Qin, Duo

Working Paper

Is the Rising Services Sector in the People's Republic of China leading to Cost Disease?

ERD Working Paper Series, No. 50

Provided in Cooperation with:
Asian Development Bank (ADB), Manila

This Version is available at:
http://hdl.handle.net/10419/109260

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
ERD Working Paper

Series No. 50

Is the Rising Services Sector in the People's Republic of China Leading to Cost Disease?

Duo Qin

April 2004
IS THE RISING SERVICES SECTOR IN THE PEOPLE’S REPUBLIC OF CHINA LEADING TO COST DISEASE?

DUO QIN

April 2004

Duo Qin is an economist in the Macroeconomics and Finance Research Division, Economics and Research Department, Asian Development Bank.
The ERD Working Paper Series is a forum for ongoing and recently completed research and policy studies undertaken in the Asian Development Bank or on its behalf. The Series is a quick-disseminating, informal publication meant to stimulate discussion and elicit feedback. Papers published under this Series could subsequently be revised for publication as articles in professional journals or chapters in books.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. An Overview</td>
<td>2</td>
</tr>
<tr>
<td>III. Labor Productivity and Economic Growth</td>
<td>7</td>
</tr>
<tr>
<td>IV. Signs of Cost Disease?</td>
<td>20</td>
</tr>
<tr>
<td>V. Reflections and Summary</td>
<td>22</td>
</tr>
<tr>
<td>Appendix</td>
<td>24</td>
</tr>
<tr>
<td>References</td>
<td>25</td>
</tr>
</tbody>
</table>
ABSTRACT

The focal issue of this investigation is whether the rising services sector would contract cost disease and stagnate economic growth in People’s Republic of China (PRC), as diagnosed generally of tertiarization in Baumol’s unbalanced growth model. Using provincial panel data for 1985-2001, the paper examines how labor productivity of the services sector has been associated with GDP growth and whether the services sector has shown signs of cost disease. The key findings are: the currently positive contribution of the services sector to growth is largely due to shifts of labor from agriculture into services; however, signs of cost disease are discernible from demand for service products, wage determination, and labor input demand of the services sector.
I. INTRODUCTION

The last two decades have witnessed rapid economic development in the People's Republic of China (PRC). The development is accompanied by significant structural transformation in various aspects of the economy. In particular, industrialization and urbanization have stimulated enormous demand for services. Growth in services has been phenomenal since 1990, as average income level soared from around US$200 per annum to US$1,000 in 2002 in terms of per capita gross domestic product (GDP). The real take-off of a services economy is expected, however, to occur in the PRC in the near future on two accounts. First, tertiarization or emergence of a “services economy” is widely recognized as a natural process for a developing economy to evolve into a developed or post-industrial economy (see, for example, Illeris 1996 and Sundrum 1990). Second, promotion of “tertiary industries” has recently been designated to a prominent place in the Tenth 5-year Plan (2001-2005) of the PRC.1

The government strategy of promoting tertiary industries is primarily aimed at alleviating the acute labor supply pressure at relatively low expenses of material and capital resources. Moreover, growing service industries would help strengthen the nonstate-owned business sector and therefore increase overall economic efficiency, and would also help accelerate trade and technological progress, as generally found in developing economies, (e.g., see Riddle 1986 and Mattoo et al. 2001). Yet, little has been discussed about the possible downside of the strategy.

One influential theory about the negative effect of tertiarization on growth is Baumol’s unbalanced growth model (Baumol 1967, see also Baumol et al. 1985). The model maintains that tertiarization is likely to decelerate overall productivity improvement of an economy and hence stagnate economic growth. This is because growth of the services sector is typically characterized by faster expansion of service employment than of service output, due mainly to the labor-intensive nature of the sector, relative to the agricultural and the manufacturing sectors. Such effect is often referred to as “cost disease”, as tertiarization is seen as dominantly demand-driven to the extent that demand for services becomes price inelastic and encourages the wage level of the services sector to grow faster than its labor productivity growth.

The present study investigates empirically how much and in what ways the services sector absorbs labor and contributes to overall economic growth, and whether there are discernible signs of cost disease in the PRC. Panel data of 30 provinces2 for the period 1985-2001 are used for the purpose. The investigation starts from an overview, in the following section, of the services sector in relation to overall economic growth. In Section III, two types of decomposition methods are employed to examine how labor productivity of the services sector has been associated with GDP growth via its association to the growth of the primary and the secondary sectors, frequently known

1 According to the plan, the share of the services sector in GDP is to rise to 36 percent by 2005 from 33 percent in 2000; employment of the services sector is to increase 4 percent per annum on average (see Li 2001).

2 Beijing, Shanghai, and Tianjin are counted as provinces, but Chongqing, the new autonomous municipality, is still regarded as part of Sichuan in our sample. A list of the province abbreviations is given in the appendix.
as the agricultural sector and the manufacturing sector. Econometric analysis is carried out in Section IV to detect signs of cost disease characterized in Baumol’s unbalanced growth model. Section V concludes. It is well known that statistical measuring of the services sector is full of difficulties and there is significantly downward mismeasurement in service output and productivity (e.g., see Wolff 1999, Triplett and Bosworth 2001). However, the present study shall not go into these measurement issues.

II. AN OVERVIEW

The services sector of the PRC expanded at an average annual growth rate of over 9 percent during the 1990s. The expansion was accompanied by rapid income growth, as reflected in the average annual rate of 8.3 percent in terms of per capita GDP. The rising services sector has particularly helped to provide employment opportunities for the abundant Chinese labor market, with the current services share being 28 percent of total employment, more than double the 1980s figure of 13 percent, as shown in Figure 1. The increase apparently comes mostly from the agricultural sector, which has dwindled from nearly 70 percent in 1980 to 50 percent at the present in terms of its employment share. One of the most striking aspects, however, lies with the output share changes of the services sector. The output share of the services sector in nominal terms rises significantly from roughly one fifth in 1980 to one third currently, but the output share in real terms remains almost constant, as shown in Figure 1. The reverse is found from the secondary sector. Its nominal output share remains relatively unchanged while its share in constant prices rises. The output share of the primary sector has decreased in both nominal and constant terms. These phenomena suggest that there is marked disparity in the movement of the sectoral prices.

In Figure 2, the services sector shares in nominal GDP and in employment are plotted at the provincial level. The provinces are ranked by per capita GDP of the 2001 statistics. The richer a province, the higher its share in the services sector. The nominal output shares are below 40 percent for most of the provinces. Only Beijing and Shanghai exceed 50 percent, just about comparable to the level of advanced economies. Employment shares are remarkably low for inland and poor provinces. It is clear that the PRC is still at the very beginning of tertiarization and that there is great potential for employment expansion in the services sector.

Figure 3 presents a summary view of labor productivity, wage rates, and labor costs of the three sectors. The real output per labor in both the primary and the tertiary sectors is shown to have hardly grown over the last two decades, in great contrast with the secondary sector (the top left panel). The output prices of the primary and the tertiary sectors have significantly outgrown that of the secondary sector, with the price of the tertiary sector getting in the lead toward the end of the 1990s (the bottom left panel). The nominal wage level of the services sector has grown in parallel with that of the secondary sector, gradually outpacing it since the mid-1990s, and inducing a rising gap in real unit labor cost between the two sectors (the right panels). These phenomena remind us clearly of cost disease. However, it is the agricultural sector, rather than the manufacturing sector, which supplies abundant labor to the services sector, as shown in Figure

3 In order to focus on the role of services to the whole economy in aggregate, we ignore the compositional changes, or the heterogeneous development, within the services sector in this paper.

4 If Y denotes real output, P output price, L employment, and w wage rate, real unit labor cost is calculated by: $\frac{wL}{PY}$
FIGURE 1
OUTPUT, EMPLOYMENT, AND THEIR COMPOSITION

Per capita GDP (yuan, top curve) and its composition
in nominal price (Top area: service sector;
Middle: industrial sector; Bottom: primary sector)

Sector shares in GDP in nominal price
(Top area: service sector; Middle: industrial sector;
Bottom: primary sector)

Per capita GDP (yuan, top curve) and its composition
in 1980 constant price (Top area: service sector;
Middle: industrial sector; Bottom: primary sector)

Sector shares in GDP in 1980 constant price
(Top area: service sector; Middle: industrial sector;
Bottom: primary sector)

Employment (10,000) and its composition
(Top area: service sector; Middle: industrial sector;
Bottom: primary sector)

Employment share
(Top area: service sector; Middle: industrial sector;
Bottom: primary sector)
FIGURE 2
SHARES OF THE SERVICE SECTOR IN GDP (SOLID LINE) AND IN EMPLOYMENT (DOTTED LINE) BY PROVINCE

Note: The provinces are ordered by per capita GDP in 2001 by row. Notice that units of the vertical axis are varied.
1 and confirmed by the persistently high level of real unit agricultural labor cost in Figure 3. Notice that the wage data used here may have significantly overestimated the per worker income in the agricultural sector. Nevertheless, low agricultural labor productivity is a widely acknowledged fact in the PRC (see, e.g., Yang and Zhou 1999). There are discernible signs of slowdown in the secondary sector growth, as shown from the stagnant shares of its employment and nominal output since the mid-1990s (see Figure 1).

Figure 3

Labor Productivity, Wage Rate, and Labor Cost

To further examine the extent of the gap in real unit labor cost between the service and the manufacturing sectors, we plot the ratio of the two labor cost series using provincial data in Figure 4. Interestingly, there is no obviously upward trend for the three large cosmopolitan cities, i.e., Beijing, Shanghai, and Tianjin, but the trend is discernible for most provinces. In terms of the absolute gap, real unit labor cost in the services sector has reached about twice that of the manufacturing sector in those relatively developed provinces, whereas it has exceeded twice and even reached three times in some inland and poor provinces. These suggest that the gap is likely to decrease in the long run as the economy further develops, but that the real unit labor cost of the services sector is likely to remain higher than that of the manufacturing sector.
FIGURE 4
RATIO OF REAL UNIT LABOR COSTS OF THE THIRD SECTOR TO THE SECOND SECTOR

Note: The horizontal axis marks at 1, where the unit costs of the two sectors are identical; the units of the vertical axes may differ across provinces. See the note in Figure 3 for the definition of real unit costs; see the appendix for definitions of province acronyms.
The graphed evidence shows us that growth of the services sector in the PRC occurs mainly in its nominal output share and employment share at the expense of the agricultural share. The gap between nominal and real output shares of the services sector is apparently induced by rapidly rising prices of services as well as the rising wage bills of the sector. As labor cost is closely related to labor productivity, we shall focus our attention on the contribution of services to GDP via labor productivity in the next section.

III. LABOR PRODUCTIVITY AND ECONOMIC GROWTH

In order to assess how the services sector contributes to the national level of labor productivity, two decomposition methods are applied to the panel data set in this section. The first follows the spirit of the decomposition method proposed by Berman et al. (1994). The second method is developed recently by Nordhaus (2001 and 2002).

Denote real GDP by Y and its three sectoral real outputs by Y_i, i.e.:

$$Y_t = \sum_{i=1}^{3} Y_{it}$$

where sector one is the primary sector, sector two the manufacturing sector, and sector three the services sector. Denote labor productivity by $q = \frac{Y}{L}$ where L represents employment. We have:

$$q_t = \frac{Y_{1t} + Y_{2t} + Y_{3t}}{L_t} = \sum_{i=1}^{3} q_{it}L_{it} \quad \sum_{i=1}^{3} L_{it} = 1$$

where $y_i = \frac{Y_i}{L}$ can be viewed as representing approximately per capita real sector output, $q_t = \frac{Y_t}{L_t}$ denotes sector labor productivity and $l_t = \frac{L_t}{L}$ denotes employment share. The changes or growth of q_t in (2) should be:

$$\Delta q_t = \sum_{i=1}^{3} \Delta q_{it}L_{it} + \sum_{i=1}^{3} \Delta l_{it}q_{it}, \quad \Delta q_t = q_t - q_{t-1} \quad \text{or}$$

$$\dot{q}_t = \frac{1}{\frac{q_t}{q_{t-1}}} + \sum_{i=1}^{3} \Delta l_{it} q_{it-1}, \quad \dot{q}_t = \frac{q_t}{q_{t-1}} - 1$$

Let us call “within effects” the components in the first summation term on the right-hand side of (3) or (3’) and “between effects” the components in the second summation term, following the terminology of Berman et al. (1994). Figure 5 illustrates the time series of the six components of (3’) under the heading of within and between effects. The time series are calculated at both the national and regional levels. The national data set covers 1980-2001 whereas the regional set covers 1985-2001.5

5 The categorization of all the provinces into three regions follows mainly that by the National Bureau of Statistics of China. See the Appendix for the categorization.
FIGURE 5
DECOMPOSITION OF LABOR PRODUCTIVITY GROWTH BY \((3') \)

The whole economy

Within Effects

Between Effects

Coastal region

Within Effect

Between Effect

Central region

Within Effect

Between Effect

Western region

Within Effect

Between Effect
Several interesting features stand out from Figure 5.

(a) Within effects have definitely played the dominant role in labor productivity improvement.

(b) The secondary sector has remained the leader of the within effects, followed by the services sector.

(c) The services sector, however, has outperformed the secondary sector in the between effects; in fact, services remain the only sector contributing positively to national labor productivity improvement through labor redistribution;

(d) The 1990s have seen significantly higher productivity growth than the 1980s, led initially by the second sector of the coastal region with catching up by the central and western regions since the mid-1990s.

(e) There was a significant rise in the within effects of the services sector in the late 1990s, whereas the within effects of the secondary sector levelled off, suggesting the growing importance of the services sector in the near future.

(f) The diminishing between effects in the late 1990s, especially by the negative contribution of the secondary sector, suggest that sectoral labor redistribution remains the bottleneck for national productivity improvement.

In order to focus on the role of the services sector, let us evaluate the changes of q_t by the changes of y_{3t}, which can be regarded approximately as per capita consumption or demand of services. Utilizing $\sum_{i=1}^{3} l_{i} = 1$ we have:

\[\frac{\Delta q_t}{\Delta y_{3t}} = \sum_{i=1}^{3} \frac{\Delta q_{it}}{\Delta y_{3t}} l_{it} + \sum_{i=1}^{3} \frac{\Delta l_{it}}{\Delta y_{3t}} q_{it} + 1\]

Again, we call “within effects” components in the summation term, and “between effects” components in the second summation term on the right-hand side of (4). Figure 6 shows the time series of these four components under the heading of “within” and “between” effects, together with the time series of $\frac{\Delta q_t}{\Delta y_{3t}}$, denoted as the total effect.

It is reassuring that the services sector has made continuously positive contribution to national labor productivity growth, especially during the first half of the 1990s. The contribution is again dominant through the within effects, especially through the within effect on the manufacturing sector. This serves as supporting evidence to the theory by Oulton (2001), that the dooming effect of cost disease may disappear if the contribution of services used as vital intermediate inputs to the sectors of high productivity growth is taken into consideration. The present evidence shows that intermediate services input helps to improve the productivity of the manufacturing industries. The regional evidence on the within effects also shows a significantly leading role of the coastal region and a catching-up trend of the inland regions during the latter part of the 1990s. Similar to Figure 5, between effects are very small and turned to negative on the manufacturing sector in the late 1990s. This calls our attention to the question of what the overall effect is of a rapidly growing services sector on national labor productivity via employment redistribution.
Is the Rising Services Sector in the People’s Republic of China Leading to Cost Disease?
Duo Qin

Figure 6
Growth Effects of the Service Sector by (4)

The whole economy

Within Effects

Between Effects

Coastal region

Within Effect

Between Effect

Central region

Within Effect

Between Effect

Western region

Within Effect

Between Effect
An intuitive way of measuring such effect is developed by Nordhaus (2001 and 2002). Instead of decomposing the growth effects of labor productivity by the accounting identity of GDP in (1) and (2), Nordhaus proposes to decompose labor productivity in accordance with welfare theory. Specifically, he decomposes the aggregate productivity growth into four types of effects: the pure productivity effect, the Baumol effect (i.e., interaction between productivity changes and output share changes), the Denison effect (i.e., the effect of changing employment shares on productivity growth), and the fixed-weight drift term. The four effects are denoted in sequence by the four terms on the right-hand side of the following equation:

\[\hat{q}_t = \sum_{i=1}^{3} \hat{q}_{it}s_{it} + \sum_{i=1}^{3} \hat{q}_{it}(s_{it} - s_{it-1}) + \sum_{i=1}^{3} \hat{l}_{it}(s_{it} - l_{it}) + \sum_{i=1}^{3} \hat{y}_{it}(s_{it} - z_{it}) \]

where \(s_i = \frac{PY_i}{PY} \) denotes the nominal output share of sector \(i \) (\(P_i \) denotes output price of sector \(i \)) and \(z_i = \frac{Y_i}{Y} \) the real share. Nordhaus shows that the sum of the first two terms, i.e., the pure productivity effect plus the Baumol effect, embodies the welfare gain in the aggregate productivity growth, \(\hat{q}_t \). Figure 7 gives the time series of \(\hat{q}_t \), the pure productivity effect and the Baumol effect calculated using the national and the regional data sets. The sectoral components of these effects are given in Figure 8.

Figure 7
LABOR PRODUCTIVITY DECOMPOSITION
Figure 8
Pure and Baumol Effects by Sector Total Productivity Growth

The whole economy

Coastal region

Central region

Western region
It is discernible from Figure 7 that most of the total productivity growth, \(\dot{q} \), comes from welfare gain and that most of the welfare gain is brought about by pure productivity growth. The Baumol effect is very small in comparison and exhibits continuously negative values only for the western region. There is also a slight overall improvement in the Baumol effect toward the end of the 1990s. Detailed sectoral results in Figure 8 show that the manufacturing sector remains the major contributor to pure productivity growth, and that the contribution by the services sector rises as the contribution by the manufacturing sector levels off during the late 1990s. Again, the coastal region plays the leading role in the sectoral changes. Surprisingly, the services sector turns out to be the savior of the negative Baumol effects caused mainly by the agricultural sector, especially during the late 1990s, as shown in Figure 8. These results seem to suggest that fast economic growth and rise of the services sector in the PRC have apparently been a cure for cost disease.

What we find from Nordhaus’ decomposition method actually reinforces what we find from the first decomposition method, namely, the services sector has contributed positively to GDP growth mainly via absorbing excess labor from the agricultural sector. However, we should be cautious in making inferences from the above result to cost disease, as the decomposition methods are not designed to identify price elasticity of demand for services and cost effectiveness in service production, or to discover behavioral patterns relating to the demand and supply of services. Reliable diagnosis of cost disease entails econometric modelling.

IV. SIGNS OF COST DISEASE?

This section is devoted to econometric tests of three key propositions underlying Baumol’s unbalanced growth model. The first proposition states that, as average income level rises in an economy, the income elasticity of aggregate demand for services increases and may well exceed unity making the price elasticity insensitive. The second states that the labor input of the services sector is primarily driven by the aggregate demand for services and is scarcely curbed by labor cost. The third states that the wage level of the services sector follows closely that of the sector with the fastest productivity growth, rather than being determined by its own relatively low productivity level. The three propositions can be formed into three testable structural equations: a demand equation for services, a wage equation of the services sector, and a factor demand equation for labor input in the services sector.

However, simple estimation of these equations derived directly from Baumol’s model has not produced satisfactory results (e.g., see Curtis and Murthy 1998). This is mainly because the model contains a number of simplifying assumptions that are too stringent to fit data directly. Here, we generalize the model in several ways while maintaining the spirit of the three propositions. The first generalization is to include all the three sectors of an economy, instead of just the manufacturing and the service sectors in the original model. The second is to adopt more general models than what were originally used. The third is to regard the theoretical equations as the long-run states of dynamically specified econometric equations in view of the time-series properties of data, and to choose the estimation methods accordingly. The final generalization is to utilize regional differences in the panel data for the inference of future development trends.

Let us start with the demand equation for services by using a standard demand model to explain \(y_3 \), which can be regarded approximately as per capita demand for services:
Baumol's (1967) assumes $\Psi(t) = e^{\Delta t}$ to capture the growth rate at which services are commercialized.
representations of the data generating processes. In view of the relatively short time series in the panel (17 observations), a first-order auto-regressive, distributed-lags model is used here as the general representation. This model can be easily reparameterized into an ECM to facilitate our focus on the long-run parameter estimates. The general format of a two-variable ECM using panel data is as follows:

\[
\Delta \ln X_{jt} = \theta_0 + \theta_{oj} + \theta_1 \ln X_{jt-1} + \theta_2 \ln X_{jt-1} + \theta_3 \Delta \ln X_{jt} + \epsilon_{jt}
\]

(10)

where \(\theta_{oj} \) denotes individual effect and \(\theta_1 \) the time effect. It is expected \(-1 \leq \theta_1 < 0\) for the embedded equilibrium-correction (EC) term (i.e., the term in the squared brackets) to take effect. The EC term implies a long-run equilibrium equation:

\[
\ln X_j = -\frac{\theta_1}{\theta_0} \ln X_{jt}
\]

with \(-\frac{\theta_1}{\theta_0}\) being the key parameter of interest in the estimation of (10). To accommodate into (10), equations (6), (7), and (9) are rewritten into the following long-run forms:

(6') \[
\ln y_{sj} = \ln \Psi(t) + \psi_1 \ln \left(\frac{P_j}{P_t} \right) + \psi_2 \ln \left(\frac{P_1}{P_t} \right) + \psi_3 \ln \left(\frac{W}{P_t} \right)
\]

(7') \[
\ln W_{sj} = \beta_1 \ln W_{sj} + \beta_2 \ln W_{sj} + \beta_3 \ln (P_j, q_{sj})
\]

(9') \[
\ln \frac{L_{sj}}{y_{sj}} = \sigma \ln \alpha - \ln \Lambda(t) - \sigma \ln w_{sj}
\]

However, it is well-known that the parameter estimates of a long-run EC equation are likely to be afflicted by collinearity when the corresponding variables are significantly trended. This makes us concerned particularly about equation (6) since the strong trend in \((W / P_t) \) would be collinear with \(\Psi(t) \). On reflection, it is questionable whether it is appropriate to use \(\Psi(t) \) in the long-run EC term since the rate of commercialization of the services sector, which \(\Psi(t) \) is to represent, should be a transitory feature after all. In the context of a dynamic model, such rate is already embodied in short-run growth variables, such as \(\Delta \ln X_{jt} \) in (10). Therefore, the term \(\Psi(t) \) in (6') is to be ignored in the dynamic model specification. On the other hand, we also try to incorporate the transitory contribution of services to other sectors as intermediate inputs, as postulated by Oulton (2001), into the dynamic ECM based on (6'). More precisely, we introduce \(\Delta \ln Y_{jt} \) as an additional short-run variable.

In regard to panel data information, we can also exploit regional differences to get a longer term perspective than the 16-year sample period. In other words, we can estimate different regions separately such that the results from more advanced regions can be used as indicating future developments for the poorer regions. This amounts to relaxing the homogeneous parameter restrictions in (10). On the basis of the three-region division, we have:
\[\Delta \ln X_{1,j} = \theta_0 + \theta_{1j} + \theta_j + \sum_{k=1}^{3} \theta_{ik} \left[\ln X_{1,jk} + \frac{\theta_{ik}}{\theta_{1k}} \ln X_{2,jk} \right] + \sum_{k=1}^{3} \theta_{ik} \Delta \ln X_{2,jk} + \epsilon_{jt} \]

\[j = 1, \ldots, n \]

We refer, thereafter, to (10) as the full panel model and (10’) as the regional model.

As for estimation, our key objective is to estimate the long-run parameters of interest in equations (6’), (7’), and (9’). The parameters are estimated by three methods, considering the fact that the time series of some variables in these equations are likely to contain roots near to unity. The first is simply to estimate static regression models based on (6’), (7’), and (9’) by the feasible GLS (Generalised Least Squares) method. This method should give us fairly consistent estimates of the long-run parameters when the variables in the static models are nonstationary and cointegrated, as the case is similar to the OLS (ordinary least squares) estimation of a static model of time-series variables that are nonstationary and cointegrated, see Engle and Granger (1987). The second method is to derive the long-run solution from the GLS estimates of the first-order auto-regressive, distributed-lags model of equations (6’), (7’), and (9’). The third method is to estimate the above dynamic model in the ECM format of (10) by the GMM (Generalised Method of Moments) or combined GMM method, see Arellano and Bover (1995) and also Blundell and Bond (1998). The estimation is normally carried out on the first line of (10) and the long-run parameters are then derived from the estimates of \(\theta_i \) and \(\theta_j \). GMM estimates should be more efficient in principle, but they may suffer from poor robustness and weak instruments if some of the regressors exhibit evident nonstationarity; see Arellano and Honoré (2000) and Phillips and Moon (2000). The three sets of parameter estimates are considered in combination in our inference.

In order to check parameter constancy, estimation is run for four different sample sizes: full sample (i.e., 1985-2001), 1988-2001, 1990-2001, and 1992-2001. The three sets of the long-run parameter estimates of (6’), (7’), and (9’) are reported respectively in Tables 1, 3, and 5. Short-run variables remaining significant through the dynamic specification are listed in these tables but their parameter estimates are not reported. Key diagnostic test results of the GMM estimation of the three equations are reported in Tables 2, 4, and 6 respectively. These include Sargan test for the validity of overidentifying instruments and residual autocorrelation tests. It is extremely difficult, as expected and shown in Tables 4 and 6, to get valid instruments when the equation in estimation contains variables with evident nonstationarity, such as the nominal wage series in (7’). The GMM estimates vary considerably with different instruments under such circumstance. We should hence interpret these estimates with caution. Notice that the residual autocorrelation test results can be seen as validating the first-order dynamic model.\(^7\)

Let us now look at the key estimation results. We see, from the demand equation for \(y_3 \) in Table 1, that the hypothesis \(\psi_3 = 0 \) is confirmed, as this parameter drops out of the model for being statistically insignificant. Chinese consumers are indeed insensitive to prices of service products, in spite of the rapid price hike, as shown in Figure 3. Meanwhile, the significantly negative cross price elasticity \(\psi_2 \) indicates a strong price effect of manufactured goods. However, this price effect would not help much to dampen demand for \(y_3 \) since the growth of \(P_2 \) has remained the slowest of the three sectors (see Figure 3). In fact, \(P_2 \) is likely to stimulate \(y_3 \) as the prices of many

\(^7\) Significant first-order serial correlation is an expected feature of the GMM method, see Doornik and Hendry (2001, Chapter 7, vol. 3) for details of the residual autocorrelation test.
Table 1

Main estimates of Demand for Services (equation (6') without time effects)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full panel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>0.033</td>
<td>0.101</td>
<td>-0.06</td>
<td>0.004</td>
<td>0.935</td>
<td>0.826</td>
<td>0.838</td>
<td>0.809</td>
</tr>
<tr>
<td>LR GLS for D. M.</td>
<td>0.457</td>
<td>0.492</td>
<td>0.485</td>
<td>0.366</td>
<td>0.767</td>
<td>0.784</td>
<td>0.458</td>
<td>0.552</td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>0.241</td>
<td>0.364</td>
<td>0.235</td>
<td>0.423</td>
<td>-1.46</td>
<td>(-3.74)</td>
<td>1.703</td>
<td>1.224</td>
</tr>
<tr>
<td>Coastal region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>0.386</td>
<td>0.141</td>
<td>0.226</td>
<td>0.149</td>
<td>1.218</td>
<td>0.997</td>
<td>1.045</td>
<td>(-9.83)</td>
</tr>
<tr>
<td>LR GLS for D. M.</td>
<td>1.138</td>
<td>1.694</td>
<td>1.157</td>
<td>0.416</td>
<td>0.217</td>
<td>(0.56)</td>
<td>0.242</td>
<td>0.212</td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>0.038</td>
<td>0.70</td>
<td>0.141</td>
<td>1.396</td>
<td>1.086</td>
<td>(-1.8)</td>
<td>1.797</td>
<td>0.994</td>
</tr>
<tr>
<td>Central region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>0.168</td>
<td>0.114</td>
<td>-0.08</td>
<td>0.011</td>
<td>1.872</td>
<td>0.849</td>
<td>0.848</td>
<td>0.831</td>
</tr>
<tr>
<td>LR GLS for D. M.</td>
<td>0.181</td>
<td>0.251</td>
<td>0.361</td>
<td>-0.4</td>
<td>1.009</td>
<td>1.028</td>
<td>0.646</td>
<td>(-2.00)</td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>0.195</td>
<td>0.871</td>
<td>0.401</td>
<td>0.548</td>
<td>1.408</td>
<td>(4.1)</td>
<td>2.281</td>
<td>1.328</td>
</tr>
<tr>
<td>Western region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>0.269</td>
<td>0.178</td>
<td>0.218</td>
<td>-0.08</td>
<td>0.783</td>
<td>0.689</td>
<td>0.709</td>
<td>0.744</td>
</tr>
<tr>
<td>LR GLS for D. M.</td>
<td>0.343</td>
<td>0.205</td>
<td>0.295</td>
<td>0.225</td>
<td>1.003</td>
<td>(-3.07)</td>
<td>-1.36</td>
<td>0.868</td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>0.599</td>
<td>0.131</td>
<td>0.161</td>
<td>0.366</td>
<td>0.879</td>
<td>1.361</td>
<td>1.606</td>
<td>1.375</td>
</tr>
</tbody>
</table>

Note: S. M. stands for static model and D. M. for dynamic model; LR GLS for D. M. means long-run solution of a dynamic model using GLS estimates. The dynamic model has the form:

\[
\Delta \ln y_{it} = f \left(\ln y_{it-1}, \ln \left(\frac{P_i}{P_{i-1}} \right), \ln \left(\frac{W_i}{P_{i-1}} \right) \Delta \ln W_i, \Delta \ln y_{it-1} \right)
\]

Section IV

Signs of Cost Disease?
manufactured goods have been coming down. On the other hand, we see from Figure 3 that \(P_1 \) has been rising fast in line with \(P_3 \). But its cross price elasticity \(\psi_1 \) is found to be small and decreasing. If we look at the estimates of income elasticity, we fail to find enough evidence for the hypothesis \(\psi_i \geq 1 \). The elasticity looks likely to be around unity. More interestingly and contrary to common expectation, the elasticity estimates decrease slightly as the economy develops, as shown from both the sub-sample and the regional results. The full sample estimates are larger than the sub-sample estimates. The estimates of the poorest region of the west are larger than those of the richest coastal region. A feasible explanation is that severely suppressed demand for services under the old economic regime was rapidly released by economic reforms in the PRC and that the long-run elasticity converged to unity once this transitory regime shift was over. The dynamic estimation results also confirm the earlier argument that commercialization of services is virtually transitory by nature. Two positive short-run factors are identified in this respect: an income effect represented by the income growth rate, \(\text{ln} W_t \Delta \) (its parameter estimates are in the range of 0.11 ~ 0.19), and a between-sector effect represented by the growth rate of the manufacturing sector, \(\Delta \text{ln} Y_2 \) (its parameter estimate is around 0.2). The latter is supportive of Oulton’s model (2001) to some extent. In short, income is found to accelerate demand for services only in a short-run manner, whereas the price factors are found to be the main culprit for failing to curb the rising demand in the long run.

Let us now turn to the wage equation, as shown in Table 3. Much of the evidence here is in supportive of Baumol’s third proposition. The parameter of the productivity of the services sector, \(\beta_3 \), is insignificant throughout. \(W_3 \) is dominantly determined by \(W_2 \) in the long run. The estimates of \(\beta_3 \) are fairly uniform across regions as well as over time with \(\hat{\beta}_3 = 1.8 \). In addition, we find that the growth rate, \(\Delta \text{ln} W_2 \), exerts a strong and positive impact on \(W_3 \) (its parameter estimates are in the range of 0.7 ~ 1.5). The finding tells us that there is a high degree of wage rigidity irrespective of labor productivity in the services sector. This is not very surprising since output prices of service products do not form a serious constraint to deter consumers.

8 It is noticeable from Tables 3 and 4 that parameter estimates based on the dynamic specification are not very robust and the GMM lacks good instruments. This is due to the problem of evident nonstationarity in nominal wage series, as stated earlier.
Table 3
Main Estimates for the Wage Equation (7')

<table>
<thead>
<tr>
<th></th>
<th>$\beta_1 = 1 - \beta_2$</th>
<th>β_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>-0.117</td>
<td>-0.1408</td>
</tr>
<tr>
<td></td>
<td>(144.0)</td>
<td>(104.0)</td>
</tr>
<tr>
<td>LR GLS for D. M.</td>
<td>-0.1272</td>
<td>-0.1476</td>
</tr>
<tr>
<td></td>
<td>(94.7)</td>
<td>(70.4)</td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>0.1906</td>
<td>0.1129</td>
</tr>
<tr>
<td></td>
<td>(3.85)</td>
<td>(3.44)</td>
</tr>
<tr>
<td>Coastal region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>0.386</td>
<td>0.141</td>
</tr>
<tr>
<td></td>
<td>(96.4)</td>
<td>(69.6)</td>
</tr>
<tr>
<td>LR GLS for D. M.</td>
<td>-1.138</td>
<td>-1.694</td>
</tr>
<tr>
<td></td>
<td>(63.44)</td>
<td>(47.03)</td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>-0.405</td>
<td>-0.429</td>
</tr>
<tr>
<td></td>
<td>(6.55)</td>
<td>(3.82)</td>
</tr>
<tr>
<td>Central region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>-0.168</td>
<td>-0.114</td>
</tr>
<tr>
<td></td>
<td>(78.6)</td>
<td>(56.5)</td>
</tr>
<tr>
<td>LR GLS for D. M.</td>
<td>-0.181</td>
<td>-0.251</td>
</tr>
<tr>
<td></td>
<td>(51.82)</td>
<td>(38.12)</td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>0.6397</td>
<td>0.7056</td>
</tr>
<tr>
<td></td>
<td>(1.7)</td>
<td>(1.49)</td>
</tr>
<tr>
<td>Western region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>-0.269</td>
<td>-0.178</td>
</tr>
<tr>
<td></td>
<td>(72.2)</td>
<td>(52.7)</td>
</tr>
<tr>
<td>LR GLS for D. M.</td>
<td>-0.343</td>
<td>-0.205</td>
</tr>
<tr>
<td></td>
<td>(47.5)</td>
<td>(35.7)</td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>-0.2204</td>
<td>-0.3609</td>
</tr>
<tr>
<td></td>
<td>(6.68)</td>
<td>(6.09)</td>
</tr>
</tbody>
</table>

Note: S. M. stands for static model and D. M. for dynamic model; LR GLS for D. M. means long-run solution of a dynamic model using GLS estimates. The dynamic model has the form:

\[
\Delta W_{it} = f \left(\ln \left(\frac{W_i}{W_t} \right)_{t-1}, \ln \left(\frac{W_t}{W_i} \right)_{t-1}, \Delta \ln W_{it}, \Delta \ln W_{it} \right)
\]

The short-run variable $\Delta \ln W_{it}$ is significant in LR GLS estimation but not in GMM estimation.
Table 4
Diagnostic Tests Associated with GMM Estimation of the Wage Equation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Validity of overidentifying instrument tests (upper: full panel model; lower: regional model)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2</td>
<td>302.4 [0.000]</td>
<td>231.1 [0.000]</td>
<td>139.5 [0.000]</td>
<td>10.93 [0.281]</td>
</tr>
<tr>
<td></td>
<td>302.3 [0.000]</td>
<td>193.1 [0.000]</td>
<td>89.68 [0.000]</td>
<td>4.838 [0.436]</td>
</tr>
<tr>
<td>Residual nonautocorrelation tests (upper: full panel model; lower: regional model)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR(1) [p value]</td>
<td>-2.687 [0.007]</td>
<td>-3.161 [0.002]</td>
<td>-3.004 [0.003]</td>
<td>-2.634 [0.008]</td>
</tr>
<tr>
<td>N(0, 1)</td>
<td>-2.588 [0.01]</td>
<td>-3.429 [0.001]</td>
<td>-2.692 [0.007]</td>
<td>-1.988 [0.047]</td>
</tr>
<tr>
<td>AR(2) [p value]</td>
<td>-0.1882 [0.851]</td>
<td>0.4694 [0.639]</td>
<td>2.486 [0.013]</td>
<td>-1.474 [0.081]</td>
</tr>
<tr>
<td>N(0, 1)</td>
<td>-0.7407 [0.459]</td>
<td>-1.937 [0.053]</td>
<td>0.3663 [0.714]</td>
<td>-1.747 [0.081]</td>
</tr>
</tbody>
</table>

Note: χ^2 test statistics have different degrees of freedom mainly due to different sample sizes.

Finally, let us examine the result of the service labor demand equation (9'). Notice that constant-returns-to-scale is imposed in (9). This enables us to estimate the technological progress factor, $\Lambda(t)$ without worrying about collinearity between $\Lambda(t)$ and y_j. The imposition unfortunately makes it impossible to perform the second estimation method. Table 5 reports the rest two types of estimation results. During the GMM estimation, the significance of the negative feedback parameter, θ, for variable $\ln(t_j / y_j)$ can serve as an indirect verification of the constant-returns-to-scale assumption (this parameter takes the value around -0.17 in the first two samples and around -0.37 in the last two samples in the full-panel model estimation). As for the estimated $\Lambda(t)$, the GLS estimates and the GMM estimates deliver considerably different patterns, as shown from the two plots in Table 5. But both patterns show a fairly slow and cyclical movement, confirming Baumol’s proposition that technical progress in the services sector is too slow to help in improving labor productivity. What contradicts Baumol’s model is the labor cost variable, via the significance of σ albeit not very robust as some of the GMM estimates have fairly low significance levels, as shown in Table 5. Nevertheless, real wage rate exerts a small role in curbing labor input. Interestingly, its parameter estimates show a slight declining tendency both over time as well as from the more developed region to the less developed region. This seems to reflect a mixture of development effects. On one hand, economic development via marketization appears to gradually shape the services sector to become receptive to labor cost signals from the supply side; on the other, such a cost constraint appears to be diluted by the rapidly growing need for service products from the demand side.

9 It is shown in some literature that technical progress has recently accelerated in the services sector with the rapid expansion of the “new economy”, i.e., the information, communication, and computing industries (e.g., see Temple 2002). However, it is not yet clear that the progress will make a net contribution to labor cost reduction, since the new economy normally enjoys relatively high wage rates.
TABLE 5
MAIN ESTIMATES FOR LABOR DEMAND OF EQUATION (9’)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>σ (t value)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>0.5744</td>
<td>0.4665</td>
<td>0.3528</td>
<td>0.2642</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12.0)</td>
<td>(8.95)</td>
<td>(6.19)</td>
<td>(4.45)</td>
<td></td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>0.4486</td>
<td>0.519</td>
<td>0.2097</td>
<td>0.0692</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.98)</td>
<td>(1.59)</td>
<td>(1.33)</td>
<td>(0.645)</td>
<td></td>
</tr>
<tr>
<td>Coastal region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>0.645</td>
<td>0.5569</td>
<td>0.4659</td>
<td>0.402</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13.7)</td>
<td>(10.6)</td>
<td>(7.71)</td>
<td>(5.85)</td>
<td></td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>0.7746</td>
<td>1.1331</td>
<td>0.7317</td>
<td>0.1548</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.63)</td>
<td>(1.64)</td>
<td>(1.15)</td>
<td>(0.388)</td>
<td></td>
</tr>
<tr>
<td>Central region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>0.493</td>
<td>0.4152</td>
<td>0.3582</td>
<td>0.3735</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.36)</td>
<td>(6.31)</td>
<td>(4.7)</td>
<td>(4.33)</td>
<td></td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>0.2692</td>
<td>0.7588</td>
<td>0.5126</td>
<td>-0.056</td>
<td>-0.109</td>
</tr>
<tr>
<td></td>
<td>(0.359)</td>
<td>(1.88)</td>
<td>(1.78)</td>
<td>(-0.109)</td>
<td></td>
</tr>
<tr>
<td>Western region</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GLS for S. M.</td>
<td>0.4084</td>
<td>0.3336</td>
<td>0.2629</td>
<td>0.2177</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7.96)</td>
<td>(6.18)</td>
<td>(4.52)</td>
<td>(3.61)</td>
<td></td>
</tr>
<tr>
<td>GMM for D. M.</td>
<td>0.2873</td>
<td>0.3275</td>
<td>0.1585</td>
<td>0.0406</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.82)</td>
<td>(1.31)</td>
<td>(0.748)</td>
<td>(0.24)</td>
<td></td>
</tr>
</tbody>
</table>

Note: S. M. stands for static model and D. M. for dynamic model. The dynamic model has the form:

\[
\Delta \ln L_{2t} = f \left(\ln \left(\frac{l_t}{y_t} \right), \ln w_{2t-1}, \ln \Lambda_t \right)
\]
The PRC is still at the very beginning of tertiarization. A services economy is yet to occur with respect to rapidly rising income, commercialization of services, abundant excess labor supply, and adequately developed capacity in both manufacturing and agricultural sectors at present in comparison to many service industries.

The shift of labor shares from agriculture into services has so far kept the services sector in positive contribution to the overall labor productivity and growth of the Chinese economy. But plenty of evidence is found in this investigation to show that pricing in the services sector, in terms of both output and labor input, already poses significant risk of cost disease to the whole economy. The rapidly growing economy has stimulated enough demand for services to disable the own price effect to keep the demand in check. This encourages nominal wage rigidity and has somehow allowed the wage level of the services sector to outpace the most productive sector of manufacturing. As a result, real wage cost forms too weak a constraint for the Chinese service producers in optimizing their production.

The paper’s findings carry important policy implications. While it is a viable strategy to encourage development of the services sector and a service-led growth path in future, the strategy is unlikely to materialize without more carefully designed policies in place. The positive contribution of the services sector to overall growth may not be sustainable by itself. The net labor productivity gain will disappear as soon as the shift of labor shares from the agricultural sector to services is replaced by the shift from the secondary sector to services, as is expected normally of substantial tertiarization in a developed economy. It is thus imperative to introduce policies to induce the services sector to be economically more efficient before it takes off in surpassing the secondary sector.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\chi^2)</td>
<td>212.1 [0.409]</td>
<td>169.6 [0.011]</td>
<td>113.7 [0.034]</td>
<td>76.58 [0.023]</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>205.3 [0.46]</td>
<td>152.7 [0.053]</td>
<td>102.9 [0.079]</td>
<td>72.66 [0.02]</td>
</tr>
<tr>
<td>Residual nonautocorrelation tests (upper: full panel model; lower: regional model)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR(1) [p value] N(0, 1)</td>
<td>-2.549 [0.011]</td>
<td>-2.256 [0.024]</td>
<td>-2.527 [0.012]</td>
<td>-2.633 [0.008]</td>
</tr>
<tr>
<td>AR(2) [p value] N(0, 1)</td>
<td>1.642 [0.101]</td>
<td>1.398 [0.162]</td>
<td>1.57 [0.116]</td>
<td>1.648 [0.099]</td>
</tr>
</tbody>
</table>
| Note: \(\chi^2 \) test statistics have different degrees of freedom mainly due to different sample sizes.
Our findings suggest that the key guidance of such policy design should be encouragement of competition and market efficiency of the service industries. A recent five-country study by Van Ark et al. (1999) has verified that deregulation of markets plays an important role in promoting productivity in services. Since there are not enough pricing signals to check demand for services and for service labor, policies are particularly wanted in the realm of wage and employment determination. Specifically, these policies should aim to remove those institutional arrangements in protection of nominal wage rigidity and to stimulate real wage cost response from service producers. Considering the abundant labor supply in the PRC, there is no reason for service producers not to be receptive to such policies. In reality however, design and implementation of such policies can be extremely challenging politically, as a sizeable and leading part of the services sector is still dominantly state-owned, such as banking and finance, education and culture, social services, telecommunication, health care, and government administration.
APPENDIX

Variable definition:

Y_{ij}: value-added output of sector i in province j, adjusted to constant price by $P_{ij}

\quad i = 1, 2, 3 \quad j = 1, \ldots, 30$

Y_j: constant price GDP of province j

P_{ij}: output price indices of sector i in province j (the indices are derived from indices of annual GDP growth data and nominal GDP data by sector)

L_{ij}: employment of sector i in province j

W_{ij}: average wage per worker in sector i in province j from the table of Average Wage of Staff and Workers by Sector (W_1 uses the category of farming, forestry animal husbandry and fishery; W_2 uses the category of manufacturing; W_3 is the employment weighted average of nine categories: transport and telecommunication, trade and catering services, banking and insurance, real estate trade, social services, health care, education and culture, scientific research, government agencies)

Abbreviation of provinces by region:

<table>
<thead>
<tr>
<th>Coastal region</th>
<th>Central region</th>
<th>Western region</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJ Beijing</td>
<td>SX Shanxi</td>
<td>SC Sichuan</td>
</tr>
<tr>
<td>TJ Tianjin</td>
<td>NM Inner Mongolia</td>
<td>GZ Guizhou</td>
</tr>
<tr>
<td>HB Hebei</td>
<td>JL Jilin</td>
<td>YN Yunnan</td>
</tr>
<tr>
<td>LN Liaoning</td>
<td>HLJ Heilongjiang</td>
<td>XZ Tibet</td>
</tr>
<tr>
<td>SH Shanghai</td>
<td>AH Anhui</td>
<td>SHX Shaanxi</td>
</tr>
<tr>
<td>JS Jiangsu</td>
<td>JX Jiangxi</td>
<td>GS Gansu</td>
</tr>
<tr>
<td>ZJ Zhejiang</td>
<td>HN Henan</td>
<td>QH Qinghai</td>
</tr>
<tr>
<td>FJ Fujian</td>
<td>HUB Hubei</td>
<td>NX Ningxia</td>
</tr>
<tr>
<td>SD Shandong</td>
<td>HUN Hunan</td>
<td>XJ Xinjiang</td>
</tr>
<tr>
<td>GD Guangdong</td>
<td>GX Guangxi</td>
<td></td>
</tr>
<tr>
<td>HAN Hainan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

No. 1 Capitalizing on Globalization
—Barry Eichengreen, January 2002

No. 2 Policy-based Lending and Poverty Reduction: An Overview of Processes, Assessment and Options
—Richard Bolt and Manabu Fujimura
January 2002

No. 3 The Automotive Supply Chain: Global Trends and Asian Perspectives
—Francisco Veloso and Rajiv Kumar
January 2002

No. 4 International Competitiveness of Asian Firms: An Analytical Framework
—Rajiv Kumar and Doren Chadee
February 2002

No. 5 The International Competitiveness of Asian Economies in the Apparel Commodity Chain
—Gary Gereffi
February 2002

No. 6 Monetary and Financial Cooperation in East Asia—The Chiang Mai Initiative and Beyond
—Pradumna B. Rana
February 2002

No. 7 Probing Beneath Cross-national Averages: Poverty, Inequality, and Growth in the Philippines
—Arsenio M. Balisacan and Ernesto M. Pernia
March 2002

No. 8 Poverty, Growth, and Inequality in Thailand
—Anil B. Deolalikar
April 2002

No. 9 Microfinance in Northeast Thailand: Who Benefits and How Much?
—Brett E. Coleman
April 2002

No. 10 Poverty Reduction and the Role of Institutions in Developing Asia
—Anil B. Deolalikar, Alex B. Brilantes, Jr., Raghuva Gaiha, Ernesto M. Pernia, Mary Racelis with the assistance of Marita Concepcion Castro-Guevara, Liza L. Lim, Filipinas F. Quising
May 2002

No. 11 The European Social Model: Lessons for Developing Countries
—Assar Lindbeck
May 2002

No. 12 Costs and Benefits of a Common Currency for ASEAN
—Srinivasa Madhur
May 2002

No. 13 Monetary Cooperation in East Asia: A Survey
—Raul Fabella
May 2002

No. 14 Toward A Political Economy Approach to Policy-based Lending
—George Abonyi
May 2002

No. 15 A Framework for Establishing Priorities in a Country Poverty Reduction Strategy
—Ron Duncan and Steve Pollard
June 2002

No. 16 The Role of Infrastructure in Land-use Dynamics and Rice Production in Viet Nam’s Mekong River Delta
—Christopher Edmonds
July 2002

No. 17 Effect of Decentralization Strategy on Macroeconomic Stability in Thailand
—Kanokpan Lao-Araya
August 2002

No. 18 Poverty and Patterns of Growth
—Rana Hasan and M. G. Quibria
August 2002

No. 19 Why are Some Countries Richer than Others? A Reassessment of Mankiw-Romer-Weil’s Test of the Neoclassical Growth Model
—Jesus Felipe and John McCombie
August 2002

No. 20 Modernization and Son Preference in People’s Republic of China
—Robin Burgess and Juzhong Zhuang
September 2002

No. 21 The Doha Agenda and Development: A View from the Uruguay Round
—J. Michael Finger
September 2002

No. 22 Conceptual Issues in the Role of Education Decentralization in Promoting Effective Schooling in Asian Developing Countries
—Jere R. Behrman, Anil B. Deolalikar, and Lee-Ying Son
September 2002

No. 23 Promoting Effective Schooling through Education Decentralization in Bangladesh, Indonesia, and Philippines
—Jere R. Behrman, Anil B. Deolalikar, and Lee-Ying Son
September 2002

No. 24 Financial Opening under the WTO Agreement in Selected Asian Countries: Progress and Issues
—Yun-Hwan Kim
September 2002

No. 25 Revisiting Growth and Poverty Reduction in Indonesia: What Do Subnational Data Show?
—Arsenio M. Balisacan, Ernesto M. Pernia, and Abuzar Asra
October 2002

No. 26 Causes of the 1997 Asian Financial Crisis: What Can an Early Warning System Model Tell Us?
—Juzhong Zhuang and J. Malcolm Dowling
October 2002

No. 27 Digital Divide: Determinants and Policies with Special Reference to Asia
—M. G. Quibria, Shamsun N. Ahmed, Ted Tschang, and Mari-Len Reyes-Macasaquit
October 2002

No. 28 Regional Cooperation in Asia: Long-term Progress, Recent Regression, and the Way Forward
—Ramgopal Agarwala and Brahm Prakash
October 2002
SERIALS
(Co-published with Oxford University Press; Available commercially through Oxford University Press Offices, Associated Companies, and Agents)

1. Asian Development Outlook (ADO; annual)
 $36.00 (paperback)

2. Key Indicators of Developing Asian and Pacific Countries (KI; annual)
 $35.00 (paperback)

JOURNAL
(Published in-house; Available commercially through ADB Office of External Relations)

1. Asian Development Review (ADR; semiannual)
 $5.00 per issue; $8.00 per year (2 issues)

MONOGRAPH SERIES
(Published in-house; Available through ADB Office of External Relations; Free of charge)

EDRC REPORT SERIES (ER)

No. 1 ASEAN and the Asian Development Bank
 —Seiji Naya, April 1982
No. 2 Development Issues for the Developing East and Southeast Asian Countries and International Cooperation
 —Seiji Naya and Graham Abbott, April 1982
No. 3 Aid, Savings, and Growth in the Asian Region
 —J. Malcolm Dowling and Ulrich Hiemenz, April 1982
No. 4 Development-oriented Foreign Investment and the Role of ADB
 —Kiyoshi Kojima, April 1982
No. 5 The Multilateral Development Banks and the International Economy's Missing Public Sector
 —John Lewis, June 1982
No. 6 Notes on External Debt of DMCs
 —Evelyn Go, July 1982
No. 7 Grant Element in Bank Loans
 —Dal Hyun Kim, July 1982
No. 8 Shadow Exchange Rates and Standard Conversion Factors in Project Evaluation
 —Peter Warr, September 1982
No. 9 Small and Medium-Scale Manufacturing Establishments in ASEAN Countries: Perspectives and Policy Issues
 —Mathias Bruch and Ulrich Hiemenz, January 1983
No. 10 A Note on the Third Ministerial Meeting of GATT
 —Jungsoo Lee, January 1983
No. 11 Macroeconomic Forecasts for the Republic of China, Hong Kong, and Republic of Korea
 —J.M. Dowling, January 1983
No. 12 ASEAN: Economic Situation and Prospects
 —Seiji Naya, March 1983
No. 13 The Future Prospects for the Developing Countries of Asia
 —Seiji Naya, March 1983
No. 14 Energy and Structural Change in the Asia-Pacific Region, Summary of the Thirteenth Pacific Trade and Development Conference
 —Seiji Naya, March 1983
No. 15 A Survey of Empirical Studies on Demand for Electricity with Special Emphasis on Price Elasticity of Demand
 —Wisarn Pupphavesa, June 1983
No. 16 Determinants of Paddy Production in Indonesia: 1972-1981—A Simultaneous Equation Model Approach
 —T.K. Jayaraman, June 1983
No. 17 The Philippine Economy: Economic Forecasts for 1983 and 1984
 —J.M. Dowling, E. Go, and C.N. Castillo, June 1983
No. 18 Economic Forecast for Indonesia
No. 19 Relative External Debt Situation of Asian Developing Countries: An Application of Ranking Method
 —Jungsoo Lee, June 1983
No. 20 New Evidence on Yields, Fertilizer Application, and Prices in Asian Rice Production
 —William James and Teresita Ramirez, July 1983
No. 21 Inflationary Effects of Exchange Rate Changes in Nine Asian LDCs
 —Pradumna B. Rana and J. Malcolm Dowling, Jr., December 1983
No. 22 Effects of External Shocks on the Balance of Payments, Policy Responses, and Debt Problems of Asian Developing Countries
 —Seiji Naya, December 1983
No. 23 Changing Trade Patterns and Policy Issues: The Prospects for East and Southeast Asian Developing Countries
 —Seiji Naya and Ulrich Hiemenz, February 1984
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors/Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>International Reserves: Factors Determining Needs and Adequacy</td>
<td>Evelyn Go, May 1981</td>
</tr>
<tr>
<td>No. 2</td>
<td>Domestic Savings in Selected Developing Asian Countries</td>
<td>Basil Moore, assisted by A.H.M. Nuruddin Chaudhury, September 1981</td>
</tr>
<tr>
<td>No. 4</td>
<td>By-Passed Areas, Regional Inequalities, and Development Policies in Selected Southeast Asian Countries</td>
<td>William James, October 1981</td>
</tr>
<tr>
<td>No. 5</td>
<td>Asian Agriculture and Economic Development</td>
<td>William James, March 1982</td>
</tr>
<tr>
<td>No. 6</td>
<td>Inflation in Developing Member Countries: An Analysis of Recent Trends</td>
<td>A.H.M. Nuruddin Chaudhury and J. Malcolm Dowling, March 1982</td>
</tr>
<tr>
<td>No. 7</td>
<td>Industrial Growth and Employment in Developing Asian Countries: Issues and Perspectives for the Coming Decade</td>
<td>Ulrich Hiemenz, March 1982</td>
</tr>
<tr>
<td>No. 9</td>
<td>Developing Asia: The Importance of Domestic Policies</td>
<td>Economics Office Staff under the direction of Seiji Naya, May 1982</td>
</tr>
<tr>
<td>No. 11</td>
<td>Industrial Development: Role of Specialized Financial Institutions</td>
<td>Kedar N. Kohli, August 1982</td>
</tr>
<tr>
<td>No. 13</td>
<td>Credit Rationing, Rural Savings, and Financial Policy in Developing Countries</td>
<td>William James, September 1982</td>
</tr>
<tr>
<td>No. 14</td>
<td>Small and Medium-Scale Manufacturing Establishments in ASEAN Countries: Perspectives and Policy Issues</td>
<td>Mathias Bruch and Ulrich Hiemenz, March 1983</td>
</tr>
<tr>
<td>No. 15</td>
<td>Income Distribution and Economic Growth in Developing Asian Countries</td>
<td>J. Malcolm Dowling and David Soo, March 1983</td>
</tr>
<tr>
<td>No. 16</td>
<td>Long-Run Debt-Servicing Capacity of Asian Developing Countries: An Application of Critical Interest Rate Approach</td>
<td>Jungsoo Lee, June 1983</td>
</tr>
<tr>
<td>No. 17</td>
<td>External Shocks, Energy Policy, and Macroeconomic Performance of Asian Developing Countries: A Policy Analysis</td>
<td>William James, July 1983</td>
</tr>
<tr>
<td>No. 18</td>
<td>The Impact of the Current Exchange Rate System on Trade and Inflation of Selected Developing Member Countries</td>
<td>Pradumna Rana, September 1983</td>
</tr>
<tr>
<td>No. 19</td>
<td>Asian Agriculture in Transition: Key Policy Issues</td>
<td>William James, September 1983</td>
</tr>
<tr>
<td>No. 20</td>
<td>The Transition to an Industrial Economy</td>
<td>—</td>
</tr>
</tbody>
</table>

ECONOMIC STAFF PAPERS (ES)
OCCASIONAL PAPERS (OP)

No. 1 Poverty in the People's Republic of China: Recent Developments and Scope for Bank Assistance —K.H. Moinuddin, November 1992

No. 2 The Eastern Islands of Indonesia: An Overview of Development Needs and Potential —Brien K. Parkinson, January 1993

No. 4 Fiscal Deficits and Current Account Imbalances of the South Pacific Countries: A Case Study of Vanuatu —T.K. Jayaraman, December 1993

No. 5 Reforms in the Transitional Economies of Asia —Pradumna B. Rana, December 1993

No. 6 Environmental Challenges in the People's Republic of China and Scope for Bank Assistance —Elisabetta Capannelli and Omkar L. Shrestha, December 1993

No. 7 Sustainable Development Environment and Poverty Nexus —K.F. Jalal, December 1993

No. 9 Interest Rate Deregulation: A Brief Survey of the Policy Issues and the Asian Experience —Carlos J. Glover, July 1994

No. 10 Some Aspects of Land Administration in Indonesia: Implications for Bank Operations —Sutanu Behuria, July 1994

No. 12 Managing Development through Institution Building —Hilton L. Root, October 1995

No. 13 Growth, Structural Change, and Optimal Poverty Interventions —Sladadiya Chatterjee, November 1995

No. 15 The Rural-Urban Transition in Viet Nam: Some Selected Issues —Sudipto Mundle and Brian Van Arkadie, October 1997

No. 16 A New Approach to Setting the Future Transport Agenda —Roger Allport, Geoff Key, and Charles Melhuish —June 1998

No. 17 Adjustment and Distribution: The Indian Experience —Sudipto Mundle and V.B. Tulasidhar, June 1998

No. 18 Tax Reforms in Viet Nam: A Selective Analysis —Sudipto Mundle, December 1998

No. 19 Surges and Volatility of Private Capital Flows to Asian Developing Countries: Implications for Multilateral Development Banks —Pradumna B. Rana, July 1996

No. 21 Occupational Segregation and the Gender Earnings Gap —Joseph E. Zweiglisch, Jr. and Yana von der Meulen Rodgers, December 1999

SPECIAL STUDIES, ADB (SS, ADB)
(Published in-house; Available commercially through ADB Office of External Relations)

1. Rural Poverty in Developing Asia
 Edited by M.G. Quibria
 Vol. 1: Bangladesh, India, and Sri Lanka, 1994
 $35.00 (paperback)
 Vol. 2: Indonesia, Republic of Korea, Philippines, and Thailand, 1996
 $35.00 (paperback)
2. Gender Indicators of Developing Asian and Pacific Countries
 Asian Development Bank, 1993
 $25.00 (paperback)
3. External Shocks and Policy Adjustments:
 Lessons from the Gulf Crisis
 Edited by Naved Hamid and Shahid N. Zahid, 1995
 $15.00 (paperback)
4. Indonesia-Malaysia-Thailand Growth Triangle: Theory to Practice
 Edited by Myo Thant and Min Tang, 1996
 $15.00 (paperback)
5. Emerging Asia: Changes and Challenges
 Asian Development Bank, 1997
 $30.00 (paperback)
6. Asian Exports
 Edited by Dilip Das, 1999
 $35.00 (paperback)
 $55.00 (hardbound)
7. Development of Environment Statistics in Developing Asian and Pacific Countries
 Asian Development Bank, 1999
 $30.00 (paperback)
8. Mortgage-Backed Securities Markets in Asia
 Edited by S. Ghon Rhee & Yutaka Shimomoto, 1999
 $35.00 (paperback)
9. Rising to the Challenge in Asia: A Study of Financial Markets
 Asian Development Bank
 Vol. 1: An Overview, 2000
 $20.00 (paperback)
 Vol. 2: Special Issues, 1999
 $15.00 (paperback)
 $25.00 (paperback)
 Vol. 4: People’s Republic of China, 1999
 $20.00 (paperback)
 Vol. 5: India, 1999
 $30.00 (paperback)
 Vol. 6: Indonesia, 1999
 $30.00 (paperback)
 Vol. 7: Republic of Korea, 1999
 $30.00 (paperback)
 Vol. 8: Malaysia, 1999
 $20.00 (paperback)
 Vol. 9: Pakistan, 1999
 $30.00 (paperback)
 Vol. 10: Philippines, 1999
 $30.00 (paperback)
 Vol. 11: Thailand, 1999
 $30.00 (paperback)
 Vol. 12: Socialist Republic of Viet Nam, 1999
 $30.00 (paperback)
10. Corporate Governance and Finance in East Asia:
 A Study of Indonesia, Republic of Korea, Malaysia, Philippines and Thailand
 $10.00 (paperback)
 $15.00 (paperback)
11. Financial Management and Governance Issues
 Asian Development Bank, 2000
 Cambodia $10.00 (paperback)
 People’s Republic of China $10.00 (paperback)
 Mongolia $10.00 (paperback)
 Pakistan $10.00 (paperback)
 Papua New Guinea $10.00 (paperback)
 Uzbekistan $10.00 (paperback)
 Viet Nam $10.00 (paperback)
 Selected Developing Member Countries $10.00 (paperback)
12. Government Bond Market Development in Asia
 Edited by Yun Hwan Kim, 2001
 $25.00 (paperback)
13. Intergovernmental Fiscal Transfers in Asia: Current Practice and Challenges for the Future
 Edited by Paul Smoke and Yun Hwan Kim, 2002
 $15.00 (paperback)
14. Guidelines for the Economic Analysis of Projects
 Asian Development Bank, 1997
 $10.00 (paperback)
15. Guidelines for the Economic Analysis of Telecommunications Projects
 Asian Development Bank, 1997
 $10.00 (paperback)
 Asian Development Bank, 1999
 $10.00 (hardbound)
 Asian Development Bank, 2000
 $10.00 (paperback)
 Asian Development Bank, 2001
 $10.00 (paperback)
 Asian Development Bank, 2002
 $10.00 (paperback)
20. Guidelines for the Financial Governance and Management of Investment Projects Financed by the Asian Development Bank
 Asian Development Bank, 2002
 $10.00 (paperback)
 Asian Development Bank, 2002
 $10.00 (hardback)
22. Defining an Agenda for Poverty Reduction, Volume 1
 Edited by Christopher Edmonds and Sara Medina, 2002
 $15.00 (paperback)
23. Defining an Agenda for Poverty Reduction, Volume 2
 Edited by Isabel Ortiz, 2002
 $15.00 (paperback)
24. Economic Analysis of Policy-based Operations: Key Dimensions
 Asian Development Bank, 2003
 $10.00 (paperback)