Fan, Jingwen; Minford, Patrick; Ou, Zhirong

Working Paper
The role of Fiscal policy in Britain's Great Inflation

Provided in Cooperation with:
Cardiff Business School, Cardiff University

Suggested Citation: Fan, Jingwen; Minford, Patrick; Ou, Zhirong (2014) : The role of Fiscal policy in Britain's Great Inflation, Cardiff Economics Working Papers, No. E2014/20, Cardiff University, Cardiff Business School, Cardiff

This Version is available at:
http://hdl.handle.net/10419/109050

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
The role of Fiscal policy in Britain’s Great Inflation

Jingwen Fan, Patrick Minford and Zhirong Ou

October 2014

This working paper is produced for discussion purpose only. These working papers are expected to be published in due course, in revised form, and should not be quoted or cited without the author’s written permission.
Cardiff Economics Working Papers are available online from:
econpapers.repec.org/paper/cdfwpaper/ and
business.cardiff.ac.uk/research/academic-sections/economics/working-papers
Enquiries: EconWP@cardiff.ac.uk
The role of fiscal policy in Britain’s Great Inflation*

Jingwen Fan Patrick Minford
(Nottingham Trent University) (Cardiff University and CEPR)

Zhirong Ou†
(Cardiff University)

Abstract

We investigate whether the Fiscal Theory of the Price Level (FTPL) can explain UK inflation in the 1970s. We confront the identification problem involved by setting up the FTPL as a structural model for the episode and pitting it against an alternative Orthodox model; the models have a reduced form that is common in form but, because each model is over-identified, numerically distinct. We use indirect inference to test which model could be generating the VECM approximation to the reduced form that we estimate on the data for the episode. Neither model is rejected, though the Orthodox model outperforms the FTPL. But the best account of the period assumes that expectations were a probability-weighted combination of the two regimes. Fiscal policy has a substantial role in this weighted model. A similar model accounts for the 1980s though the role of fiscal policy gets smaller.

Keywords: UK Inflation; Fiscal Theory of the Price Level; Identification; Testing; Indirect inference

JEL Classification: E31, E37, E62, E65

1 Introduction

In 1972 the UK government floated the pound while pursuing highly expansionary fiscal policies whose aim was to reduce rising unemployment. To control inflation the government introduced statutory wage and price controls. Monetary policy was given no targets for either the money supply or inflation; interest rates were held at rates that would accommodate growth and falling unemployment. Since wage and price controls would inevitably break down faced with the inflationary effects of such policies, this period appears to fit rather well with the policy requirements of the Fiscal Theory of the Price Level: fiscal

*We are grateful to Jagjit Chadha, Juergen von Hagen, Eric Leeper and economics seminar participants in Cardiff, Kent and Plymouth universities, for useful comments on an earlier version. We are of course responsible for any remaining errors.

†Corresponding author: B14, Aberconway building, Cardiff Business School, Colum Drive, Cardiff, UK, CF10 3EU. Tel.: +44 (0)29 2087 5190. Fax: +44 (0)29 2087 4419. (OuZ@cardiff.ac.uk)
policy appears to have been non-Ricardian (not limited by concerns with solvency) and monetary policy
accommodative to inflation - in the language of Leeper (1991) fiscal policy was ‘active’ and monetary
policy was ‘passive’. Furthermore, there was no reason to believe that this policy regime would come to
an end: both Conservative and Labour parties won elections in the 1970s and both pursued essentially the
same policies. While Margaret Thatcher won the Conservative leadership in 1975 and also the election
in 1979, during the period we study here it was not assumed that the monetarist policies she advocated
would ever occur, since they were opposed by the two other parties, by a powerful group in her own party,
as well as by the senior civil service. Only after her election and her actual implementation of them was
this a reasonable assumption. So it appears that in the period from 1972 to 1979 there was a prevailing
policy regime which was expected to continue. These are key assumptions about the policy environment;
besides this narrative background we also check them empirically below. Besides investigating behaviour
in the 1970s, we go on to investigate the behaviour of the Thatcher regime in the 1980s, to test the
popular assumption that this regime greatly changed the conduct of macro-economic policy. According
to this assumption there was a shift of regime towards ‘monetarist’ policy, in which monetary policy
became ‘active’ and fiscal policy became ‘passive’ (or ‘Ricardian’). Thus we broaden our analysis to put
the 1970s episode into the context of the evolution of macroeconomic policy over this whole dramatic
period of UK history.

Under FTPL the price level or inflation is determined by the need to impose fiscal solvency; thus it
is set so that the market value of outstanding debt equals the expected present value of future primary
surpluses. The FTPL has been set out and developed in Leeper (1991), Sims (1994, 1997), Woodford
Buiter (1999, 2002), and for surveys Kocherlakota and Phelan (1999), Carlstrom and Fuerst (2000) and
Christiano and Fitzgerald (2000). Empirical tests have been proposed by Canzoneri, Cumby and Diba
(2001) and Bohn (1998). Loyo (2000) for example argues that Brazilian policy in the late 1970s and
early 1980s was non-Ricardian and that the FTPL provides a persuasive explanation for Brazil’s high
inflation during that time. The work of Tanner and Ramos (2003) also finds evidence of fiscal dominance
for the case of Brazil for some important periods. Cochrane (1999, 2005) argues that the FTPL with a
statistically exogenous surplus process explains the dynamics of U.S. inflation in the 1970s. This appears
to be similar to what we see in the UK during the 1970s.

Our aim in this paper is to test the Fiscal Theory of the Price Level (FTPL) as applied to the UK in
the 1970s episode we described above; and to contrast it with the apparently very different policy in the
1980s. Cochrane (1999, 2001, and 2005) has noted that there is a basic identification problem affecting
the FTPL: in the FTPL fiscal policy is exogenous and forces inflation to produce fiscal solvency. But
similar economic behaviour can be consistent with an exogenous monetary policy determining inflation
in the ‘orthodox’ way, with Ricardian fiscal policy endogenously responding to the government budget constraint to ensure solvency given that inflation path - what we will call the Orthodox model. Thus there is a besetting problem in the empirical literature we have cited above, that equations that appear to reflect the FTPL and are used to ‘test’ it, could also be implied by the Orthodox set-up. To put it more formally the reduced form or solved representation of an FTPL model may in form be indistinguishable from that of an orthodox model; this is true of both single-equation implications of the model and complete solutions of it.

We meet this problem head on in this paper by setting up specific versions of both these two models and testing each against the data. We first establish that, even though these two models may produce similar reduced forms, they are identifiable by the detailed differences within these reduced forms and cannot therefore be confused with each other. Secondly, we follow a comprehensive testing procedure; we use Bayesian estimation, and rank the two models using various priors. We find that we cannot unambiguously rank these models regardless of the priors we use; also because the data likelihood is rather flat, we cannot even rank them convincingly using flat priors. The widely-used Likelihood Ratio test is thus quite weak in this context and cannot establish a ranking. Our principal test is to examine the models’ ability to reproduce the data behaviour, which can be represented by impulse response functions or moments and cross-moments but which we represent parsimoniously here by the features of a VECM; this is the little-known method of ‘indirect inference’, whose power is rather high as a test.

Our paper is organised as follows. We review the history of UK policy during the 1970s in section 2; in this section we establish a narrative that suggests the FTPL could have been at work. In section 3 we set up a particular model of FTPL that we argue could be a candidate to explain this UK episode; side by side with it we set out a particular rival ‘Orthodox’ model in which monetary policy is governed by a Taylor Rule and fiscal policy is Ricardian. In section 4 we discuss the data and the results of our testing procedure. In section 5 we compare our results with those for the 1980s. Section 6 concludes.

2 The nature of UK policy during the 1970s

From WWII until its breakdown in 1970 the Bretton Woods system governed the UK exchange rate and hence its monetary policy. While exchange controls gave some moderate freedom to manage interest rates away from foreign rates without the policy being overwhelmed by capital movements, such freedom was mainly only for the short term; the setting of interest rates was dominated in the longer term by the need to control the balance of payments sufficiently to hold the sterling exchange rate. Pegging the exchange rate implied that the price level was also pegged to the foreign price level. Through this mechanism monetary policy ensured price level determinacy. Fiscal policy was therefore disciplined by the inability
to shift the price level from this trajectory and also by the consequent fixing of the home interest rate to
the foreign level. While this discipline could in principle be overthrown by fiscal policy forcing a series
of devaluations, the evidence suggests that this did not happen; there were just two devaluations during
the whole post-war period up to 1970, in 1949 and 1967. On both occasions a Labour government viewed
the devaluation as a one-off change permitting a brief period of monetary and fiscal ease, to be followed
by a return to the previous regime.

However, after the collapse of Bretton Woods, the UK moved in a series of steps to a floating exchange
rate. Initially sterling was fixed to continental currencies through a European exchange rate system known
as ‘the snake in the tunnel’, designed to hold rates within a general range (the tunnel) and if possible
even closer (the snake). Sterling proved difficult to keep within these ranges, and was in practice kept
within a range against the dollar at an ‘effective’ (currency basket) rate. Finally it was formally floated
in June 1972.

UK monetary policy was not given a new nominal target to replace the exchange rate. Instead the
Conservative government of Edward Heath assigned the determination of inflation to wage and price
controls. A statutory ‘incomes policy’ was introduced in late 1972. After the 1974 election the incoming
Labour government set up a ‘voluntary incomes policy’, buttressed by food subsidies and cuts in indirect
tax rates. Fiscal policy was expansionary until 1975 and monetary policy was accommodative, with
interest rates kept low to encourage falling unemployment. In 1976 the Labour government invited the
IMF to stabilise the falling sterling exchange rate; the IMF terms included the setting of targets for
Domestic Credit Expansion. These were largely met by a form of control on deposits (the ‘corset’) which
forced banks to reduce deposits in favour of other forms of liability. But by 1978 these restraints had
effectively been abandoned and prices and incomes controls reinstated in the context of a pre-election
fiscal and monetary expansion - see Minford (1993), Nelson (2003) and Meenagh et al. (2009b) for further
discussions of the UK policy environment for this and other post-war UK periods.

Our description of policy suggests that the role of the nominal anchor for inflation may have been
played during the 1970s by fiscal policy, if only because monetary policy was not given this task and was
purely accommodative. Thus this episode appears on the face of it to be a good candidate for FTPL to
apply.

3 An FTPL Model for the UK in the 1970s

In what follows we set out a simple particular model of the FTPL that captures key aspects of UK
behaviour. We assume that the UK finances its deficit by issuing nominal perpetuities, each paying one
pound per period and whose present value is therefore \(\frac{1}{R_t} \) where \(R_t \) is the long-term rate of interest. We
use perpetuities here rather than the usual one-period bond because of the preponderance of long-term bonds in the UK debt issue: the average maturity of UK debt at this time was approximately ten years but a model with a realistic maturity structure would lose tractability. All bonds at this time were nominal (indexed bonds were not issued until 1981).

The government budget constraint can then be written as:

\[B_{t+1} + R_t = G_t + T_t + B_t \]

where \(G_t \) is government spending in money terms, \(T_t \) is government taxation in money terms, \(B_t \) is the number of perpetuities issued. Note that when perpetuities are assumed the debt interest in period \(t \) is \(B_t \) while the stock of debt at the start of period \(t \) has the value during the period of \(B_t R_t \); end-period debt therefore has the value \(B_{t+1} + R_t \). Note too the perpetuity interest rate is by construction expected to remain constant into the future.

We can derive the implied value of current bonds outstanding by substituting forwards for future bonds outstanding:

\[B_t + R_t = E_t \sum_{i=0}^{\infty} (T_{i+t} - G_{i+t}) \frac{1}{(1+R_t)^{i+t}} \]

We represent this equation in terms of each period’s expected ‘permanent’ tax and spending share, \(t_t \) and \(g_t \), and assume that \(E_t T_{i+t} = t_t E_t P_{i+t} y_{i+t} \) and \(E_t G_{i+t} = g_t E_t P_{i+t} y_{i+t} \). Thus these two shares summarise the key fiscal settings, in the same way that a consumer’s permanent income replaces the consumer’s complex income prospects with a constant stream of income with the same present value. It is a feature of such permanent variables (a class to which the perpetuity interest rate also belongs since it is the expected average of all future one-period interest rates) that they follow a random walk—Hall (1978). We will exploit this feature in what follows, both to develop this model’s behaviour and to distinguish this model from the Orthodox model.

We can then simplify (2) (see Appendix) to:

\[\frac{B_t}{R_t} P_{t+1} y_t = \frac{(t_t - g_t)}{\gamma} \]

where \(R_t = r_t^* + \pi_t \) (respectively the perpetuity real interest rate and perpetuity inflation rate, both ‘permanent’ variables), \(\gamma \) is the growth rate of equilibrium real GDP, \(y_t^* \) (which is a random walk with this as its drift term). All these expected permanent variables are by construction expected to be constant in the future at today’s level.

The pricing condition on bonds in equation (3) thus sets their value consistently with expected future primary surpluses. Suppose now the government reduces the present value of future primary surpluses. At an unchanged real value of the debt this would be a ‘non-Ricardian’ fiscal policy move. According to the FTPL prices will adjust to reduce the real value of the debt to ensure that the solvency condition is met. This is to be compared with the normal Ricardian situation, in which fiscal surpluses are endogenous so that fiscal shocks today lead to adjustments in future surpluses, the price level remaining unaffected.
Since the pricing equation sets the ratio of debt value to GDP equal to a function of permanent variables, it follows that this ratio b_t follows a random walk\(^1\) such that:

\[
(4) \quad b_t = \frac{b_t}{\pi_t} = E_t b_{t+1} \quad \text{and} \quad (5) \quad \Delta b_t = \eta_t, \quad \text{an i.i.d. process.}
\]

This in turn allows us to solve for the inflation shock as a function of other shocks (especially shocks to government tax and spending). With the number of government bonds issued, B_t, being pre-determined (issued last period) and therefore known at $t - 1$, equation (3) could be written as follows (taking logs and letting $log x_t^{ue} = log x_t - E_{t-1} log x_t$, the unexpected change in log x_t)

\[
(6) \quad log b_t^{ue} = - log R_t^{ue} - log \bar{P}_t - log y_t^{ue} \quad \text{[LHS of equation (3)]}
\]

\[
= log \left(\bar{f}_t - \bar{g}_t \right)^{ue} - log (1 + \pi_t + \gamma) - log (r_t^* - \gamma)^{ue} \quad \text{[RHS of equation (3)]}
\]

With all the variables in the equation defined to follow a random walk, and approximating unexpected changes in actual and permanent inflation as equal (so that for small γ, log $(1 + \pi_t + \gamma)^{ue} \approx \pi_t^{ue} \approx log \bar{P}_t^{ue}$), we can rewrite the above expression as approximately:

\[
(7) \quad -\Delta log (\pi_t + r_t^*) - \Delta log y_t^* = \Delta log (\bar{f}_t - \bar{g}_t) - \Delta log (r_t^* - \gamma)
\]

Using a first-order Taylor Series expansion around the sample means we can obtain a solution for $\Delta \pi_t$ as a function of change in government expenditure and tax rates

\[
(8) \quad \Delta \pi_t = \kappa(\Delta \bar{g}_t - \Delta \bar{f}_t) + \lambda \Delta r_t^* - \mu \Delta log y_t^*
\]

where $\kappa = \frac{\pi + \gamma}{\pi + \gamma}$, $\lambda = \frac{\pi - \gamma}{\pi + \gamma}$, $\mu = \bar{\pi} + \bar{\gamma}$, $\bar{\pi}$, $\bar{\gamma}$, \bar{f} and \bar{g} are sample mean values of the corresponding variables. We can integrate (8) to obtain:

\[
(9) \quad \pi_t = \kappa(\pi_t - \bar{f}_t) + c + \lambda r_t^* + \mu log y_t^*
\]

Tax and spending ratios are assumed to deviate temporarily from their permanent values according to error processes (which must be stationary by construction). Thus:

\[
(10) \quad (g_t - t_t) = (\bar{g}_t - \bar{f}_t) + \epsilon_t. \quad \text{Since by construction a permanent variable follows a random walk, this gives us:}
\]

\[
(11) \quad \Delta(g_t - t_t) = \Delta(\bar{g}_t - \bar{f}_t) + \Delta \epsilon_t = err^g_t
\]

where err^g_t is a stationary error process. We may now note that there is some unknown error process by which actual inflation is related to permanent inflation: thus $\pi_t = \pi_t + \eta_t$. We use (9) for the determinants of π_t and since we cannot observe $(\lambda r_t^* + \mu log y_t^*)$ we include this in the total error process, err^p_t, so that finally our FTPL model for inflation is:

\[
(12) \quad \pi_t = \kappa(g_t - t_t) + c^\pi + err^p_t
\]

We can now complete the DSGE model by adding a forward-looking IS curve, derived in the usual way from the household Euler equation and the goods market-clearing condition, and a New Keynesian Phillips Curve\(^2\):

\(^1\) A "permanent" variable π_t is by definition a variable expected not to change in the future so that $E_t \pi_{t+1} = \pi_t$. Thus $\pi_{t+1} = \pi_t + \epsilon_{t+1}$, where ϵ_{t+1} is an iid error making the process a random walk.

\(^2\) One might well argue that for the FTPL a more natural assumption would be a New Classical Phillips Curve, in which
(13) \(y_t - y_t^* = E_t(y_{t+1} - y_{t+1}^*) - \frac{1}{\sigma}(R_t^s - E_t\pi_{t+1}) + err_t^{IS} \)

(14) \(\pi_t = \theta(y_t - y_t^*) + \beta E_t\pi_{t+1} + err_t^{PP} \)

Note that the interest rate in the IS curve, \(R_t^s \), is the usual short term rate. Also we can see that since (12) sets inflation, (14) will solve for output and (13) will solve for interest rates. Equilibrium output, \(y_t^* \), approximated in the FTPL derivation as a random walk, is represented empirically by the H-P trend in output and estimated as an I(1) process:

(15) \(y_t^* - y_{t-1}^* = c^{ys} + \gamma(y_{t-1}^* - y_{t-2}^*) + err_t^{ys} \)

The permanent real interest rate is absorbed into the error term of the IS curve, as it was into that of (12) for inflation.

Our candidate FTPL model thus consists of equations (11)-(15), with all equation errors assumed to follow an AR(1) process. Notice that while the central bank can be thought of as ‘setting’ the short-term interest rate, it must do consistently with (13); it is in this sense that ‘monetary policy’ is endogenous. (12), which drives inflation, can be thought of as a financial market equilibrium condition; financial markets (including the exchange rate which is not explicitly in the model) react to future fiscal trends by forecasting inflation and moving asset prices in line. The model is silent on ‘off-equilibrium’ behaviour: theoretical critics have seized on this as a problem (e.g Buiter, 1999, 2002). But the model is not alone in such silence; for example in the standard open economy model of floating exchange rates the exchange rate jumps continuously to clear the foreign exchange market - an equilibrium condition - and it simply makes no sense to ask what off-equilibrium behaviour would be. The same is true here.

3.1 An Orthodox model:

To construct a particular Orthodox model we jettison equations (11) and (12) above in favour of a Taylor Rule to set \(R_t^s \) and a Ricardian fiscal equation that restores the deficit to some equilibrium level. Thus in place of these we have:

(12)’

\[R_t^s = (1 - \rho)[r^{ss} + \phi_\pi \pi_t + \phi_{gap}(y_t - y_t^*)] + \rho R_{t-1}^s + err_t^{R^s} \]

and

(11)’

\[\triangle(g_t - t_t) = -\delta[(g - t)_{t-1} - c^{g-t}] + err_t^{g-t} \]

Notice that this last equation implies that the primary fiscal surplus is stationary; this in turn implies that its permanent value does not move (since if it did it would make the surplus non-stationary). We there is price flexibility. It turns out that it makes virtually no difference - results available on request. This can be seen if one solves for output from (14); the only difference to the solution will come from having \(E_t\pi_{t+1} \) on the RHS instead of \((\pi_t - E_{t-1}\pi_t) \). These expressions are very similar in practice.
are to think of temporary variations in the surplus that do not alter long-run fiscal prospects. Thus in this model monetary policy sets inflation via a Taylor Rule and we assume that the fiscal surplus is set to ensure fiscal solvency given inflation, output and interest rates.

3.2 Model identification

It would be reasonable to ask whether a macroeconomic model of a few equations like the ones here can be considered to be identified. Le et al. (2013) examined this issue for a three-equation New Keynesian model of the sort being considered here. They found that it was likely to be heavily over-identified. Thus there were many more coefficients in the reduced form than in the structural model; under normal assumptions this should give several sets of estimates of the structural coefficients from the reduced form. With enough data these sets would coincide and so even a partial reduced form should be sufficient to yield a set of structural parameter estimates. In that paper they went further and sought to find alternative structural parameter sets that could generate the same reduced form; using indirect inference they were able to establish that no other sets could exist. These results suggest that we can regard each of the two models here as over-identified, implying that there is no chance of confusing the reduced form of the one with the reduced form of the other.

We can check the identification of our two models using exactly the same method. We carry out a Monte Carlo experiment in which we assume that the FTPL model is true (we give it the parameters similar to those we later estimate for it) and using the FTPL error properties we generate 1,000 samples of data from it (of the same length as in our 1970s sample here - 28 quarters) and calculate the VECM approximate reduced form from it. We now ask whether any Orthodox model could generate the same data and hence the same VECM reduced form, using the indirect inference test at 95% confidence; if indeed it could do so, thus effectively being the same model, then we would reject exactly the same percent of the time as we reject the true FTPL model - namely 5%. In fact we reject it for 51% of the samples; thus it cannot be the same model (table 1. We also did the reverse, and found the same, rejecting about 20% of the time). In doing this check we have searched over a wide range of parameter values using the Simulated Annealing algorithm, starting from the estimated parameters.

<table>
<thead>
<tr>
<th>Table 1: Identification check: FTPL vs Orthodox Taylor</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the true model is</td>
</tr>
<tr>
<td>FTPL</td>
</tr>
<tr>
<td>Orthodox</td>
</tr>
</tbody>
</table>

This test shows clearly that these two models cannot be confused with each other under conditions where data availability is not a problem - i.e., under the asymptotic conditions we assume for identification.
Thus they are not ‘observationally equivalent’. This does not contradict the general problem we noted at the start that the two models have similar reduced forms. In particular we show below that their data representations in VECM form are similar. To distinguish them one needs to estimate and test them in full, which we now go on to do.

4 Data and Test Results for the 1970s

We limit our focus to the period between 1972-1979 during which the FTPL could be a potential candidate given the economic background. We use unfiltered (but seasonally adjusted) data from official sources. We define as R_s^t the Minimum Lending Rates, and as π_t the percentage change in the CPI index, both in quarterly term. We use for y_t the real GDP level in natural logarithm and for y_t^{*} its trend values as suggested by the H-P filter. The primary deficit ratio $g - t$ is simply the difference between G/GDP and T/GDP, where G and T are respectively the levels of government spending and tax income. In particular, since for model convergence the amount of government spending is required to be less than taxation for government bonds to have a positive value, and that government spending on a capital variety is expected to produce future returns in line with real interest rates, we deduct the trend in such spending from the trend in G/GDP. By implementing this we assume that the average share of expenditure devoted to fixed capital, health and education in the period can be regarded as the (constant) trend in such capital spending; of course the ‘capital’ element in total government spending is unobservable and hence our assumption is intended merely to adjust the level of g in an approximate way but not its movement over time which we regard as accurately capturing changes in such spending. This adjustment counts for about 10% of GDP. Note that the primary deficit is therefore negative (i.e. there is a primary surplus throughout). Figure 1 plots the time series.

4.1 The method of Indirect Inference

We begin our analysis with the Indirect Inference (II) method we found gave us the most convincing results; we introduce Bayesian and other analysis after first presenting the II results. The II method used here is that originally proposed in Meenagh et al. (2009a) and subsequently refined by Le et al. (2011) using Monte Carlo experiments. The approach employs an auxiliary model that is completely independent of the theoretical one to produce a description of the data against which the performance of the theory is evaluated indirectly. Such a description can be summarised either by the estimated parameters of the auxiliary model or by functions of these; we will call these the descriptors of the data. While these are treated as the ‘reality’, the theoretical model being evaluated is simulated to find its implied values for them.
II has been widely used in the estimation of structural models (e.g., Smith, 1993, Gregory and Smith, 1991, 1993, Gourieroux et al., 1993, Gourieroux and Monfort, 1995 and Canova, 2005). Here we make a further use of it, to evaluate an already estimated or calibrated structural model. The common element is the use of an auxiliary time series model. In estimation the parameters of the structural model are chosen such that when this model is simulated it generates estimates of the auxiliary model similar to those obtained from the actual data. The optimal choices of parameters for the structural model are those that minimise the distance between a given function of the two sets of estimated coefficients of the auxiliary model. Common choices of this function are the actual coefficients, the scores or the impulse response functions. In model evaluation the parameters of the structural model are taken as given. The aim is to compare the performance of the auxiliary model estimated on simulated data derived from the given estimates of a structural model - which is taken as a ‘true’ model of the economy, the null hypothesis - with the performance of the auxiliary model when estimated from the actual data. If the structural model is correct then its predictions about the impulse responses, moments and time series properties of the data should statistically match those based on the actual data. The comparison is based on the distributions of the two sets of parameter estimates of the auxiliary model, or of functions of these estimates.

The testing procedure thus involves first constructing the errors implied by the previously estimated/calibrated structural model and the data. These are called the structural errors and are backed out directly from the model equations and the data\(^3\). These errors are then bootstrapped and used to

\(^3\)Some equations may involve calculation of expectations. The method we use here to initiate the tests is the robust instrumental variables estimation suggested by McCallum (1976) and Wickens (1982): we set the lagged endogenous data as instruments and calculate the fitted values from the VAR we use as the auxiliary model in what follows. Once the search
generate for each bootstrap new data based on the structural model. An auxiliary time series model is then fitted to each set of data and the sampling distribution of the coefficients of the auxiliary time series model is obtained from these estimates of the auxiliary model. A Wald statistic is computed to determine whether functions of the parameters of the time series model estimated on the actual data lie in some confidence interval implied by this sampling distribution.

The auxiliary model should be a process that would describe the evolution of the data under any relevant model. It is known that for non-stationary data the reduced form of a macro model is a VARMA where non-stationary forcing variables enter as conditioning variables to achieve cointegration (i.e. ensuring that the stochastic trends in the endogenous vector are picked up so that the errors in the VAR are stationary). This in turn can be approximated as a VECM\(^4\). So following Meenagh et al. (2012) procedure (effectively indirect estimation) has converged on the best model parameters, we then move to generating the expectations exactly implied by the parameters and the data, and use these to calculate the errors, which are then the exact errors implied by the model and data. The reason we do not use this ‘exact’ method at the start is that initially when the model is far from the data, the expectations generated are also far from the true ones, so that the errors are exaggerated and the procedure may not converge.

\(^4\)Following Meenagh et al. (2012), we can say that after log-linearisation a DSGE model can usually be written in the form
\[
A(L)y_t = BE_1y_{t+1} + C(L)x_t + D(L)e_t
\]
where \(y_t\) are \(p\) endogenous variables and \(x_t\) are \(q\) exogenous variables which we assume are driven by
\[
\Delta x_t = a(L)\Delta x_{t-1} + d + e(L)e_t.
\]
The exogenous variables may contain both observable and unobservable variables such as a technology shock. The disturbances \(e_t\) and \(e_t\) are both iid variables with zero means. It follows that both \(y_t\) and \(x_t\) are non-stationary. \(L\) denotes the lag operator \(z_{t-1} = L^2z_2\) and \(A(L), B(L)\) etc. are polynomial functions with roots outside the unit circle.

The general solution of \(y_t\) is
\[
y_t = G(L)y_{t-1} + H(L)x_t + f + M(L)e_t + N(L)e_t.
\]
where the polynomial functions have roots outside the unit circle. As \(y_t\) and \(x_t\) are non-stationary, the solution has the \(p\) cointegration relations
\[
y_t = [I - G(1)]^{-1}H(1)x_t + f = \Pi x_t + g.
\]

The long-run solution to the model is
\[
\begin{align*}
\bar{y}_t & = \Pi x_t + g \\
\bar{x}_t & = [1 - a(1)]^{-1}dt + c(1)\xi_t \\
\xi_t & = \Sigma_{i=1}^{t-1} \epsilon_t
\end{align*}
\]

Hence the long-run solution to \(x_t\), namely, \(\bar{x}_t = \bar{y}_t^D + \bar{y}_t^s\) has a deterministic trend \(\bar{y}_t^D = [1 - a(1)]^{-1}dt\) and a stochastic trend \(\bar{y}_t^s = [1 - a(1)]^{-1}c(1)\xi_t\).

The solution for \(y_t\) can therefore be re-written as the VECM
\[
\Delta y_t = -(I - G(1))(y_{t-1} - \Pi x_{t-1}) + P(L)\Delta y_{t-1} + Q(L)\Delta x_t + f + M(L)e_t + N(L)e_t
\]
\[
\omega_t = M(L)e_t + N(L)e_t
\]
\[
\Delta y_t = K(y_{t-1} - \Pi x_{t-1}) + R(L)\Delta y_{t-1} + S(L)\Delta x_t + g + \xi_t
\]
\[
\text{Hence, in general, the disturbance } \omega_t \text{ is a mixed moving average process. This suggests that the VECM can be approximated by the VARX}
\]
\[
\Delta y_t = K[(y_{t-1} - \bar{y}_{t-1}) - \Pi(x_{t-1} - \bar{x}_{t-1})] + R(L)\Delta y_{t-1} + S(L)\Delta x_t + g + \xi_t
\]
\[
\text{As }
\bar{x}_t = \bar{y}_{t-1} + [1 - a(1)]^{-1}[d + e_t]
\]
the VECM can also be written as
\[
\Delta y_t = K[(y_{t-1} - \bar{y}_{t-1}) - \Pi(x_{t-1} - \bar{x}_{t-1})] + R(L)\Delta y_{t-1} + S(L)\Delta x_t + h + \xi_t.
\]

Either equations (A6) or (A7) can act as the auxiliary model. Here we focus on (A7); this distinguishes between the effect of the trend element in \(x\) and the temporary deviation from its trend. In our models these two elements have different
we use as the auxiliary model a VECM which we reexpress as a VARX(1) for the four macro variables (interest rate, output, inflation and the primary budget deficit, with a time trend and with y_t entered as the exogenous non-stationary ‘productivity trend’ (these two elements having the effect of achieving cointegration). Thus our auxiliary model in practice is given by: $y_t = [I - K]y_{t-1} + \gamma \pi_{t-1} + gt + v_t$ where π_{t-1} is the stochastic trend in productivity, gt are the deterministic trends, and v_t are the VECM innovations. We treat as the descriptors of the data all the VARX coefficients and the VARX error variances. From these a Wald statistic may be computed that acts as a test at a given confidence level of whether the observed dynamics, volatility and cointegrating relations of the chosen variables are explained by the DSGE-model-simulated joint distribution of these. This Wald statistic is given by:

$$
(\Phi - \overline{\Phi})' \sum_{(\Phi \Phi)}^{-1} (\Phi - \overline{\Phi})
$$

(1)

where Φ is the vector of VARX estimates of the chosen descriptors yielded in each simulation, with $\overline{\Phi}$ and $\sum_{(\Phi \Phi)}$ representing the corresponding sample means and variance-covariance matrix of these calculated across simulations, respectively.

The joint distribution of the Φ is obtained by bootstrapping the innovations implied by the data and the theoretical model; it is therefore an estimate of the small sample distribution\(^5\). Such a distribution is generally more accurate for small samples than the asymptotic distribution; it is also shown to be consistent by Le et al. (2011) given that the Wald statistic is ‘asymptotically pivotal’; they also showed it had quite good accuracy in small sample Monte Carlo experiments\(^6\).

This testing procedure is applied to a set of (structural) parameters put forward as the true ones (H_0, the null hypothesis); they can be derived from calibration, estimation, or both. However derived, the test then asks: could these coefficients within this model structure be the true (numerical) model generating the data? Of course only one true model with one set of coefficients is possible. Nevertheless we may have chosen coefficients that are not exactly right numerically, so that the same model with other coefficient values could be correct. Only when we have examined the model with all coefficient values that are feasible within the model theory will we have properly tested it. For this reason we extend our procedure by a further search algorithm, in which we seek other coefficient sets that minimise the Wald test statistic - in doing this we are carrying out indirect estimation. The indirect estimates of the model are consistent and asymptotically normal, in common with FIML - see Smith (1993), Gregory and Smith

\(^5\)The bootstraps in our tests are all drawn as time vectors so contemporaneous correlations between the innovations are preserved.

\(^6\)Specifically, they found on stationary data that the bias due to bootstrapping was just over 2% at the 95% confidence level and 0.6% at the 99% level. Meenagh et al (2012) found even greater accuracy in Monte Carlo experiments on nonstationary data.
Thus we calculate the minimum-value full Wald statistic for each model using a powerful algorithm based on Simulated Annealing (SA) in which search takes place over a wide range around the initial values, with optimising search accompanied by random jumps around the space\(^7\). The merit of this extended procedure is that we are comparing the best possible versions of each model type when finally doing our comparison of model compatibility with the data.

4.1.1 Model results under II

We now turn to the empirical performance of the competing models outlined above under II. We summarise the model estimates (by Simulated Annealing) in table 2 (The Wald test results based on these are shown in table 6 in what follows).

<table>
<thead>
<tr>
<th>Model parameter</th>
<th>Starting value</th>
<th>FTPL</th>
<th>Orthodox</th>
<th>Taylor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>2.4</td>
<td>4.07</td>
<td>1.96</td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.99</td>
<td>fixed</td>
<td>fixed</td>
<td></td>
</tr>
<tr>
<td>(\sigma)</td>
<td>2.27</td>
<td>0.02</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>(\kappa)</td>
<td>0.26</td>
<td>0.35</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.5</td>
<td>-</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>(\phi_\pi)</td>
<td>2</td>
<td>-</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>(\phi_{x\text{gap}})</td>
<td>0.125</td>
<td>-</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.003</td>
<td>-</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>((y^*))</td>
<td>0.0002</td>
<td>fixed</td>
<td>fixed</td>
<td></td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.99</td>
<td>fixed</td>
<td>fixed</td>
<td></td>
</tr>
<tr>
<td>Shock persistence ((\rho's))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(err_{\text{pp}})</td>
<td>-</td>
<td>0.43</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>(err_{\text{IS}})</td>
<td>-</td>
<td>0.64</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>(err_{y^*})</td>
<td>-</td>
<td>0.93</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>(err_{y^-1})</td>
<td>-</td>
<td>-0.1</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>(err_\gamma)</td>
<td>-</td>
<td>0.24</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(err_{R^S})</td>
<td>-</td>
<td>-</td>
<td>0.33</td>
<td></td>
</tr>
</tbody>
</table>

The estimates for the two models’ shared parameters \((\theta \text{ and } \sigma)\) are strikingly different. In the FTPL \(\theta\) is high and \(\sigma\) is low, implying a steep Phillips curve and a flat IS curve. Since inflation is determined exogenously by the exogenous deficit ratio and its own error process, the steep Phillips curve (which determines the output gap) implies that the output gap responds weakly to inflation while the flat IS curve (which sets interest rates) implies that the real interest rate responds weakly to the output gap.

\(^7\text{We use a Simulated Annealing algorithm due to Ingber (1996). This mimics the behaviour of the steel cooling process in which steel is cooled, with a degree of reheating at randomly chosen moments in the cooling process—this ensuring that the defects are minimised globally. Similarly the algorithm searches in the chosen range and as points that improve the objective are found it also accepts points that do not improve the objective. This helps to stop the algorithm being caught in local minima. We find this algorithm improves substantially here on a standard optimisation algorithm. Our method used our standard testing method: we take a set of model parameters (excluding error processes), extract the resulting residuals from the data using the LIML method, find their implied autoregressive coefficients (AR(1) here) and then bootstrap the implied innovations with this full set of parameters to find the implied Wald value. This is then minimised by the SA algorithm.}\)
The impulse response functions for the FTPL model (figures 2-5) confirm this\(^8\).

Effectively this suppresses most of the simultaneity in the model as can be seen from the variance decomposition in table 3. We find this by bootstrapping the innovations of the model repeatedly for the same sample episode - plainly the variances of non-stationary variables, while undefined asymptotically, are defined for this (short) sample period. One sees that inflation is disturbed by both the fiscal deficit and its own shock; output by both the productivity trend and the supply (\(err_TPP\)) shock, with a minimal

\(^8\text{In this model the effect of IS curve shock on output and inflation is nil.}\)
effect from the inflation shock; real interest rates entirely by its own (err_{IS}) shock; nominal interest rates respond to a mixture of shocks because they combine inflation and real interest rates.

Table 3: Variance decomposition (FTPL)

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>y</th>
<th>π</th>
<th>\hat{R}^s</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>err_{IS}:</td>
<td>0</td>
<td>0</td>
<td>23.1</td>
<td>99.9</td>
</tr>
<tr>
<td>err_{PP}:</td>
<td>79.1</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>err_{π}:</td>
<td>2.2</td>
<td>67.1</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>err_{y}:</td>
<td>18.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>err_{g}:</td>
<td>0</td>
<td>32.9</td>
<td>68.9</td>
<td>0</td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

On the other hand, the estimates for the Orthodox model imply a standard Phillips Curve and also a fairly flat IS curve. The Taylor Rule has fairly standard New Keynesian responses to inflation (1.3) and the output gap (0.06), implying a flat response of interest rates to output gap movement. There is also a weak Ricardian fiscal plan, with the deficit converging extremely slowly ($\delta = 0.007$). In this model the macro-economy is orthogonal to the fiscal deficit but there is considerable simultaneity otherwise. Shocks to demand (IS), supply (PP) and monetary policy (R^s) each move all four macro variables in a relatively normal way, as can be seen from the impulse responses\(^9\) (figures 6-9) and also the variance decomposition (carried out just as for the FTPL) in table 4. To replicate the data behaviour in this episode, with its large swings in inflation, the model finds large monetary policy (err_{R^s}) shocks which need to be moderated by Taylor Rule interest rate responses to limit inflation variation; these shocks dominate inflation variance which triggers the Taylor Rule response limiting the effects on real interest rates and output. Demand (err_{IS}) shocks trigger inflation and Taylor Rule responses, so largely affecting interest rate variance. Supply (err_{PP}) shocks trigger sharp inflation responses which are largely neutralised by real interest rate responses; these in turn destabilise output, given the flat IS curve.

\(^9\)In this model the effect of deficit errors are nil on output, inflation, and both nominal and real interest rates.
Table 4: Variance decomposition (Orthodox Taylor)

<table>
<thead>
<tr>
<th>Unit:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>errIS</td>
<td>8.9</td>
<td>33.3</td>
<td>93.2</td>
<td>62.8</td>
</tr>
<tr>
<td>errPP</td>
<td>58.8</td>
<td>6.1</td>
<td>4.9</td>
<td>20.8</td>
</tr>
<tr>
<td>errR</td>
<td>16.8</td>
<td>60.1</td>
<td>1.9</td>
<td>16.3</td>
</tr>
<tr>
<td>erry</td>
<td>15.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>errg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

What do the tests show about the two models? We may now consider the way in which each model replicates the VECM estimates on the data, as shown in table 5.

One thing the table immediately confirms is that both models have VARX representations that are formally similar to each other’s and also in general in most cases embrace the actual data coefficients. This illustrates the formal similarity of the two models in terms of their data representation, already noted in our discussion of the identification problem: there is no a priori qualitative or numerical restriction we can apply to any VARX coefficient(s) that would reflect one model and not the other. Instead we rely on the joint distribution of all these VARX coefficients to differ in numerical detail across the two models, as we know they do from our identification discussion above: we then ask via the Wald test whether the joint distribution of each model could contain the joint values found on the data. These tests are shown in table 6. They show the percentile of the Wald distribution where the data-based VARX lies (the ‘Wald percentile’) and also the p-value (=100 minus this percentile)/100).

The table suggests that when the models are asked to fit all elements of the VARX, both models pass the Wald test at 95% confidence level. Both models deal very well with volatility. On trend and dynamics, the Orthodox passes comfortably while the FTPL is on the margin of rejection. It is in fact hard to establish much of a difference between the two models; though the p-value of the Orthodox model on the all-elements test is about double that on the FTPL, this is not a wide margin. Both models in effect marginally fail to be rejected overall.

However, we know that it is impossible for both models to be true, having checked that they are identified. Thus this interesting result could mean that one of the two models is true but the other one, though false, cannot be rejected because there is insufficient power with the small sample here; or it could mean that both models are false and a third model that lies somewhere between the two is true. In this case both models could have enough elements of truth in them not to be rejected. This would suggest that some combination of the two, combining these elements, could be closer to the true model than either alone.

This was, as should have been clear from our earlier discussion of the context, a period of great uncertainty in UK economics and politics; in 1975 there was even a proposal by certain Labour politicians...
Table 5: VECM estimates: actual vs model simulations

<table>
<thead>
<tr>
<th>VECM parameter</th>
<th>Actual</th>
<th>FTPL lower</th>
<th>FTPL upper</th>
<th>Ortho. lower</th>
<th>Ortho. upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_t on y_{t-1}</td>
<td>-0.2740</td>
<td>-0.2835</td>
<td>0.6075</td>
<td>-0.2551</td>
<td>0.6552*</td>
</tr>
<tr>
<td>π_{t-1}</td>
<td>-0.3808</td>
<td>-0.6171</td>
<td>0.4412</td>
<td>-0.6558</td>
<td>0.3253</td>
</tr>
<tr>
<td>R_s^t</td>
<td>-0.3502</td>
<td>-1.9803</td>
<td>1.5485</td>
<td>-2.3809</td>
<td>1.0812</td>
</tr>
<tr>
<td>$(g - t)_{t-1}$</td>
<td>0.7864</td>
<td>-1.1111</td>
<td>0.8224</td>
<td>-1.0967</td>
<td>0.8337</td>
</tr>
<tr>
<td>y_t on y_{t-1}</td>
<td>3.2576</td>
<td>-2.8302</td>
<td>4.1978</td>
<td>-3.0749</td>
<td>4.0808</td>
</tr>
<tr>
<td>Trend</td>
<td>-0.0089</td>
<td>-0.0069</td>
<td>0.0083</td>
<td>-0.0079</td>
<td>0.0074*</td>
</tr>
<tr>
<td>π_t on y_{t-1}</td>
<td>0.3535</td>
<td>-0.5080</td>
<td>0.4997</td>
<td>-0.3631</td>
<td>0.6922</td>
</tr>
<tr>
<td>π_{t-1}</td>
<td>0.3231</td>
<td>-0.4205</td>
<td>0.4611</td>
<td>-0.4481</td>
<td>0.3925</td>
</tr>
<tr>
<td>R_s^t</td>
<td>1.4273</td>
<td>-1.0472</td>
<td>2.2328</td>
<td>-0.8633</td>
<td>2.5227</td>
</tr>
<tr>
<td>$(g - t)_{t-1}$</td>
<td>0.2311</td>
<td>-0.5509</td>
<td>1.3441</td>
<td>-0.7512</td>
<td>1.1868</td>
</tr>
<tr>
<td>y_t on y_{t-1}</td>
<td>-0.5633</td>
<td>-2.7752</td>
<td>3.6702</td>
<td>-3.4731</td>
<td>3.1963</td>
</tr>
<tr>
<td>Trend</td>
<td>0.0011</td>
<td>-0.0072</td>
<td>0.0074</td>
<td>-0.0075</td>
<td>0.0069</td>
</tr>
</tbody>
</table>

*: number lying beyond the lower/upper bound.

led by Tony Benn, a leading minister in the government, to install a siege economy (effectively to insulate an FTPL strategy from external pressures), and this was only narrowly defeated within the Labour government. It may therefore well be that people gave some probability to an FTPL regime continuing and some to an orthodox regime reasserting itself - in the manner described by Leeper (1991). We return to this issue after reviewing the empirical results obtained by Bayesian methods.

4.2 Bayesian analysis of the two models

Bayesian estimation methods have become widespread in macro-modelling and so it is appropriate that we ask what contribution they can make to our investigation here. There are two main approaches we can take: with strong priors and with flat or uninformative priors. In the latter case the Bayesian method
Table 6: Wald tests of the FTPL and the Orthodox models

<table>
<thead>
<tr>
<th>Elements tested</th>
<th>FTPL</th>
<th>Orthodox</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend and dynamics</td>
<td>95.2</td>
<td>89.4</td>
</tr>
<tr>
<td>(VARX coeff. only)</td>
<td>(.048)</td>
<td>(.106)</td>
</tr>
<tr>
<td>Volatility</td>
<td>6.4</td>
<td>11.8</td>
</tr>
<tr>
<td>(VARX resid. only)</td>
<td>(.936)</td>
<td>(.882)</td>
</tr>
<tr>
<td>All elements</td>
<td>93</td>
<td>86.7</td>
</tr>
<tr>
<td>(VARX coeff.+resid.)</td>
<td>(.07)</td>
<td>(.133)</td>
</tr>
</tbody>
</table>

Note: p-values in parentheses; p-value = (100-Wald percentile)/100.

becomes FIML and we can use the Likelihood Ratio in the usual classical manner. In the former the model posterior likelihood and hence ranking involves both the priors and the data likelihood. We report the two approaches in turn.

Table 7: Marginal log data likelihood with strong priors

<table>
<thead>
<tr>
<th>Selected prior type</th>
<th>FTPL model</th>
<th>Orthodox model</th>
<th>Dominant model</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTPL prior</td>
<td>481.8486</td>
<td>467.4937</td>
<td>FTPL</td>
</tr>
<tr>
<td>Orthodox prior</td>
<td>431.16</td>
<td>449.3487</td>
<td>Orthodox</td>
</tr>
</tbody>
</table>

Note: the marginal data likelihoods are calculated using the Laplace Approximation estimator.

As is plain from the listing in table 7, for strong priors (that are chosen to be in favor of either the FTPL model or the Orthodox model) the marginal data likelihoods are extremely different from the viewpoint of ranking the two models based on the Bayes factor. In this case we are able to obtain a strong ranking of the models on each set of priors; but the rankings contradict each other, with the priors effectively setting the rank order. Plainly we cannot use these estimates to rank the models without begging the question of which model and associated priors is correct.

If we turn to the FIML estimates where the priors are flat and so irrelevant, we encounter the besetting problem of flat likelihood in small samples. We obtain model estimates that are quite different from the II estimates as we show in table (8). Yet when we compute the Likelihood Ratio of these estimates (against the VARX on the data) we find that both models fail to be rejected by the data on their ML estimates (the Orthodox is on the margin) and furthermore on their II estimates they get even closer to the data, suggesting that the ML estimator has great difficulty in locating the optimal parameter values. The II estimator has much lower small sample bias (Le et al, 2014) and locates parameter values that get the models closer to the data on both the LR and II tests. While the FTPL model has higher likelihood than the Orthodox on the ML estimates, it has lower likelihood than the Orthodox on the II estimates.

Our conclusion from these various methods of evaluation is that we cannot rank the models using strong priors because we obtain contradictory results depending on which priors we use. We may use ML estimation (flat priors) and the LR test but this like the II test fails to reject either model. Yet as we have already argued they cannot both simultaneously be the true model and so we proceed to estimate
Table 8: Comparing the FIML and II estimates

<table>
<thead>
<tr>
<th>Model parameter</th>
<th>FTPL model ML estimates</th>
<th>FTPL model II estimates</th>
<th>Orthodox model ML estimates</th>
<th>Orthodox model II estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>2.42</td>
<td>4.07</td>
<td>2.38</td>
<td>1.96</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Fixed at 0.99</td>
<td>Fixed at 0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma)</td>
<td>2.13</td>
<td>0.02</td>
<td>2.22</td>
<td>0.46</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>0.17</td>
<td>0.35</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\rho)</td>
<td>-</td>
<td>-</td>
<td>0.84</td>
<td>0.76</td>
</tr>
<tr>
<td>(\phi_\pi)</td>
<td>-</td>
<td>-</td>
<td>1.97</td>
<td>1.31</td>
</tr>
<tr>
<td>(\phi_{\text{gap}})</td>
<td>-</td>
<td>-</td>
<td>0.19</td>
<td>0.06</td>
</tr>
<tr>
<td>(\delta)</td>
<td>-</td>
<td>-</td>
<td>0.22</td>
<td>0.007</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Fixed at 0.0002</td>
<td>Fixed at 0.0002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shock persistence (rho’s)

- \(\epsilon_{\text{rr}^{PP}} \) = 0.96, 0.43
- \(\epsilon_{\text{rr}^{IS}} \) = 0.51, 0.64
- \(\epsilon_{\text{rr}^{y^*}} \) = 0.97, 0.93
- \(\epsilon_{\text{rr}^{\theta-t}} \) = -0.1, -0.1
- \(\epsilon_{\text{rr}^{\pi}} \) = 0.36, 0.24
- \(\epsilon_{\text{rr}^{R_{S}}} \) = -

LR percentile

- 82.3 (p-value: (.177))
- 96.3 (p-value: (.037))
- 93.6 (p-value: (.064))

Full Wald percentile

- 93.6 (p-value: (.07))
- 97.6 (p-value: (.024))

Note: p-values in parentheses; p-value = (100-reported percentile)/100.

and test a combined model. We use II in what follows because as we have seen it avoids the difficulties created by strong priors and, given flat or no priors, it performs better than ML and the associated LR test, because it both has a lower small sample bias than ML as an estimator and has greater power than LR as a test procedure.

4.3 Results for a combined model

Our II results for the two models above suggest that inflation behaviour was being influenced by expectations of two potential regimes each with a certain probability. Inflation in this model equals expected inflation because no information lag is assumed. Hence we can think of the FTPL inflation equation as showing the inflation that would be expected (and would also occur) at time \(t \) if the FTPL regime was in operation. Similarly for the Orthodox model we can think of the Taylor Rule equation as defining the inflation that would be permitted by the rule (and so would also occur) at prevailing interest rates; thus this would be the inflation expected if the Orthodox regime was prevailing. We can therefore create a model in which inflation expectations are governed by the probability-weighted inflation rate under the two regimes; this will be also the actual inflation, since \(\text{actual} = \text{expected} \). In this model inflation will thus be a weighted combination of the two models’ inflation equations - the FTPL and the Taylor Rule equations:
Given that inflation is determined by the probability-weighted average of each regime’s own inflation outcome, we now have a composite inflation error - which in principle consists of the weighted combination of the two regime error processes plus any temporary deviations of inflation from this weighted combination (e.g. due to variation in the weight). Since we cannot observe what the inflation rate actually was in each regime, only the average outcome, we can only observe a composite error.

All the other equations are the same, with the exception of the fiscal deficit equation which has an AR coefficient (\(\delta = 0.007 \), as reported in table 2) that is so close to zero that it cannot resolve the uncertainty about which regime is operating; we allow it to be determined by the model estimation.

When we examine the results of this weighted model (as we report in tables 9 and 10 in comparison to the earlier results), we see that it improves on both models alone, giving a weight on FTPL of 0.58. The improvement comes in fitting the trend and dynamics, as all the models have little difficulty fitting the volatility in the data. The model now adopts a very flat Phillips Curve, a steep IS Curve, and a tough Taylor Rule (with a high response to inflation and a moderate response to the output gap). The effect of the FTPL deficit mechanism (now \(\kappa \times Weight \)) is a third higher than in the FTPL model.

<table>
<thead>
<tr>
<th>Model parameter</th>
<th>FTPL</th>
<th>Orthodox</th>
<th>Taylor</th>
<th>Weighted model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>4.07</td>
<td>1.96</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>(\beta)</td>
<td></td>
<td>fixed at 0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.02</td>
<td>0.46</td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td>(\kappa)</td>
<td>0.35</td>
<td></td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>(\rho)</td>
<td>-</td>
<td>0.76</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>(\phi_\pi)</td>
<td>-</td>
<td>1.31</td>
<td>1.84</td>
<td></td>
</tr>
<tr>
<td>(\phi_{xgap})</td>
<td>-</td>
<td>0.06</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>(\delta)</td>
<td>-</td>
<td>0.007</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>(\epsilon^y)</td>
<td></td>
<td>fixed at 0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma)</td>
<td>-</td>
<td></td>
<td>fixed at 0.99</td>
<td>0.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shock persistence (rho’s)</th>
<th>FTPL</th>
<th>Orthodox</th>
<th>Taylor</th>
<th>Weighted model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(err^{pp})</td>
<td>0.43</td>
<td>0.42</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>(err^{IS})</td>
<td>0.64</td>
<td>0.84</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>(err^{W^*})</td>
<td>0.93</td>
<td>0.93</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>(err^{g-t})</td>
<td>-0.1</td>
<td>-0.1</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>(err^{\pi})</td>
<td>0.24</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(err^{R^*})</td>
<td>-</td>
<td>0.33</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(err^{Weighted \pi})</td>
<td>-</td>
<td></td>
<td></td>
<td>0.22</td>
</tr>
</tbody>
</table>
Table 10: P-values of the models: Weighted vs FTPL and Orthodox

<table>
<thead>
<tr>
<th>Elements tested</th>
<th>FTPL</th>
<th>Orthodox</th>
<th>Weighted model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend and dynamics</td>
<td>.048</td>
<td>.106</td>
<td>.15</td>
</tr>
<tr>
<td>(VARX coeff. only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatility</td>
<td>.936</td>
<td>.882</td>
<td>.888</td>
</tr>
<tr>
<td>(VARX resid. only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All elements</td>
<td>.7</td>
<td>.133</td>
<td>.199</td>
</tr>
<tr>
<td>(VARX coeff.+resid.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: p-value = (100-Wald percentile)/100.

The blend of Orthodox with FTPL is revealed in the IRFs (figures 10-13). The IS and PP shocks affect the economy much as in the Orthodox case. A positive weighted inflation error is a combination of 1) a direct temporary shock to inflation as in the FTPL model and 2) an easing of monetary policy in the Taylor Rule error. The fiscal shock behaves as in the FTPL model, strongly affecting inflation and nominal interest rates.

The resulting variance decomposition (table 11) gives the supply shock and the weighted inflation shocks about an equal role in output variability - the latter including as we have seen both the monetary policy and any exogenous inflation shock. These two shocks also share the main role in real interest rate variability. For inflation variability the fiscal shock becomes dominant, with the supply shock providing
the rest. Nominal interest rate variability thus reflects a roughly similar role for supply, inflation and fiscal shocks. What we see here in the weighted model is that the FTPL influences remain important.

Table 11: Variance decomposition (Weighted model)

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>y</th>
<th>π</th>
<th>R^2</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>err_{IS}:</td>
<td>10.8</td>
<td>0.3</td>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>err_{PP}:</td>
<td>39.3</td>
<td>34.3</td>
<td>37</td>
<td>40.2</td>
</tr>
<tr>
<td>$err_{Weighted ; \pi}$:</td>
<td>42.3</td>
<td>3.8</td>
<td>33.1</td>
<td>54.6</td>
</tr>
<tr>
<td>err_{y}:</td>
<td>3.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$err_{\gamma-t}$:</td>
<td>4.3</td>
<td>61.6</td>
<td>27.9</td>
<td>3</td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

In the next section we review the implications of this successful weighted model for the causes of what happened quarter by quarter. Clearly, huge errors in policy were made, to permit the large rise in inflation and the prolonged recession both to occur during the mid-1970s. In our final concluding section, we reflect on the policy lessons and how they were absorbed subsequently in UK political choices.
5 A time-line of the UK 1970s episode according to the weighted model

We see first the errors backed out period by period in figure 14. Begin with the inflation error in the weighted FTPL/Taylor Rule equation. This is some combination of monetary policy and exogenous inflation (notably commodity price) shocks; the 1973 and 1974 peaks were both periods of expansionary money and surging commodity prices. 1977’s low point corresponds to the IMF visit, which tightened money sharply. Next, we note that the PP shock mirrors this weighted inflation error closely; this is because with a very flat Phillips Curve movements in inflation are governed almost solely by expected inflation for next quarter; but since the fiscal deficit is close to a random walk this turns out to be very close to current expected inflation which too is dominated by the current fiscal deficit. The IS shock turns negative in the mid-1970s before recovering in the late 1970s. The fiscal deficit shock is large and positive early on before being restrained later in the period.

In the timeline for output (figure 15) we see that all these shocks play a part; the dominant role, as foreshadowed by our variance decomposition, is taken by the supply and inflation shocks but these essentially cancel each other out, leaving the IS shock as the factor creating recession and the productivity shock assisting it in generating later recovery. For inflation (figure 16) the fiscal shock is the key factor generating the sharp inflation explosion from 1973-5, aided by the supply shock. For interest rates (figure 17), fiscal, supply and inflation shocks all three are major factors, but tend to cancel each other out, so that interest rates move less than one might expect given the sharp rise in inflation in mid-1975; this is
consistent with the model’s finding that monetary policy itself has an inadequate response to inflation during the period (the weight on the Taylor Rule of 0.42 times the inflation response of 1.84 is only 0.77).

Thus the overall picture of the period from our weighted model is that the fiscal deficit was a key factor in driving inflation expectations and that monetary policy in practice did little to moderate these; interest rates varied inadequately. Output was the victim of poor productivity growth and the demand shocks of the mid-1970s, with these both improving somewhat later in the period.

From these timelines it is clear that poor expected macro policy choices, both fiscal and monetary, reinforced the bad results already created by the poor growth of productivity. The two factors together produced economic results so bad that the British voters backed Margaret Thatcher’s radical policy changes over a whole decade, embracing not merely macro-policy but also supply-side policy reforms. Whether the voters would have backed her had the economy not been in such a parlous condition in 1979 is a matter of intense interest for political economy but clearly lies well outside the scope of this paper.

We now turn to a comparative analysis of the 1980s episode in which the Thatcher government changed the macro-economic policy regime. According to most accounts this sets up an ‘active’ monetary policy designed to bear down on inflation and a ‘passive’ or Ricardian fiscal policy designed to ensure solvency; another way of expressing this used in commentary at the time (e.g. Minford, 1980; Sargent and Wallace, 1981) was that fiscal policy should not threaten monetary policy by undermining confidence in solvency. If these widely-accepted accounts are correct, we should find according to our empirical II method that the 1980s data give opposite results to the 1970s. We should find that the FTPL model performs less well and that its weight in any weighted model is much smaller while the effect of fiscal behaviour on inflation should also be small.
6 Analysis of the 1980s

Table 12: Indirect estimates of the models: Weighted vs FTPL and Orthodox (1979-1990)

<table>
<thead>
<tr>
<th>Model parameter</th>
<th>FTPL</th>
<th>Orthodox</th>
<th>Taylor</th>
<th>Weighted model</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>4.29</td>
<td>2.13</td>
<td>4.13</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
<td>fixed at 0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>1.79</td>
<td>0.27</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>0.1</td>
<td>-</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>ρ</td>
<td>-</td>
<td>0.81</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>ϕ_{π}</td>
<td>-</td>
<td>3.67</td>
<td>3.63</td>
<td></td>
</tr>
<tr>
<td>ϕ_{gap}</td>
<td>-</td>
<td>0.18</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>δ</td>
<td>-</td>
<td>0.66</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>ϵ^{*}</td>
<td>fixed at 0.0005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>-</td>
<td>-</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>Shock persistence (rho’s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>err^{pp}</td>
<td>0.53</td>
<td>0.39</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>err^{IS}</td>
<td>0.64</td>
<td>0.86</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>err^{wR}</td>
<td>0.94</td>
<td>0.94</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>err^{g-t}</td>
<td>-0.22</td>
<td>0.15</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>err^{π}</td>
<td>0.19</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>err^{R}</td>
<td>-</td>
<td>-0.09</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$\text{err}^{\text{Weighted} \pi}$</td>
<td>-</td>
<td>-</td>
<td>-0.13</td>
<td></td>
</tr>
</tbody>
</table>

Table 13: P-values of the models: Weighted vs FTPL and Orthodox (1979-1990)

<table>
<thead>
<tr>
<th>Elements tested</th>
<th>FTPL</th>
<th>Orthodox</th>
<th>Weighted model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend and dynamics (VARX coeff. only)</td>
<td>.115</td>
<td>.137</td>
<td>.252</td>
</tr>
<tr>
<td>Volatility (VARX resid. only)</td>
<td>.495</td>
<td>.907</td>
<td>.651</td>
</tr>
<tr>
<td>All elements (VARX coeff.+resid.)</td>
<td>.11</td>
<td>.213</td>
<td>.328</td>
</tr>
</tbody>
</table>

Note: p-value = (100-Wald percentile)/100.

Tables 12 to 14 show the results for the 1980s (the data is from 1979 to 1990). Once again, we find that the weighted model dominates the two models singly by a large factor. Furthermore as in the 1970s both the FTPL and the Orthodox models fail to be rejected by the data; and the Orthodox performs again only somewhat better than the FTPL. We can conclude from this that in spite of the new government’s announced intentions uncertainty remained about the two regimes and whether specifically fiscal policy would remain under control. The weight on the FTPL regime remained as high as 44%.

Thus it might appear that the 1980s were not so different as widely thought from the 1970s. Nevertheless, the effect of the fiscal deficit on the economy fades from the picture in the weighted model. Its direct effect on inflation ($\kappa \times Weight$) falls from 0.47 in the 1970s to 0.14 in the 1980s. In the variance decomposition its role in influencing the economy’s behaviour virtually disappears, its share of inflation
Table 14: Variance decomposition (Weighted model; 1979-1990)

<table>
<thead>
<tr>
<th>Unit: %</th>
<th>y</th>
<th>π</th>
<th>R^2</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>err^{IS}</td>
<td>0.5</td>
<td>24.2</td>
<td>82.6</td>
<td>68.4</td>
</tr>
<tr>
<td>err^{PF}</td>
<td>37.5</td>
<td>13.4</td>
<td>15.1</td>
<td>27.5</td>
</tr>
<tr>
<td>$\text{err}^{Weighted}$</td>
<td>1.2</td>
<td>60.1</td>
<td>2.7</td>
<td>4.1</td>
</tr>
<tr>
<td>$\text{err}^{y\pi}$</td>
<td>60.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\text{err}^{y\pi-c}$</td>
<td>0</td>
<td>2.3</td>
<td>0.2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

variance falling to 2.3% and of nominal interest rate variance to 0.2%. We can interpret this as implying that although people were worried that fiscal policy might matter for inflation resurgence and hence assigned it a role, in practice its behaviour was tightly controlled so that these fears were not realised. At the same time the ‘monetarist’ tag attached to the new government is borne out by the high monetary response to inflation (this being $[1 - Weight] \times \phi_n = 2.03$).

Interestingly, this interpretation is reinforced by the well-known nervousness about fiscal deficits of the Thatcher government, famously exhibited in the controversially tight 1981 budget. In effect the Thatcher ministers were deeply concerned to lay to rest doubts about their fiscal policy intentions so that their perceived monetary toughness towards inflation would not be undermined.

7 Conclusions

In this paper we have examined an episode of UK history, the 1970s, when fiscal policy may have been set without thought for future solvency implications and monetary policy may have been entirely accommodative - a case of the Fiscal Theory of the Price Level (FTPL). Because the data implications of this theory are qualitatively similar to those of the Orthodox theory in which monetary policy is set by a Taylor Rule to hit an inflation target and fiscal policy is set to achieve solvency at that inflation rate, we have set up the two theories as rival structural models and tested each against the behaviour found in the data, by the method of Indirect Inference (our efforts to use Bayesian or Maximum Likelihood estimation could not distinguish convincingly between the two models). Our finding is that neither model is rejected by the data and that the Orthodox model can account better for the data behaviour than the FTPL; but also that the best account of the period assumes that expectations were a probability-weighted combination of the two regimes. The policies pursued in this episode generated generally high as well as volatile inflation, together with weak productivity growth and a long-lived recession. They paved the way for a decisive change of approach to both fiscal and monetary policy after the election of 1979. However we also found when examining the 1980s that there remained a considerable degree of policy uncertainty so that expectations about fiscal policy continued to play a key role; nervousness about this influenced
the Thatcher government’s policies to bring fiscal deficits down steadily so that in practice the role of fiscal policy in the economy’s behaviour was minimalised. In sum the evidence of these two decades of UK history suggest that fiscal deficits were key to the macro-economic crises of the 1970s and bringing them under control was important, alongside tighter monetary policy, in restoring stability in the 1980s.

References

30

Appendix A Derivation of Government Budget Constraint

The government budget constraint gives us

\[\frac{B_{t+1}}{R_t} = G_t - T_t + B_t + \frac{B_t}{R_t} \]

Where,

- \(G_t \) is the government spending in money terms,
- \(T_t \) is the government taxation in money terms,
- \(R_t \) is the amount of nominal interest the government must pay.

The value of the bonds outstanding is \(B \times \frac{1}{R} \).

We can derive an expression for government budget constraint in the forward direction by substituting forwards for future bonds outstanding, yields

\[\frac{B_t}{R_t} = E_t \sum_{i=0}^{\infty} \frac{T_{t+i} - G_{t+i}}{(1+R_t)^{t+i}} \]

We approximate this expression by

\[\frac{B_t}{R_t} = \sum_{i=0}^{\infty} \frac{(T_t - \gamma_t)(1+\gamma_t)^i}{(1+R_t)^{t+i}} \]

where \(T_t, \gamma_t, \pi_t, \gamma \) are the currently expected permanent values respectively of the tax/GDP and government spending/GDP ratios, the inflation rate, and the growth rate (assumed constant at all times);

\(\bar{T}_t, \bar{\gamma}_t \) are respectively the permanent price level and equilibrium output

\[= (T_t - \bar{\gamma}_t) \bar{P}_t \bar{y}_t \sum_{i=0}^{\infty} \frac{(1+\gamma+\bar{\gamma}_t)^i}{(1+R_t)^{t+i}} \]

\[= (T_t - \bar{\gamma}_t) \bar{P}_t \bar{y}_t \sum_{i=0}^{\infty} \frac{(1+\gamma+\bar{\gamma}_t)^{i+1}}{(1+R_t)^{t+i}(1+\gamma+\bar{\gamma}_t)} \]

If \(\gamma \) and \(\bar{\gamma}_t \) are both small enough,

\[\sum_{i=0}^{\infty} \frac{(1+\gamma+\bar{\gamma}_t)^{i+1}}{(1+R_t)^{t+i}(1+\gamma+\bar{\gamma}_t)} = \sum_{i=0}^{\infty} \left(\frac{1}{1+R_t-\gamma-\bar{\gamma}_t} \right)^{t+i} = \left(\frac{1}{1+\gamma+\bar{\gamma}_t-\gamma} - 1 \right) = \left(\frac{1}{\gamma} - \gamma \right) \]

Hence,

\[\frac{B_t}{R_t} \bar{P}_t \bar{y}_t = \frac{(T_t - \bar{\gamma}_t)}{(1+\gamma+\bar{\gamma}_t)(\gamma - \gamma)} \]