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Abstract

In multi-unit auctions, such as auctions of commodities and securities,
and financial exchanges, it is necessary to specify rationing rules to break
ties between multiple marginal bids. The standard approach in the litera-
ture and in practice is to ration marginal bids proportionally. This paper
shows how bidding can be made more competitive if the rationing rule in-
stead gives increasing priority to bidders with a small volume of marginal
bids at clearing prices closer to the reservation price. In comparison to
standard rationing, such a rule can have almost the same effect on the
competitiveness of bids as a doubling of the number of bidders.
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1 Introduction

A wide range of products, commodities and assets are traded in divisible-good
or multi-unit auctions. For instance, auctions of electricity, treasury bills and
emission permits as well as financial exchanges, all allow bids for more than one
unit of the traded items. In multi-unit auctions, each bidder submits a stack
of bids, where each bid specifies a bid price and a bid quantity, such that the
bidder is willing to trade the specified bid quantity at the specified bid price or
better. Unless by coincidence, it would normally not be possible to clear such
auctions by either fully accepting or fully rejecting all bid quantities at any price
level. For multi-unit auctions, it is therefore necessary to specify rationing rules.
Rationing rules are of particular importance for the outcome in auctions where bid
prices accumulate at a few price levels, as usually happens in financial exchanges1,
frequent batch auctions2 and auctions of financial securities. The purpose of this
paper is to highlight how rationing rules can be designed in order to increase the
competition among a set of bidders, to the benefit of the auctioneer.
In practice, the normal procedure is to only ration marginal bids, which have

a bid price exactly at the clearing price. In auctions where all bids are cleared
simultaneously, it is standard practice to ration marginal bids pro-rata, so that
the same percentage of its marginal bid quantity is accepted for each bidder. In
exchanges with continuous trading, it is also common to give priority to marginal
bids that arrived early at the exchange; this is referred to as price-time priority.
The IEX3 exchange uses price-broker-time priority. This means that buy and sell
orders at the same price from the same broker are matched before giving priority
to early bids.4 Field and Large (2012) empirically observe that, in comparison
to price-time priority, pro-rata rationing significantly increases bid quantities in
the order book of financial exchanges, but also the cancellation rate of bids. This
verifies that the design of the rationing rule influences the bidding behaviour in
auctions.
This paper shows that an auctioneer can increase its surplus by rationing

marginal bids non-proportionally. I focus on the procurement auction, where
the auctioneer buys items, but the results are analogous for sales auctions as well
as for double auctions and exchanges, where bidders are both buying and selling
items. Obviously, a procurer benefits if bidders offer many items at low prices.
Thus, a procurer would like to encourage bids that specify large bid quantities at

1Financial exchanges normally restrict the number of permissible price levels in order to
improve liquidity in the market. The absolute difference between two adjacent permissible price
levels is referred to as a tick-size. Large tick-sizes increase the market depth (the volume of
pending orders), one aspect of liquidity. Lehmann and Modest (1994) analyse tick-sizes and
liquidity on the Tokyo exchange.

2A frequent batch auction is a uniform-price sealed-bid double auction conducted at frequent
but discrete time intervals. Frequent batch auctions can be used instead of continuous trading
in exchanges (Budish et al., 2013).

3The IEX exchange is a new alternative financial exchange in U.S.. It tries to attract traders
by operating according to more transparent rules.

4This is to encourage brokers to submit all their bids to the exchange, rather than matching
them internally first.
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low bid prices. I consider a one-shot game, so it will be optimal for bidders to
submit bids for all their items with a marginal cost below the reservation price of
the auctioneer. Thus, bid stacks that result in large volumes of marginal bids when
the clearing price is high should be discouraged by the auctioneer, as they will lead
to less quantity being offered at low bid prices. In line with this argument, the
paper shows that bidding gets closer to the competitive outcome at all price levels
when an auction gives disproportionate priority to bidders with a large volume of
marginal bids at low clearing prices and disproportionate priority to bidders with
a small volume of marginal bids at high clearing prices.
I evaluate rationing rules in uniform-price auctions, where all accepted bids

are transacted at the clearing price. Uniform-price auctions are, for example,
used in most wholesale electricity markets, in U.S. treasury sales auctions and in
frequent batch auctions. Assume that each bidder submits a stack of v + 1 sell
bids with different bid prices and that the auctioneer wants to maintain the same
pro-competitive effect at each bid price. In this case, I show that an optimal use of
disproportionate rationing on the margin in an auction with N symmetric bidders
gives the auctioneer approximately the same procurement cost as an auction with
pro rata on the margin rationing and

(
1 + 1

v

)
(N − 1) + 1 > N symmetric bidders

with the same aggregate production cost. Thus, changing to the optimal rationing
rule from pro-rata on the margin almost corresponds to a doubling of the number
of bidders when each bidder submits a stack with two bid prices. The effect is
smaller, the larger the number of bids by each bidder. However, if the auctioneer is
mostly concerned with competitiveness in a narrow price interval, perhaps because
it has some prior knowledge of where the auction is going to clear, the auctioneer
can use disproportionate rationing to significantly boost competition in that short
price interval, even if each bidder submits a stack with many bids.
The optimal rationing rule depends on whether the clearing price is low or high.

Still, a non-optimal disproportionate rationing rule can also be pro-competitive
even if the rule does not depend on the clearing price. Intuitively, assume that
bidders in a procurement auction are more concerned with bids at a low price,
perhaps because the auction is more likely to clear at a low price or perhaps
because bidders have significantly higher mark-ups at low prices. In this case,
the auctioneer could also focus on encouraging large bid quantities at low clearing
prices, so that a rationing rule that gives priority to bidders with a large volume
of marginal bids at all clearing prices would boost competition. Alternatively, if
bidders are instead more concerned with bids at a high price, competition will be
intensified if the rationing rule gives priority to bidders with a small volume of
marginal bids at all clearing prices.
Mymodel uses Nash equilibria of a static game to predict the bidding behaviour

for different rationing rules. A stepped supply function is used to represent the bid
stack of each bidder. Similar to Holmberg et al. (2013), I use a discrete version
of Klemperer and Meyer’s (1989) Supply Function Equilibrium (SFE) concept to
analyse Nash equilibria of stepped supply functions. But I generalize Holmberg
et al.’s (2013) model to allow for disproportionate rationing on the margin and
non-constant tick-sizes. The production costs of bidders are common knowledge
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and the auctioneer’s demand is uncertain as in the standard SFE model. The SFE
model is often used to evaluate the design of wholesale electricity markets5 and
analogous sales auction versions of the supply function equilibrium, with equilibria
of demand functions, have been used to evaluate bidding in treasury auctions in
the U.S. (Wang and Zender, 2002).6

Previously, Kremer and Nyborg (2004) have also shown that rationing rules
can be used to improve competition. However, they analyse a rationing rule,
where also infra-marginal bids (sell bids below and buy bids above the clearing
price) would be rationed proportionally. But partly rationing infra-marginal bids
would be ineffi cient in a market with non-constant marginal costs/values. The
spread rationing rule (SRR) and the concentrate rationing rule (CRR) examined
by Saez et al. (2007) may also result in rationing of infra-marginal bids and
similar ineffi ciency problems. Gresik (2001) proposes a new rule, ζ-rationing,
where marginal bids (when possible) are rationed in proportion to the total amount
that a bidder wants to trade at the marginal price. McAdams (2000) and Kweik
and Schenone (2000) explore the extent to which rationing rules may provide the
auctioneer with a tool for deterring collusive bidding. In order to ensure the
existence of Nash equilibria in theoretical models of auctions, such as in papers
by Deneckere and Kovenock (1996), Fabra et al. (2006), Simon and Zame (1990),
and Jackson and Swinkels (1999), it is sometimes convenient to consider type
dependent rationing rules, for example where priority is given to the most effi cient
marginal bids, e.g. sell bids with the lowest cost. However, such rationing rules
are diffi cult to apply in practice, where bidders’ true costs/values are normally
not observed by the auctioneer. The present paper is the first to use a rationing
rule that depends on the clearing price. In this way, competition can be improved
in an almost mechanical way. Thus, it is my belief that the pro-competitive effect
would be robust to assumptions made on bidders’values/costs and uncertainties
in the auctioneer’s demand or supply.
Section 2 describes the setting of the game. The analysis is carried out in

Section 3. Section 4 discusses some extensions that may be of practical relevance.
Section 5 concludes the paper. All proofs are derived in the Appendix.

5In electricity markets, technology characteristics and fuel prices are transparent and pro-
ducers make offers before the demand for electricity has been realized (Anderson and Hu, 2008;
Green and Newbery, 1992; Holmberg and Newbery, 2009). Observed offers match the first-order
condition of a stepped SFE model so well that the theory cannot be rejected (Wolak, 2007).
The continuous SFE model is less precise. In practice, it can only make accurate predictions of
bids from large firms, whose submitted supply functions have many steps (Hortacsu and Puller,
2008; Sioshansi and Oren, 2007).

6Uniform-price auctions of the U.S. treasury have an uncertain amount of non-competitive
bids from small investors, which are given priority before regular bids. Thus, there is an uncertain
supply of securities that is available to large investors. Some treasury auctions also up-date the
number of sold securities with respect to the latest market news, after buyers have submitted
their bids. The U.S. Treasury auction has a 35% rule, which prevents anyone from buying more
than 35% of the auctioneer’s supply. This is to avoid that a single bidder can corner the market.
Purchase constraints of this type correspond to production capacities in my procurement setting.
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Figure 1: Clearing of and excess supply in the procurement auction.

2 Model

Consider a uniform-price procurement auction, so that all accepted bids are paid
the Market Clearing Price (MCP). A stepped supply function is used to represent
the bid stack of each bidder. As illustrated by Figure 1, the market is cleared at
the lowest price where aggregated supply is larger than the auctioneer’s demand.
Any excess supply at the MCP is rationed on the margin. I calculate a pure
strategy Nash equilibrium of a one-shot game, where each risk-neutral supplier
chooses a step supply function to maximize its expected profit.
Similar to Holmberg et al. (2013) there are M permissible price levels, Pj, j ∈

{1, . . . ,M}, with the price tick ∆Pj = Pj − Pj−1 > 0. The minimum quantity
increment is zero, i.e. quantities can be continuously varied. The difference to
Holmberg et al. (2013) is that I now allow for non-constant tick-sizes and non-pro
rata rationing. I let r =

∆Pj
∆Pj+1

, where it is assumed that r is a bounded constant.

Producer i ∈ {1, . . . , N} submits a supply vector Si =
{
Sij
}M
j=1
consisting of

the non-negative maximum quantities it is willing to produce at each permissible
price level. The quantity increment ∆Sij = Sij − Sij−1 is non-negative (the supply

must be non-decreasing in the price). Let S =
{
Si
}N
i=1

and denote competitors’
collective offered quantity at price Pj as S−ij and total market supply at Pj as
Sj. The cost function of supplier i, Ci (Si), is a smooth, increasing and convex
function up to the capacity constraint ki. Let k be the total production capacity
in the market. Costs are common knowledge. Klemperer and Meyer’s (1989)
continuous model is used as a benchmark. The set of individual smooth supply
functions in the continuous model is given by {qi (p)}Ni=1.
The auctioneer’s demand is perfectly inelastic up to the reservation price PM .
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Demand is uncertain and given by the shock ε. The shock has a continuous
probability density, g(ε), with g ≥ g(ε) ≥ g > 0 on the support [ε, ε]. MCP is
the lowest price at which the offered supply is (strictly) larger than the stochastic
demand shock. Thus, the equilibrium price as a function of the demand shock,
P (ε), is right continuous, and the MCP equals Pj if ε ∈ [Sj−1, Sj). Given chosen
step supply functions, the market clearing price can be calculated for each demand
shock in the interval [ε, ε]. The lowest and highest prices that are realized are
denoted by PL and PH , respectively, where 1 ≤ L < H ≤M . I let s (ε) and si (ε)
be total accepted supply and supplier i’s accepted supply at ε, respectively.

2.1 The rationing rule

I consider a new class of rules that ration disproportionately on the margin. The
rules are such that any bid accepted for some demand shock ε0 is also accepted
for any ε > ε0, i.e. a bidder’s acceptance is monotonic with respect to the demand
shock. For a given set of supply schedules, the outcome of the auction is the
same (irrespective of the sharing rule) when there is no excess supply at MCP, i.e.
Sj−1 = ε. In this case, we have:

si (Sj−1) ≡ Sij−1. (1)

The rationing rule determines how to accept bids when Sj−1 < ε < Sj. For the
class of rationing rules that I consider, the increment of producer i’s accepted
supply ∆si for a shock increment ∆ε is determined by the differential equation

dsi (ε)

dε
=

(
Sij − si (ε)

)µj∑N
k=1

(
Skj − sk (ε)

)µj if ε ∈ (Sj−1, Sj
)
, (2)

where the rationing parameter µj determines the non-linearity of the sharing rule
at the clearing price Pj, i.e. the extent to which large quantity increments at this
clearing price are given priority to small increments. I consider µj ≥ 0, so that
the rationing rule results in monotonic acceptance (in absolute terms) in the sense
that a larger quantity increment at the marginal price will (weakly) increase the
accepted volume from marginal bids of the supplier. Similarly, the rationing rule
gives monotonic rejection (in absolute terms), i.e. a larger quantity increment at
the marginal price will also (weakly) increase the rejected volume from marginal
bids of a supplier. For µj = 1, we get pro rata on the margin rationing, where any
additional demand ∆ε is allocated in proportion to a supplier’s unmet supply at
the clearing price, Sij−si (ε).7 It follows from (2) that with µj > 1, disproportion-
ate priority is given to producers with large unmet supply at the clearing price.
When µj → ∞, ∆ε is shared equally among suppliers with the largest unmet
supply at the clearing price, while suppliers with less unmet supply at Pj get no
share of ∆ε. We say that this rule gives maximum priority to large quantity in-
crements at Pj (subject to rejection being monotonic for the rationing rule). The

7Lemma 4 in the Appendix formally establishes that this corresponds to pro-rata on the
margin rationing.
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case 0 ≤ µj < 1 gives more priority to small quantity increments. In particular,
µj = 0 gives maximum priority to small quantity increments at Pj (subject to
acceptance being monotonic for the rationing rule). In this case, all suppliers with
unmet supply at the clearing price get the same share of any additional marginal
demand increment ∆ε. Note that

N∑
i=1

dsi (ε)

dε
≡ 1, (3)

i.e. the marginal increase in total accepted supply always equals the marginal
shock increment, regardless of the rationing rule.
Together with the initial condition in (1), a system of differential equations

of the type in (2), with one equation per bidder, can be used to calculate the
accepted quantity for each supplier as a function of the demand shock for any
given set of monotonic step supply functions.8 From the supply si (ε) allocated to
each supplier, it is straightforward to calculate the supplier’s expected profit:

E (πi) =

∫
ε

ε

[P (ε)si (ε)−Ci(si (ε) )]g (ε) dε. (4)

3 Analysis

In the following subsection, I derive a first-order condition for optimal bids when
rationing is disproportionate on the margin. Then, I will analyse a case with two
permissible price levels. The third subsection of the analysis section analyses cases
with many permissible price levels.

3.1 The first-order condition

Optimal bids of a supplier can be determined from the following first-order con-
dition.

Lemma 1 The first-order condition for a uniform-price auction with N symmet-
ric suppliers is given by:

∂E(πi)

∂Sij

∣∣∣
Sij=S

k
j

= −∆Pj+1S
i
jg (Sj)

+
(N−1)∆Sj

N

1∫
0

[
Pj − C ′i

(
Sj (u) /N

)]
(1− uµj) g

(
Sj (u)

)
du

+
(N−1)∆Sj+1

N

1∫
0

[
Pj+1 − C ′i(Sj+1 (u) /N)

]
uµj+1g

(
Sj+1 (u)

)
du = 0,

(5)

where k 6= i and Sj (u) := uSj−1 + (1− u)Sj.

8Lemma 5 in the Appendix formally establishes that there exists a unique allocation for any
given set of non-decreasing supply schedules.
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The first-order condition can be intuitively interpreted as follows. When cal-
culating ∂E (πi) /∂S

i
j, supply is increased at Pj while holding the supply at all

other price levels constant. This implies that the bid price of one (infinitesimally
small) unit of quantity is decreased from Pj+1 to Pj. This decreases the MCP for
the event when the unit is price-setting, i.e. when ε = S

j
. This event brings a

negative contribution to the expected profit, which corresponds to the first term in
the first-order condition (5). This term corresponds to the price effect; the term is
negative as a bid price was decreased. Due to the rationing mechanism, decreasing
the price by a unit of quantity (weakly) increases the accepted supply for demand
outcomes ε ∈

[
S
j−1 , Sj+1

)
. This gives a positive contribution to the expected

profit; the two integrals in (5). The first integral covers ε ∈
[
Sj−1, Sj

)
when the

MCP is Pj, and the second for ε ∈
[
Sj−1, Sj

)
when the MCP is Pj+1. The first

integral corresponds to the loss associated with the quantity effect at price Pj and
the second integral corresponds to the loss associated with the quantity effect at
price Pj+1. The two integral terms are positive since a bid price was decreased.
By means of the first-order condition in Lemma 1, we can identify two reasons

why supplier i’s loss associated with the quantity effect at Pj dominates the loss
associated with the quantity effect at Pj+1. First, if the market is more likely to
clear at Pj than at Pj+1. The other reason is that supplier i has higher average
mark-ups at Pj than at Pj+1. We also note the following from Lemma 1:

Remark 1 For given supply schedules S, the loss associated with supplier i’s
quantity effect when increasing the bid price for some units of output from Pj to
Pj+1 becomes larger if

1. the rationing rule gives increased priority to large quantity increments at Pj
compared to Pj+1, i.e. µj increases and/or µj+1 decreases.

2. supplier i’s loss associated with the quantity effect at Pj dominates the loss
associated with the quantity effect at Pj+1, the same rationing rule is used at
Pj and Pj+1, and the rationing rule gives increased priority to large quantity
increments, i.e. µj = µj+1 increases.

3. supplier i’s loss associated with the quantity effect at Pj+1 dominates the loss
associated with the quantity effect at Pj, the same rationing rule is used at
Pj and Pj+1, and the rationing rule gives increased priority to small quantity
increments, i.e. µj = µj+1 decreases.

3.2 Two price levels

To illustrate the effect of disproportionate rationing on equilibrium bids, we first
analyse a simple case with only two admissible price levels, P1 and P2. We make
the following assumption:

Assumption 1. The uniform-price auction has two price levels, P1 and P2.
The suppliers are symmetric, each supplier has capacity ki and a constant marginal
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cost c ≤ P1 < P2, such that (N − 1) (P2 − c) ≤ N∆P2. Demand is uniformly
distributed on [0, k]. We set Si0 = 0.

We can deduce the following inequality from Assumption 1:

(N − 1) (P1 − c) ≤ ∆P2. (6)

P2 > c is the highest possible price, so irrespective of competitors’bids, it is
the best response for each supplier to offer its entire capacity ki at P2, i.e. Si2 = ki.
Thus, market performance is determined by Si1. A higher S

i
1 means that bids are

more competitive, i.e. the average mark-ups are lower. We get the following result:

Lemma 2 Under Assumption 1, the solution to the first-order condition in Lemma
1 is:

Si1 =
(N − 1) ki (P2 − c)(

(µ2 + 1) ∆P2+ (N − 1) (P2 − c)− (N−1)(P1−c)(1+µ2)µ1
(1+µ1)

) . (7)

As expected from Remark 1, we have from Lemma 2 and the inequality in
(6) that Si1 increases when µ2 decreases and/or when µ1 increases. We note that
the inequality in (6), which follows from Assumption 1, ensures that the optimal
supply at P1 is never constrained by the capacity constraint ki. Increasing µ1

and decreasing µ2 will weakly improve, but to a lower extent, market competi-
tiveness also for circumstances when (N − 1) (P2 − c) > N∆P2, so that supply
at P1 is constrained by the capacity constraint ki for the most high powered ra-
tioning parameters. We can verify that the following first-order solutions are Nash
equilibria.

Proposition 1 Under Assumption 1, we can establish Nash equilibria for the
following cases

1. A rationing rule that gives maximum priority to large quantity increments
at P1 (µ1 = ∞) and maximum priority to small quantity increments at P2

(µ2 = 0) results in the most competitive first-order solution. The symmetric
Nash equilibrium for this case is:

Si1 =
(N − 1) ki (P2 − c)

N∆P2

. (8)

2. Auction competitiveness is also improved, but to a smaller extent, when
maximum priority is given to small quantity increments at both P1 and P2

(µ2 = µ1 = 0). The Nash equilibrium for this case is:

Si1 =
(N − 1) ki (P2 − c)

∆P2 + (N − 1) (P2 − c)
. (9)

3. The Nash equilibrium for pro rata on the margin rationing (µ2 = µ1 = 1) is:

Si1 =
(N − 1) ki(P2 − c)

(N + 1) ∆P2

. (10)

In this case, supplier i’s loss associated with the quantity effect at P2 domi-
nates the loss associated with the quantity effect at P1.

9



Figure 2: Aggregate stepped supply function equilibria when c = 4, P1 = 5 and
P2 = 10 for four different cases: A) N = 2, µ1 = µ2 = 1, B) N = 2, µ1 = µ2 = 0,
C) N = 2, µ1 =∞, µ2 = 0 and D) N = 3, µ1 = µ2 = 1.

The second result, that competitiveness is improved (relative to standard ra-
tioning) by giving maximum priority to small quantity increments at both P1 and
P2 can be explained by Remark 1 and the fact that supplier i’s loss associated with
the quantity effect at P2 dominates the loss associated with the quantity effect at
P1 for pro rata on the margin rationing (the third result). In the special case when
P1 = c, the loss associated with the quantity effect at P1 is zero, so that it is only
P2 that contributes to this loss. In this special case, giving maximum priority to
small quantity increments at both P1 and P2 (µ2 = µ1 = 0) will have the same
effect as the optimal rationing rule, i.e. (8) and (9) give the same result.
We can multiply the first and third result in Proposition 1 by N to get ex-

pressions for total market supply at P1. By using the fact that k = Nki, we can
deduce the following:

Corollary 1 Under Assumption 1, a uniform-price auction with N symmetric
suppliers and optimal rationing on the margin gives the auctioneer the same total
procurement cost as a uniform-price auction with pro rata on the margin rationing
and 2N − 1 symmetric suppliers with the same total production cost (the same
marginal cost c and total production capacity k).

Proposition 1 and Corollary 1 are illustrated by the four cases in Figure 2.
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3.3 Many price levels

In this section, we analyse the case where supply functions have many steps,
so that the difference equation in Lemma 1 can be approximated by a differential
equation. A difference equation is said to be consistent with a differential equation,
if the difference equation converges to the said differential equation as the number
of steps in the supply schedules increases towards infinity (Holmberg et al., 2013).

Lemma 3 For N symmetric suppliers, the discrete first-order condition in Lemma
1 is consistent with the continuous differential equation

−qi (Pj) + [Pj − C ′i (qi (Pj))]

(
1

(µj+1 + 1)
+

µjr

(µj + 1)

)
(N − 1) q′i (Pj) = 0 (11)

if Pj> C ′i (qi (Pj)) and µj > 0.

In the special case when tick-sizes are constant, i.e. r = 1, and rationing is
proportionate on the margin, i.e. µj = 1, (11) can be simplified to

−qi (Pj) + [Pj − C ′i (qi (Pj))] (N − 1) q′i (Pj) = 0, (12)

which is the differential equation of continuous supply function equilibria for sym-
metric suppliers with inelastic demand (Rudkevich, 1998; Anderson and Philpott,
2002; Holmberg, 2008). This confirms the consistency result in Holmberg et al.
(2013) for pro rata on the margin rationing and constant tick-sizes. A comparison
of (11) and (12) implies that for constant tick-sizes (r = 1) and disproportionate
rationing on the margin, competitiveness (the number of competitors, N − 1) is
approximately boosted by the factor

λ =
1

(µj+1 + 1)
+

µj
(µj + 1)

(13)

relative to the case with pro rata on the margin rationing. As in the case with
two price levels, we note that it is beneficial for competition to use rationing
parameters such that µj > µj+1. However, with more price levels, there will be
smaller changes in µj from one price level to the next and a lower pro-competitive
effect, if one wants to maintain the same effect on competition at each price level.
We can write (13) in the following form:

µj =
1

1 + 1
µj+1+1

− λ
− 1.

By setting the competition boosting factor λ to a constant and µH = 0 (the
rationing parameter at the highest realized price), we can iteratively solve for µj
for sequentially smaller j, until a non-negative solution of µj no longer exists. In
this way, we can approximately determine for how many steps in a supply function
we can maintain λ at the desired level. The results are summarized in Table 1.
We can multiply the differential equation in (11) by N , so that we get an

equation for total supply, and then note the following from Table 1.
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Table 1: The competition boosting factor λ and the number of steps in a supply
function, for which the factor can be maintained.

No of steps λ
1 2
2 1.4
3 1.3
4 1.2
6 1.15
9 1.1
19 1.05
49 1.02
99 1.01
199 1.005
499 1.002
999 1.001

Remark 2 A uniform-price auction with optimal rationing on the margin and
N symmetric suppliers with v steps in each supply function has approximately
the same total procurement cost as a uniform-price auction with pro rata on the
margin rationing and (1 + 1/v) (N − 1) + 1 symmetric suppliers with the same
total production costs and v steps in each supply function.

Even if supply functions have many steps, the auctioneer can still substantially
boost competition at the local level by introducing large changes in µj in an interval
with a few price levels, where the auctioneer expects the auction to clear or where
the auctioneer is mostly concerned with market competitiveness. We also note the
following from Lemma 3:

Remark 3 If the rationing rule is the same for each price level, µj = µj+1 = µ,
but tick-sizes are non-constant, then

1. If tick-sizes decrease towards the reservation price (r > 1), then the com-
petition boosting factor λ = 1

(µ+1)
+ µr

(µ+1)
increases when the rationing rule

gives increased disproportionate priority to large quantity increments at all
prices (µ ↑).

2. If tick-sizes increase towards the reservation price (r < 1), then the com-
petition boosting factor λ = 1

(µ+1)
+ µr

(µ+1)
increases when the rationing rule

gives increased disproportionate priority to small quantity increments at all
prices (µ ↓).

The intuition behind this result is that smaller tick-sizes towards the reserva-
tion price tend to also decrease the quantity increments, so that supplier i’s loss
associated with the quantity effect at Pj tends to dominate the loss associated
with the quantity effect at Pj+1. The opposite is true if tick-sizes are instead
larger towards the reservation price.
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4 Extensions of the auction design

In the analysed model, each rationing parameter has been tied to a price level,
but this may not be optimal in practice. In practice, the bidding format often
restricts the number of steps in supply schedules and/or bidders do not always
use all allowed steps, because the additional effort required of a supplier to submit
another step may not be negligible (Kastl, 2011). In such cases, it should be
suffi cient to boost competition at bid prices that are used by the supplier, so that
a higher boosting factor can be maintained at those fewer prices. In practice, it
may therefore be beneficial to have individual rationing parameters for suppliers,
µij, where a supplier’s parameter could, for example, depend on the step number
in its supply function. The auctioneer may also want to weight supplier’s unmet
supply, in order to avoid that the disproportionate rationing rule favours small or
large suppliers, or to optimize rationing for asymmetric bidders. As an example,
a supplier’s weight ωi could be inversely proportional to its production capacity
or maximum offered supply SiH . Thus (2), could be generalized as follows

dsi (ε)

dε
=

(
ωi
(
Sij − si (ε)

))µij∑N
k=1

(
ωk
(
Skj − sk (ε)

))µkj .
In a more advanced auction, the individual rationing parameters of a supplier
may depend on its supply schedule. The auctioneer may, for example, want to set
high µij values in price intervals where the quantity increments of supplier i are
decreasing and low µij values in price intervals where the quantity increments of
supplier i are increasing.
It has been shown that tick-sizes can be combined with the rationing rule in

order to boost competition. It should be possible to get similar effects with other
aspects of the bidding format, such as lot sizes, the distance between permissible
quantity levels.

5 Conclusions

For an auctioneer, it is beneficial if bidders increase quantity increments at prices
far from the reservation price and if bidders decrease their quantity increments
near the reservation price. It is shown that such a pro-competitive effect on bids
can be achieved with rationing rules that prioritize large marginal quantity incre-
ments at clearing prices far from the reservation price and then gives increased
priority to small marginal quantity increments at price levels closer to the reser-
vation price. For supply schedules with one step, I show that the optimal use of
disproportionate rationing on the margin for a uniform-price auction with N sym-
metric suppliers gives the auctioneer the same procurement cost as a uniform-price
auction with pro rata on the margin rationing and 2N − 1 symmetric suppliers
with the same total production cost. The pro-competitive effect is smaller for
supply schedules with more steps. For supply functions with v steps, a uniform-
price auction with N symmetric suppliers and an optimal use of disproportionate

13



rationing on the margin at each step roughly gives the auctioneer the same pro-
curement cost as a uniform-price auction with pro rata on the margin rationing
and

(
1 + 1

v

)
(N − 1) + 1 > N symmetric suppliers with the same total production

cost. However, even if supply functions have many steps, the auctioneer can still
substantially boost competition locally by using disproportionate rationing on the
margin at a few price levels, where the auctioneer expects the auction to clear or
where the auctioneer is mostly concerned with market competitiveness. Forward
prices, prices in when-issued markets or clearing prices of previous auctions can
be used to predict the clearing price of an auction.
The paper also identifies situations where the competitiveness of the auction

can be improved if the same rationing rule is used at all price levels. It is also
shown how the bidding format, such as the tick-sizes, can be tailored to create
such situations.
The pro-competitive mechanism is almost mechanical, so although my results

are derived for costs that are common knowledge, they should qualitatively hold
for other standard models of divisible-good auctions.9 I consider a uniform-price
auction, where all accepted bids are paid the marginal price. However, intu-
itively, similar results should hold for all or most multi-item auctions with non-
truthtelling mechanisms10, including pay-as-bid auctions.11 Similarly, the pro-
competitive mechanism should work also when there is a finite set of permissible
quantities, as in practice, so that quantities cannot be continuously varied as
in the model. Rationing rules with normalizations of quantity increments with
respect to the size of a bidder may improve the performance in auctions with
asymmetric bidders. Finally, although the results are derived for a procurement
auction with supply-side bidding, analogous results will hold for a sales auction
with demand-side bidding as well as for double auctions and exchanges that have
both demand-side and supply-side bidding.
The bidding format and parts of the auction software that receives and manages

bids can be kept unchanged when implementing a pro-competitive rationing rule,
so it should be straightforward to implement it in practice.

6 References

Anderson, E., P. Holmberg, A. Philpott (2013). ‘Mixed Strategies in Discrimina-
tory Divisible-good Auctions’, Rand Journal of Economics 44, pp. 1-32.

9In the general case, costs would be asymmetric information. Costs (values in sales auctions)
can, for example, be private (Reny, 1999) or affi liated information (Ausubel and Cramton, 1996;
Vives, 2011). One extreme case of affi liated costs is when costs are common but uncertain
(Hortacsu and McAdams, 2010; Wang and Zender, 2002; Wilson, 1979).
10Vickrey (1961), Clarke (1971), Groves (1973) and Ausubel (2004) introduce auctions that

give bidders incentives to bid their true cost, so a rationing rule would not be able to improve
competition in such auctions.
11Pay-as-bid (or discriminatory) auctions are used in many treasury auctions and some elec-

tricity markets around the world. They have been analysed by Anderson et al. (2013), Ausubel
et al. (2014), Fabra et al. (2006), Holmberg (2009), Hortacsu and McAdams (2010), Kastl
(2012) and Wang and Zender (2002).

14



Anderson, E. J. and X. Hu (2008). ‘Finding Supply Function Equilibria with
Asymmetric Firms’, Operations Research 56(3), pp. 697-711.
Anderson, E.J. and A. B. Philpott (2002). ‘Using supply functions for offering

generation into an electricity market’, Operations Research 50 (3), pp. 477-489.
Ausubel, L., P. Cramton, M. Pycia, M. Rostek and M. Weretka (2014). ‘De-

mand reduction and ineffi ciency in multi-unit auctions’, Working Paper, Depart-
ment of Economics, University of California, Los Angeles.
Ausubel, L. (2004). ‘An Effi cient Ascending-Bid Auction for Multiple Objects’,

American Economic Review 94(5), pp. 1452-1475.
Budish, E., P. Cramton and J. Shim (2013), ‘The High-Frequency Trading

Arms Race: Frequent Batch Auctions as a Market Design Response’, Working
Paper, Booth School of Business, University of Chicago.
Clarke, E. (1971). ‘Multipart Pricing of Public Goods’, Public Choice 11(1),

pp. 17—33.
Deneckere, R. and D. Kovenock (1996). ‘Bertrand-Edgeworth duopoly with

unit cost asymmetry’, Economic Theory 8, pp. 1-25.
Fabra, N., von der Fehr, N-H. M., Harbord, D. (2006). ‘Designing Electricity

Auctions’, RAND Journal of Economics 37(1), pp. 23-46.
Field, J. and J. Large (2012). ‘Pro-Rata Matching in One-Tick Markets’.

Mimeo.
Green, R.J. and D.M. Newbery (1992). ‘Competition in the British Electricity

Spot Market’, Journal of Political Economy 100 (5), pp. 929-53.
Gresik, T. A. (2001). ‘Rationing rules and European Central Bank auctions’,

Journal of International Money and Finance 20(6), pp. 793-808.
Groves, T. (1973). ‘Incentives in Teams’, Econometrica 41 (4), pp. 617—631.
Holmberg, P. 2008. ‘Unique supply function equilibrium with capacity con-

straints’, Energy Economics 30, 148—172.
Holmberg, P. (2009). ‘Supply Function Equilibria of Pay-as-Bid Auctions’,

Journal of Regulatory Economics 36, pp. 154-177.
Holmberg, P., D. Newbery (2010). ‘The supply function equilibrium and its

policy implications for wholesale electricity auctions’, Utilities Policy 18(4), pp.
209—226.
Holmberg, P., D. Newbery, D. Ralph (2013), ‘Supply Function Equilibria: Step

functions and continuous representations’, Journal of Economic Theory 148(4),
pp. 1509—1551.
Hortacsu, A. and McAdams, D. 2010. ‘Mechanism Choice and Strategic Bid-

ding in Divisible Good Auctions: An Empirical Analysis of the Turkish Treasury
Auction Market’, Journal of Political Economy 118, pp. 833-865.
Hortacsu, A. and S. Puller (2008). ‘Understanding Strategic Bidding in Multi-

Unit Auctions: A Case Study of the Texas Electricity Spot Market’, Rand Journal
of Economics 39 (1), pp. 86-114.
Jackson, M. and Swinkels, J., (1999). ‘Existence of equilibrium in auctions

and discontinuous Bayesian games: Endogenous and incentive compatible sharing
rules’. Mimeo.
Kastl, J. (2011). ‘Discrete Bids and Empirical Inference in Divisible Good

15



Auctions’, Review of Economic Studies 78, pp. 978-1014.
Kastl, J., 2012. ‘On the properties of equilibria in private value divisible good

auctions with constrained bidding’, Journal of Mathematical Economics 48(6),
pp. 339-352.
Klemperer, P. D. and M.A. Meyer, (1989). ‘Supply Function Equilibria in

Oligopoly under Uncertainty’, Econometrica 57 (6), pp. 1243-1277.
Kremer, I and K.G. Nyborg (2004). ‘Divisible Good Auctions: The Role of

Allocation Rules’, RAND Journal of Economics 35, pp. 147—159.
Kweik, M. and Schenone, C. (2000). ‘Underpricing and rationing in share

auctions’. Mimeo.
Lehmann, B.N. and Modest, D.M. (1994). ‘Trading and Liquidity on the Tokyo

Stock Exchange: A Bird’s Eye View’, The Journal of Finance 49(3), pp. 951—984.
McAdams, D. (2000). ‘Collusive-seeming equilibria”in the uniform-price auc-

tion’. Mimeo.
Reny, P. (1999). ‘On the existence of pure and mixed strategy Nash equilibria

in discontinuous games’, Econometrica 67, pp. 1029—1056.
Rudkevich, A., M. Duckworth and R. Rosen (1998). ‘Modelling electricity

pricing in a deregulated generation industry: The potential for oligopoly pricing
in poolco’, The Energy Journal 19 (3), pp. 19-48, 1998.
Saez, Y., D. Quintana, P. Isasi and A. Mochon (2007). ‘Effects of a rationing

rule on the Ausubel auction: A genetic algorithm implementation’, Computational
Intelligence 23 (2), pp. 221—235.
Simon, L., Zame, W. (1990). ‘Discontinuous games and endogenous sharing

rules’, Econometrica 58, 861—872.
Sioshansi, R. and S. Oren (2007). ‘How Good are Supply Function Equilibrium

Models: An Empirical Analysis of the ERCOT Balancing Market’, Journal of
Regulatory Economics 31 (1), pp. 1-35.
Vickrey, W. (1961). ‘Counterspeculation, Auctions, and Competitive Sealed

Tenders’, The Journal of Finance 16 (1), pp. 8—37.
Vives, X. (2011). ‘Strategic supply function competition with private informa-

tion’, Econometrica 79(6), pp. 1919—1966.
Wang, J. J. D., J.F. Zender (2002). ‘Auctioning divisible goods’, Economic

Theory 19, pp. 673—705.
Wilson, R. (1979). ‘Auctions of Shares’, Quarterly Journal of Economics

93(4), pp. 675-689.
Wolak, F.A. (2007). ‘Quantifying the Supply-Side Benefits from Forward Con-

tracting in Wholesale Electricity Markets’, Journal of Applied Econometrics 22,
pp. 1179-1209.

Appendix

First, we verify that the special case when µj = 1 corresponds to pro rata on the
margin rationing at the price level Pj.
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Lemma 4 The auction has pro rata on the margin rationing at the price level Pj
when µj = 1.

Proof. We can use the identities
∑N

k=1 sk (ε) ≡ ε and
∑N

k=1 S
k
j ≡ Sj to

simplify and then solve (2) when µj = 1:

dsi(ε)
dε

=
Sij−si(ε)
Sj−ε

dsi(ε)

dε

Sj−ε + si(ε)

(Sj−ε)2
=

Sij

(Sj−ε)2
.

It now follows from the product rule and integration that:

d
dε

(
si(ε)
Sj−ε

)
=

Sij

(Sj−ε)2

si(ε)
Sj−ε −

si(Sj−1)

Sj−Sj−1 =
Sij
Sj−ε −

Sij
Sj−Sj−1 .

It now follows from (1) that:

si (ε) = Sij −
∆Sij (Sj − ε)

∆Sj
= Sij−1 +

∆Sij (ε− Sj−1)

∆Sj
,

which is identical to the accepted supply of a supplier in a uniform-price auction
with pro rata on the margin rationing (Holmberg et al., 2013) when demand is
inelastic.

The following statement ensures that there is a unique allocation under dispro-
portionate rationing. Note that rationing is never required at price levels where
no supplier has a quantity increment.

Lemma 5 For a given set of non-decreasing stepped supply functions S, such
that Skj > Skj−1 for at least one supplier k ∈ {1, . . . , N}, there exists a unique
rationing allocation at price Pj, defined by the initial value problem (1) and (2).
This unique solution satisfies si (ε) ≤ Sij = si (Sj) and s′i (ε) ≥ 0 for ε ∈ [Sj−1, Sj)
and ∀i ∈ {1, . . . , N}.

Proof. We have Sij ≥ Sij−1 = si (Sj−1). Thus, it follows from (2) that s′i (ε) ≥ 0
when si (ε) < Sij and that s

′
i (ε) = 0 when si (ε) = Sij, as long as there is some

supplier k ∈ {1, . . . , N} with sk (ε) < Skj . There must be at least one such supplier
for ε ∈ [Sj−1, Sj), otherwise we would get the contradiction that Sj ≤ s (ε) = ε
for some ε ∈ [Sj−1, Sj). We also note that the right-hand side of (2) is Lipschitz
continuous in the interval [Sj−1, ε

∗] for any ε∗ ∈ [Sj−1, Sj), so it follows from the
Picard—Lindelöf theorem that the initial value problem has a unique solution in
the interval [Sj−1, Sj).
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6.1 A.1 First-order conditions

From the properties of the sharing rule, it is now possible to derive a first-order
condition for the optimal supply schedule of a supplier.

Lemma 6 The first-order condition for supplier i’s optimal output at price Pj is:

∂E(πi)

∂Sij
= −∆Pj+1S

i
jg (Sj)

+
Sj∫

Sj−1

[Pj − C ′i(si (ε))]
∂si(ε)

∂Sij
g (ε) dε+

Sj+1∫
Sj

[Pj+1 − C ′i(si (ε))]
∂si(ε)

∂Sij
g (ε) dε = 0.

(14)

Proof. The accepted supply of supplier i only depends on Sij for ε ∈ [Sj−1, Sj)
when the clearing price is Pj and for outcomes ε ∈ [Sj, Sj+1) when the clearing
price is Pj+1. The contribution to the expected profit from outcomes ε ∈ [Sj−1, Sj)
is given by:

Ei
j =

Sj∫
Sj−1

[Pjsi (ε)− Ci(si (ε))]g (ε) dε,

so

∂Ei
j

∂Sij
= [Pjsi (Sj)− Ci(si (Sj))]g (Sj) +

Sj∫
Sj−1

[Pj − C ′i(si (ε))]
∂si (ε)

∂Sij
g (ε) dε. (15)

The contribution to the expected profit from outcomes ε ∈ [Sj, Sj+1) is given by:

Ei
j+1 =

Sj+1∫
Sj

[Pj+1si (ε)− Ci(si (ε))]g (ε) dε,

so

∂Eij+1
∂Sij

= −[Pj+1si(Sj)− Ci(si (Sj))]g (Sj) +
Sj+1∫
Sj

[Pj+1 − C ′i(si (ε))]
∂si(ε)

∂Sij
g (ε) dε.

(16)
Summing the contributions from (15) and (16) establishes the result in (14).
In this paper, I will focus on characterizing symmetric Nash equilibria. Thus, I

want to find the optimal response of a supplier i when its N−1 competitors submit
identical bids. It follows from (14) that the optimal stepped supply function is
to a large extent determined by how supplier i’s accepted supply si (ε) depends
on its supply function. The following Lemma specifies this dependence when the
supplier’s N − 1 competitors submit identical bids.
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Lemma 7 For N symmetric producers we have that :

∂si (ε)

∂Sij

∣∣∣∣
Sij=

Sj
N

=


(N−1)
N

(
1− (Sj−ε)µj

(∆Sj)
µj

)
if ε ∈ [Sj−1, Sj)

(N−1)(Sj+1−ε)µj+1
N(∆Sj+1)µj+1

if ε ∈ [Sj, Sj+1)

0 otherwise

Proof. For fixed Sik ∀k 6= j, increasing Sij will increase producer i’s quantity
increment at the price pj and decrease its quantity increment at the price pj+1.
The quantity increments and the offered supply at all other price levels will remain
unchanged. Thus, a change in Sij will only influence the accepted supply for
outcomes ε ∈ [Sj−1, Sj) when the clearing price is pj and outcomes ε ∈ [Sj, Sj+1)

when the clearing price is pj+1. Let uki (ε) = ∂sk(ε)

∂Sij
and first consider ε ∈ (Sj−1, Sj).

It follows from (2) that

u′ii (ε) =
µj (1− uii (ε))

(
Sij − si (ε)

)µj−1∑N
k=1

(
Skj − sk (ε)

)µj
−
µj
(
Sij − si (ε)

)µj (1− uii (ε))
(
Sij − si (ε)

)µj−1[∑N
k=1

(
Skj − sk (ε)

)µj]2

−
µj
(
Sij − si (ε)

)µj∑N
k 6=i (−uki (ε))

(
Skj − sk (ε)

)µj−1[∑N
k=1

(
Skj − sk (ε)

)µj]2 .

Symmetry, i.e. Sij = Skj , yields

u′ii (ε) =
µj (1− uii (ε))
N
(
Sij − si (ε)

) − µj (1− uii (ε))
N2
(
Sij − si (ε)

) +
µj
∑N

k 6=i uki (ε)

N2
(
Sij − si (ε)

) . (17)

Notice that
∑N

k=1 sk (ε) ≡ ε and accordingly
∑N

k=1 uki (ε) ≡ 0. Thus, we can write
(17) as follows:

u′ii (ε) =
µj (1− uii (ε))
N
(
Sij − si (ε)

) − µj

N2
(
Sij − si (ε)

)
=
µj ((N − 1) /N − uii (ε))

Sj − ε
,

where Sj = NSij. Hence,

(Sj − ε)u′ii (ε) + µjuii (ε) = µj (N − 1) /N.

We solve this differential equation by means of an integrating factor. Multiplying
all terms by 1

(Sj−ε)µj+1
yields:

u′ii (ε)

(Sj − ε)µj
+

µjuii (ε)

(Sj − ε)µj+1 =
µj (N − 1) /N

(Sj − ε)µj+1 .
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By means of the product rule, we get

d

dε

uii (ε)

(Sj − ε)µj
=

d

dε

(N − 1) /N

(Sj − ε)µj
,

so that

uii (ε)

(Sj − ε)µj
− uii (Sj−1)

(Sj − Sj−1)µj
=

(N − 1) /N

(Sj − ε)µj
− (N − 1) /N

(Sj − Sj−1)µj
.

We have uii (Sj−1) = 0, so

∂si (ε)

∂Sij
= uii (ε) =

(N − 1)

N

(
1− (Sj − ε)µj

(∆Sj)
µj

)
if ε ∈ (Sj−1, Sj) .

Now, we will repeat the same procedure for the interval ε ∈ (Sj, Sj+1) when
the price is pj+1. Again, let uki (ε) = ∂sk(ε)

∂Sij
. In this interval, we have (compare

with (2))

s′i (ε) =

(
Sij+1 − si (ε)

)µj+1∑N
k=1

(
Skj+1 − sk (ε)

)µj+1 .
Thus

u′ii (ε) = −
µj+1uii (ε)

(
Sij+1 − si (ε)

)µj+1−1∑N
k=1

(
Skj+1 − sk (ε)

)µj+1
+

(
Sij+1 − si (ε)

)µj+1∑N
k=1 uki (ε)µj+1

(
Skj+1 − sk (ε)

)µj+1−1[∑N
k=1

(
Skj+1 − sk (ε)

)µj+1]2 .

Symmetry implies that

u′ii (ε) = − µj+1uii (ε)

N
(
Sij+1 − si (ε)

) +
µj+1

∑N
k=1 uki (ε)

N2
(
Sij+1 − si (ε)

) .
As before,

∑N
k=1 sk (ε) ≡ ε implies that

∑N
k=1 uki (ε) ≡ 0, so

u′ii (ε) =
−µj+1uii (ε)

Sj+1 − ε
,

where Sj+1 = NSij+1. Hence,

(Sj+1 − ε)u′ii (ε) + µj+1uii (ε) = 0.

As above, we solve this differential equation by means of an integrating factor.
Multiplying all terms by 1

(Sj+1−ε)µj+1+1
yields:

u′ii (ε)

(Sj+1 − ε)µj+1
+

µj+1uii (ε)

(Sj+1 − ε)µj+1+1 = 0.

20



Thus, it follows from the product rule that

d

dε

uii (ε)

(Sj+1 − ε)µj+1
= 0,

so that
uii (ε)

(Sj+1 − ε)µj+1
=

uii (Sj)

(Sj+1 − Sj)µj+1
, (18)

where uii (Sj) can be determined from the relation

1 =
dSij
dSij

=
dsi (Sj)

dSij
= uii (Sj) + s′i (Sj)

dSj
dSij

.

We have s′i (Sj) = s′i (ε) = 1
N
due to symmetry and dSj

dSij
= 1, so

uii (Sj) = 1− 1

N
=
N − 1

N
.

Now, it follows from (18) that

∂si (ε)

∂Sij
= uii (ε) =

(N − 1) (Sj+1 − ε)µj+1
N (∆Sj+1)µj+1

if ε ∈ (Sj, Sj+1) .

Finally, we note that ∂si(ε)

∂Sij
is continuous at the points ε = Sj and ε = Sj+1.

We can now conclude the following from Lemma 6 and Lemma 7 above.

Corollary 2 The first-order condition of a market with N symmetric suppliers is
given by:

∂E(πi)

∂Sij
= −∆Pj+1S

i
jg (Sj)

+ (N−1)
N

Sj∫
Sj−1

[Pj−C ′i(si (ε))]
(

1− (Sj−ε)µj
(∆Sj)

µj

)
g (ε) dε

+ (N−1)
N(∆Sj+1)µj+1

Sj+1∫
Sj

[Pj+1−C ′i(si (ε))] (Sj+1 − ε)µj+1 g (ε) dε = 0.

(19)

We are now able to prove the first-order condition presented in the main text.
Proof. (Lemma 1) This follows from Corollary 2 in Appendix and the sub-

stitutions u =
Sj−ε
∆Sj

and u =
Sj+1−ε
∆Sj+1

, respectively.

The first-order condition can be solved as follows.
Proof. (Lemma 2) We have

1∫
0

(1− uµj) du =

[
u− uµj+1

µj + 1

]1

0

=
µj

µj + 1
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and
1∫

0

uµj+1du =

[
uµj+1+1

µj+1 + 1

]1

0

=
1

µj+1 + 1
,

so it follows from Lemma 1 and Assumption 1 that:

∆P2S
i
1=

(N − 1) (P1 − c)µ1∆Si1
(µ1 + 1)

+
(N − 1) (P2 − c) ∆Si2

(µ2 + 1)

∆P2S
i
1=

(N − 1) (P1 − c)µ1S
i
1

(µ1 + 1)
+

(N − 1) (P2 − c) (ki − Si1)

(µ2 + 1)

Si1=
(N − 1) (P2 − c) ki

(µ2 + 1)
(

∆P2− (N−1)(P1−c)µ1
(µ1+1)

+ (N−1)(P2−c)
(µ2+1)

) .

6.2 A.2 Second-order conditions

For extreme cases when µj = 0 or µj =∞, the acceptance sensitivity with respect
to quantity increments, i.e. ∂si(ε)

∂Sij
, can also be determined at asymmetric points,

where Sij 6= Skj .

Lemma 8 If µj = 0 and competitors have identical supply functions, Skj , then:

∂si (ε)

∂Sij
=


0 if ∆Sij > ∆Skj and ε ∈ (Sj−1, Sj)
0 if ∆Sij < ∆Skj and ε ∈

(
Sj−1, Sj−1 +N∆Sij

)
1 if ∆Sij < ∆Skj and ε ∈

(
Sj−1 +N∆Sij, Sj

)
and

∂si (ε)

∂Sij−1

=


N−1
N

if ∆Sij > ∆Skj and ε ∈
(
Sj−1, Sj−1 +N∆Skj

)
0 if ∆Sij > ∆Skj and ε ∈

(
Sj−1 +N∆Skj , Sj

)
N−1
N

if ∆Sij < ∆Skj and ε ∈
(
Sj−1, Sj−1 +N∆Sij

)
0 if ∆Sij < ∆Skj and ε ∈

(
Sj−1 +N∆Sij, Sj

)
Proof. It follows from (2) that for µj = 0 and ∆Sij > ∆Skj , all producers

get the same accepted quantity from marginal bids for ε ∈
(
Sj−1, Sj−1 +N∆Skj

)
,

while competitors’accepted quantity of marginal bids is constant in the interval(
Sj−1 +N∆Skj , Sj

)
. Thus

si (ε) =

{
Sij−1 +

ε−Sj−1
N

if ε ∈
(
Sj−1, Sj−1 +N∆Skj

)
Sij−1 + ∆Skj + ε− Sj−1 −N∆Skj if ε ∈

(
Sj−1 +N∆Skj , Sj

)
.

For µj = 0 and ∆Sij < ∆Skj , all producers get the same accepted quantity of
marginal bids for ε ∈

(
Sj−1, Sj−1 +N∆Sij

)
, while supplier i’s accepted quantity

from marginal bids is constant in the interval
(
Sj−1 +N∆Sij, Sj

)
. Thus

si (ε) =

{
Sij−1 +

ε−Sj−1
N

if ε ∈
(
Sj−1, Sj−1 +N∆Sij

)
Sij if ε ∈

(
Sj−1 +N∆Sij, Sj

)
.

22



The statement follows from differentiation of the above expressions with respect
to Sij−1 and S

i
j.

Lemma 9 If µj =∞ and competitors have identical supply functions, Skj , then:

∂si (ε)

∂Sij
=


0 if ∆Sij > ∆Skj and ε ∈

(
Sj−1, Sj−1 + ∆Sij −∆Skj

)
N−1
N

if ∆Sij > ∆Skj and ε ∈
(
Sj−1 + ∆Sij −∆Skj , Sj

)
0 if ∆Sij < ∆Skj and ε ∈

(
Sj−1, Sj−1 + (N − 1)

(
∆Skj −∆Sij

))
N−1
N

if ∆Sij < ∆Skj and ε ∈
(
Sj−1 + (N − 1)

(
∆Skj −∆Sij

)
, Sj
)

and

∂si (ε)

∂Sij−1

=


0 if ∆Sij > ∆Skj and ε ∈

(
Sj−1, Sj−1 + ∆Sij −∆Skj

)
0 if ∆Sij > ∆Skj and ε ∈

(
Sj−1 + ∆Sij −∆Skj , Sj

)
1 if ∆Sij < ∆Skj and ε ∈

(
Sj−1, Sj−1 + (N − 1)

(
∆Skj −∆Sij

))
0 if ∆Sij < ∆Skj and ε ∈

(
Sj−1 + (N − 1)

(
∆Skj −∆Sij

)
, Sj
)
.

Proof. It follows from (2) that for µj = ∞ and ∆Sij > ∆Skj marginal bids
are only accepted from supplier i, as long as its unmet supply at Pj, Sij − si (ε), is
larger than for each other supplier. Thus

si (ε) =

{
Sij−1 + ε− Sj−1 if ε ∈

(
Sj−1, Sj−1 + ∆Sij −∆Skj

)
Sij −∆Skj +

ε−Sj−1−∆Sij+∆Skj
N

if ε ∈
(
Sj−1 + ∆Sij −∆Skj , Sj

)
.

If instead µj = ∞ and ∆Sij < ∆Skj , then marginal bids are only accepted from
competitors of supplier i, as long as each competitor’s unmet supply at Pj, Skj −
sk (ε), is larger than for supplier i.

si (ε) =

{
Sij−1 if ε ∈

(
Sj−1, Sj−1 + (N − 1)

(
∆Skj −∆Sij

))
Sij−1 +

ε−Sj−1−(N−1)(∆Skj−∆Sij)
N

if ε ∈
(
Sj−1 + (N − 1)

(
∆Skj −∆Sij

)
, Sj
)
.

The statement follows from differentiation of the above expressions with respect
to Sij−1 and S

i
j.

We are now able to establish the Nash equilibria stated in the main text.
Proof. (Proposition 1) It follows from (6) and Lemma 2 that the first-order

solution of Si1 increases when µ2 decreases and that Si1 increases when µ1 increases.
Thus, competitiveness is maximized when µ1 =∞ and µ2 = 0. (8) - (10) follows
from Lemma 2.
In the next step, we want to prove that the first-order solution in (8) constitutes

an NE. It follows from Lemma 6, Lemma 8 and Lemma 9 in Appendix that if
µ1 =∞ and µ2 = 0, and competitors have an identical supply, Sk1 = (N−1)ki(P2−c)

N∆P2
,

then:
∂E(πi)

∂Si1
= −∆P2S

i
1g

+N−1
N

(P1 − c) gmin
(
∆S1 −∆Si1 + ∆Sk1 ,∆S1 − (N − 1)

(
∆Sk1 −∆Si1

))
+N−1

N
min

(
N∆Si2, N∆Sk2

)
(P2 − c) g

= −∆P2S
i
1g + (N − 1) (P1 − c) gmin

(
Sk1 , S

i
1

)
+ (N − 1) min

(
ki − Si1, ki − Sk1

)
(P2 − c) g.

(20)
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We note that ∂E(πi)

∂Si1
is piece-wise linear in Si1 with a break point at S

i
1 = Sk1 , where

∂E(πi)

∂Si1
= 0. Moreover, ∂E(πi)

∂Si1
= (N − 1)

(
ki − Sk1

)
(P2 − c) g ≥ 0 for Si1 = 0 and it

follows from (6) that ∂E(πi)

∂Si1
= −∆P2kig + (N − 1) (P1 − c) gSk1 ≤ 0 for Si1 = ki.

Hence, we can conclude that ∂2E(πi)

∂(Si1)
2 ≤ 0. Thus, Si1 = Sk1 is the best response to

Sk1 = (N−1)ki(P2−c)
N∆P2

, which verifies that (8) constitutes a Nash equilibrium if µ1 =∞
and µ2 = 0.
In the next step, we want to prove that the first-order solution in (9) constitutes

an NE. It follows from Lemma 6 and Lemma 8 in Appendix that if µ1 = µ2 = 0,
and competitors have an identical supply, Sk1 = (N−1)(P2−c) ki

∆P2+(N−1)(P2−c) , then:

∂E(πi)

∂Si1
= −∆P2S

i
1g

+ (N − 1) max
(
0,∆Sk1 −∆Si1

)
(P1 − c) g

+ (N − 1) min
(
∆Si2,∆S

k
2

)
(P2 − c) g

= −∆P2S
i
1g

+ (N − 1) max
(
0, Sk1 − Si1

)
(P1 − c) g

+ (N − 1) min
(
ki − Si1, ki − Sk1

)
(P2 − c) g.

(21)

We have ∂E(πi)

∂Si1
= (N − 1)Sk1 (P1 − c) g + (N − 1)

(
ki − Sk1

)
(P2 − c) g ≥ 0 for

Si1 = 0 and ∂E(πi)

∂Si1
= −∆P2kig ≤ 0 for Si1 = ki.

∂E(πi)

∂Si1
is piece-wise linear in Si1

with a break point at Si1 = Sk1 , where
∂E(πi)

∂Si1
= 0, so we can now conclude that

∂2E(πi)

∂(Si1)
2 ≤ 0. Thus Si1 = Sk1 is the best response to S

k
1 = (N−1)(P2−c) ki

∆P2+(N−1)(P2−c) , which

verifies that (9) constitutes a Nash equilibrium for µ1 = µ2 = 0.
It follows from Holmberg et al. (2013) that (10) constitutes a Nash equilibrium.

Finally, the following argument shows that supplier i’s loss associated with the
quantity effect at P2 dominates the loss associated with the quantity effect at P1

for pro rata on the margin rationing. It follows from Assumption 1 and (6) that

∆Si1 (P1 − c) = Si1 (P1 − c) =
(N − 1) (P2 − c) ki

(N + 1) ∆P2

(P1 − c)

=
(N − 1) (P1 − c)

(N + 1) ∆P2

(P2 − c) ki

≤ ∆P2

(N + 1) ∆P2

(P2 − c) ki

≤ (N + 1) ∆P2− (N − 1) (P2 − c)
(N + 1) ∆P2

(P2 − c) ki

=
(
ki − Si1

)
(P2 − c) = ∆Si2 (P2 − c) ,

when Si1 = (N−1)ki(P2−c)
(N+1)∆P2

.
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6.3 A.3 Approximate first-order condition for multiple price
levels

The following lemma is useful when we want to analyse the convergence properties
of the first-order condition as the number of steps per supply function increases.

Lemma 10 We can make the following statements for the first-order condition
in Corollary 2 when Pj − C ′i

(
Sij
)
> 0 and µj > 0 for all price levels:

1. The difference Sij+1 − Sij is of the order ∆Pj+1.

2. The discrete first-order condition in Corollary 2 can be approximated by:

∂E (πi)

∂Sij
= −∆Pj+1S

i
jg (Sj) +

(N − 1)

N

[
Pj − C ′i(Sij)

]
g (Sj)

(
µj∆Sj

(µj + 1)
+

∆Sj+1

(µj+1 + 1)

)
(22)

+O
(
(∆Pj+1)2) . (23)

Proof. The sum

I := (N−1)
N

Sj∫
Sj−1

[Pj − C ′i(si (ε))]
(

1− (Sj−ε)µj
(∆Sj)

µj

)
g (ε) dε

+ (N−1)
N(∆Sj+1)µj+1

Sj+1∫
Sj

[Pj+1 − C ′i(si (ε))] (Sj+1 − ε)µj+1 g (ε) dε

(24)

must be of the order ∆Pj+1, otherwise the first-order condition in Corollary 2 in
Appendix cannot be satisfied for small∆Pj+1. Supply schedules are symmetric and
non-decreasing. Moreover, Pj+1 −C ′i

(
Sij+1

)
> 0, µj > 0, N ≥ 2, and g (ε) > 0, so

it follows that we must have:

I ≥
(N − 1)

[
Pj − C ′i(Sij)

]
g

N

Sj∫
Sj−1

(
1− (Sj − ε)µj

(∆Sj)
µj

)
dε ≥ 0. (25)

We have that I is of the order ∆Pj+1 and ∆Sj ≥ ∆Sij ≥ 0, so the above inequality
implies that ∆Sjand ∆Sij must both be of the order ∆Pj+1 or, equivalently, of the
order ∆Pj, as r =

∆Pj
∆Pj+1

is bounded.
In the next step, we want to derive the Taylor expansions of the first-order

conditions. Using Taylor expansions and the above result, the first-order condition
in Corollary 2 can be written:

∂E(πi)

∂Sij
= −∆Pj+1S

i
jg (Sj)

+ (N−1)
N

Sj∫
Sj−1

[
Pj − C ′i(Sij)+O (∆Pj)

] (
1− (Sj−ε)µj

(∆Sj)
µj

)
[g (Sj) +O (∆Pj)] dε

+ (N−1)
N

Sj+1∫
Sj

[
Pj+1 − C ′i(Sij+1)+O (∆Pj+1)

] (Sj+1−ε
∆Sj+1

)µj+1
[g (Sj+1) +O (∆Pj+1)] dε
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Hence, as ∆Sjand ∆Sij are of the order ∆Pj+1:

∂E(πi)

∂Sij
= −∆Pj+1S

i
jg (Sj)

+ (N−1)
N

[
Pj − C ′i(Sij)

]
g (Sj)

Sj∫
Sj−1

(
1− (Sj−ε)µj

(∆Sj)
µj

)
dε

+ (N−1)
N

[
Pj+1 − C ′i(Sij+1)

]
g (Sj+1)

Sj+1∫
Sj

(Sj+1−ε)µj+1
(∆Sj+1)µj+1

dε

+O
(
(∆Pj+1)2) .

(26)

It can be shown that ∫ Sj
Sj−1

(
1− (Sj−ε)µj

(∆Sj)
µj

)
dε =

µj∆Sj
(µj+1)∫ Sj+1

Sj

(Sj+1−ε)µj+1
(∆Sj+1)µj+1

dε =
∆Sj+1

(µj+1+1)
.

Using these results and that ∆Sjand ∆Sij are of the order ∆Pj+1, the Taylor
expansion in (26) can be simplified to:

∂E (πi)

∂Sij
= −∆Pj+1S

i
jg (Sj) +

(N − 1)

N

[
Pj − C ′i(Sij)

]
g (Sj)

(
µj∆Sj

(µj + 1)
+

∆Sj+1

(µj+1 + 1)

)
+O

(
(∆Pj+1)2) . (27)

We are now able to prove the following consistency statement in the main text.
Proof. (Lemma 3) We use the Taylor approximation in Lemma 10 to ap-

proximate the difference equation in Lemma 1:

−∆Pj+1S
i
jg (Sj)+

(
Pj − C ′i

(
Sij
))
g (Sj)

(N − 1)

N

[
∆Sj+1

µj+1 + 1
+
µj∆Sj
µj + 1

]
+O

(
(∆Pj+1)2) = 0.

We have assumed that g is bounded away from zero. Thus

−∆Pj+1S
i
j +
(
Pj − C ′i

(
Sij
))(N − 1)

N

[
∆Sj+1

µj+1 + 1
+
µj∆Sj
µj + 1

]
+O

(
(∆Pj+1)2) = 0.

(28)
Symmetry implies that

−∆Pj+1S
i
j +
(
Pj − C ′i

(
Sij
))

(N − 1)

[
∆Sij+1

µj+1 + 1
+
µj∆S

i
j

µj + 1

]
+O

(
(∆Pj+1)2) = 0.

Thus

−Sij +
(
Pj − C ′i

(
Sij
))

(N − 1)

[
∆Sij+1
µj+1+1

+
µj∆S

i
j

µj+1

]
∆Pj+1

+O (∆Pj+1) = 0,

so with ∆Pj = r∆Pj+1

−Sij+
(
Pj − C ′i

(
Sij
))

(N − 1)

(
∆Sij+1

(µj+1 + 1) ∆Pj+1

+
µjr∆S

i
j

(µj + 1) ∆Pj

)
+O (∆Pj+1) = 0.
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Hence,

1(
1

(µj+1+1)
+

µjr

(µj+1)

) ( ∆Sij+1

(µj+1 + 1) ∆Pj+1

+
µjr∆S

i
j

(µj + 1) ∆Pj

)

=
Sij(

1
(µj+1+1)

+
µjr

(µj+1)

)
(N − 1)

(
Pj − Ci′

(
Sij
)) +O (∆Pj+1) .

If Sij are replaced by samples of the continuous supply function qi (p) at price Pj,
then the left-hand side becomes an estimate of q′i (Pj) and the right-hand side
converges to:

qi (Pj)

(N − 1)
(

1
(µj+1+1)

+
µjr

(µj+1)

)
(Pj − Ci′(qi (Pj)))

when q′i (Pj) is bounded. Thus, the first-order condition in Lemma 1 is consistent
with the ordinary differential equation in (11) when Pj> C ′i (qi (Pj)) and µj > 0.
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