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March 9, 2015

Abstract

This work studies wavelet-based Whittle estimator of the Fractionally Integrated
Exponential Generalized Autoregressive Conditional Heteroscedasticity (FIEGARCH)
model often used for modeling long memory in volatility of financial assets. The newly
proposed estimator approximates the spectral density using wavelet transform, which
makes it more robust to certain types of irregularities in data. Based on an extensive
Monte Carlo study, both behavior of the proposed estimator and its relative performance
with respect to traditional estimators are assessed. In addition, we study properties of
the estimators in presence of jumps, which brings interesting discussion. We find that
wavelet-based estimator may become an attractive robust and fast alternative to the
traditional methods of estimation.
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1 Introduction

During past decades, volatility has became one of the most extensively studied variables in
finance. This enormous interest has mainly been spurred by the importance of volatility
as a measure of risk for both academics and practitioners. Despite numerous modeling
and estimation approaches developed in the literature, there are many interesting aspects
of estimation waiting for further research. One area of lively discussions is estimation of
parameters in long memory models led by the desire to capture persistence of volatility time
series. This persistence belongs to the important stylized facts, as it implies that shock in
the volatility will impact future volatility over a long horizon. The FI(E)GARCH extension
(Bollerslev & Mikkelsen, 1996) to the original (G)ARCH modeling framework of Engle (1982);
Bollerslev (1986) was shown to capture this empirically observed correlation well. In our
work, we contribute to the discussion with interesting alternative estimation framework for
the FIEGARCH model based on wavelet approximation of likelihood function.

Although traditional maximum likelihood (ML) framework for estimation of parameters
is desirable due to its efficiency, an alternative approach, Whittle estimator can be employed
(Zaffaroni, 2009). The Whittle estimator is obtained by maximizing frequency domain ap-
proximation of the Gaussian likelihood function, the so-called Whittle function (Whittle,
1962), and although it can not attain better efficiency, it may serve as a computationally fast
alternative to ML for complex optimization problems.

Traditionally, Whittle estimators use likelihood approximations based on Fourier trans-
form. Whereas this is accurate alternative to be used in many applications, in finance,
non-stationarities and significant time-localized patterns in data can emerge. Jensen (1999)
provides an alternative type of estimation based on approximation of likelihood function us-
ing wavelets. The main advantage of applying wavelet-based Whittle estimator in volatility
modeling is that wavelets are time localized and can better approximate spectral density in
case of non-stationarities found in volatility process.

Compared to the wide range of studies on semi-parametric Wavelet Whittle estimators
(for relative performance of local FWE and WWE of ARFIMA model see e.g. Faÿ et al. (2009)
or Frederiksen & Nielsen (2005) and related works), literature assessing performance of their
parametric counterparts is not extensive. Though, results of the studies completed so far
suggest that the performance of WWE in parametric setting is an interesting and important
research topic. Jensen (1999) introduces wavelet Whittle estimation (WWE) of ARFIMA
process, and compares its performance with traditional Fourier-based Whittle estimator. He
finds that estimators perform similarly, with an exception of MA coefficients being close to
boundary of invertibility of the process. In this case, Fourier-based estimation deteriorates,
whereas wavelet-based estimation retains its accuracy. Percival & Walden (2000) describe a
wavelet-based approximate MLE for both stationary and non-stationary fractionally differ-
enced processes, and demonstrates its relatively good performance on very short samples (128
observations). Whitcher (2004) applies WWE based on a discrete wavelet packet transform
(DWPT) to a seasonal persistent process and again finds good performance of this estima-
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tion strategy. Heni & Mohamed (2011) apply this strategy on a FIGARCH-GARMA model,
further application can be seen in Gonzaga & Hauser (2011).

Literature focusing on WWE studies various models, but estimation of FIEGARCH
has not been fully explored yet with exception of Perez & Zaffaroni (2008) and Zaffaroni
(2009). These authors successfully applied traditional Fourier-based Whittle estimators of
FIEGARCH models, and found that Whittle estimates perform better in comparison to ML
in cases of processes close to being non-stationary. Authors found that while ML is often
more efficient alternative, FWE outperforms it in terms of bias mainly in case of high per-
sistence of the processes. Hence Whittle type of estimators seem to offer lower bias at cost
of lower efficiency.

In our work, we contribute to the literature by extending the study of Perez & Zaffaroni
(2008) using wavelet-based Whittle estimator (Jensen, 1999). The newly introduced WWE
is based on two alternative approximations of likelihood function. Following the work of
Jensen (1999), we propose to use discrete wavelet transform (DWT) in approximation of
FIEGARCH likelihood function, and alternatively, we use maximal overlap discrete wavelet
transform (MODWT). In an experiment setup mirroring that of Perez & Zaffaroni (2008),
we focus on studying small sample performance of the newly proposed estimators, and guid-
ing potential users of the estimators through practical aspects of estimation. To study both
small sample properties of the estimator and its relative performance to traditional estima-
tion techniques under different situations, we run extensive Monte Carlo experiments. A
competing estimators are Fourier-based Whittle estimator (FWE), and traditional maximum
likelihood estimator (MLE). In addition, we also study the performance of estimators under
the presence of jumps in the processes.

Our results show that even in the case of simulated data, which follow a pure FIEGARCH
process, and thus do not allow to fully utilize the advantages of WWE over its traditional
counterparts, the estimator performs reasonably well. When we focus on the individual pa-
rameters estimation, in terms of bias the performance is comparable to traditional estimators,
in some cases outperforming FWE, while in terms of efficiency the latter is usually better.
In terms of forecasting performance, the differences are even smaller. The exact MLE mostly
outperforms both of the Whittle estimators in terms of efficiency, with just rare exceptions.
Yet, due to the computational complexity of the MLE in case of large data sets, FWE and
WWE thus represent an attractive fast alternatives for parameter estimation.

The rest of the text is structured as follows: section 2 introduces the FIEGARCH model
and the individual estimators; in section 3 the setup of the Monte Carlo experiment is de-
scribed and results are discussed. Due to the extend of the results, we relegate all support-
ing results to the online appendix available for download at http://ies.fsv.cuni.cz/en/

staff/kraicova. In section 4 we present the extended experiment; in section 5 we compare
our results with related literature; section 6 concludes.
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2 Estimation Frameworks for FIEGARCH(q, d, p)

2.1 FIEGARCH(q, d, p) Process

Despite the extremely wide spectrum of processes generating financial returns time series,
there are some stylized features which many of them have in common. They have been
detected over years of financial market analysis and have shaped the means of financial time
series modeling. One of the main features, the time-variant dependence in volatility led to
development of conditional volatility models by Engle (1982). Over time, performance of these
models (ARCH family models) in practical applications has demonstrated the importance of
conditional volatility in time series analysis and feasibility of direct volatility estimation
and forecasting. Although several alternative concepts based on explicitly modeled volatility
have been developed since Engle (1982), generalized ARCH models are still among those best
performing in practical applications. This makes it relevant to study the performance of new
parameter estimators in their context. In our study we focus on one of the generalizations
of the ARCH model, the FIEGARCH(q, d, p), where the log-returns {εt}Tt=1 are modeled
conditionally on their past realizations as:

εt = zth
1/2
t (1)

ln(ht) = ω + Φ(L)g(zt−1) (2)

g(zt) = θzt + γ[|zt| − E(|zt|)], (3)

where zt is an N (0, 1) independent identically distributed (i.i.d.) unobservable innovations
process, εt is observable discrete-time real valued process with conditional log-variance process
dependent on the past innovations Et−1(ε2t ) = ht, and L is a lag operator Ligt = gt−i in
Φ(L) = (1−L)−d[1 +α(L)][β(L)]−1. The polynomials α(L) = 1 +α[2](L) = 1 +

∑p
i=2 αiL

i−1

and β(L) = 1 −
∑q

i=1 βiL
i have no zeros in common, their roots are outside the unit circle,

θγ 6= 0 and d < 0.5. (1− L)d = 1− d
∑∞

k=1 Γ(k − d)Γ(1− d)−1Γ(k + 1)−1Lk with Γ(.) being
gamma function.

Any FIEGARCH(q, d, p) process is then fully determined by the number of parameters,
their values and distribution of the standardized innovations zt. Concerning the last factor,
the three most frequent assumptions in the literature are the standard normal distribution
providing a convenient estimation environment, student-t distribution assuming thicker tails,
and Generalized Error Distribution (GED) with parameter v determining the tail thickness.
Normal distribution is nested as a special case of GED for v = 2.

The model captures importnant stylized features of the real financial time series data;
short-term temporal variation in financial returns volatility (volatility clustering), long-term
temporal variation in financial returns volatility (long memory), negative relationship between
past returns and volatility (leverage effect) and fat-tailed sample distribution of returns.
We provide plots of a FIEGARCH process with three different levels of long memory for
illustration in Section ?? of an online appendix.

While correct model specification is important for capturing all the empirical features
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of the data, feasibility of estimation of its parameters is crucial. In general, estimation of
the FIEGARCH model can be carried out by various methods. Below, those considered in
this work (the benchmark estimators MLE and FWE, and the newly introduced WWE) are
described together with practical aspects of their application.

2.2 (Quasi) Maximum Likelihood Estimator

The Maximum Likelihood Estimation is often considered the gold-standard for parameter es-
timation, hence it serves as a natural benchmark estimation framework used in this study. For
a general zero mean, stationary Gaussian process {xt}Tt=1, the maximum likelihood estimator
(MLE) is defined as

ζ̂MLE = argmin
ζ∈Θ

LMLE(ζ), (4)

where LMLE(ζ) is the negative log-likelihood function

LMLE(ζ) =
T

2
ln(2π) +

1
2

ln |ΣT |+
1
2
(
x′tΣ

−1
T xt

)
, (5)

where ΣT is the covariance matrix of xt, |ΣT | is its determinant and ζ is the vector of
parameters to be estimated.

Despite the favorable properties of the MLE, there are some issues limiting its practical
applicability. The usual problem is that we have to deal with the inversion of the covariance
matrix of the process and with its determinant. Although it may not be a problem when the
matrix is diagonal or sufficiently sparse, in cases of dense covariance matrices (characteristic
for long memory processes) it may be extremely time demanding, or even unfeasible in case
of large datasets. Moreover, as discussed in (Beran (1994), chapter 5), solution may be even
unstable in the presence of long memory, when the covariance matrix is close to singularity.
Next, empirical data often does not to have zero mean, hence the mean has to be estimated
and deducted. The efficiency and bias of the estimator of the mean contributes to the
efficiency and bias of the MLE. In case of long-memory processes it can cause significant
deterioration of the MLE (Cheung & Diebold, 1994). Both these issues have motivated
construction of alternative estimators, usually formulated as approximate MLE and defined
by an approximated log-likelihood function (Beran, 1994; Nielsen & Frederiksen, 2005).

Since the assumption of a specific distribution is usually too restrictive for practical ap-
plications, it is important to study the estimator in situations when it is constructed for some
process but applied to a different process. In the context of GARCH processes with non-
normal error distribution, Quasi-Maximum Likelihood Estimator (QMLE) has been studied
by Bollerslev & Wooldridge (1992), who show that the estimator remains consistent, but loses
efficiency. The efficiency loss, as argued in Engle & Gonzalez-Rivera (1991), is rather small
for symmetric t-distributed processes, but can be significant under asymmetric distribution.
As discussed in Bollerslev & Wooldridge (1992), standard test statistics become biased and to
ensure valid inference, their robustified counterparts, such as those proposed by the authors,
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should be used. Unlike the case of GARCH model, the asymptotic theory for EGARCH and
FIEGARCH QMLE is not yet available. Though, the (Q)MLE is the basic tool for their
estimation suggested by their authors in Nelson (1991) and Bollerslev & Mikkelsen (1996) re-
spectively and the properties of the estimator are assessed via empirical studies(Baillie et al.,
1996; Bollerslev & Mikkelsen, 1996; Perez & Zaffaroni, 2008).

To derive (Q)MLE of the FIEGARCH process, we just rewrite the general formula for the
negative log-likelihood function (Eq. 5). Since we assume log-returns εt to follow a Gaussian,
zero-mean process of independent variables, ΣT will be diagonal with conditional variances ht
as its elements, and determinant will reduce to a sum of its diagonal terms. The reduced-form
negative log-likelihood function can be written as:

L(Q)MLE(ζ) =
T∑
t=1

(
lnht(ζ) +

ε2t
ht(ζ)

)
, (6)

where ζ is a vector of parameters in the equation for conditional log-variance in (Eq. 1).
Then the (Q)MLE estimator is defined as ζ̂(Q)MLE = argminζ∈ΘL(Q)MLE(ζ), where Θ is the
parameter space.

Despite the simple formula, some practical issues arise because of the need to model the
conditional volatility process during the optimization. As discussed in Bollerslev & Mikkelsen
(1996), since in the context of GARCH models the forecasted volatility depends on the
past forecasts, the log-likelihood function becomes dependent on initial conditions, the basis
for conditional variance recursion. Since, under the general specification of the model, ht
depends on {ht−i, i = 1, 2, ..∞}, a truncation is needed. In case of a short memory process,
the dependence on the past declines exponentially, which enables to use a relatively small
number of initializing values. In contrast, when long memory is present, large number of
pre-sample “observations” is necessary to prevent a significant loss of information about
long-run dependencies in the process. Following the approach of Bollerslev & Mikkelsen
(1996), in our Monte Carlo experiment, the pre-sample conditional volatilities are set to the
sample volatility, conditional mean is assumed to be known and equal to zero (later on also
the non-zero case is assumed) and for both the simulation and estimation the truncation is
done at lag 1000. Using these initializing values, for each set of parameters considered by
the optimization algorithm the whole vector of conditional volatilities is estimated, together
with the implied squared returns needed for further iterations. Given the complexity of this
procedure, the method is significantly time consuming.

2.3 Fourier-based Whittle Estimator

The Fourier-based Whittle estimator (FWE) is a spectral-based counterpart of the MLE,
where the problematic terms in the log-likelihood function (with the possibly dense covari-
ance matrix) the |ΣT | and x′tΣ

−1
T xt, are replaced by their asymptotic frequency domain

representations. The link between time domain and frequency domain is defined by means
of Fourier transform. The approximation is based on a study of eigenvectors and respective
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eigenvalues of the covariance matrix leading to a conclusion that the matrix can be diagonal-
ized by means of Fourier transform. Orthogonality of the Fourier transform projection matrix
then allows to achieve the approximation by means of multiplications by identity matrices,
simple rearrangements and approximation of integrals by Riemann sums, see Beran (1994).
The reduced-form approximated Whittle negative log-likelihood function for estimation of
parameters under Gaussianity assumption is:

LW (ζ) =
1
T

m∗∑
j=1

(
ln f(λj , ζ) +

I (λj)
f(λj , ζ)

)
, (7)

where f(λj , ζ) is the spectral density of process xt evaluated at frequencies λj = j/T (i.e.
2πj/T in terms of angular frequencies) for j = 1, 2, ...m∗ andm∗ = max {m ∈ Z; m ≤ (T − 1)/2},
i.e. λj < 1/2, and its link to the variance-covariance matrix of the process xt is:

cov(xt, xs) =
∫ 1/2

−1/2
f(λ, ζ)ei2πλ(s−t)dλ = 2

∫ 1/2

0
f(λ, ζ)ei2πλ(s−t)dλ; (8)

see Percival & Walden (2000) for details. The I (λj) is the value of periodogram of xt at jth
Fourier frequency:

I (λj) = (2πT )−1

∣∣∣∣∣
T∑
t=1

xte
i2πλjt

∣∣∣∣∣
2

, (9)

and the respective Fourier-based Whittle estimator is defined as (for a detailed FWE treat-
ment see e.g. Beran (1994)):

ζ̂W = argmin
ζ∈Θ

LW (ζ). (10)

It can be shown that the FWE has the same asymptotic distribution as the exact MLE,
hence is asymptotically efficient for Gaussian processes (Fox & Taqqu, 1986; Dahlhaus, 1989,
2006). In the literature, FWE is frequently applied to both Gaussian and non-Gaussian pro-
cesses (equivalent to QMLE), whereas even in the later case, both finite sample and asymp-
totic properties of the estimator are often shown to be very favorable and the complexity of
the computation depends on the form of the spectral density of the process. Next to a signif-
icant reduction in estimation time, the FWE also offers an efficient solution for long-memory
processes with an unknown mean, which can impair efficiency of the MLE. By elimination
of the zero frequency coefficient FWE becomes robust to addition of constant terms to the
series, and thus in case, when no efficient estimator of the mean is available, FWE can be-
come an appropriate choice even for time series where the MLE is still computable within
reasonable time.

Concerning the FIEGARCH estimation, the FIEGARCH-FWE is, to the authors’ knowl-
edge, the only one out of the three estimators considered in this work, for which an asymptotic
theory is currently available. The theory is derived in Zaffaroni (2009) for a whole class of
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exponential volatility processes; both strong consistency and asymptotic normality are es-
tablished, even though the estimator works as an approximate QMLE of a process with an
asymmetric distribution, rather than an approximate MLE. This is due to the need to ad-
just the model to enable derivation of the spectral density of the estimated process. More
specifically, as discussed and derived in Perez & Zaffaroni (2008) and Zaffaroni (2009), it is
necessary to rewrite the model in a signal plus noise form:

xt = ln
(
ε2t
)

= ln
(
z2
t

)
+ ω +

∞∑
s=0

Φsg(zt−s−1) (11)

g(zt) = θzt + γ[|zt| − E(|zt|)] (12)

Φ(L) = (1− L)−d[1 + α[2](L)][β(L)]−1. (13)

where for FIEGARCH(1, d, 2), it holds that α[2](L) = αL, and β(L) = 1−βL. The process xt
then enters the FWE objective function instead of the process εt. For the detailed derivation
of the transformed process and for the formula for its spectral density see Appendix A.

2.4 Wavelet Whittle Estimator

Although FWE seems to be a good alternative to MLE for the FIEGARCH model estimation
in the case of application on FIEGARCH underlying processes (Perez & Zaffaroni, 2008), its
use on real data may be, in some cases, problematic. This is because the FWE performance
depends on the accuracy of the spectral density estimation using periodogram, which may
be impaired by various time-localized patterns in the data diverging from the underlying
FIEGARCH process. Motivated by the advances in the spectral density estimation using
wavelets, we propose a wavelet-based estimator, the Wavelet Whittle Estimator (WWE), as
an alternative to FWE. As in the case of FWE, the WWE effectively overcomes the problem
with the |ΣT | and x′tΣ

−1
T xt by means of transformation. The difference is that instead of

using discrete Fourier transform (DFT), we use discrete wavelet transform (DWT). While
DFT is projection of the time series on periodic functions with infinite support, DWT is a
projection on a finite-support function, which may be advantageous particularly for some
datasets.

2.4.1 Discrete Wavelet Transform

To provide an introduction to the Wavelet Whittle Estimation, we briefly describe the wavelet
transform that determines its properties and makes it different from the FWE. The core of any
wavelet transform is a wavelet system, whose construction, together with means of the pro-
jection applied, determine the characteristics of the transformed data. For any s ∈ R, a basic
wavelet system can be defined as a set {{ϕj0,k(s)} , {ψj,k(s)} ; k ∈ Z, j = j0, j0 − 1, j0 − 2....}
creating an orthonormal basis in L2(R); which means that any function f ∈ L2(R) can be
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expressed as

f(s) =
∑
k

αj0,kϕj0,k(s) +
j0∑

j=−∞

∑
s

βj,kψj,k(s), (14)

where αk =
∫
f(s)ϕj0,k(s) ds, and βj,k =

∫
f(s)ψj,k(s) ds, where the elements αk, βj,k, ϕ(s)

and ψ(s) are called scaling coefficients, detail (wavelet) coefficients, scaling function (father
wavelet) and wavelet function (mother wavelet) respectively, and the translated and dilated
transformations of the mother wavelet are called daughter wavelets. With increasing j, these
daughter wavelets get wider, with j ≤ 0 they are narrower than the mother wavelet.

The basic conditions for ψ(s) to be a valid mother wavelet are that
∫
ψ(s)ds = 0 and∫

ψ2(s)ds = 1, while the usual requirement is also the “admissibility” condition
∫ | bψ(ω)|2

ω dω <

∞, where ψ̂ is the Fourier transform of ψ. This condition ensures that we can reconstruct
the original time series from its transform. For complete conditions on ϕ(s), ψ(s) to be
valid father and mother wavelets in the context various subsets of L2(R) and for other details
concerning construction of wavelet systems see Hardle et al. (1998). In addition, we provide
examples of wavelets in Section ?? and ?? of Online Appendix.

Next, any method that decomposes original data using the wavelet system and expresses
them in terms of coefficients {αk, βj,k} and functions {ϕ(s), ψ(s)} defined above, is a wavelet
transform. In case of j ∈ Z, as applied in our work, we speak about a discrete wavelet
transform (DWT), while for j ∈ R the transform is continuous (CWT). By tradition, the
default choice of scales is

{
21−j ; j ∈ Z

}
, thus the standard DWT can be defined in terms

of the wavelet expansion (Eq. 14) with scaling defined as s(j) = 21−j (i.e.“scale j” refers
to the scaling 21−j , scale 1 refers to 20 = 1). The DWT coefficients are obtained for scales
j0 = J, j0 − 1 = J − 1, j0 − 2 = J − 2, ..., j0 − (j0 − 1) = 1 using two-channel filter banks
and down-sampling, so that at each level of decomposition j of a series of length M we get
M/2j DWT coefficients, see e.g. Jensen (2000). These coefficients can be in turn used for
decomposition of the variance σ2 of the process xt:

σ2 = E(x2
t )− [E(xt)]2 =

||xt||2

T
− [E(xt)]2 =

∑J
j=1 ||Wj ||2 + ||VJ ||2

T
− [E(xt)]2, (15)

where Wj ; j = 1, ...J and VJ are vectors of wavelet and scaling coefficients respectively and
the [E(xt)]2 can be estimated using the squared sample mean x̄2

t , or using the true squared
mean whenever known. Alternatively, we can use the coefficients for estimating the spectral
density f(λ, ζ) of xt using the relationship:

||Wj ||2

T
=
σ2
W,j

2j
≈ 2

∫ 1/2j

1/2j+1

f(λ, ζ) dλ (16)

||VJ ||2

T
− x̄2

t =
σ2
V,J

2J
−
(

1− 1
2J

)
x̄2
t ≈ 2

∫ 1/2J+1

0
f(λ, ζ) dλ, (17)

where σ2
W,j and σ2

V,J are the sample variances of the wavelet and scaling coefficients respec-
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tively for j = 1, 2, ...J .

2.4.2 Wavelet Whittle Estimator

Analogically to the FWE, we use the relationship between wavelet coefficients and the spectral
density of xt to approximate the likelihood function. The main advantage is, compared to the
FWE, that the wavelets have limited support, and thus, the coefficients are not determined
by the whole time series, but by a limited number of observations only. This increases the
robustness of the resulting estimator to irregularities in the data well localized in time, such
as jumps. These may be poorly detectable in the data, especially in the case of strong
long memory that itself creates jump-like patterns, but at the same time, their presence can
significantly impair the FWE performance. On the other hand, the main disadvantages of
using the DWT are the restriction to sample lengths 2j and the low number of coefficients
at the highest levels of decomposition j.

Skipping the details of wavelet-based approximation of the covariance matrix and the
detailed WWE derivation, which can be found e.g. in Percival & Walden (2000), the reduced-
form Wavelet-Whittle objective function can be defined as:

LWW (ζ) = ln |ΛT |+
(
W ′j,kΛ

−1
T Wj,k

)
(18)

=
J∑
j=1

Nj ln

(
2
∫ 1/2j

1/2j+1

2jf(λ, ζ) dλ

)
+

Nj∑
k=1

W 2
j,k

2
∫ 1/2j

1/2j+1 2jf(λ, ζ) dλ

, (19)

where Wj,k are the wavelet (detail) coefficients, and ΛT is a diagonal matrix with elements

{C1, C1, ...C1, C2, ..., CJ}, where for each level j, we haveNj elements
(
Cj = 2

∫ 1/2j

1/2j+1 2jf(λ, ζ) dλ
)

,
where Nj is the number of DWT coefficients at level j. The Wavelet Whittle Estimator can
then be defined as

ζ̂WW = argmin
ζ∈Θ

LWW (ζ), (20)

Similarly to the Fourier-based Whittle, the estimator is equivalent to a (Q)MLE of parameters
in the probability density function of wavelet coefficients under normality assumption. At
this time, the negative log-likelihood function can be rewritten as a sum of partial negative
log-likelihood functions respective to individual levels of decomposition, whereas at each level,
the coefficients are assumed to be homoskedastic, while across levels the variances differ. All
wavelet coefficients are assumed to be (approximately) uncorrelated (the DWT approximately
diagonalizes the covariance matrix), which requires an appropriate filter choice. Next, in our
work the variance of scaling coefficients is excluded. This is possible due to the WWE
construction, the only result is that the part of the spectrum respective to this variance is
neglected in the estimation. This is optimal especially in cases of long-memory processes,
where the spectral density goes to infinity at zero frequency, and where the sample variance
of scaling coefficients may be significantly inaccurate estimate of its true counterpart due to
the embedded estimation of the process mean.
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2.4.3 Full vs. Partial Decomposition

Similarly to the omitted scaling coefficients, we can exclude any number of the sets of wavelet
coefficients at the highest and/or lowest levels of decomposition. What we get is a parametric
analogy to the Local Wavelet Whittle Estimator (LWWE) developed in Wornell & Oppenheim
(1992) and studied by Moulines et al. (2008), who derive the asymptotic theory for LWWE
with general upper and lower bound for levels of decomposition {j ∈ 〈L,U〉 ; 1 ≤ L < U ≤ J},
where J is the maximal level of decomposition available given the sample length.

Although, in the parametric context, it seems to be natural to use the full decomposition,
there are several features of the WWE causing that it may not be optimal. To make the
point, let’s rewrite the WWE objective function as:

LWW (ζ) =
J∑
j=1

Nj

(
ln σ2

W,j,DWT (ζ) +
σ̂2
W,j,DWT

σ2
W,j,DWT (ζ)

)
, (21)

where σ2
W,j,DWT (ζ) is the theoretical variance of jth level DWT coefficients and σ̂2

W,j,DWT is its
sample counterpart, ζ is the vector of parameters in σ2

W,j,DWT (ζ) and {Wj,DWT ; j = 1, ...J}
are vectors of DWT coefficients used to calculate σ̂2

W,j,DWT . Using the definition of wavelet

variance υ2
j = 2

∫ 1/2j

1/2j+1 f(λ, ζ)dλ =
σ2

W,j,DWT

2j ; j = 1, 2, ...J and using the fact that the op-
timization problem does not change by dividing the right-hand side term by N∗, the total
number of coefficients used in the estimation, the LWW (ζ) above is equivalent to

L∗WW (ζ) =
J∑
j=1

Nj

N∗

(
ln σ2

W,j,DWT (ζ) +
υ̂2
W,j,DWT

υ2
W,j,DWT (ζ)

)
, (22)

where υ2
W,j,DWT (ζ) is the theoretical jth level wavelet variance and υ̂2

W,j,DWT is its estimate
using DWT coefficients.

The quality of our estimate of ζ depends on the the quality of our estimates of σ2
W,j,DWT (ζ)

using sample variance of DWT coefficients, or equivalently, on the quality of our estimates
of υ2

W,j,DWT (ζ) using the rescaled sample variance of DWT coefficients, whereas each level of
decomposition has a different weight (Nj/N

∗) in the objective function. The weights reflect
the number of DWT coefficients at individual levels of decomposition and, asymptotically,
the width of the intervals of frequencies (scales) which they represent (i.e. the intervals
(2−(j+1), 2−j)).

The problem, and one of the motivations for the partial decomposition, stems from the
decreasing number of coefficients at subsequent levels of decomposition. With the declining
number of coefficients, the averages of their squares are becoming poor estimates of their
variances. Consequently, at these levels, the estimator is trying to match inaccurate ap-
proximations of the spectral density, and the quality of estimates is impaired. Then the
full decomposition, that uses even the highest levels with just a few coefficients, may not be
optimal. The importance of this effect should increase with the total energy concentrated at
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the lowest frequencies used for the estimation and with the level of inaccuracy of the vari-
ance estimates. To get a preliminary notion of the magnitude of the problem in the case of
FIEGARCH model, see Table 1, Figure 3 and Figure 4 in Appendix C, where integrals of the
spectral density (for several sets of coefficients) over intervals respective to individual levels
are presented, together with the implied theoretical variances of the DWT coefficients. By
their nature, the variances of the DWT coefficients reflect not only the shape of the spectral
density (the integral of the spectral density multiplied by two), but also the decline in their
number at subsequent levels (the 2j term). This results in the interesting patterns observable
in Figure 3, which suggest to think about both the direct effect of the decreasing number of
coefficients on the variance estimates and about the indirect effect that changes their theo-
retical magnitudes. This indirect effect can be especially important in case of long-memory
processes, where a significant portion of energy is located at low frequencies, the respective
wavelet coefficients variances to be estimated become very high, while the accuracy of their
estimates is poor. In general, dealing with this problem can be very important in case of
small samples, where the share of the coefficients at “biased levels” is significant, but the
effect should die out with increasing sample size.

One of the possible means of dealing with the latter problem is to use a partial decom-
position, which leads to a local estimator similar to that in Moulines et al. (2008). The
idea is to set a minimal required number of coefficients at the highest level of decomposition
considered in the estimation and discard all levels with lower number of coefficients. Under
such a setting, the number of levels is increasing with the sample size, as in the case of full
decomposition, but levels with small number of coefficients are cut off. According to Percival
& Walden (2000), the convergence of the wavelet variance estimator is relatively fast, so that
128 (27) coefficients should already ensure a reasonable accuracy1. Though, for small samples
(such as 29) this means a significant cut leading to estimation based on high frequencies only,
which may cause even larger problems than the inaccuracy of wavelet variances estimates
itself. The point is that every truncation implies a loss of information about the shape of the
spectral density, whose quality depends on the accuracy of the estimates of wavelet variances.
Especially for small samples, this means a tradeoff between inaccuracy due to poor variance
estimation and inaccuracy due to insufficient level of decomposition. As far as our results for
FIEGARCH model, based on partial decomposition suggest, somewhat inaccurate informa-
tion may be still better than no information at all, and consequently, the use of truncation
of 6 lags ensuring 128 coefficients at the highest level of decomposition may not be optimal.
The optimal level, will be discussed together with the experiment results.

Next possible solution to the problem can be based on a direct improvement of the vari-
ances estimates at the high levels of decomposition (low frequencies). Based on the theoretical
results on wavelet variance estimation provided in Percival (1995) and summarized in Perci-
val & Walden (2000), this should be possible by applying maximal overlap discrete wavelet
transform (MODWT) instead of DWT. The main difference between the two transforms is
that there is no sub-sampling in the case of MODWT. The number of coefficients at each

1Accuracy of the wavelet variance estimate, not the parameters in approximate MLE.
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level of decomposition is equal to the sample size, which can improve our estimates of the
coefficients’ variance. Generally, it is a highly redundant non-orthogonal transform, but in
our case this is not an issue. Since the MODWT can be used for wavelet variance estimation,
it can be used also for the estimation of the variances of DWT coefficients, and thus, it can
be used as a substitute for the DWT in the WWE. Using the definitions of variances of DWT
and MODWT coefficients at level j and their relation to the original data spectral density
f(λ, ζ) described in Percival & Walden (2000)

σ̂2
W,j,DWT =

∑Nj

k=1W
2
j,k,DWT

Nj
= 2j+1

∫ 1/2j

1/2j+1

f(λ, ζ)dλ (23)

σ̂2
W,j,MODWT =

∑T
k=1W

2
j,k,MODWT

T
= 2

∫ 1/2j

1/2j+1

f(λ, ζ)dλ, (24)

where Nj = T/2j , it follows that

σ̂2
W,j,DWT = 2j σ̂2

W,j,MODWT . (25)

Then the MODWT-based approximation of the negative log-likelihood function can thus be
defined as

L∗WW,MODWT =
J∑
j=1

Nj

N∗

(
ln σ2

W,j(ζ) +
2j σ̂2

W,j,MODWT

σ2
W,j(ζ)

)
, (26)

and the MODWT-based WWE estimator as:

ζ̂WW,MODWT = argmin
ζ∈Θ

L∗WW,MODWT . (27)

According to Percival (1995), in theory, the estimates of wavelet variance using MODWT
can never be less efficient than those provided by the DWT, and thus the approach described
above should improve the estimates. Results for this alternative estimator are presented later
in the text.

Next interesting question related to the optimal level of decomposition concerns the pos-
sibility to make the estimation faster by using a part of the spectrum only. The idea is
based on the shape of the spectral density determining the energy at every single interval of
frequencies. As can be seen in table Table 1 and Figure 3 in Appendix C, for FIEGARCH
model, under a wide range of parameter sets most of the energy is concentrated at the upper
intervals. Therefore, whenever it is reasonable to assume that the data-generating process
is not an extreme case with parameters implying extremely strong long memory, estimation
using a part of the spectrum only may be reasonable. In general, this method should be both
better applicable and more useful in case of very long time-series compared to the short ones,
especially when fast real-time estimation is required. In case of small samples the partial
decomposition can be used as a simple solution to the inaccurate variance estimates at the
highest levels of decomposition, but in most cases it is not reasonable to apply it just to speed
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up the estimation.
At this point the questions raised above represent just preliminary notions based mostly

on common sense and the results of Moulines et al. (2008) in the semi-parametric setup. To
treat them properly, an asymptotic theory, in our case for the FIEGARCH-WWE, needs to be
derived. This should enable to study all the various patterns in detail, decompose the overall
convergence of the estimates into convergence with increasing sample size and convergence
with increasing level of decomposition and to optimize the estimation setup respectively. Yet,
this would be beyond the scope of our current research. Therefore, the analysis we present
reduces to an extension of the set of Monte Carlo experiments to cover both the full and the
partial decomposition, to demonstrate the relevancy of the problems mentioned above and
to provide a motivation for further research in this area.

2.4.4 FIEGARCH WWE

After defining the general form of the estimator and discussing its properties, let’s focus on
the FIEGARCH WWE application. First, using WWE, the same transformation of the data
as in the case of the FWE is necessary. Second, due to the flexibility of the DWT, important
choices have to be made before the WWE can be applied. Percival & Walden (2000) in
chapter 4 discus some general practical considerations, including the wavelet choice, handling
of boundary coefficients, choice of the decomposition level and application of the DWT on
series with different length than 2j . The filters chosen for the Monte Carlo experiment in
our work are the same as those chosen in Percival & Walden (2000), i.e. Haar wavelet,
D4 (Daubechies) wavelet and LA8 (Least asymmetric) wavelet, but the need of a detailed
study focusing on the optimal wavelet choice for FIEGARCH WWE is apparent. The only
property of the filters that was tested before the estimation was their ability to decorrelate
the FIEGARCH process, that is important for the WWE derivation and its performance (see
Percival & Walden (2000), Jensen (1999), Jensen (2000) or Johnstone & Silverman (1997)).
In Section ?? of Online Appendix, the quality of the DWT-based decorrelation is assessed
based on the dependencies among the resulting wavelet coefficients. We provide estimates of
autocorrelation functions (ACFs) of wavelet coefficients respective to FIEGARCH processes
for (T = 211; d = 0.25, d = 0.45, d = −0.25) and filters Haar, D4 and LA8. Both sample
mean and 95% confidence intervals based on 500 FIEGARCH simulations are provided for
each lag available. Based on the results, the approximation of the spectral density can be
applied. Next, to avoid the problem with boundary coefficients, they are excluded from the
analysis; sample sizes considered are: 2k; k = 9, 10, 11, 12, 13, 14 and concerning the level
of decomposition, both full and partial decomposition are used, the respective results are
compared. Making all these choices, the WWE is fully specified and the objective function
is ready for parameters estimation.
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2.4.5 Preliminary Results: FWE vs. WWE

Since the relative accuracy of the Fourier- and wavelet-based spectral density estimates de-
termine the relative performance of the parameters estimators, it is interesting to see how
the sample Fourier- and wavelet-based approximations of the spectral density match its true
shape. For this purpose, a set of figures in Appendix B is provided, showing the rationale
for WWE application. Figure 1 shows the true shape of a FIEGARCH spectral density un-
der three different parameter sets, demonstrating the smoothness of this function and the
importance of the long memory. Figure 2, then provides the wavelet-based approximations
based on the simple assumption that the spectral density is constant over the whole inter-
vals, equal to the estimated averages. Using this specification is relevant given the definition
of the WWE. Wavelet-based approximations are compared with the respective true spectral
densities, true averages of these spectral densities over intervals of frequencies, as well as with
two Fourier-based approximations, one providing point estimates and the second estimating
the averages over whole intervals. The figures show a good fit of both Fourier-based and
wavelet-based approximations at most of the intervals, some problems can be seen at the
lowest frequencies, which supports the idea of partial decomposition. In general, the wavelet-
based approximation works well especially for processes with well behaved spectral densities
without significant patterns well localized in the frequency domain, when the average energy
over the whole intervals of frequencies represents a sufficient information about the shape of
the true spectral density. For these processes, the wavelet transform can be effectively used
for visual data analysis and both parametric and semi-parametric estimation of parameters
in the spectral density function. More figures for the spectral density approximation are
available in Section ?? of Online Appendix.

3 Monte Carlo Experiments

In order to study how the WWE performs compared to the two benchmark estimators (MLE
and FWE), an extensive Monte Carlo experiment has been carried out. Each round consisted
of 1000 simulations of a FIEGARCH process at a fixed set of parameters, and estimation of
these parameters by all methods of interest. The experiment setup mirrors that of Perez
& Zaffaroni (2008), which ensures consistency with that work and enables interpretation of
the new results as an extension to those already published. Since in this benchmark study
no wavelet-based methods are used, choices concerning the WWE application and extension
of simulations to longer data sets have been made with respect to other relevant literature
(Jensen (1999), Percival & Walden (2000)), as discussed earlier. Technical details of the
experiment and tables with results are provided in Section ?? of Online Appendix.

3.1 Part I: Maximal Decomposition

At first, the experiment has been performed using MLE, FWE and DWT-based WWE with
maximal level of decomposition. The maximal level of decomposition means that for sample
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of length 2j , using Haar, D4 and LA8 wavelets, we have levels j, j− 2 and j− 3 respectively.
This is due to the truncation of boundary coefficients explained in the previous section.

In general, the WWE works fairly well in all setups. Especially biases are low, and in
most cases decline with increasing sample size. The exception is parameter α for all filters
and parameter θ for Haar filter, where the convergence is problematic. Yet, even in these
situations the bias remains low for all filters and samples up to 211, and RMSE (although
relatively high) is declining with sample size as for all the other parameter estimates across all
setups. Focusing on the differences between individual filters, the strength of long memory,
sample size and parameter concerned seem to be important. In all setups, Haar performs
the best in estimating the long-memory parameter d. Other parameters (α, β, γ and in case
of small samples also the θ), under d = 0.25, are better estimated using filters with larger
support. In case of d = 0.45 and d = −0.25 the relative performance slightly improves for
filters with smaller support. The overall performance of the wavelet-based estimators (WWE
using various filters) in the experiment suggests using D4 for 210 and 211 and switching to
LA8 for 29 and

{
2j ; j > 11

}
in case of long memory in the data (a simple ACF analysis

before estimation should reveal this pattern). For negative dependence the optimal choice
seems to be Haar for 29 and D4 otherwise (with possible shift to LA8 for samples longer than
214).

Concerning the relative performance of the WWE, FWE and MLE, the WWE works in
general comparably to the FWE. In many cases it outperforms the FWE in terms of bias,
while in terms of RMSE the FWE is better. Yet, the absolute differences are usually small.
As expected, estimates using MLE are in most cases the best. This remains true even in
cases with strong long memory, since the long memory is in the variances, not in the (log-
return) process itself and the problem with mean estimation under long memory does not
apply. The Whittle estimators outperform the exact MLE in some cases, but usually it is
in situations with negative memory in the data, which is, based on the current literature on
financial returns analysis, not of a great interest for most practical applications.

3.2 Part II: Partial Decomposition

The additional Monte Carlo experiments have been designed to mirror the setup used in
the case of full decomposition, with the only difference in the number of levels used for the
estimation. For all sample lengths (2M , M = 9, 10, ..., 14) experiments for levels J, J =
4, 5, ...M have been carried out. Results are available for both processes with long memory
(d = 0.25 and d = 45), which are of the most interest for practical applications, the case of
d = −0.25 is omitted to keep the extent of simulations reasonable. For results including mean
estimates, respective levels of bias and RMSE see tables in Section ?? of Online Appendix.

As the results suggest, for small samples, estimation under the restriction to first four
levels of decomposition leads to better estimates of d and worse estimates of α in terms
of both bias and RMSE, while for longer samples the opposite holds. Other coefficients
are estimated sometimes with lower bias, sometimes with lower RMSE than in the case
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of full decomposition depending on the sample size, strength of the long memory and also
on the filter applied. With increasing sample size the performance of the estimator under
partial decomposition deteriorates relatively to that using full decomposition. Comparing
the performance of individual filters, in most cases LA8 provides the best sets of estimates
for both d = 0.25 and d = 0.45, except for the case of small samples with d = 0.25, where
Haar seems to be better. In general, it can be said that this partial decomposition setup
offers just a different set of bias and RMSE for all parameters than the full decomposition.
The choice would depend on the weights assigned to the bias and RMSE and the importance
we attach to individual parameters, which could be based on a bias and RMSE of one day
forecasts added to the Monte Carlo experiment. While there is a relatively high probability
that based on the more detailed analysis the level 4 setup may be preferred in case of short
samples, for long samples the full decomposition is likely to be more appropriate.

Moving on to the truncation at level 5, significant overall improvement in the short-sample
estimates is apparent for both d = 0.25 and d = 0.45. Not only are they better compared to
the level 4 setup, but also compared to the full decomposition. Relative performance with
respect to FWE and MLE also changes, WWE works in most cases better than the FWE
for all filter specifications. Focusing on the relative performance of the filters considered, the
results suggest to use D4 for 210 − 213 and switching to LA8 for 29 and 2j ; j > 13 in case
of d = 0.25; under d = 0.45 LA8 performs the best for all sample sizes as in the case of
preceding partial decomposition setup.

Next, under truncation at level 6 the estimator seems to work comparably to the case
of truncation at level 5. In most cases it offers an alternative of somewhat lower RMSE at
the cost of slightly higher bias, for some parameters even the bias improves. Though, due
to the significantly worse estimates of long memory, even to some extent counterbalanced by
better estimates of other parameters, the truncation at level 5 may be preferred. The relative
performance could be assessed based on the bias and RMSE of one day forecasts added to
the Monte Carlo experiment as already proposed in the case of level 4 truncation. Regarding
the relative performance of the filters considered, in case of d = 0.25 D4 performs the best
for almost all sample sizes, while it is outperformed by LA8 when the parameter d becomes
larger. Compared to the full decomposition, in case of small samples the estimator works
better in most cases in terms of both bias and RMSE. In case of longer samples, the estimates
of the long memory parameter deteriorate relatively to their full decomposition counterparts,
while short-term dynamics parameters are still estimated in most cases with lower bias and
in case of d = 0.45 also with lower RMSE under the truncation.

We conclude that the results well demonstrate the effects mentioned when discussing the
partial decomposition in 2.4.3. We can see how the partial decomposition helps in the case
of short samples and how the benefits from truncation (no use of inaccurate information)
decrease relative to the costs (more weight on the high-frequency part of the spectra and no
information at all about the spectral density shape at lower frequencies) as the sample size in-
creases, as the long-memory strengthens and as the truncation becomes excessive. Moreover,
the effect becomes negligible with longer samples, as the share of problematic coefficients
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goes to zero. Yet, the convergence with sample size and with the level of decomposition is
not easy to interpret. To see the interesting convergence patterns determined by the synergy
of various effects of the truncation on the estimates see 3D plots in Appendix D providing a
graphical decomposition of the convergence into the convergence with sample size and con-
vergence with increasing level of decomposition; graphs for the estimates of d and α under
d = 0.25; D4, LA8 and d = 0.45; LA8 are available. To make the figures comprehensive
and well interpretable, additional Monte Carlo experiments have been performed enabling to
present the whole spectrum of possible truncations from that leading to estimation at level
4 to full decomposition. As can be seen, the optimal setup choice for small samples is a
non-trivial problem that cannot be reduced to a simple method of cutting a fixed number
of highest levels of decomposition to ensure some minimal number of coefficients at each
level. Although in case of long samples a nice convergence with both sample size and level of
decomposition can be seen for all specifications, the results for small samples are mixed. In
this latter case the convergence with sample size still works relatively well, but the increase
in level of decomposition does not always improve the estimates. To understand the specific
patterns, next to the derivation of the asymptotic theory, it would be interesting to compare
the results with their MODWT-based counterparts, which would enable to separate the effect
of deteriorating DWT variance estimates and would potentially lead to better interpretable
convergence patterns.

4 Monte Carlo Extension: Jumps and Forecasting

As has been concluded in the previous section, on simulated pure FIEGARCH processes the
best estimator in terms of both bias and RMSE (in case of individual parameters estimation)
seems to be the MLE, followed by FWE and somewhat less “accurate” WWE. But, as
discussed in the sequel, deprecating WWE based on these results only might be premature.
Next, we assume a more realistic scenario, where the simulated process is augmented by
specific time-localized irregularities - jumps - in the log-return process. Since the evaluation
based on individual parameters estimation only may not be the best practice when forecasting
is the main concern, let’s analyze also the relative forecasting performance. As a motivation
for this step additional plots have been prepared, which can be found in Appendix E (online)
and some of them also in ??. They show the bias of the mean estimated spectral densities
using FWE and DWT-based WWE under various setups. Except for small samples, where
the performance of the FWE is significantly worse than that of WWEs in terms of bias, both
the estimators perform very well and in most cases differences are almost negligible. This
suggests that the forecasting RMSE should play the major role. Then, based on the results
for individual coefficients, FWE can be expected to dominate the DWT-based WWE, at least
in case of larger samples and, of course, data generated by a pure FIEGARCH process. But
this is just an ex ante guess, the need for a Monte Carlo experiment extension is apparent.
Practical issues of this kind of evaluation are discussed later in this section.
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4.1 FIEGARCH-Jump Model

Jumps are one of the several well known stylized features of log-returns and/or realized
volatility time series and there is a lot of studies on incorporating this pattern in volatility
models. For a summary see e.g. Mancini & Calvori (2012). So even if the FIEGARCH
process could well approximate the true underlying volatility, it is important to study the
jump process and use the additional information for forecasts improvement.

To test the performance of the individual estimators in the case of FIEGARCH-Jump
processes, an additional Monte Carlo experiment has been conducted. The simulations are
augmented by additional jumps, which do not enter the conditional volatility process, but the
log-returns process only. This represents the situation, when the jumps are not resulting from
the long memory in the volatility process, which can produce patterns similar to jumps in
some cases, as well as they do not determine the volatility process in any way. The log-return
process is then specified as:

εt = zth
1/2
t + Jt(λ), (28)

where the process ht remains the same as in the original FIEGARCH model (Eq. 1) and
Jt; t = 1, 2, ..., T is a Jump process modeled as a sum of intraday jumps, whereas the number of
intraday jumps in one day follows a Poisson process with parameter λ = 0.028 and their size is
drawn from a normal distribution N(0, 0.2). The Jump process is based on Mancini & Calvori
(2012), with parameters slightly adjusted (originally λ = 0.014 and sizes follow N(0, 0.25) )
based on analysis of resulting simulations and comparison with real data. Moreover, unlike
in the previous Monte Carlo experiment, a non-zero constant is assumed. Since we would like
to keep consistency in the research (keep the parameters the same throughout this paper)
and at the same time to simulate time series as close to the real ones as possible, we have
compared our simulated time series with real data and found a good match.

4.2 Forecasting

Next extension, as mentioned above, is the evaluation of the in-sample and out-of-sample
forecasting performance. For each simulation the fitted values and a one day ahead forecast
per each estimator are calculated. The out-of-sample forecasts are directly stored for further
analysis, the in-sample forecasts are transformed to mean error, mean absolute deviation
and mean squared error statistics. These statistics are stored and used for overall statistics
calculation. When we get the data from all 1000 simulations, we compute the mean error,
mean absolute deviation and root mean squared error for both the in-sample and out-of-
sample forecasts.

Although the idea of forecasting evaluation seems to be simple, there are some issues we
had to deal with. The most important one is the dependency of the forecasting results on
the fitting algorithm. This algorithm is technically the same as the the used in MLE and
it is in fact possible to manage the maximal error of the forecasts in case of divergence of
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the fitted time series as well as to ensure robustness to extreme log-returns observations in
the data input. We have chosen a basic algorithm that only ensures that the operation does
not break and that that in case of non-positive and/or infinite fitted conditional variance
the algorithm returns sample variance instead and continues computing. But then we have
situations, especially in case of jumps, where a few forecasts can have a huge finite error, but
other are quite accurate. Then, average error measures are not the best practice, since then
the estimator with slightly lower maximal error would be considered better even though in
most cases it could be much worse than the alternatives. In case of out-of-sample forecasts
(one forecast per simulation) we solve this problem by using error and absolute deviation
quantiles.

4.3 Practical Aspects

Although we expected that the WWE could be easily adjusted to be robust to jumps (com-
pared to FWE and MLE) and thus become a good alternative in case of FIEGARCH estima-
tion on the real data, there are two technical details which make this hardly possible and the
WWE theoretically rather than empirically evincible. First, the transformation needed for
FWE and WWE derivation hides the jumps in the process (they add volatility, but are not
detectable in the transformed data), as can be seen in Appendix F; second, for forecasting
we need jump-free data as the input - else we get inaccurate estimates even in case of perfect
coefficient estimates. Thus, the jump detection and data adjustment has to be done before
the actual parameters estimation takes place. To deal with the jumps we apply one of the well
performing wavelet-based jump estimators that is based on a universal threshold of Donoho
& Johnstone (1994) and that is described in detail and successfully applied in Barunik &
Vacha (2014). When detected, the jumps are replaced by average of the two adjacent values.
This, of course, is not the best practice in case of large double-jumps, where this transforma-
tion leads to two smaller jumps instead of getting rid of them. Yet, in case of long memory
that can produce jump-like patterns, which are usually clustered in high volatility intervals,
getting rid of the multiple jumps may not be the best thing to do. So we use this simple
transform for our data with moderate jumps, but in case of data with extreme jumps, such
as those in Appendix F, we propose to use a different method that would get rid of all the
jumps, otherwise the estimation results would be poor. Thus, it is important to distinguish
between the jump detection and model estimation as two separable tasks. This holds even in
cases of large jumps which are detectable in the transformed data, since in real applications
we do not know what kind of jump process are we dealing with and also even in this case it is
easier to found the jumps in the data before the transformation. Then we can only study how
are the individual estimators able to deal with the residual jumps, which are not detected
and subtracted from the time series. And of course, the better the jump estimation method,
the lesser the residuals impact.
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4.4 Results III: FIEGARCH-Jump

The main results of the Monte Carlo experiment are summarized in tables in Appendix G.
In the first two tables MLE, FWE and MODWT-based WWE are compared in terms of
individual parameters estimation performance, results for DWT-based WWE are not included
due to the limited space. Concerning the comparison of these two estimators, the overall
performance of the MODWT-WWE is better than that of the DWT-WWE both in terms
of bias and RMSE and considering also the loss of sample size limitation, the MODWT-
WWE is strictly preferred. This is only supported by the forecasting results presented in the
next tables. Next, focusing on the MLE, FWE and MODWT-WWE relative performance in
terms of RMSE for jumps and d = 0.25, the MLE, despite being affected by the residual jump
effects, it remains the best followed by the two Whittles, which perform comparably, FWE in
most cases works slightly better. Yet, the bias of the MLE is significant and we would prefer
the use of FWE considering both the bias and the RMSE and in case of longer time series,
WWE seems to be the best option due to the faster bias decay. Next, for d = 0.45, the MLE
performance is very poor and the use of FWE is preferable. As expected, the bias and RMSE
in case of individual parameters estimates as well as the mean absolute deviation and RMSE
of the out-of-sample forecasts decline and the overall in-sample fit improves with sample size
increase and long memory weakening. Next, the constant term estimation performance is
worth mentioning, since it is very poor in the case of MLE and strong long memory, and
therefore an ex ante estimation as in the case of FWE and WWE is appropriate.

On the other hand, when we look at the forecasting performance, the results are much
more clear. The best in all scenarios and by all indicators is the MLE, followed by the
FWE and a little less accurate WWE. The impact of jumps depends, of course, on the
jump estimator performance and in our case, for forecasting, it is very limited, although the
same cannot be said about the impact on individual parameters estimates. Unfortunately,
as discussed earlier, WWE does not provide any significant estimation improvement or time
savings. Moreover, the use of WWE causes about twice as many cases with extremely poor
in-sample fit than the FWE. By its nature, MLE does not cause these poor fit situations
at all. But of course, in practice, adjustment of the optimization algorithms as well as the
forecasting algorithm could prevent these cases for all estimators. We did not apply any
special adjustments just to keep the estimators comparison as “fair” as possible and we
propose the question of the algorithms optimization as a topic for future research.

5 Comparison with Literature

As already emphasized, the Monte Carlo setup has been chosen to mirror that of Perez &
Zaffaroni (2008) to keep consistency in the research and enable direct comparison of the
results. Since the benchmark paper focuses on the relative performance of FWE and MLE
under the same conditions as applied in our paper, it is interesting to check whether the results
for these two estimators are in both works the same. In the case of MLE, the answer is yes,
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up to small differences caused by the uniqueness of every simulated time series. For FWE, the
differences are somewhat larger (although not extreme; the maximal deviation for both bias
and RMSE is less than 0.1, mostly amounting to about 0.06 or less). Based on an analysis
of the code underlying the benchmark paper, this may be caused by a different optimization
setup, that utilizes an explicitly formulated analytical gradient of the objective function.
This helps to estimate the individual coefficients more accurately. Then, it seems natural
to run the Monte Carlo experiments for our research using this, virtually more efficient,
algorithm (or search for even better one). Yet, this is a non-trivial task. This follows from
the form of the WWE objective function and the respective derivations. To enable the re-
estimation, more efficiently written code or an adjusted means of gradient calculation would
be needed, which is beyond the scope of our current work. In general, the comparison above
shows the importance of taking the estimation as a complex problem including many, both
theoretical and practical, issues. Most importantly, when comparing several estimators, it is
usually not feasible to separate the performance of the estimator from the performance of
the optimization algorithm applied. Even using the same algorithm, as applied in this work,
cannot generally solve this problem, since each of the estimators may be affected differently.
Then, in case of empirical analysis, it is reasonable to speak about comparison of methods of
estimation instead of comparison of the individual estimators. The focus is then on the whole
sets of estimators and respective means of optimization. This highlights the importance to
analyze all details of the methods and optimize the estimation setup as a whole, before any
definite conclusions can be made.

Next, comparing the results in this paper with some other works on wavelet-based maxi-
mum likelihood estimation, no strange patterns that would contradict the earlier conclusions
are found. A relatively good performance of the WWE comparable to that of FWE is ob-
served, which is in compliance with studies using simulated smooth processes. The absolute
performance of the WWE is somewhat worse than in the benchmark papers, which is ex-
pectable given the complexity of the FIEGARCH model implying more difficult parameters
identification compared to the other models estimated in the related works, as well as given
the asymmetry of the FIEGARCH process that makes the QMLE less accurate (other works
focus on symmetric processes). As mentioned above, optimization of the estimation setup
should improve the overall performance and lead to absolute results closer to those in the
benchmark studies. Next, focusing on the filter choice, the relative performance of the Haar,
D4 and LA8 filters seem to be in compliance with that in Percival & Walden (2000), as well as
it supports the conclusion in Jensen (1999) that Haar can be dominated by longer filters. To
sum it up, the current work seems to extend the current literature without any contradiction
with earlier works. Given the lack of related studies, this seems to be good news. Though,
to make any strong conclusions about the WWE performance in various applications, a lot
of work has to be done in the future.
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6 Conclusion

In this paper, we introduce a new, wavelet-based estimator (wavelet Whittle estimator,
WWE) of a FIEGARCH model, ARCH-family model allowing for long-memory and asym-
metry in volatility, and study its properties. Based on several Monte Carlo experiments its
accuracy and empirical convergence are examined, as well as its relative performance with
respect to two traditional estimators: Fourier-based Whittle estimator (FWE) and maximum
likelihood estimator (MLE). It is shown that even in the case of simulated pure FIEGARCH
processes, which do not allow to fully utilize the advantages of the WWE, the estimator
can work reasonably well. In terms of bias, it often outperforms the FWE, while in terms
of RMSE the FWE is better. Yet, the absolute differences are usually small. As expected,
MLE in most casest performs best in terms of efficiency. The Whittle estimators outperform
the MLE in some cases, but usually it is in situations with negative memory, which is not
of a great interest for most practical applications. The forecasting performance analysis has
a similar conclusion, yielding the differences across estimators even smaller. Yet, since the
Whittle estimators are significantly faster and the differences in the performance are small,
they are an attractive alternative to the MLE for large samples. Concerning the optimal
WWE settings studied, the strength of long memory, sample size and parameter concerned
seem to be important for the optimal filter (wavelet) choice, but further research in this area
is needed.

Next, practical aspects of the WWE application are discussed. The main focus is on the
problem of declining number of wavelet coefficients at subsequent levels of decomposition,
which impairs the estimates accuracy. Two solutions to this problem are suggested. One
is based on a partial decomposition (parametric counterpart to local WWE) that ensures
some minimal number of coefficients at the highest level of decomposition, the other applies
an alternative specification of the WWE (using maximal overlap discrete wavelet transform,
MODWT). We show that the partial decomposition can improve the estimates in case of
short samples, and make the WWE superior to the FWE (and to the MLE for negative
memory), while in case of large samples, full decomposition is more appropriate. Yet, the
second solution (MODWT-WWE) is argued to be better. Compared to the former method,
it ensures the number of coefficients at every level equal to the sample size and does not
lead to any decline in the share of spectrum used in the estimation (information loss). The
only cost to bear is a somewhat longer estimation time. As our results suggest, using the
MODWT instead of the DWT improves the WWE performance in all scenarios.

In addition, we study the properties of estimators under the presence of jumps in the
processes. The accuracy of individual parameters estimates using MLE is significantly im-
paired, even if we apply a simple data correction; the FWE and the WWE are superior. Yet,
based on the forecasting performance, MLE should be preferred in all scenarios at least in
case of small samples, where it can be computed in reasonable time; FWE and WWE can
be recommended only as a faster, but slightly less accurate alternatives. From these two
FWE performs slightly better. Yet, we believe that after optimization of the estimation and
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forecasting algorithms, the differences between the FWE and WWE disappear, or even the
WWE becomes superior in some cases.

Finally, we discuss the effects of optimization algorithm choice on the experiment results.
It is argued that in cases, when the identification of individual parameters in the objective
function is problematic, as is the case of the Whittle estimators applied in this work, the
performance of the estimator and of the optimization algorithm cannot be well separated.
Based on a comparison of our results with those of Perez & Zaffaroni (2008), it is argued that
application of more sophisticated optimization algorithms to both FWE and WWE should
improve their absolute performance, and potentially also change the conclusions about their
relative performance. Therefore, the question of algorithm choice is an important topic to
address in the future.

It can be concluded that after optimization of the estimation setup, the WWE may
become a very attractive alternative to the traditional estimation methods. Although it is
not as useful in case of jumps in the data as we expected, the statement that, compared
to FWE, it is more robust to time-localized irregularities is still valid. The only additional
requirement is that the irregularities remain detectable even after the data transformation
that is necessary for the FWE and WWE application. Although a lot of work has to be
done before the WWE applicability and performance will be fully assessed, importance of
the research results for volatility modeling is a sufficient motivation.

Due to the pioneering nature of this work and the complexity of the problem concerned,
the results presented are not intended to be directly projected to changes in estimation
methods used in practice. For practitioners, the presented conclusions should be interesting
as a message that given sufficient demand for further research in this area, new, possibly highly
efficient methods based on wavelet transform could be available in the future. Though, the
target group are the academics. It is believed that the results provided are a good basis for
future research.
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Faÿ, G., Moulines, E., Roueff, F., & Taqqu, M. S. (2009). Estimators of long-memory: Fourier
versus wavelets. Journal of Econometrics, 151 (2), 159 – 177.

Fox, R. & Taqqu, M. S. (1986). Large-sample properties of parameter estimates for strongly
dependent stationary gaussian time series. The Annals of Statistics, 14 (2), 517–532.

Frederiksen, P. H. & Nielsen, M. O. (2005). Finite sample comparison of parametric, semi-
parametric, and wavelet estimators of fractional integration. Econometric Reviews, 24 (4),
405–443.

Gonzaga, A. & Hauser, M. (2011). A wavelet whittle estimator of generalized long-memory
stochastic volatility. Statistical Methods & Applications, 20 (1), 23–48.

Hardle, W., Kerkyacharian, G., Tsybakov, A. B., & Picard, D. (1998). Wavelets, Approxi-
mation and Statistical Applications. John Wiley & Sons, Incorporated.

Heni, B. & Mohamed, B. (2011). A wavelet-based approach for modelling exchange rates.
Statistical Methods & Applications, 20 (2), 201–220.

Jensen, M. J. (1999). An approximate wavelet mle of short- and long-memory parameters.
Studies in Nonlinear Dynamics Econometrics, 3 (4), 5.

Jensen, M. J. (2000). An alternative maximum likelihood estimator of long-memory processes
using compactly supported wavelets. Journal of Economic Dynamics and Control, 24 (3),
361 – 387.

25



Johnstone, I. M. & Silverman, B. W. (1997). Wavelet threshold estimators for data with cor-
related noise. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
59 (2), 319–351.

Mancini, C. & Calvori, F. (2012). Jumps, chapter 17, (pp. 403–445). John Wiley & Sons,
Inc.

Moulines, E., Roueff, F., & Taqqu, M. S. (2008). A wavelet whittle estimator of the memory
parameter of a nonstationary gaussian time series. The Annals of Statistics, 36 (4), 1925–
1956.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach.
Econometrica, 59 (2), 347–370.

Nielsen, M. O. & Frederiksen, P. H. (2005). Finite sample comparison of parametric, semi-
parametric, and wavelet estimators of fractional integration. Econometric Reviews, 24 (4),
405–443.

Percival, D. B. & Walden, A. T. (2000). Wavelet Methods for Time Series Analysis (Cam-
bridge Series in Statistical and Probabilistic Mathematics). Cambridge University Press.

Percival, D. P. (1995). On estimation of the wavelet variance. Biometrika, 82 (3), 619–631.

Perez, A. & Zaffaroni, P. (2008). Finite-sample properties of maximum likelihood and whittle
estimators in egarch and fiegarch models. Quantitative and Qualitative Analysis in Social
Sciences, 2, 78–97.

Whitcher, B. (2004). Wavelet-based estimation for seasonal long-memory processes. Techno-
metrics, 46 (2), 225–238.

Whittle, P. (1962). Gaussian estimation in stationary time series. Bulletin of the International
Statistical Institute, 39, 105–129.

Wornell, G. W. & Oppenheim, A. (1992). Estimation of fractal signals from noisy measure-
ments using wavelets. Signal Processing, IEEE Transactions on, 40 (3), 611–623.

Zaffaroni, P. (2009). Whittle estimation of egarch and other exponential volatility models.
Journal of Econometrics, 151 (2), 190–200.

A FIEGARCH Transformation

As discussed in Perez & Zaffaroni (2008) and Zaffaroni (2009), to estimate the FIEGARCH
model using FWE, it is necessary to rewrite the model in a signal plus noise form, for which
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the spectral density can be derived. Let’s begin with the original FIEGARCH(1,d,2) model:

εt = zth
1/2
t (29)

ln(ht) = ω + Φ(L)g(zt−1) (30)

g(zt) = θzt + γ[|zt| − E(|zt|)] (31)

Φ(L) = (1− L)−d[1 + α[2](L)][β(L)]−1 (32)

where for FIEGARCH(1, d, 2) α[2](L) = αL, β(L) = 1− βL. Following Zaffaroni (2009), this
can be rewritten as

ε2t = z2
t ht (33)

ln
(
ε2t
)

= ln
(
z2
t

)
+ ln (ht) (34)

ln(ht) = ω + Φ(L, )g(zt−1) (35)

Φ(L)g(zt−1) =
∞∑
s=0

Φsg(zt−s−1) (36)

g(zt) = θzt + γ[|zt| − E(|zt|)], (37)

which leads to

ln
(
ε2t
)

= ln
(
z2
t

)
+ ω +

∞∑
s=0

Φsg(zt−s−1) (38)

g(zt) = θzt + γ[|zt| − E(|zt|)] (39)

Φ(L) = (1− L)−d[1 + αL][1− βL]−1. (40)

From Perez & Zaffaroni (2008), the spectral density of this process for zt ∼ N(0, 1), ω = 0
and simple Fourier frequencies λj = j/T ; λj ∈ 〈−1/2, 1/2) is

f (λj , υ) =
A(ξ)
2π

+
B(υ)
2π

∣∣∣∣∣
∞∑
s=0

Φs (ζ) e2πisλj

∣∣∣∣∣
2

+ (41)

+
C(υ)
2π

(
e2πiλj

∞∑
s=0

Φs (ζ) e2πisλj

)
+

+
C(υ)
2π

(
e−2πiλj

∞∑
s=0

Φs (ζ) e−2πisλj

)

where A(ξ) = var(ln(z2
0)), B(υ) = var(g(z0)), C(υ) = cov(ln(z2

0), g(z0)), υ = (ξ′, ζ ′)′, and ξ
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is the vector of parameters in the distribution function of variable z. For zt ∼ N(0, 1):

A(ξ) = Ψ(
1
2

) (42)

B(υ) = θ2 + δ2(1− µ2
|z|) (43)

C(υ) = δµz(ψ(1)− ψ(
1
2

)) (44)

µ|z| = E(|z|) =
√

(
2
π

), (45)

where ψ(x) and Ψ(x) are digamma and trigamma functions respectively. Evaluated at Fourier
frequencies, this spectral density occurs in both terms of the FWE objective function. For a
generalization to zt following GED or Student-t distribution, see Perez & Zaffaroni (2008).

B Spectral Density Estimation
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Figure 1: True spectral density
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C Partial Decomposition

0 

1 

2 

3 

4 

5 

6 

A 

B 

C 

D 

E 

F 

(a)

0 

5 

10 

15 

20 

25 

30 

35 

A 

B 

C 

D 

E 

F 

G 

H 

(b)

Figure 3: Energy decomposition: Integrals of FIEGARCH spectral density over frequency
intervals respective to individual levels of decomposition, assuming various levels of long
memory (d=0.25, d=0.45, d=-0.25) and the coefficient sets from Table E.1 (a)
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Figure 4: Energy decomposition: True variances of wavelet coefficients respective to individ-
ual levels of decomposition and various levels of long memory (d=0.25, d=0.45, d=-0.25) and
the coefficient sets from Table E.1 (a)
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(a) Coefficient Sets

Coefficients: d ω α β θ γ

A: 0.25 0 0.5 0.5 -0.3 0.5
B: 0.45 0 0.5 0.5 -0.3 0.5
C: -0.25 0 0.5 0.5 -0.3 0.5
D: 0.25 0 0.9 0.9 -0.3 0.5
E: 0.45 0 0.9 0.9 -0.3 0.5
F: -0.25 0 0.9 0.9 -0.3 0.5
G: 0.25 0 0.9 0.9 -0.9 0.9
H: 0.45 0 0.9 0.9 -0.9 0.9

(b) Integrals over frequencies respective to levels for the coefficient sets from Tab.E.1
(a)

A B C D E F G H

Level 1 1.1117 1.1220 1.0897 1.1505 1.1622 1.1207 1.1261 1.1399
Level 2 0.5473 0.5219 0.6274 0.4776 0.4691 0.5306 0.6187 0.6058
Level 3 0.3956 0.3693 0.4330 0.3246 0.3056 0.3959 1.1354 1.3453
Level 4 0.3029 0.3341 0.2425 0.5559 0.7712 0.3528 2.9558 4.8197
Level 5 0.2035 0.2828 0.1175 1.0905 2.1758 0.3003 6.0839 13.2127
Level 6 0.1279 0.2297 0.0550 1.4685 3.9342 0.1965 8.2136 23.4144
Level 7 0.0793 0.1883 0.0259 1.3523 4.7975 0.0961 7.6026 28.4723
Level 8 0.0495 0.1584 0.0123 1.0274 4.8302 0.0408 5.8268 28.7771
Level 9 0.0313 0.1368 0.0059 0.7327 4.5720 0.0169 4.1967 27.3822
Level 10 0.0201 0.1206 0.0029 0.5141 4.2610 0.0071 2.9728 25.6404
Level 11 0.0130 0.1080 0.0014 0.3597 3.9600 0.0030 2.0977 23.9192
Level 12 0.0086 0.0979 0.0007 0.2518 3.6811 0.0013 1.4793 22.2986

(c) Sample Variances of DWT Wavelet Coefficients for the coefficient sets from Table E.1 (a)

A B C D E F G H

Level 1 4.4468 4.4880 4.3588 4.6020 4.6488 4.4828 4.5044 4,5596
Level 2 4.3784 4.1752 5.0192 3.8208 3.7528 4.2448 4.9496 4.8464
Level 3 6.3296 5.9088 6.9280 5.1936 4.8896 6.3344 18.1664 21.5248
Level 4 9.6928 10.6912 7.7600 17.7888 24.6784 11.2896 94.5856 154.2304
Level 5 13.0240 18.0992 7.5200 69.7920 139.2512 19.2192 389.3696 845.6128
Level 6 16.3712 29.4016 7.0400 187.9680 503.5776 25.1520 1051.3408 2997.0432
Level 7 20.3008 48.2048 6.6304 346.1888 1228.1600 24.6016 1946.2656 7288.9088
Level 8 25.3440 81.1008 6.2976 526.0288 2473.0624 20.8896 2983.3216 14733,8752
Level 9 32.0512 140.0832 6.0416 750.2848 4681.7280 17.3056 4297.4208 28039.3728
Level 10 41.1648 246.9888 5.9392 1052.8768 8726.5280 14.5408 6088.2944 52511.5392
Level 11 53.2480 442.3680 5.7344 1473.3312 16220.1600 12.2880 8592.1792 97973.0432
Level 12 70.4512 801.9968 5.7344 2062.7456 30155.5712 10.6496 12118.4256 182670.1312

Table 1: Energy decomposition
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D Convergence analysis
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Figure 6: 3D Plots: Partial decomposition: d̂: Bias
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Figure 7: 3D Plots: Partial decomposition: d̂: RMSE
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Figure 9: 3D Plots: Partial decomposition: α̂: RMSE
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Figure 10: Spectral density estimation: Wavelets (Level 5) vs Fourier
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F Jumps: Features
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Figure 11: Jumps in the data
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Figure 12: Jumps after transformation ln(y2)

G Jumps: Results
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