No. 12 The State of Agricultural Statistics in Southeast Asia
—I.P. David, March 1989

—Jungsoo Lee and I.P. David, July 1989

No. 14 A Survey of the External Debt Situation in Asian and Pacific Developing Countries: 1988-1989
—Jungsoo Lee, May 1990

No. 15 A Survey of the External Debt Situation in Asian and Pacific Developing Countries: 1989-1992
—Min Tang, June 1991

No. 16 Recent Trends and Prospects of External Debt Situation and Financial Flows to Asian and Pacific Developing Countries
—Min Tang and Aludia Pardo, June 1992

No. 17 Purchasing Power Parity in Asian Developing Countries: A Co-Integration Test
—Min Tang and Ronald Q. Butting, April 1994

No. 18 Capital Flows to Asian and Pacific Developing Countries: Recent Trends and Future Prospects
—Min Tang and James Villafuerte, October 1995

in Asian Developing Countries, 1985
—Jungsoo Lee and I.P. David, April 1987

No. 10 A Survey of the External Debt Situation in Asian Developing Countries, 1986
—Jungsoo Lee and I.P. David, April 1988

No. 11 Changing Pattern of Financial Flows to Asian and Pacific Developing Countries
—Jungsoo Lee and I.P. David, March 1989

No. 12 The State of Agricultural Statistics in Southeast Asia
—I.P. David, March 1989

—Jungsoo Lee and I.P. David, July 1989

No. 14 A Survey of the External Debt Situation in Asian and Pacific Developing Countries: 1988-1989
—Jungsoo Lee, May 1990

No. 15 A Survey of the External Debt Situation in Asian and Pacific Developing Countries: 1989-1992
—Min Tang, June 1991

No. 16 Recent Trends and Prospects of External Debt Situation and Financial Flows to Asian and Pacific Developing Countries
—Min Tang and Aludia Pardo, June 1992

No. 17 Purchasing Power Parity in Asian Developing Countries: A Co-Integration Test
—Min Tang and Ronald Q. Butting, April 1994

No. 18 Capital Flows to Asian and Pacific Developing Countries: Recent Trends and Future Prospects
—Min Tang and James Villafuerte, October 1995

in Asian Developing Countries, 1985
—Jungsoo Lee and I.P. David, April 1987
1. Informal Finance: Some Findings from Asia
 Prabhu Ghate et. al., 1992
 $15.00 (paperback)

2. Mongolia: A Centrally Planned Economy in Transition
 Asian Development Bank, 1992
 $15.00 (paperback)

3. Rural Poverty in Asia, Priority Issues and Policy Options
 Edited by M.G. Quibria, 1994
 $25.00 (paperback)

4. Growth Triangles in Asia: A New Approach to Regional Economic Cooperation
 Edited by Myo Thant, Min Tang, and Hiroshi Kakazu
 1st ed., 1994 $36.00 (hardbound)
 Revised ed., 1998 $55.00 (hardbound)

5. Urban Poverty in Asia: A Survey of Critical Issues
 Edited by Ernesto Pernia, 1994
 $18.00 (paperback)

 Edited by M.G. Quibria, 1995
 $15.00 (paperback)
 $36.00 (hardbound)

7. Financial Sector Development in Asia
 Edited by Shahid N. Zahid, 1995
 $50.00 (hardbound)

8. Financial Sector Development in Asia: Country Studies
 Edited by Shahid N. Zahid, 1995
 $55.00 (hardbound)

 Christine P.W. Wong, Christopher Heady, and Wing T. Woo, 1995
 $15.00 (paperback)

10. From Centrally Planned to Market Economies: The Asian Approach
 Edited by Pradumna B. Rana and Naved Hamid, 1995
 Vol. 1: Overview
 $36.00 (hardbound)
 Vol. 2: People’s Republic of China and Mongolia
 $50.00 (hardbound)
 Vol. 3: Laos PDR, Myanmar, and Viet Nam
 $50.00 (hardbound)

 Edited by M.G. Quibria and J. Malcolm Dowling, 1996
 $50.00 (hardbound)

12. The Bangladesh Economy in Transition
 Edited by M.G. Quibria, 1997
 $20.00 (hardbound)

13. The Global Trading System and Developing Asia
 Edited by Arvind Panagariya, M.G. Quibria, and Nahrari Rao, 1997
 $55.00 (hardbound)

14. Social Sector Issues in Transitional Economies of Asia
 Edited by Douglas H. Brooks and Myo Thant, 1998
 $25.00 (paperback)
 $55.00 (hardbound)

15. Intergovernmental Fiscal Transfers in Asia: Current Practice and Challenges for the Future
 Edited by Yun-Huan Kim and Paul Smoke, 2003
 $15.00 (paperback)

16. Local Government Finance and Bond Markets
 Edited by Yun-Huan Kim, 2003
 $15.00 (paperback)

FROM MARSTON BOOK SERVICES LIMITED:
PO Box 269, Abingdon
Oxon OX14 4YN
United Kingdom
Tel: +44 1235 465500
Fax: +44 1235 465555
Email: direct.order@marston.co.uk
Web: www.marston.co.uk

1. Reducing Poverty in Asia: Emerging Issues in Growth, Targeting, and Measurement
 Edited by Christopher M. Edmonds, 2003
1. Rural Poverty in Developing Asia
 Edited by M.G. Quibria
 Vol. 1: Bangladesh, India, and Sri Lanka, 1994
 $35.00 (paperback)
 Vol. 2: Indonesia, Republic of Korea, Philippines, and Thailand, 1996
 $35.00 (paperback)

2. Gender Indicators of Developing Asian and Pacific Countries
 Asian Development Bank, 1993
 $25.00 (paperback)

3. External Shocks and Policy Adjustments: Lessons from the Gulf Crisis
 Edited by Naved Hamid and Shahid N. Zahid, 1995
 $15.00 (paperback)

4. Indonesia-Malaysia-Thailand Growth Triangle: Theory to Practice
 Edited by Myo Thant and Min Tang, 1996
 $15.00 (paperback)

5. Emerging Asia: Changes and Challenges
 Asian Development Bank, 1997
 $30.00 (paperback)

6. Asian Exports
 Edited by Dilip Das, 1999
 $35.00 (paperback)
 $55.00 (hardbound)

7. Development of Environment Statistics in Developing Asian and Pacific Countries
 Asian Development Bank, 1997
 $30.00 (paperback)

8. Mortgage-Backed Securities Markets in Asia
 Edited by S. Ghoon Rhee & Yutaka Shimomoto, 1999
 $35.00 (paperback)

9. Rising to the Challenge in Asia: A Study of Financial Markets
 Asian Development Bank
 Vol. 1: An Overview, 2000
 $20.00 (paperback)
 Vol. 2: Special Issues, 1999
 $15.00 (paperback)
 $25.00 (paperback)
 Vol. 4: People’s Republic of China, 1999
 $20.00 (paperback)
 Vol. 5: India, 1999
 $30.00 (paperback)
 Vol. 6: Indonesia, 1999
 $30.00 (paperback)
 Vol. 7: Republic of Korea, 1999
 $30.00 (paperback)
 Vol. 8: Malaysia, 1999
 $20.00 (paperback)
 Vol. 9: Pakistan, 1999
 $30.00 (paperback)
 Vol. 10: Philippines, 1999
 $30.00 (paperback)
 Vol. 11: Thailand, 1999
 $30.00 (paperback)
 Vol. 12: Socialist Republic of Viet Nam, 1999
 $30.00 (paperback)

10. Corporate Governance and Finance in East Asia: A Study of Indonesia, Republic of Korea, Malaysia, Philippines and Thailand
 J. Zhuang, David Edwards, D. Webb, & Ms. Virginia Capulong
 $10.00 (paperback)
 $15.00 (paperback)

11. Financial Management and Governance Issues
 Asian Development Bank, 2000
 Cambodia $10.00 (paperback)
 People’s Republic of China $10.00 (paperback)
 Mongolia $10.00 (paperback)
 Pakistan $10.00 (paperback)
 Papua New Guinea $10.00 (paperback)
 Uzbekistan $10.00 (paperback)
 Viet Nam $10.00 (paperback)
 Selected Developing Member Countries $10.00 (paperback)

12. Government Bond Market Development in Asia
 Edited by Yun-Hwan Kim, 2001
 $25.00 (paperback)

13. Intergovernmental Fiscal Transfers in Asia: Current Practice and Challenges for the Future
 Edited by Paul Smoke and Yun-Hwan Kim, 2002
 $15.00 (paperback)

14. Guidelines for the Economic Analysis of Projects
 Asian Development Bank, 1997
 $10.00 (paperback)

15. Guidelines for the Economic Analysis of Telecommunications Projects
 Asian Development Bank, 1997
 $10.00 (paperback)

 Asian Development Bank, 1999
 $10.00 (hardbound)

 Asian Development Bank, 2000
 $10.00 (paperback)

 Asian Development Bank, 2001
 $10.00 (paperback)

 Asian Development Bank, 2002
 $10.00 (paperback)

20. Guidelines for the Financial Governance and Management of Investment Projects Financed by the Asian Development Bank
 Asian Development Bank, 2002
 $10.00 (paperback)

 Asian Development Bank, 2002
 $10.00 (hardback)

22. Defining an Agenda for Poverty Reduction, Volume 1
 Edited by Christopher Edmonds and Sara Medina, 2002
 $15.00 (paperback)

23. Defining an Agenda for Poverty Reduction, Volume 2
 Edited by Isabel Ortiz, 2002
 $15.00 (paperback)

24. Economic Analysis of Policy-based Operations: Key Dimensions
 Asian Development Bank, 2003
 $10.00 (paperback)
SPECIAL STUDIES, COMPLIMENTARY (SSC)
(Published in-house; Available through ADB Office of External Relations; Free of Charge)

1. Improving Domestic Resource Mobilization Through Financial Development: Overview September 1985
5. Financing Public Sector Development Expenditure in Selected Countries: Overview January 1988
7. Financing Public Sector Development Expenditure in Selected Countries: Bangladesh June 1988
8. Financing Public Sector Development Expenditure in Selected Countries: India June 1988
10. Financing Public Sector Development Expenditure in Selected Countries: Thailand June 1988
11. Towards Regional Cooperation in South Asia: ADB/EWC Symposium on Regional Cooperation in South Asia February 1988
14. Foreign Trade Barriers and Export Growth September 1988
15. The Role of Small and Medium-Scale Industries in the Industrial Development of the Philippines April 1989
16. The Role of Small and Medium-Scale Manufacturing Industries in Industrial Development: The Experience of Selected Asian Countries January 1990
20. Export Finance: Some Asian Examples September 1990
23. Framework and Criteria for the Appraisal and Socioeconomic Justification of Education Projects January 1994
26. Investing in Asia Co-published with OECD, 1997
27. The Future of Asia in the World Economy Co-published with OECD, 1998
29. Sustainable Recovery in Asia: Mobilizing Resources for Development Co-published with OECD, 2000
30. Technology and Poverty Reduction in Asia and the Pacific Co-published with OECD, 2001
31. Asia and Europe Co-published with OECD, 2002