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Abstract

We explore the issue of estimating a simple agent-based model of
price formation in an asset market using the approach of Alfarano et
al. (2008) as an example. Since we are able to derive various moment
conditions for this model, we can apply generalized method of moments
(GMM) estimation. We find that we can get relatively accurate param-
eter estimates with an appropriate choice of moment conditions and
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arising from strong autocorrelations of the estimates of certain param-
eters. We apply our estimator to a sample of long records of returns of
various stock and foreign exchange markets as well the price of gold.
Using the estimated parameters to form the best linear forecasts for
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1 Introduction

Asset markets have been known for a long time to be characterized by a
set of ubiquitous ‘stylised facts’ that are hard to explain by any traditional
approach to asset pricing. The best known of these are the fat tails of the
unconditional distribution of returns and the volatility clustering character-
izing their conditional distribution. Known since the 60s, but largely mys-
terious in terms of their behavioral origins, these salient features have also
occasionally been classified as ‘anomalies’. However, the latter term appears
odd in view of the fact that these are really the constants in the statistical
analysis of time series of financial markets across time, countries and asset
types, i.e. the imprint of their apparently ‘normal’ mode of operation.

Under the traditional ‘efficient market paradigm’ the time series (a)noma-
lies are interpreted as the mere reflection of the same (a)nomalies of the
‘fundamental factors’ of asset prices. However, the fundamentals consist of
a conglomerate of diverse factors (macroeconomic, firm-specific, etc.) and
as an ensemble they are not observable so that this aspect of the efficient
market paradigm cannot be tested directly. While there do not even ex-
ist examples of fundamental factors whose time-variation would share the
phenomenology of fat tails and clustered volatility, these features could also
suggest a more behavioral explanation rather than the mere transmission
of information from fundamental factors into changing prices. For instance,
‘fat tails’ are represented by an unusually high number of extremely large
observations which resonates with the notion of excessive volatility of finan-
cial markets. Indeed, one of the most convincing components of the body
of empirical evidence against the efficient market hypothesis is evidence for
excessive volatility according to the test strategy developed first by Shiller
(1981). In a similar vein, clustering of volatility could originate from waves
of speculative behavior or overoptimism of market participants occasionally
switching to overpessimism, ‘risk appetite’ changing over time, and similar
descriptions of financial market turmoil.

The first attempts at explaining the stylized facts with behavioral mod-
els have come forth since about the beginning of th 1990s. Examples in-
clude Kirman (1991, 1993), de Grauwe et al. (1993), and Lux (1995), among
others. While early contributions were targeting phenomena like excessive
volatility and endogenous emergence of bubbles and crashes, the subsequent
literature has also concentrated on reproducing time series from behavioral
market models that could reproduce those of empirical records. Most of this
research is conducted via simulation studies, since ‘stylized facts’ are statis-
tically characterized by higher-order conditional and unconditional moments
that for complex models of the market process with heterogeneous agents are
hard to derive analytically. Meanwhile, a broad range of models exist that
all get close to empirical market behavior or even generate synthetic data
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that are hard to distinguish with statistical tests from ‘real’ ones, cf. the
surveys by Hommes (2006), LeBaron (2006), Samanidou et al. (2007) and
Lux (2008). It appears that the combination of stabilizing and destabilizing
(centripedal and centrifugal) forces as represented by, e.g., trend following
and chartist strategies, on the one hand, and arbitrage activities based on
some perception of an underlying fundamental value by some agents, on the
other hand, is generally sufficient to generate a process that with a bit of
stochasticity added, is able to provide very realistic data for a broad class
of models varying in their exact details. Models in this vein range from sim-
ple “zero intelligence” settings (Kirman, 1991; Cont and Bouchaud, 2000)
over chartist-fundamentalist models (Lux and Marchesi, 1999; Brock and
Hommes, 1998) to models in which agents continuously develop their strate-
gies with some kind of artificial learning algorithm (LeBaron et al., 1999;
Lux and Schornstein, 2005).

With this literature having reached a status of consolidation, one natu-
ral further research direction is the empirical estimation and validation of
such models. This is an endeavor economists are not accustomed to as em-
pirical implementation in an economic context has typically been concerned
with (sets of) reduced form equations of behavioral characterizations of rep-
resentative agent models (expressed, for instance, via the Euler equations
characterizing the optimal path of economic activity of such a representative
agent). In the present context one would rather have to estimate models
with an ensemble of agents with more or less complex interactions. However,
there is no fundamental problem involved in such an undertaking. Typical
agent-based models can be represented as Markovian stochastic processes
and, thus, often generically fulfill a number of ‘regularity conditions’ that
are needed for the application of certain estimation strategies. Relatively
simple models might also be amenable to some kind of reduced-form conden-
sation which, in fact, will be the case for the model studied in the following
chapters.

Previous attempts of estimation of behavioral or agent-based models of
financial markets are sparse. Examples include: Amilon (2008) who esti-
mated the model of Brock and Hommes (1998) by a maximum likelihood
approach, Gilli and Winker (2003) who attempted to estimate the ‘ant’
model of Kirman (1993) via nonlinear optimization techniques, Alfarano et
al. (2005) who estimated an extended version of the same model via an ap-
proximate likelihood approach, and a recent series of papers by Franke and
Westerhoff (2011, 2012, 2014) in which a variety of extremely simplified ver-
sions of agent-based models are estimated via moment matching approaches.
Jang (2013) also uses a simulated method of moments approach for a closely
related model, and reports certain principal difficulties in estimating even a
very basic agent-based model: He finds the surface of the objective function
to be very flat over certain regions so that the chosen moments provide little
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scope in differentiating between different parameter sets, and he highlights
that a very rugged surface of the objective function also makes the search
for a global optimum computationally difficult as the danger to get trapped
in one out of many local minima of the objective function is hard to assess.

In the present study, we attempt to contribute to this literature by ex-
ploring more systematically the issues surrounding the estimation of a pro-
totype agent-based behavioral market model. Our model is of the same class
as investigated already by Gilli and Winker (2003), Alfarano et al. (2005)
and Jang (2013). Among a number of closely related varieties we choose the
specification of Alfarano et al. (2008). The latter has the advantage that
the authors have derived already a set of moments that with a bit more of
effort can be expanded into moment conditions of an estimable version of
their model. These are the basic moments that characterize the stochastic
dimension of the stylized facts, i.e. higher moments of returns and autocor-
relations of such higher moments. We use these moments in a generalised
method of moments (GMM) setting which, due to the absence of simula-
tion in the estimation process, is more transparent than an SMM approach
without any analytical input. By and large, we will see that the problems
highlighted in previous literature can be overcome with a judicious choice
of the moment conditions and the estimation strategy. An empirical ap-
plication indicates that the present simple model already gets so close to
the key moments characterising fat tails and clustered volatility that it can
mostly not be rejected as the underlying data-generating process for these
moments even for relatively long data sets extending over several decades.
A forecasting exercise demonstrates that the behavioral model possesses sig-
nificant forecast capacity for short- and medium-term volatility. While its
forecast performance remains generally inferior to that of a baseline GARCH
model, it is also mostly not ‘encompassed’ by the GARCH model, i.e. it adds
valuable information on top of that extracted by the GARCH model.

The rest of this paper proceeds as follows. Section 2 introduces the agent-
based model and its ‘reduced form’ representation in the form of a stochastic
differential or Langevin equation. Section 3 provides an exposition of the
GMM estimation and the moment conditions used. Section 4 provides Monte
Carlo results for different specifications of the estimator. Section 5, then,
contains the empirical application, and Section 6 concludes.

2 An elementary agent-based model of sentiment
formation and asset price dynamics

The model investigated in Alfarano et al. (2008) basically extends Kirman’s
(1993) seminal herding model into a simple asset-pricing model. The overall
market consists of fundamental traders as well as those driven by sentiment
and the time-variation of sentiment is formalized via the herding dynamics.
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Referring to the second group of agents as noise traders, any one of these at
any point in time might be labelled as an optimist or pessimist. The number
of agents in an optimistic mood will be denoted by n. With the complete
pool of noise traders consisting of N agents, the fraction of optimists at
time t, xt = (nt − (N − nt))/N = 2nt/N − 1 can be denoted the current
configuration of the sentiment-driven part of the market. Agents’ mood
might, of course, change over time, and so an optimistic noise trader might
become pessimistic and vice versa. This happens with transition rates π↓,t
and π↑,t in continuous time. Transitions consist of an autonomous part
for idiosyncratic changes of opinion and an “interactive” part driven by
interpersonal communication:

π↑,t = a+
nt

N
b = a+ bxt, (1)

π↓,t = a+
N − nt

N
b = a+ b(1− xt). (2)

Here a is the propensity to change one’s opinion due to idiosyncratic reasons
(as a rate per time unit) and b is the propensity to change one’s opinion under
the influence of an agent of the other group (again as a rate per time unit).
To meet one person with an antagonistic opinion happens with a probability
proportional to nt/N for a pessimist and (N − nt)/N for an optimist which
defines the second part of both equations (↑ denotes switch of a pessimist
to optimist and the reverse for ↓). Population transition rates (ω↑,t and
ω↓,t) are then simply obtained by multiplying the individual ones by the
respective number of agents, and are, thus, obtained as:

ω↑,t = (N − nt)
(
a+ b

nt

N

)
(3)

ω↓,t = nt

(
a+ b

N − nt

N

)
. (4)

Technically, this is a system of Poisson processes (one for each agent) with
transition rates being linear and state-dependent. Such systems have also
been denoted as jump Markov processes (cf. Aoki, 2002).

The configuration of sentiment, xt, is embedded into an asset pricing
framework by assuming that optimist (pessimist) agents will buy (sell) a
fixed volume of shares Tc. In addition, there is another component of ex-
cess demand composed of fundamentalists who are sensitive to deviations
between the log market price, pt, and their assumed log fundamental value,
pf,t.

Price adjustments are assumed to occur in the usual Walrasian manner
in the presence of excess demand. Combining these aspects we arrive at the
price adjustment equation:

dp

dt
= β (Tf (pf,t − pt) +NTcxt) . (5)
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Assuming instantaneous adjustment to market equilibrium, i.e. letting the
price adjustment speed β → ∞, we obtain:

pt = pf,t +
NTc

Tf
xt (6)

which shows how sentiment may trigger deviations from fundamental valu-
ation.

Returns over finite time increments (e.g., daily returns) can be written
as:

rt+1 = pt+1 − pt = pf,t+1 − pf,t +
NTc

Tf
(xt+1 − xt) (7)

and, hence, are driven by innovations in the fundamentals and innovations
in the sentiment dynamics. We assume that the (log) fundamental value
follows Brownian motion with a variance σ2

f so that the unit changes can be
written as:

pf,t+1 − pf,t = σfεt, εt ∼ N(0, 1). (8)

So far, we have a macroscopic equation for the price combined with the
result of the interaction of N agents, xt. However, the microscopic dynamics
of xt can as well be transformed into a macroscopic process equation. In
particular, it can be shown that the transient probability density of xt,
p(x, t), follows a Fokker-Planck or forward Kolmogorov equation:

∂p(x, t)

∂t
=

∂

∂x
A(x)p(x, t) +

1

2

∂2

∂x2
(D(x)p(x, t)) (9)

with drift A(x, t) = −2axt and diffusion D(x, t) = 2b(1− x2t ) + 4a/N . As a
consequence, the macroscopic dynamic process can be approximately char-
acterized by a continuous-time diffusion:

dx̃t = A(x̃t) +
√

D(x̃t)dBt (10)

i.e. a diffusion process that ‘shares’ the same forward Kolmogorov equation
with the agent-based process (cf. Lux, 2008, and Ethier and Kurtz, 1986,
for more details). It is this diffusion process as the reduced-form of our
agent-based model that together with the price process, eq. (6), will be used
to derive a set of moment conditions to be used in our subsequent GMM
estimation.

3 Estimation

We will assume throughout that we are given equidistant observations of
market prices, pti , ti = ∆ti, i = 0, . . . , T , making a sample of size (T + 1).
We calculate from equations (6), (7) and (8)

rt = σfεt + xt+1 − xt, (11)
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where εt is a standard normal variate that is independent from xt at all lags.
Thus, we observe a sequence of the log-returns rt of size T . The parameter
vector θ to be estimated is θ := (a, b, σf )

′. Note that we do not estimate the
parameters N , Tc, and Tf . We assume that these are given by N = 100, and
NTc/Tf = 1. Given that these three parameters enter in a multiplicative
way, we could at best hope to estimate N (which also enters the diffusion
function of the reduced-form equation of the sentiment process), and Tc/Tf .
However, preliminary investigations showed that when including these as
free parameters, the problems of weak identification reported below for the
remaining ones will become paramount. Essentially, with these parameters
entering as pre-factors for zt ≡ xt+1 − xt, they are so close to colinear
with a, the drift factor of the diffusion process, that with limited data,
their separate estimation becomes impossible. Nevertheless, inspection of
the moment conditions derived below immediately indicates that with a
sufficient number of moment conditions used, also for a 5-parameter model
θ̃ = (a, b, σf , N, Tc/Tf identification in the strict sense does hold, and so with
an infinite supply of data one would be able to estimate these parameters.

3.1 The GMM procedure

We use θ to denote an arbitrary element of the three dimensional parametric
space Θ and let θ0 to be the true parameter vector. The GMM procedure
due to Hansen (1982) requires to formulate a number q ≥ 3 moment condi-
tions, mt = [m1t, . . . ,mqt]

′. Here, we will be using simple unconditional and
conditional moments like:

m1t = r2t (12)

m2t = r4t (13)

m3t = r2t r
2
t−1 (14)

and higher lags of the autocovariances of squared returns. Their sample
counterparts are MT = [M1T , . . . ,MqT ]

′, where

MiT =

T∑
t=k+1

mit

(T − k)

for all i from the set {1, . . . , q} and k defines the maximum lag between the
variables that enter the sample moments.

Denote the corresponding q-dimensional vector of analytic moments,
F (θ) := [F1(θ), . . . , Fq(θ)]

′ such that

E[mt(θ)] = F (θ).

It is customary to introduce a vector-valued function gT (θ) := MT − F (θ)
which beyond θ depends also on the T -dimensional data vector rT through
MT .
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The GMM estimator, θ̂T , minimizes the distance between F (θ) and MT

over the parametric space Θ in the following quadratic form,

Q(θ)T := gT (θ)
′WT gT (θ), (15)

where WT is a positive semi-definite matrix which may depend on the data
but converges in probability to a positive definite matrix of constants (see
Hall, 2005, p. 14). That is,

θ̂T = argmin
θ∈Θ

Q(θ)T . (16)

The GMM theory does not give recommendations on the optimal selection of
the moment conditions. In practice, this choice is up to the researcher. How-
ever, the theory provides information on the optimal choice of the weighting
matrix in the sense that it leads to an estimator with the smallest asymptotic
errors. In particular, if Ω denotes the asymptotic covariance matrix of the
moment conditions (to be specified below), then choosing W = Ω−1 gives
us the sought efficient weighting matrix. Let gt(θ) := mt(θ)−F (θ) and con-
sider D := E[∂gt(θ0)/∂θ′]. Then, under appropriate regulatory conditions,
θ̂T is consistent and

√
T (θ̂T − θ0) is asymptotically normal with mean zero

and covariance matrix V := D′WD, that is,
√
T (θ̂T − θ0)

d−→ N (0, V ).

Following most of the extant GMM literature, we have adopted the stan-
dard Newey-West estimation of the covariance matrix, and used an iterative
GMM scheme, i.e. we computed a new estimate of the covariance matrix
based upon the estimated set of parameters in each round and iterated the
sequence of GMM estimations until convergence of the parameter estimates
was obtained.

3.2 The moment conditions

The moment conditions that are available by appropriate extension of the
results of Alfarano et al. (2008) are basically various powers of returns and
their covariances. Among the unconditional powers, odd moments are unin-
teresting as they are mostly close to zero both in the empirical data and in
the analysis of our model.1 Flat or almost flat moments are, however, not
informative and would presumably increase the uncertainty of parameter es-
timates and distort the size of the J test. Since higher powers also become
increasingly noisy, the most practical choice is to use squared returns and
the fourth moment. Theoretical approximations of autocovariances can be
obtained for squared returns over arbitrary time lags while again, autocor-
relations of odd powers would not be very informative and autocovariances

1In simulations, we find the small autocorrelation of raw returns at lag 1 imposed by
the bounded variation of the sentiment dynamics to be practically indistinguishable from
zero, i.e. the sampling standard error exceeded the estimated autocorrelation by far, even
for large samples.
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of higher powers than the second would be very hard to obtain, and perhaps
also very noisy. Thus, we are basically depending on the most elementary
measurements of the stylized facts for our GMM implementation: Kurtosis
and autoregressive dependency of squared returns. For univariate time se-
ries of asset prices, this is essentially the “portfolio” of moments for GMM
or SMM estimation. Note that some authors (e.g. Franke and Westerhoff,
2012, 2014) have used more refined measures such as the tail index for the
decay of the density of the unconditional distribution, or similar measures
for the decay of the autocorrelation function. While GMM/SMM based on
such more complicated objects derived from the data is perfectly legitimate,
a certain backdrop is that an efficient estimate of the covariance matrix of
these moment conditions is not easy to define. Hence, one has to sacrifice
efficiency compared to a potential optimal estimator. We believe, however,
that we can go some way towards a more robust description of the styl-
ized facts by not just considering single autocovariances rtrt−h but rather
sums of these:

∑T1
h=t1

r2t r
2
t−h as these sums characterize the curvature over a

certain range of lags and might, therefore, give less noisy information than
single autocovariances. Such moments might actually convey structural in-
formation equivalent to the decay rate of the ACF. The use of such sums of
moments is perfectly in line with the GMM framework and we will explore
their effectiveness in the next section.

Now let us turn to the exact moment conditions. Starting with the
second moment, we easily find that

E[r2t ] = σ2
f + E[(xt+1 − xt)

2] = σ2
f + E[z2t ] = σ2

f + 2E[x2t ](1− e−2a) (17)

with zt = xt+1 − xt and

E[x2t ] =
b

b+ 2a
. (18)

Moving on to the fourth moment, it is also easy to see that:

E[r4t ] = 3σ4
f + 6σ2

fE[z2t ] + E[z4t ]. (19)

We can derive E[z4t ] as follows (cf. the Appendix):

E[z4t ] = 8E[x4t ]
{

a+ b

2a+ b
− e−2a +

a

2a+ b
e−2(2a+b)

}
(20)

and

E[x4t ] =
3b

2a+ 3b
E[x2t ]. (21)

Finally, autocovariances of squared returns are defined as

E[r2t r2t−h] = σ4
f + 2σ2

fE[z2t ] + E[z2t z2t−h] (22)

where we show again in the Appendix that

E[z2t z2t−h] = 4b2(1− 2(2a+ b))h−1
(
E[x4t ]− E[x2t ]2

)
. (23)
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Figure 1: Typical simulation with parameter set θ

4 Monte Carlo Results

In order to assess the quality of the proposed GMM estimator, we have
conducted a series of Monte Carlo experiments.

In the baseline setting, we assume that the log returns follow Wiener
Brownian motion without drift. The fundamental dynamics is, thus, sim-
ply characterized by its standard deviation σf . We choose the parameter
set θ = (a, b, σf ) = (0.0003, 0.014, 0.03) together with the number of agents
N = 100. This is a parameter set in the vicinity of typical empirical esti-
mates, and it satisfies a number of conditions: (i) it generates data that is
roughly in line with the empirical appearance of financial returns featuring
fat tails and clustering of volatility, see Fig. 1, (ii) it has roughly equal con-
tributions of the fundamental changes and the sentiment component to the
overall variation of asset prices ( which appears to be a good starting point),
(iii) it enables us to approximate the underlying agent-based model by its as-
sociated Langevin equation to a reasonable degree of accuracy. We simulate
the Langevin equation with time increments ∆t < 2

N(2a+bN) that guarantee
that the sum of all transition probabilities remains smaller than 1. Since the
parameter set θ leads to a bimodal outcome of the sentiment process, we
have also conducted Monte Carlo runs for a case with uni-modal dynamics
given by the parameter set θ′ = (0.014, 0.0003, 0.03). Baseline GMM results
are documented as “GMM1” in Tables 1 and 2. The moments we have used
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Table 1: Sensitivity of Moments to Parameter Changes.

Parameter set I

m1 m2 m3 m4 m5 m6 m′
3 m′

4

a 0.079 0.136 0.136 0.136 0.136 0.136 0.136 0.137
b 0.121 0.329 0.33 0.327 0.324 0.319 0.316 0.293

σf 0.412 0.889 0.889 0.889 0.889 0.888 0.888 0.889

Parameter set II

a 0.007 0.014 0.014 0.014 0.014 0.014 0.014 0.014
b 0.094 0.197 0.197 0.197 0.197 0.197 0.197 0.197

σf 0.445 1.087 1.087 1.087 1.087 1.087 1.087 1.087

Notes: The table displays calculations of the sensitivity of the six moment conditions with
respect to parameter variations. Changes by 25 percent of each one of the parameters
have been considered. The moments we have used are in their order of appearance in the
table: squared returns, the fourth moment and autocovariances of squared returns at lags
1, 5, 10 and 20, as well as the sums of autocovariances over lags 1 through 50 (m′

3) and
51 through 100 (m′

4), respectively.

are squared returns, as well as their fourth moment and autocovariances of
squared returns at lags 1, 5, 10 and 20. Table 1 shows that our chosen mo-
ment conditions display sufficient variation when changing the parameters
around θ and θ′ so that the underlying parameters should be guaranteed to
be identified. Note, however, that the autocovariances m3 through m6 are
all sensitive mainly with respect to b, but show homogeneous variation with
σf and a. This could be both an advantage or disadvantage for our estima-
tor. Indeed, it may imply that it is easier to identify b than the remaining
parameters, σf and a.

Since this is a nonlinear model with possibly multiple local minima of
the objective function, and we would not have any clear ex-ante perception
on the range of “realistic” parameter values in an empirical application, we
have first conducted a grid search in the admissible parameter space and
have subsequently initiated the GMM estimation from the 10 best out of 93

grid points. These grid points have been chosen equidistantly along all three
dimensions: given the variance of each set of test data, we have chosen σf
so that the fundamental variation would account for 0.1, 0.2,. . ., 0.9 of the
total sample variance. Given the grid value of σf , a and b have been varied
around the bifurcation value ε0 = a/b over 9 equidistant points each with
center at ε0 and four points to its right and left within the unimodal and
bimodal regimes. The exact location of the grid points of a and b has also
been chosen for each sample to bring them into rough agreement with the
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Table 2: Monte Carlo results for GMM estimation of ALW Model.

True: 0.3 1.4 30 0.3 1.4 30 0.3 1.4 30
GMM1 GMM2 GMM3

a b σf a b σf a b σf

T = 5,000

Mean 0.465 1.197 28.050 0.411 1.253 27.691 0.410 1.328 28.197
FSSE 0.288 0.496 4.859 0.275 0.312 6.185 0.309 0.332 6.520
RMSE 0.331 0.535 5.230 0.296 0.345 6.595 0.326 0.338 6.733

T = 10,000

Mean 0.419 1.134 28.399 0.352 1.306 28.655 0.352 1.431 29.351
FSSE 0.212 0.468 5.039 0.194 0.276 5.621 0.213 0.272 6.709
RMSE 0.243 0.538 5.281 0.201 0.292 5.773 0.219 0.273 6.707

T = 20,000

Mean 0.429 1.150 27.874 0.307 1.460 30.347 0.344 1.503 30.067
FSSE 0.205 0.446 5.143 0.160 0.205 4.901 0.214 0.182 5.748
RMSE 0.242 0.511 5.559 0.160 0.214 4.907 0.217 0.209 5.719

True: 1.4 0.3 30 1.4 0.3 30 1.4 0.3 30
GMM1 GMM2 GMM3

a b σf a b σf a b σf

T = 5,000

Mean 1.787 0.441 27.092 0.935 0.692 27.390 1.322 0.434 27.298
FSSE 5.883 0.029 1.112 0.440 0.570 2.756 0.295 0.017 0.428
RMSE 5.888 0.144 3.113 0.640 0.691 3.793 0.304 0.136 2.735

T = 10,000

Mean 2.054 0.441 27.018 1.014 0.693 27.107 1.524 0.433 27.207
FSSE 8.283 0.033 1.099 0.424 0.576 2.760 0.910 0.015 0.300
RMSE 8.298 0.145 3.177 0.573 0.696 3.996 0.914 0.134 2.809

T = 20,000

Mean 2.006 0.440 26.997 1.118 0.633 26.707 1.529 0.430 27.206
FSSE 5.012 0.025 0.857 0.354 0.521 3.132 0.258 0.014 0.288
RMSE 5.042 0.142 3.123 0.452 0.618 4.542 0.287 0.130 2.809

Notes: The table shows the means, finite sample standard errors (FSSE) and root-mean
squared errors (RMSE) of 400 replications of each scenario. Estimated parameters are mul-
tiplied by 103 for better readability. GMM1 stands for a standard GMM estimation, while
in GMM2 the estimation has been initiated with the inverse of the variance-covariance
matrix of the test data as the weighting matrix in the first step of the estimation. In
GMM3, single autocovariances have been replaced by sums of autocovariances.

sample variance.
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We have used sample sizes of 5000, 10000 and 20000 observations. While
our estimates are centered in the vicinity of their ‘true’ values, and for a
and b show roughly declining biases with increasing sample size, the over-
all quality of the estimates appears to show no significant improvement
with higher sample sizes – their finite sample standard errors (FSSE) and
root mean-squared errors (RMSEs) are about the same for all sample sizes.
This behavior is puzzling as our process should meet all standard “regular-
ity” conditions required for GMM estimation, and the chosen six moments
should allow identification of the parameters. Note that our moment condi-
tions are nonlinear in all parameters so that identification should be generic
(cf. McManus, 1992). Upon closer inspection, we find that our parameter
estimates suffer from a particularly high correlation between σf and a that
leads to a certain number of outliers. The reason is that these variables are
somewhat complementary in that they determine the variances of the fun-
damental and sentiment component (while the sentiment variance depends
on both a and b, the behavior of the estimates actually shows that a is more
relevant for the variance of the process). Thus, shifting between σf and a
roughly leads the second moment intact. While this might effect autocovari-
ances, changes of b might also bring those closer to the theoretical moments.
As a consequence, we find a certain number of runs that get stuck in local
minima.

Note also that in the grid search and initialization we have used un-
weighted moments (or weighted by the identity matrix – the default initial-
ization of a routine GMM estimation). In the present setting, the second
moment will be much larger in absolute value than the fourth moments and
the autocovariances of squared returns. Hence, to not let the second mo-
ment exert an all-dominating influence in the first step and to bias to one
side the overall results, it could be useful to already use some information
on the precision of different moments in the first step. To this end, we have
computed a weighting matrix that is the inverse of the variance-covariance
matrix of the moments in the test data. Using this unconventional initializa-
tion (for both the grid search and the first iteration of the GMM) we indeed
find a uniform improvement of our results in the more realistic parameter
set θ. The pertinent outcome is summarized under the heading “GMM2”
in Table 2. As it turns out, the performance of this alternative estimator
beats that of the conventional one in all respects under parameter set θ:
biases are uniformly decreasing with sample size, FSSEs and RMSEs are
always smaller than with GMM1 (particularly so far b where the FSSEs and
RMSEs are only about 50 percent of those of GMM1), and the precision of
the estimates becomes recognizably better with increasing sample size. For
θ′, we find a strong improvement in the quality of the estimate for a, but
also a sizable deterioration for b, and higher accuracy with increasing sample
size is also confined to parameter a. Table 2 and Fig. 2 provide additional
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illustrations of the distortive effects explained above which are still present
(though less pronounced) in the results from GMM2.

Table 3: Correlation Matrices of GMM Estimates.

a b σf

T = 5,000

1.000 -0.002 -0.647
-0.002 1.000 0.417
-0.647 0.417 1.000

T = 10,000

1.000 -0.013 -0.796
-0.013 1.000 0.363
-0.796 0.363 1.000

T = 20,000

1.000 -0.039 -0.888
-0.039 1.000 0.320
-0.888 0.320 1.000

Notes: The table shows the population correlation matrices of the parameter estimates
from GMM2 of the 400 replications of each scenario summarized in Table 2.

Table 3 exhibits the population correlation matrices of the 400 Monte
Carlo runs of Table 2. The dominating feature is the strong negative cor-
relation between a and σf across all sample sizes. Note that this entry
is even increasing with sample size which shows that with generally more
precise estimates for higher T this distortive feature explains even more of
the deviation from the ‘true’ values. In contrast, the two parameters of the
sentiment process are virtually uncorrelated while b and σf are moderately
positively correlated. Presumably, this shows that a higher estimate of the
fundamental variance has to be compensated by more pronounced herding
to match the volatility clustering measured by the autocovariances of second
moments. Fig. 2 shows how this effect leads to a right-skewed distribution of
the estimates of a and a left-skewed distribution for the estimates of σf . The
distortion due to this near-colinearity trickles away with increasing sample
size showing that indeed the parameters are well identified asymptotically.

Can we do any better with our limited information on these key uncon-
ditional and conditional statistics? Indeed we can, at least for certain sets
of parameters. Table 2 lists as GMM3 a setting with four moments only,
where, however, the conditional moments are sums of autocovariances, i.e.
m′

3 =
∑50

i=1 r
2
t r

2
t−i, m

′
4 =

∑100
i=51 r

2
t r

2
t−i, while m1 and m2 again denote the

second and fourth conditional moments. We see that this change greatly
improves the quality of the estimates under the second unimodal set of pa-
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Figure 2: Distribution of parameter estimates a and σf .

Note: The underlying data set is θ = (0.03, 0.014, 0.0003).

rameters, while it is more or less on par with GMM2 for the first parameter
set. FSSEs and RMSEs are typically only half of those found for GMM2
and particularly for b the distribution of the estimates becomes very nar-
row. This more precise estimation might even be a bit surprising in view
of the observation that m′

3 and m′
4 show almost the same variation like m3

through m6 in Table 1. Comparisons of the FSSE and RMSE suggest that
at least for parameter set θ′ (lower part of Table 2) most of the remaining
deviation from the ‘true’ value is due to a bias of the estimate, and not due
to smapling variability. Of course, graphical representations of the Monte
Carlo results from GMM3 look much ‘nicer’ than those of GMM2 depicted
in Figs. 2 and 3.

A cumbersome feature one finds in Table 2 is that for parameter vector θ′

the Monte Carlo results show not the slightest indication of improving from
sample sizes T = 5000 to T = 10000 or T = 20000. So while overall one
obtains the most precise estimates in that setting, both these typical sample
sizes do seem to be far away from the realm of the asymptotic distribution
of the estimates, and more data within this range do not lead to significantly
better estimates.
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Figure 3: Distribution of parameter b and J test statistics

Note: The underlying Parameter set is θ = (0.03, 0.014, 0.0003) The J test statistics is

shown together with its asymptotic χ2 distribution.

5 An Empirical Application

Given the acceptable performance of our modified GMM estimates, we turn
to an empirical application. We have selected a number of important fi-
nancial indices and other assets to explore the performance of our model.
Table 4 exhibits estimation results for three stock market indices, three ex-
change rates and the price of gold. The stock market indices are: the S&P
500, the German DAX and the Japanese Nikkei. For these series and for
the gold price, we have used daily data from the start of 1980 until the
end of the year 2004, a total of exactly 25 years. The foreign exchange
markets are represented by the exchange rates of the Euro against the U.S.
dollar (USD/EUR) and against the Swiss franc (CHF/EUR) as well as the
Japanese yen against the U.S. dollar (YEN/USD). Data for these series
include the periods 01/01/1999 to 12/31/2009 (USD/EUR), 7/15/2003 to
12/31/2009 (CHF/EUR) and 1/1/1986 to 12/31/2004 (YEN/USD). Since
due to the introduction of the Euro in 1999, the two exchange rates involv-
ing this currency have a shorter history, we have extended the pertinent
samples by five years until the end of 2009. Table 4 shows results for both
the GMM2 and GMM3 algorithms. Interestingly, we find that the results
from both sets of moments are very close to each other with particularly
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Table 4: Empirical Parameter Estimates.

GMM2 GMM3

Assets J a b σf rel.var J a b σf rel.var

DAX

3.962 0.026 0.315 8.368 0.56 5.913 0.026 0.315 8.368 0.56
(0.266 ) (0.009 ) (0.079 ) (1.642 ) (0.015 ) (0.020) (0.115 ) (3.539 )

S&P500

2.357 0.016 0.098 6.597 0.53 1.439 0.016 0.131 6.597 0.54
(0.502 ) (0.017 ) (0.029 ) (2.600 ) (0.230 ) (0.062 ) (0.177 ) (11.302 )

Nikkei

5.747 0.024 0.191 7.983 0.55 5.134 0.046 0.143 5.645 0.78
(0.125 ) (0.008 ) (0.034 ) (1.110 ) (0.023 ) (0.082 ) (0.013 ) (10.160 )

CHF/EUR

1.544 0.001 0.023 1.701 0.56 2.541 0.001 0.020 1.701 0.56
(0.672 ) (0.002 ) (0.009 ) (1.370 ) (0.111 ) (0.000 ) (0.007 ) (0.465 )

USD/EUR

14.315 0.029 0.012 3.476 0.62 3.748 0.012 0.024 3.476 0.67
(0.003 ) (0.053 ) (0.041 ) (8.618 ) (0.053 ) (0.011 ) (0.010 ) (2.117 )

YEN/USD

12.348 0.000 0.108 6.428 NA 6.574 0.000 0.093 6.528 NA
(0.006 ) (0.003 ) (0.831 ) (1.037 ) (0.010 ) (0.000 ) (0.031 ) (0.238 )

GOLD

4.111 0.021 0.332 5.263 0.73 6.172 0.021 0.208 5.263 0.72
(0.250) (0.028) (0.329) (8.458) (0.013) (1.142 ) (5.049) (276.290)

Notes: The table shows parameter estimates in-sample for selected stock market indices,
foreign exchange rates, and the price of gold together with the value of Hansen’s test of
overidentification restrictions (J). Standard errors and the p-vale of the test are given in
parentheses. The last column shows the relative contribution of the sentiment dynamics
to the volatility of returns (measured by its variance).

the parameter σf often being undistinguishable. The later finding indicates
that the level of fundamental noise is mainly extracted from the second and
fourth unconditional moments (since these are represented in both estima-
tions), while conditional moments are more exploited for the determination
of a and b.

As the sentiment dynamics is responsible for volatility clustering, the
estimations indeed sensibly decompose the relationships between parameters
and moments. Inspecting the estimation results in Table 4 one observes
that the estimates of a, b and σf have about the same order of magnitudes,
respectively, across the seven assets under consideration. The estimation,
thus, typically converges to very similar configurations. In all cases except
for the USD/EUR exchange rate under the GMM2 approach we find b > a
indicating a bimodal distribution of the underlying sentiment dynamics.

The other exchange rates (CHF/EUR and YEN/USD) are somewhat
unusual in that they are characterized by very small values of a indicating a
very small noise factor in the sentiment process. The J statistics accepts the
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model as a possible data generating process for the selected moments at any
traditional level of significance except for the two exchange rates USD/EUR
and YEN/USD under GMM2. It is more critical under GMM3 where we find
non-rejection at the 5 percent confidence level only for S&P 500, USD/EUR
and CHF/EUR. The last column of the Table exhibits the percentage of
the return volatility that according to the estimated parameters would be
attributed to sentiment changes. As we observe these numbers are relatively
uniform varying mostly between 50 and 60 percent with gold as an outlier
with a fraction of 73 percent as well as the Nikkei under GMM3 with 0.78
compared to 0.55 with GMM2 (for CHF/EUR this number cannot easily be
obtained due to the boundary value â = 0).

To just estimate parameters of a model does, however, not yet provide
much evidence on its closeness to the behavior of certain data. We, there-
fore, were interested to compare the ALW model to a standard econometric
model for financial returns, the GARCH model of Bollerslev (1986). This is
certainly the most common of all volatility models proposed in the litera-
ture, and it is well-known that it captures to a large extend the time-varying
dynamics of financial volatility. While dozens if not hundreds of extensions
exist that add features like asymmetry and long-term dependence we stick
to the basic GARCH (1,1) model for comparison basically because it has the
same number of parameters (3) like the agent-based model (denoted as ALW
model in the following), and because we would not expect our simple model
to be a coequal competitor for the most refined econometric models. We
compare ALW and GARCH (1,1) by an out-of-sample forecasting exercise:
To this end, we take the samples defined above as in-samples for parameter
estimation, and use both models to generate out-of-sample forecasts of daily
volatility for the remaining available data until the end of February, 2015
(i.e. data from either the beginning of 2005 or 2010 to the end of 2/2015).
We forecast daily volatility (proxied by squared returns) over horizons of
1,5,10,20,30,40 and 50 days and evaluate the quality of these forecasts via
their root mean squared errors (RMSEs). ALW forecasts are constructed
as best linear forecasts (cf. Brockwell and Davis, 1991, chap. 5). In this
approach, autoregressive forecasts are computed using a vector of optimal
weights that can be obtained in an iterative fashion using the autocovari-
ances of the process. Since we are forecasting squared returns as a proxy for
volatility, we only need autocovariances of squared returns to implement this
approach. These are luckily available in closed form from our moment con-
ditions. For the GARCH model, we use conditional expectations from the
ML estimates. Note that this puts our agent-based model on a disadvantage
as due to its nonlinear nature, there should, in principle, be better forecasts
available than the best linear ones. These are, however, not straightforward
to compute.

Results are depicted in Table 5 where we show the RMSE for each model
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Table 5: Out-of-Sample Forecast Comparison

RMSE RMSE RMSE
Data ALW GARCH p(DM) λ std. error f∗

S&P500

0.871 0.764 0.991 -0.119 0.056 0.758
0.823 0.767 0.984 -0.289 0.089 0.763
0.857 0.817 0.899 -0.138 0.097 0.815
0.910 0.883 0.812 -0.007 0.110 0.882
0.957 0.941 0.828 0.133 0.120 0.939
0.996 0.985 0.754 0.219 0.126 0.982
1.020 1.003 0.780 0.120 0.126 1.001

DAX

0.896 0.866 0.824 0.148 0.068 0.844
0.880 0.862 0.842 0.118 0.116 0.862
0.903 0.884 0.928 0.031 0.126 0.884
0.963 0.945 0.890 0.053 0.136 0.946
0.993 0.963 0.936 -0.188 0.129 0.962
1.028 0.992 0.952 -0.163 0.118 0.992
1.050 1.007 0.964 -0.142 0.107 1.007

Nikkei

0.917 0.778 0.961 0.131 0.041 0.784
0.908 0.880 0.674 0.346 0.053 0.858
0.939 0.944 0.474 0.489 0.054 0.908
0.997 1.108 0.158 0.945 0.057 0.996
1.019 1.161 0.135 1.077 0.058 1.019
1.036 1.204 0.127 1.194 0.058 1.031
1.042 1.223 0.119 1.246 0.058 1.035

USD/EUR

0.953 0.935 0.968 0.144 0.152 0.931
0.945 0.935 0.853 0.189 0.191 0.932
0.947 0.940 0.736 0.237 0.195 0.936
0.949 0.944 0.695 0.228 0.208 0.940
0.951 0.949 0.600 0.311 0.220 0.945
0.955 0.958 0.390 0.505 0.231 0.952
0.956 0.958 0.431 0.461 0.241 0.953

Notes: The table show root-mean squared errors of volatility forecasts for selected assets
on the base of the estimated ALW and a standard GARCH(1,1) model. p(DM) denotes
the probability of the null hypothesis that both models have the same forecast accuracy
against the alternative of better forecast accuracy of the ALW based preditions under
the common Diebold-Mariano test. λ is the estimate of the encompassing test with its
standard error following in the subsequent column. f∗ denotes the relative RMSE of the
optimal combination of GARCH and ALW.

19/31



Table 5 continued

RMSE RMSE RMSE
Data ALW GARCH p(DM) λ std.error f*

YEN/USD

0.972 0.919 0.981 -0.138 0.092 0.919
0.971 0.932 0.970 -0.113 0.105 0.932
0.974 0.935 0.956 -0.216 0.114 0.934
0.983 0.963 0.860 0.037 0.130 0.963
0.989 0.977 0.838 0.183 0.138 0.976
0.993 0.985 0.813 0.272 0.140 0.983
0.996 0.989 0.783 0.301 0.139 0.987

CHF/EUR

0.995 1.003 0.404 0.513 0.107 0.981
1.012 1.048 0.080 2.019 0.257 1.001
1.015 1.046 0.134 2.261 0.304 1.002
1.017 1.034 0.127 2.723 0.465 1.006
1.002 1.004 0.259 0.270 0.943 1.002
1.002 1.002 0.451 -0.268 0.886 1.001
1.004 1.004 0.562 -0.452 0.788 1.002

Gold

0.944 0.926 0.886 0.392 0.135 0.937
0.940 0.938 0.661 0.558 0.312 0.939
0.948 0.946 0.669 0.515 0.313 0.947
0.956 0.956 0.436 0.892 0.312 0.956
0.973 0.972 0.530 0.760 0.311 0.972
0.981 0.980 0.625 0.574 0.306 0.981
0.996 0.994 0.578 0.616 0.300 0.995

Notes: The table show root-mean squared errors of volatility forecasts for selected assets
on the base of the estimated ALW and a standard GARCH(1,1) model. p(DM) denotes
the probability of the null hypothesis that both models have the same forecast accuracy
against the alternative of better forecast accuracy of the ALW based preditions under
the common Diebold-Mariano test. λ is the estimate of the encompassing test with its
standard error following in the subsequent column. f∗ denotes the relative RMSE of the
optimal combination of GARCH and ALW.

and forecast horizon divided by the RMSE of a naive forecast using histori-
cal volatility (so that entries smaller than 1 indicate an improvement of the
model-based forecast against a static one). Besides these relative RMSEs
we also show the probability of the null hypothesis of equal predictive per-
formance against the alternative of better performance of the ALW model
under the Diebold-Mariano test statistics (denoted by p (DM)). Note that
the complementary probabilities would give the results of the mirror-imaged
tests of equal predictive performance against the alternative of better per-
formance of the GARCH model. Overall, we see a surprisingly good perfor-
mance of the ALW model that typically comes out only slightly worse than
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the tailor-made GARCH (1,1) volatility forecast. For the stock market data,
GARCH forecasts are only significantly better in 4 out of 21 cases at the 5
percent confidence level, mostly at the smallest horizon (for which GARCH
has one particularly tailored parameter). For gold, we find again slightly
larger RMSEs for ALW than GARCH but no significant differences at any
forecast horizon. For the CHF/EUR, both models have often RMSEs above
1 and, thus, perform worse than historical volatility. For USD/EUR and
YEN/USD results resemble those of the stock market: Both forecasts show
improvements against historical volatility, but those of the GARCH model
are more pronounced and significantly better at short horizons.

Figure 4: Forecasts for S&P 500 Volatility

Note: The figure shows squared returns of S&P 500 over the out-of-sample period together

with 1-period forecasts from the GARCH and ALW models.

To give some visual impression of the typical out-of-sample performance
of both models, Fig. 4 depicts the one-period ahead predictions for the
S&P 500 squared returns together with the empirical series. As one can
see, ALW shows more persistence of its predictions than GARCH, while
the later shows stronger short-run variation to shocks. Forecasts from both
models can differ to quite some extent at times so that it might be promising
to explore their complementarities via forecast combinations. Motivated
by this observation, we have explored the question whether GARCH and
ALW could be combined to provide superior forecasts than those from single
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models. The last three columns of Table 4 show the outcome of a standard
test of forecast encompassing along the lines of Harvey et al. (1999). The
fourth column of Table 4 exhibits the slope parameter λ in the forecast
encompassing regression:

e1,t = λ(e1,t − e2,t) + εt (24)

with e1,t and e2,t the errors of the forecasts from the GARCH and ALW
model, repectively. One, thus, tests the null hypothesis H0 : λ = 0 which
means that the GARCH model encompasses the ALW model. Rejection
of H0, i.e. estimates of λ significantly different from zero indicates that
the ALW model contributes useful information to the forecast problem in
question on top of what the GARCH model already contributes. The fifth
column of Table 4 gives the standard error of λ (allowing to access signif-
icance) and the last column shows the performance of optimally combined
forecasts from GARCH and ALW (f1,t and f2,t):

f∗
t = 1− λ)f1,t + λf2,t. (25)

As it turns out, ALW adds value at all lags for the Nikkei, at the higher lags
for USD/EUR, and YEN/USD, and the lower ones for the CHF/EUR and
again at most lags for gold.

The higher persistence of the ALW forecasts underlines the proximity
of this model to processes with long memory. As pointed out by Alfarano
and Lux (2007) for a closely related model, the switching between different
moods of market participants leads to a phenomenology of the resulting
dynamics that mimics long-range dependence despite the Markovian nature
of the process.

6 Conclusions

In this paper, we have explored the issues evolving around the estimation of
agent-based asset pricing models as they have mushroomed over the last two
decades. While we have concentrated on the particular example of the model
by Alfarano et al. (2008), we believe that some of our findings would also be
relevant for other models. Since we were able to derive analytical moment
conditions, we believe that important features showed up more clearly than
would have been under the additional complication of a simulated moment
estimation.2 First, we basically have available for the estimation of a uni-
variate asset pricing model the moments that characterize the stylized facts
of the empirical data: fat tails and volatility clustering. Since these features
can be succintly summarized by a small number of moments and additional

2Chen and Lux (2015) compare SMM with GMM for the same model, and find that
SMM is surprisingly inferior.
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ones would presumably only add largely redundant information, not too
many parameters could be identified in this way. Indeed, we find that even
with a maximally stripped down model with only three parameters, patterns
of high autocorrelation of parameter estimates and weak identification did
show up.

However, at the same time, a judicious choice of moments and a careful
design of the estimation algorithm are both able to increase the precision of
the estimates. Applying our approach to a broad selection of asset markets
we find structurally very similar results indicating a strong element of sen-
timent dynamics in the asset pricing process that, according to the model’s
decomposition, accounts for more than half of the overall variation of re-
turns. We also used (presumably for the first time) an estimated behavioral
model for forecasting of volatility. While we should certainly not expect too
much success of a simple model like the present one in such an exercise, we
find it interesting that this model indeed gets close in its performance to the
seminal GARCH model, and often adds exploitable information on top of
the one used by the GARCH model.

We believe that the present approach should be interesting to pursue
further. In particular, it should be explored whether different specifications
of agent-based models exhibit similar behavior in their empirical application,
or whether we could discriminate between them on the base of their capacity
to match moments and forecast volatility. Indeed, different specifications
need not be equivalent and could, thus, possibly provide combined forecasts
that improve upon single ones.

Appendix

A1. Derivation of moments in closed form

Unconditional even moments, E[xnt ], for n ≥ 2 can be obtained from the
compact formula available in Alfarano et al. (2008, p. 114)

E[(1− x2)k] = 22k
Γ(2ε)

Γ(2ε+ 2k)

(
Γ(ε+ k)

Γ(ε)

)2

(26)

by a suitable change of the parameter k. Here we preserve the original
notation of Alfarano et al. (2008) which should not be mixed with our usage
of k from Section 3. Recall, ε = a/b. Thus, for k = 1 we derive

E[x2t ] =
1

2ε+ 1
=

b

b+ 2a

and for k = 2 we obtain

E[x4t ] =
3

(2ε+ 3)(2ε+ 1)
=

3b

2a+ 3b
E[x2t ].
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Additional details are available in Alfarano et al. (2008, p. 130).

In order to compute the moments E[z2t ], E[z4t ], and E[z2t z2t−h], we need
to spend some more efforts. Recall, zt = xt+1 − xt. It is possible to obtain
sensible approximations of these moments by basing calculations on the
Eulerian approximation of the stochastic differential equation of x̃mentioned
in Section 2:

dx̃t = −2ax̃tdt+
√

2b(1− x̃2t )dBt, (27)

where we have suppressed the entry 4a/N in the diffusion term as it will be
negligible for sufficiently large N . The Eulerian approximation of (27) reads

x̃t+1 − x̃t = −2ax̃t∆t+
√

2b(1− x̃2t )∆tηt, (28)

where ηt is a standard normal variate independent of x̃t and in this paper
we fix ∆t ≡ 1.

Alfarano et al. (2008) make use of this approach and compute

E[z2t ] ' 2b(1− E[x2t ]) (29)

E[z4t ] ' (2b)2E[(1− 2x2t + x4t )η
4
t ] (30)

= 3(2b)2
4ε(ε+ 1)

(2ε+ 1)(2ε+ 3)
(31)

E[z2t z2t−h] ' 4b2(1− 2(2a+ b))h−1
(
E[x4t ]− E[x2t ]2

)
. (32)

Using these results it is then possible to compute the (approximate) auto-
correlation function of the z2t -process at lag h as follows

Cz2(h) =
1

4ε2 + 6ε+ 3
exp(−2bh(2ε+ 1)), (33)

cf. Alfarano et al. (2008, pp. 117, 131).

The second possibility to obtain the above moments is based directly on
the Jacobi diffusion and its analytical tractability:

dxt = −2axtdt+
√

2b(1− x2t )dBt. (34)

The idea is to compute first the conditional expectations E[xnt+1|xnt ] for n =
1, 2, 3, 4 in closed form by taking mathematical expectations on the both
sides of the suitably Itô-transformed variables. In particular, first the Itô rule
is applied to derive dxnt and then expectations are taken. Solutions to these
conditional expectations are available in closed form, however, they are often
very lengthy and for brevity are avoided in our presentation. Details are
available upon request. One source of lengthy expressions is the dependence
of the higher order conditional expectations on the solutions of the lower
order ones.
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After obtaining solutions to the mentioned conditional expectations, the
next step is to consider the polynomial expansions of z2t , z4t , and z2t z

2
t−h

in terms of (powers) of xt and xt+1 and take mathematical expectations of
the components. For instance, consider z2t = x2t+1 − 2xt+1xt + x2t and take
expectations from both sides. Note that the law of the iterated expectations
applies to the middle term where we make use of the derived analytical
conditional expectations. After very tedious calculations (details available
upon request) we obtain the following results which we state in terms of
more compact parameters α ≡ 2a and β ≡ 2b and ∆t ≡ 1:

E[z2t ] = 2E[x2t ] (1− exp[−α∆t]) (35)

E[z4t ] = 8E[x4t ]
(

α+ β

2α+ β
− exp[−α∆t]

+
α

2α+ β
exp[−(2α+ β)∆t]

)
(36)

E[ztzt−j∆t] = 2E[x2t ] (1− cosh[α∆t]) exp[−α∆tj] (37)

E[z2t z2t−j∆t] = c1 + c2 − 2c3 (38)

where

c1 = x11 − 2x12 + x13 (39)

c2 = x21 − 2x22 + x23 (40)

c3 = x31 − 2x32 + x33 (41)

and

x11 = exp(−(2α+ β)(j + 1)∆t)E[x4t ]
−β/[−(2α+ β)](1− exp(−(2α+ β)(j + 1)∆t))E[x2t ] (42)

x12 = exp(−α∆t) exp(−(2α+ β)j∆t)E[x4t ]
− exp(−α∆t)β/[−(2α+ β)](1− exp(−(2α+ β)j∆t))E[x2t ]

(43)

x13 = exp(−(2α+ β)j∆t)E[x4t ]
−β/[−(2α+ β)](1− exp(−(2α+ β)j∆t))E[x2t ] (44)
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x21 = exp(−(2α+ β)j∆t)E[x4t ]
−β/[−(2α+ β)](1− exp(−(2α+ β)j∆t))E[x2t ] (45)

x22 = exp(−α∆t) exp(−(2α+ β)(j − 1)∆t)E[x4t ]
− exp(−α∆t)β/[−(2α+ β)](1− exp(−(2α+ β)(j − 1)∆t))E[x2t ]

(46)

x23 = exp(−(2α+ β)(j − 1)∆t)E[x4t ]
−β/[−(2α+ β)](1− exp(−(2α+ β)(j − 1)∆t))E[x2t ] (47)

x31 = exp(−(2α+ β)j∆t) exp(−3(α+ β)∆t)E[x4t ]
+3β/(−α+ 3(α+ β)) exp(−(2α+ β)j∆t)(exp(−α∆t)

− exp(−3(α+ β)∆t))E[x2t ]
−β/[−(2α+ β)](1− exp(−(2α+ β)j∆t)) exp(−α∆t)E[x2t ] (48)

x33 = exp(−(2α+ β)(j − 1)∆t) exp(−3(α+ β)∆t)E[x4t ]
+3β/(−α+ 3(α+ β)) exp(−(2α+ β)(j − 1)∆t)(exp(−α∆t)

− exp(−3(α+ β)∆t))E[x2t ]
−β/[−(2α+ β)](1− exp(−(2α+ β)(j − 1)∆t)) exp(−α∆t)E[x2t ]

(49)

x32 = exp(−α∆t)x33. (50)

It is easy to see where the lengthy expressions come from. Simply, there
are many polynomial components, unconditional expectations of which are
based on very lengthy combinations of both lower-level conditional and un-
conditional expectations.

Using these results it is then possible, for instance, to compute the au-
tocorrelation function of the z2t -process at lag h with ∆t ≡ 1 as follows:

ρz2(h) =
E[z2t z2t−h]− E[z2t ]2

E[z4t ]− E[z2t ]2
. (51)

Thus, we obtain all the necessary building blocks for deriving the expres-
sions for E[r2t ], E[r4t ], and E[r2t r2t−h] in terms of E[x2t ], E[x4t ], E[z2t ], E[z4t ], and
E[z2t z2t−h]. These moments would now be the exact counterpart of the ones
obtained by Alfarano et al. (2008) via the Euler equation if (27) where the
exact law of motion of the sentiment process. They are still approximate in
the sense that the term 4a/N has been neglected in the diffusion function
and that eq. (27) is a diffusion approximation only to the ‘true’ underlying
microscopic dynamics of agents’ sentiment formation.
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Figure 5: ‘True’ and approximate autocorrelation functions of the z2t -
process.
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Notes: The expressions for the ‘true’, ρz2(j), and approximate, Cz2(j), autocorrelation
functions can be found in equations (51) and (33), respectively. The parameters are set as
θ∗ = (a, b) = (0.005, 0.1). ‘True’ here means exact moments based on the Jacobi diffusion
(27) which still is an approximation to the underlying agent-based process.

A2. A comparative study of the approximating moments

From the perspective of the true agent-based model of this paper the de-
rived moments following the two approaches are still approximations. How-
ever, among those two variants of moments the ones based on the Eulerian
approximation can themselves be viewed as approximations to the ‘true’
moments of the Jacobi diffusion. To show their relative performance, we
fix the parameters as in one calibration study of Alfarano et al. (2008, p.
119), θ∗ = (a, b) = (0.005, 0.1), and compute the autocorrelations of the
z2t -process at various lags for the two expressions in (33) and (51).

The results are visualized for 20 lags in Figure 5. Relative percentage
deviations of the approximate ACF values from the ‘true’ ones for the first 10
lags are assessed in Table 6. Interestingly, visually both ACFs are in a very
good agreement with each other, however, we observe virtually constant
relative undervaluation at about six percent of the approximate ACF to
the ‘true’ one. Nevertheless, the quality that is clearly obtained by the
Euler approximation of the highly nonlinear Jacobi diffusion for the ACF is
striking.

Another robust finding of our investigation is that approximate moments
tend to consistently overestimate kurtosis, however, this overvaluation is
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Table 6: True and approximate autocorrelation functions of the z2t -process.

Lag h ρz2(h) Cz2(h) Relative % Difference

1 0.2576 0.2425 −5.8970
2 0.2068 0.1946 −5.8970
3 0.1659 0.1561 −5.8970
4 0.1332 0.1253 −5.8970
5 0.1069 0.1006 −5.8970
6 0.0858 0.0807 −5.8970
7 0.0688 0.0648 −5.8970
8 0.0552 0.0520 −5.8970
9 0.0443 0.0417 −5.8970
10 0.0356 0.0335 −5.8970

Notes: The expressions for the ‘true’, ρz2(j), and approximate, Cz2(j), autocorrelation
functions can be found in equations (51) and (33), respectively. The parameters are set as
θ∗ = (a, b) = (0.005, 0.1). ‘True’ here means exact moments based on the Jacobi diffusion
(27) which still is an approximation to the underlying agent-based process.

very small (almost zero) and, therefere, can be tolerated.

To summarize, we observe that both the simple Euler approximation
and the much more involved derivation of exact moments from the diffusion
(27) lead to almost the same numerical values. Small deviations are present
but seem tolerable. Thus, the choice made in favor of the moment with a
simpler expression in our empirical application seems to be justifiable.
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