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1. Introduction

Multidimensional panel data sets are becoming more readily available and are used

to study a variety of phenomena like: 1) International trade and/or capital flows

between countries or regions; 2) The trading volume across several products and

stores over time (three panel dimensions) and; 3) The number of passengers between

multiple airport hubs for different airlines (four panel dimensions). Over the years

several, mostly fixed effects, specifications have been worked out to take into account

the specific three (or higher) dimensional nature and heterogeneity of these kinds of

data sets. These models are linear regression models differing in the specification of

the fixed effects. As in the case of the familiar two-dimensional (2D) fixed effects

panel data models, they can simply be estimated by Ordinary Least Squares (OLS).

However, the large number of dummy variables can make this computationally difficult

or even impossible which holds a fortiori when the dimensionality of the data is three or

more. This problem is usually solved by the within transformation and thus invoking

the Frisch-Waugh theorem [see, for example, Gourieroux and Monfort (1995) and

Greene (2012)]. This states that in a linear regression model, using matrix notation,

with a partitioned regressor set (X,D),

y = Xβ +Dπ + ε (1)

the OLS estimator for β can be obtained by regressing ỹ on X̃, with ỹ = MDy,

X̃ = MDX and MD = I − D(D
′
D)−D

′
, the matrix that projects into the space

orthogonal to D. In our case, D matrix contains the dummy variables corresponding

to the fixed effects. When the data set is balanced, computing ỹ and X̃ is a matter

of some simple scalar transformations, as is well-known from the ANOVA literature

[see, for example, Scheffé (1959)].

This sets the stage for our paper. In Section 2, we line up various fixed effects

model specifications proposed in the literature for three-dimensional data. For each

of these models, we present specific D and MD matrices and derive the “tilde” scalar

transformations. Often, the data are flow type, where the nature of the observations

is such that there are no self-flows. This requires different and more complicated

transformations. To get the feeling for what is at stake, in Section 3 we analyze

the two-way model, which has not yet been described in the literature, and discuss

from there the various three-way cases. Data with no self-flow are a rather well-

behaved special kind of unbalanced data as they still allow for fairly simple scalar

transformations. The situation is less favorable in the general unbalanced case, as

shown in Section 4.
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In Sections 2, 3, and 4 only static models were considered. In Section 5, we show

how the presence of the lagged dependent variable may render OLS on the transformed

data inconsistent, thus generalizing the well-known Nickell (1981) bias. Somewhat

surprisingly with three-way data, inconsistency does not occur in all models. For the

cases with inconsistency we present the appropriate generalization of the Arellano-

Bond estimator. Section 6 concludes.

Throughout the paper, we use the conventional ANOVA notation and indicate

the average over an index for a variable by denoting a bar on the variable and a dot

on the place of that index. When discussing unbalanced data, a plus sign at the place

of an index indicates summation over that index. The matrix M with a subscript

denotes projection orthogonal to the space spanned by the subscript.

2. Models with Different Types of Heterogeneity and the Within Trans-

formation

In three-dimensional panel data sets, the dependent variable of a model is observed

along three indices, such as yijt, i = 1, . . . , Ni, j = 1, . . . , Nj , and t = 1, . . . , T . As in

economic flows, such as trade, capital (FDI), etc., there is some kind of reciprocity,

we assume to start with, that Ni = Nj = N . Implicitly, we also assume that the set

of individuals in the observation sets i and j are the same, although we relax these

assumptions later on. The main question is how to formalize the individual and time

heterogeneity — in our case, the fixed effects.

2.1 The Model with Three Effects

The first attempt to properly extend the standard fixed effects panel data model

[see, for example, Baltagi (2005) or Balestra and Krishnakumar (2008)] to a multi-

dimensional setup was proposed by Matyas (1997). The specification of this model

is

yijt = β′xijt +αi + γj + λt + εijt i = 1, . . . , N j = 1, . . . , N, t = 1, . . . , T, (2)

where the αi, γj , and λt parameters are the country and time-specific fixed effects,

the xijt variables are the usual covariates, β (K × 1) is the vector of the structural

parameters; and εijt are the i.i.d.(0, σ2
ε) idiosyncratic disturbance terms. We also

assume that the covariates and the disturbance terms are uncorrelated. Now, in

model (1), y is the vector of the dependent variable of size (N2T ×1); X is the matrix

of the covariates of size (N2T ×K);

D = (IN ⊗ lNT , lN ⊗ IN ⊗ lT , lN2 ⊗ IT )
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is the (N2T ×(2N+T )) dummy matrix with column rank (2N+T −2) corresponding

to the fixed effects, with IN and lN being the identity matrix and the column vector

of ones respectively, with the sizes indicated in the index; and π = (α′, γ′, λ′)′

is the ((2N + T ) × 1) vector of the fixed effects. Wansbeek (1991) has shown that

the column space of D does not change by replacing IN (or similarly IT ) with any

(GN , l̄N ) orthonormal matrix of order (N × (N − 1)), where GN has to satisfy the

following conditions:

G′
N lN = 0, and G′

NGN = IN−1 with l̄N ≡ lN/
√
N .

As matrix D spans the same vector space as the following orthonormal matrix

D̃ ≡
(
(GN ⊗ l̄N ⊗ l̄T ), (l̄N ⊗GN ⊗ l̄T ), (l̄N ⊗ l̄N ⊗GT ), (l̄N ⊗ l̄N ⊗ l̄T )

)
,

which has in fact full column rank (2N +T −2), the projection matrix of size (N2T ×
N2T ) to eliminate D is simply

MD ≡ IN2T − D̃D̃′

= IN2T − (QN ⊗ J̄NT )− (J̄N ⊗QN ⊗ J̄T )− (J̄N2 ⊗QT )− J̄N2T

= IN2T − (IN ⊗ J̄NT )− (J̄N ⊗ IN ⊗ J̄T )− (J̄N2 ⊗ IT ) + 2J̄N2T ,

with J̄N ≡ l̄N l̄′N = lN l′N/N and QN ≡ GNG′
N = IN − J̄N . This matrix operation

defines the scalar transformation

ỹijt = yijt − ȳi.. − ȳ.j. − ȳ..t + 2ȳ... (3)

Note that this optimal within transformation actually numerically gives the same

parameter estimates as the direct OLS estimation of model (2). We must emphasize

that these Within transformations are usually not unique. For example, a simple

transformation that also eliminates the fixed effects from model (2) is

ỹijt = yijt − ȳij. − ȳ..t + ȳ... (4)

This model is suited to deal with purely cross-sectional data as well (that is, when

T = 1). In this case, there are only the αi and γj fixed effects and the appropriate

within transformation is ỹijt = yij − ȳ.j − ȳi. + ȳ...

2.2 Models with Composite Effects

There is no reason to stop at model (2) after we derive its optimal within trans-

formation, as similar reasoning can be done for models with different fixed effects
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formulations. We collect them here with their unique D dummy matrices, D̃

orthonormal matrices, and MD optimal projection matrices.

A model has been proposed by Egger and Pfaffermayr (2003) which takes into account

bilateral interaction effects. The model specification is

yijt = β′xijt + γij + εijt , (5)

where the γij are the bilateral specific fixed effects. Now

D =(IN ⊗ IN ⊗ lT ) of size (N2T ×N2) ,

D̃ =(IN ⊗ IN ⊗ l̄T ) of size (N2T ×N2) ,

both with full column ranks N2. The optimal projection matrix orthogonal to D is

MD = IN2T − (IN2 ⊗ J̄T ),

defining the scalar operation

ỹijt = yijt − ȳij. . (6)

A variant of model (5), proposed by Cheng and Wall (2005), often used in

empirical studies is

yijt = β′xijt + γij + λt + εijt . (7)

Now

D =((IN ⊗ IN ⊗ lT ), (lN ⊗ lN ⊗ IT )) of size (N2T × (N2 + T )) ,

D̃ =
(
(IN ⊗ IN ⊗ l̄T ), (l̄N ⊗ l̄N ⊗GT )

)
of size (N2T × (N2 + T − 1)) ,

each with column ranks (N2 + T − 1), so

MD = IN2T − (IN ⊗ IN ⊗ J̄T )− (J̄N ⊗ J̄N ⊗ IT ) + (J̄N ⊗ J̄N ⊗ J̄T ) ,

defining in fact (4). As model (2) is a special case of model (7), transformation (4)

can naturally be used to clear the fixed effects here as well. While transformation (4)

leads to the optimal within estimator for model (7), it is clear why it is not optimal

for model (2): it “over-clears” the fixed effects as it does not take into account the

parameter restrictions γij = αi + γi. It is worth noticing that models (5) and (7) are

in fact straight 2D panel data models, where the individuals are now the (ij) pairs.

Baltagi et al. (2003), Baldwin and Taglioni (2006) and Baier and Bergstrand

(2007) suggest several other forms of fixed effects. A simpler model is

yijt = β′xijt + αjt + εijt , (8)
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with
D =(lN ⊗ IN ⊗ IT ) of size (N2T ×NT ) ,

D̃ =
(
l̄N ⊗ IN ⊗ IT

)
of size (N2T ×NT ) .

both with full column rank (NT ). Thus,

MD = IN2T − (J̄N ⊗ IN ⊗ IT )

defining the simple

ỹijt = yijt − ȳ.jt (9)

within transformation. It is reasonable to present the symmetric version of this model

(with αit fixed effects); however, as it has the exact same properties, we consider the

two models together.

A variation of this model is

yijt = β′xijt + αit + α∗
jt + εijt , (10)

where now

D =((IN ⊗ lN ⊗ IT ), (lN ⊗ IN ⊗ IT )) of size (N2T × 2NT ) ,

D̃ =
(
(GN ⊗ l̄N ⊗ IT ), (l̄N ⊗GN ⊗ IT ), (l̄N ⊗ l̄N ⊗ IT )

)
of size (N2T × (2NT − 1)) ,

each with column ranks (2NT − 1), so

MD = IN2T − (IN ⊗ J̄N ⊗ IT )− (J̄N ⊗ IN ⊗ IT ) + (J̄N ⊗ J̄N ⊗ IT ) .

This matrix operation defines the scalar optimal within transformation

ỹijt = yijt − ȳ.jt − ȳi.t + ȳ..t . (11)

Let us notice here that transformation (11) clears the fixed effects for model (2) as

well, but of course the resulting within estimator is not optimal.

The model that encompasses all the above effects is

yijt = β′xijt + γij + αit + α∗
jt + εijt . (12)

By applying suitable restrictions to model (12), we can obtain all models discussed

above. As

D =((IN ⊗ IN ⊗ lT ), (IN ⊗ lN ⊗ IT ), (lN ⊗ IN ⊗ IT ))

D̃ =((GN ⊗GN ⊗ l̄T ), (GN ⊗ l̄N ⊗GT ), (l̄N ⊗GN ⊗GT ), (GN ⊗ l̄N ⊗ l̄T ),

(l̄N ⊗GN ⊗ l̄T ), (l̄N ⊗ l̄N ⊗GT ), (l̄N ⊗ l̄N ⊗ l̄T ))
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of sizes (N2T × (N2 + 2NT )) and (N2T × (N2 + 2NT − 2)), respectively, and with

column ranks (N2 + 2N(T − 1)− (T − 1)), the projection orthogonal to D is simply

(QN ⊗QN ⊗QT ), or

MD =IN2T − (IN2 ⊗ J̄T )− (IN ⊗ J̄N ⊗ IT )− (J̄N ⊗ INT )

+ (IN ⊗ J̄NT ) + (J̄N ⊗ IN ⊗ J̄T ) + (J̄N2 ⊗ IT )− J̄N2T .

The within transformation for this model, defined by MD, is as simple as

ỹijt = yijt − ȳij. − ȳ.jt − ȳi.t + ȳ..t + ȳ.j. + ȳi.. − ȳ... . (13)

2.3 The Relationship Between the Models

As discussed, six model structures have been outlined in the literature for dummy

variables in fixed effects three-way models. Next, we study the relationship between

these models. We first see what insight we gain by comparing them to each other.

We then show how far these proposed models cover all theoretically possible models.

Finally in this section, we demonstrate to what extent a transformation for one

particular model clears the dummy variables in each of the other models.

To start with, let us make the structure of the models visible. A clear way to do

this is through the projection matrix D̃D̃′ = IN2T −MD, which projects the data into

the space spanned by the dummy variables D. This matrix can be easily obtained,

as D̃ for each model has already been written out explicitly. In elaborating D̃D̃′, we

replace IN by QN + J̄N and likewise for QT . Remember that J̄N = l̄N l̄′N = lN l′N/N

and QN = GNG′
N = IN − J̄N . Results are presented in Table 1. Each column of

the table corresponds to one particular model and a + sign indicates which building

blocks have to be used to get the appropriate D̃D̃′.

Table 1: Building blocks in projection matrices

(IN2T −MD) = D̃D̃′

Model (2) (5) (7) (8) (10) (12)

QN ⊗QN ⊗QT

QN ⊗QN ⊗ J̄T + + +

QN ⊗ J̄N ⊗QT + +

J̄N ⊗QN ⊗QT + + +

QN ⊗ J̄N ⊗ J̄T + + + + +

J̄N ⊗QN ⊗ J̄T + + + + + +

J̄N ⊗ J̄N ⊗QT + + + + +

J̄N ⊗ J̄N ⊗ J̄T + + + + + +
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We see that the first row of Table 1 is empty. Any model producing a D̃D̃′ with

a non-empty first row would indicate fixed effects with three indices, which evidently

does not make sense for three-way data. The fact that the last row of the table does

not have empty cells means that all structures have effects that add up to one. The

number of models with an empty first row and a full last row is 26. As these models

are nested into at least one of the six models we cover, we take in fact care of all

relevant cases.

Let us now address the question of the extent to which the transformation for

one model clears the effects of another one. Model A does so for model B if, in

obvious notation, MADB = 0. In terms of Table 1, this is the case when the +

signs of model A cover those of model B. We see that the transformation of the “all-

encompassing” model (12) covers all cases, while the transformations of model (10)

covers only models (2) and (8), and so on. Another kind of insight from this exercise

is into the possible effect of misspecification error(s). When, for example, the true

model is (7) and we use the transformation corresponding to model (10), the effects

are not fully cleared, thus leading to a bias in the estimation of β. The argument can

go the other way as well. If, for example, transformation (13) is used for model (5),

we in effect “over-clear” the fixed effects, thus leading to a loss of efficiency.

2.4 Beyond Three Dimensions

But what if our data is such that variables are observed along four, or even five,

dimensions? Take the following example. We would like to study the volume of

exports y from a given country to countries i, for some products j by firms s at time

t. This would result in four-dimensional observations for our variable of interest yijst.

If the data at hand is not only for a given country, but for several, with product and

firm observations, we would end up with five-dimensional panel data. It is clear that

such higher-dimensional setups involve several possible fixed effects specifications (a

number that grows radically along with the dimensions), making the full collection

of such models non-trivial. We can, however, see how to generalize our results on a

four-dimensional benchmark model and this approach can then easily be extended to

higher dimensions as well.

Take the four-dimensional extension of the all-encompassing model (12) with pair-wise

interaction effects:

yijst = x′
ijstβ + γ0

ijs + γ1
ijt + γ2

jst + γ3
ist + εijst , (14)

with i = 1 . . . Ni, j = 1 . . . Nj , s = 1 . . . Ns, and t = 1 . . . T . Notice, that now

D =
(
(INiNjNs ⊗ lT ), (INiNj ⊗ lNs ⊗ IT ), (lNi ⊗ INjNsT ), (INi ⊗ lNj ⊗ INsT )

)
8



is a (NiNjNsT×(NiNjNs+NiNjT+NjNsT+NiNsT )) dummy coefficient matrix with

column rank (NiNjNs +NiNjT +NjNsT +NiNsT − 3), and the optimal projection

orthogonal to D is the (NiNjNsT ×NiNjNsT ) matrix

MD = INiNjNsT −
(
J̄Ni ⊗ INjNsT

)
−
(
INi ⊗ J̄Nj ⊗ INsT

)
−
(
INiNj ⊗ J̄Ns ⊗ IT

)
−
(
INiNjNs ⊗ J̄T

)
+
(
J̄NiNj ⊗ INsT

)
+
(
J̄Ni ⊗ INj ⊗ J̄Ns ⊗ IT

)
+
(
J̄Ni ⊗ INjNs ⊗ J̄T

)
+
(
INi ⊗ J̄NjNs ⊗ IT

)
+
(
INi ⊗ J̄Nj ⊗ INs ⊗ J̄T

)
+
(
INiNj ⊗ J̄NsT

)
−
(
J̄NiNjNs ⊗ IT

)
−
(
J̄NiNj ⊗ INs ⊗ J̄T

)
−
(
J̄Ni ⊗ INj ⊗ J̄NsT

)
−
(
INi ⊗ J̄NjNsT

)
+ J̄NiNjNsT .

It can be seen that MD in fact defines the optimal scalar within transformation

ỹijst = yijst − ȳ.jst − ȳi.st − ȳij.t − ȳijs. + ȳ..st + ȳ.j.t + ȳ.js.

+ ȳi..t + ȳi.s. + ȳij.. − ȳ...t − ȳ..s. − ȳ.j.. − ȳi... + ȳ....
(15)

needed to eliminate (γ0
ijs, γ

1
ijt, γ

2
jst, γ

3
ist).

3. No Self-Flow Data

Often the models we study are used to deal with flow types of data like trade and

capital movements (FDI) between countries. In such cases i and j index the same

entities, Ni = Nj = N and there is, by definition, no self-flow. In terms of the models

from Section 2, we have a case of missing data and the transformations that we give

can no longer be applied. Fortunately, the pattern of the missing observations is

highly structured, allowing for the derivation of optimal transformations that are still

quite simple. We start with presenting the derivation of the optimal transformation

for the T = 1 case in some detail as, to the best of our knowledge, even this has not

been studied in the literature. This leads us to the appropriate within transformation

and also offers the main tools for deriving the optimal transformation for all models

from Section 2 with T > 1. The derivations are given in the online supplement of this

paper.2

3.1 The Cross-sectional Case

In the case when T = 1, there is only one relevant model. For i, j = 1, . . . , N ,

yij = β′xij + αi + γj + εij , (16)

2 See: http://personal.ceu.edu/staff/matyas/BMW-Supplement.pdf.
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or in matrix form,

y = Xβ + (IN ⊗ lN )α+ (lN ⊗ IN )γ + ε

≡ Xβ +Dαα+Dγγ + ε

≡ Xβ +D(α′, γ′)′ + ε.

As there are no data with i = j, we eliminate these from the model by using the

selection matrix L of order N2 ×N(N − 1) to get

L′y = L′Xβ + L′D(α′, γ′)′ + L′ε.

So the optimal effects-eliminating projection matrix is

ML′D = IN(N−1) − L′DW+D′L,

with W = D′LL′D and “+” denoting the Moore-Penrose generalized inverse. We

want to have a simple expression for the elements of ML′DL′y, indicated by a tilde.

When in the data i = j are observed, this expression is

ỹij = yij − ȳi. − ȳ.j + ȳ.. .

Now, the issue gets more complicated. For i ̸= j, (ei ⊗ ej)
′D = (ei ⊗ ej)

′LL′D =

(e′i, e
′
j), so

ỹij = (ei ⊗ ej)
′LML′DL′y

= yij − (e′i, e
′
j)W

+D′LL′y,
(17)

with ei being the ith unit vector of size N . This causes us to further elaborate on W .

Since

D′
αLL

′Dα = D′
γLL

′Dγ = (N − 1)IN and D′
αLL

′Dγ = JN − IN

and, as before, J̄N = JN/N and QN = IN − J̄N , we obtain

W =

(
N − 1 −1

−1 N − 1

)
⊗ IN +

(
0 1

1 0

)
⊗ JN

=

(
N − 1 −1

−1 N − 1

)
⊗QN + (N − 1)

(
1 1

1 1

)
⊗ J̄N .

Since QN and J̄N are idempotent and mutually orthogonal, the Moore-Penrose inverse

W+ of W is

W+ =
1

N(N − 2)

(
N − 1 1

1 N − 1

)
⊗QN +

1

4(N − 1)

(
1 1

1 1

)
⊗ J̄N

=
1

N(N − 2)

(
N − 1 1

1 N − 1

)
⊗ IN +

1

N

(
p q

q p

)
⊗ JN ,

10



with

p =
1

4(N − 1)
− N − 1

N(N − 2)
and q =

1

4(N − 1)
− 1

N(N − 2)
.

Now, with this updated form of W ,

(e′i, e
′
j)W

+ =
1

N(N − 2)

(
(N − 1)e′i + e′j , e

′
i + (N − 1)e′j

)
− 1

2(N − 1)(N − 2)
(l′N , l′N ) .

Moreover, with Y being the (N × N) data matrix containing the yij observations,

with zeros filling in the empty diagonal elements,

D′LL′y =

(
Y ′lN

Y lN

)
.

So, after multiplying (e′i, e
′
i)W

+ and D′LL′y, and as y++ = l′NY lN = l′NY ′lN , we get

ỹij = yij −
N − 1

N(N − 2)
(yi+ + y+j)−

1

N(N − 2)
(y+i + yj+)

+
1

(N − 1)(N − 2)
y++ .

(18)

When N grows larger, the effects of the missing diagonal elements becomes smaller,

which is reflected in the above expression by the third term at the right-hand side of

formula (18) being of lower order than N .

3.2 The Model with Three Effects

Let us turn our attention back to the three-dimensional models. To derive the optimal

within transformation for model (2), we start from its matrix form:

y = Xβ + (IN ⊗ lN ⊗ lT )α+ (lN ⊗ IN ⊗ lT )γ + (lN ⊗ lN ⊗ IT )λ+ ε

= Xβ +Dα∗α+Dγ∗γ +Dλλ+ ε.

From this point, with D = (Dα∗ , Dγ∗ , Dλ), the derivations are very similar to those

used for pure cross-sections, only appearing slightly more complicated. The optimal

within transformation for model (2) in the no self-flow case is

ỹijt = yijt −
N − 1

N(N − 2)T
(yi++ + y+j+)−

1

N(N − 2)T
(yj++ + y+i+)

− 1

N(N − 1)
y++t +

2

N(N − 2)T
y+++ .

(19)

3.3 Models with Composite Effects

Now, let us continue with the models with composite effects. In most cases, the

11



optimal within transformation has to be adjusted only moderately, to reflect the

missing diagonal elements. For model (5), this reads as

ỹijt = yijt −
1

T
yij+ ; (20)

for model (7), it is

ỹijt = yijt −
1

T
yij+ − 1

N(N − 1)
y++t +

1

TN(N − 1)
y+++ ; (21)

and for model (8),

ỹijt = yijt −
1

N − 1
y+jt . (22)

Note that all three transformations above are in fact very similar to their complete

data counterparts from Section 2. Next, let us move on to model (10). The optimal

within transformation, following the method discussed above is obtained as

ỹijt = yijt −
N − 1

N(N − 2)
(yi+t + y+jt)−

1

N(N − 2)
(y+it + yj+t)

+
1

(N − 1)(N − 2)
y++t .

(23)

For model (12), we follow a somewhat different approach. First, we have to notice

that the optimal effects-clearing projection matrix, with L̃ being the selection matrix

of order (N2T ×N(N − 1)T ), is now

ML̃′D = ML̃′D̃

= L̃′MDL̃− L̃′D̃D̃′(H ⊗ IT )V (H ⊗ IT )
′D̃D̃′L̃ ,

with

H =
∑
i

eie
′
i ⊗ ei , L̃L̃′ = IN2T − (HH ′ ⊗ IT ) , and

V =
(
I − (H ⊗ IT )

′D̃D̃′(H ⊗ IT )
)−

= ((QN ·QN )⊗QT )
− .

Intuitively enough, the first part of the projection corresponds to the transformation

used in the case of complete data, while the second term corrects for the missing i = j

observations. All elements of ML̃′D̃ have already been defined and D and D̃ are the

model-specific dummy matrices. After some elaboration on the projection, we see

that for observation yijt (i ̸= j),

(ei ⊗ ej ⊗ et)
′ML̃′D̃y

12



gives

ỹijt =yijt −
N − 3

N(N − 2)
(yi+t + y+jt) +

N − 3

N(N − 2)T
(yi++ + y+j+)−

1

T
yij+

+
1

N(N − 2)
(y+it + yj+t)−

1

N(N − 2)T
(y+i+ + yj++)

+
N2 − 6N + 4

N2(N − 1)(N − 2)
(y++t − y+++) .

(24)

Note that this method is also flexibly applicable for all fixed effects model formulations

as one only has to substitute in the specific D and D̃ dummy matrices corresponding

to the given model.

The listed no self-flow transformations can also be generalized to any higher

dimensions. In the four-dimensional case we get

ỹijst =yijst −
1

N − 1
y+jst −

1

N − 1
yi+st −

1

Ns
yij+t −

1

T
yijs+ +

1

(N − 1)2
y++st

+
1

(N − 1)Ns
y+j+t +

1

(N − 1)T
y+js+ +

1

(N − 1)Ns
yi++t +

1

(N − 1)T
yi+s+

+
1

NsT
yij++ − 1

(N − 1)2Ns
y+++t −

1

(N − 1)2T
y++s+ − 1

(N − 1)NsT
y+j++

− 1

(N − 1)NsT
yi+++ +

1

(N − 1)2NsT
y++++ − 1

(N − 1)NsT
yji++

+
1

(N − 1)T
yjis+ +

1

(N − 1)Ns
yji+t −

1

N − 1
yjist .

(25)

So overall, the self-flow data problem can be overcome by using an appropriate within

transformation leading to an unbiased estimator.

Next, we go further along the above lines and see what is going to happen if the

observation sets i and j are different. If the two sets are completely disjoint, say for

example, if we are modeling export activity between the EU and APEC countries,

for all the models considered, the within estimators are unbiased, as the no self-flow

problem does not arise. If the two sets are not completely disjoint, say for example in

the case of trade between the EU and OECD countries, when the no self-flow problem

does arise, we are faced with the same biases that are outlined above. Unfortunately,

however, transformations (19), (23) and (24) do not work in this case and there are

no obvious transformations that could be worked out for this scenario.

13



4. Unbalanced Data

As in the case of the usual 2D panel data sets [see Wansbeek and Kapteyn (1989) or

Baltagi (2005), for example], just more frequently, one may be faced with a situation

in which the data at hand is unbalanced. In our framework of analysis this means that

for all the previously studied models, in general t ∈ Tij , for all (ij) pairs, where Tij

is a subset of the index set t ∈ {1, . . . , T}, with T being chronologically the last time

period in which we have any (i, j) observations. Note that two Tij and Ti′j′ sets are

usually different and also let R =
∑

ij |Tij | denote the total number of observations,

where |Tij | is the cardinality of the set Tij (the number of observations in the given

set).

For models (5) and (8), the unbalanced nature of the data does not cause

any problem, the within transformations can be used, and they have exactly the

same properties, as in the balanced case. However, for models (2), (7), (10), and

(12), we face some problems. As the within transformations fail to fully eliminate

the fixed effects for these models (somewhat similarly to the no self-flow case), the

resulting within estimators suffer from (potentially severe) biases. However, luckily,

the Wansbeek and Kapteyn (1989) approach can be extended to these four cases.

Let us start with model (2). Dummy variable matrix D has to be modified to

reflect the unbalanced nature of the data. Let the Ut and Vt (t = 1 . . . T ) be the

sequence of (IN ⊗ lN ) and (lN ⊗ IN ) matrices, respectively, in which the following

adjustments were made: for each (ij) observation, we leave the row [representing (ij)]

in those Ut and Vt matrices untouched, are t ∈ Tij , but delete it from the remaining

T − |Tij | matrices. In this way we end up with the following dummy variable setup

Da
1 = (U ′

1, U
′
2, . . . , U

′
T )

′
of size (R×N) ,

Da
2 = (V ′

1 , V
′
2 , . . . , V

′
T )

′
of size (R×N) , and

Da
3 = diag {V1 · lN , V2 · lN . . . , VT · lN} of size (R× T ) .

So the complete dummy variable structure is now Da = (Da
1 , D

a
2 , D

a
3). In this case,

let us note here that, just as in Wansbeek and Kapteyn (1989), index t goes “slowly”

and ij goes “fast”. Now with this modified dummy variable structure, the optimal

projection removing the fixed effects can be obtained in three steps:

M
(1)
Da

= IR −Da
1(D

a′

1 Da
1)

−1Da′

1 ,

M
(2)
Da

= M
(1)
Da

−M
(1)
Da

Da
2(D

a′

2 M
(1)
Da

Da
2)

−Da′

2 M
(1)
Da

,

14



and finally

MDa = M
(3)
Da

= M
(2)
Da

−M
(2)
Da

Da
3(D

a′

3 M
(2)
Da

Da
3)

−Da′

3 M
(2)
Da

, (26)

where “−” stands for any generalized inverse. It is easy to see that in fact MDa
Da = 0

projects out all three dummy matrices. Note that in the balanced case (Da′

1 Da
1)

−1 =

IN/(NT ), but now

(Da′

1 Da
1)

−1 = diag

{
1∑

j |T1j |
,

1∑
j |T2j |

, . . . ,
1∑

j |TNj |

}
of size (N ×N) .

With this in hand, we only have to calculate two inverses instead of three,

(Da′

2 M
(1)
Da

Da
2)

−, and (Da′

3 M
(2)
Da

Da
3)

−, with respective sizes (N × N) and (T × T ).

This is feasible for reasonable sample sizes.

For model (7), the job is essentially the same. Let the Wt (t = 1 . . . T ) be

the sequence of (IN ⊗ IN ) matrices, where again for each (ij), we remove the rows

corresponding to observation (ij) in those Wt, where t /∈ Tij . In this way,

Db
1 = (W ′

1,W
′
2, . . . ,W

′
T )

′
of size (R×N2) ,

Db
2 = Da

3 of size (R× T ) .

The first step in the projection is now

M
(1)
Db

= IR −Db
1(D

b′

1 D
b
1)

−1Db′

1 ,

so the optimal projection orthogonal to Db = (Db
1, D

b
2) is simply

MDb
= M

(2)
Db

= M
(1)
Db

−M
(1)
Db

Db
2(D

b′

2 M
(1)
Db

Db
2)

−Db′

2 M
(1)
Db

. (27)

Note that as

(Db′

1 D
b
1)

−1 = diag

{
1

|T11|
,

1

|T12|
, . . . ,

1

|TNN |

}
of size (N2 ×N2) ,

we only have to calculate the inverse of a (T × T ) matrix – Db′

2 M
(1)
Db

Db
2 – which is

easily doable. Further, as discussed above, given that model (2) is nested in (7),

transformation (27) is in fact also valid for model (2).

Let us move on to model (10). Now, after the same adjustments as before,

Dc
1 = diag{U1, U2, . . . , UT } of size (R×NT ) and

Dc
2 = diag{V1, V2, . . . , VT } of size (R×NT ) ,
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so the stepwise projection, removing Dc = (Dc
1, D

c
2), is

M
(1)
Dc

= IR −Dc
1(D

c′

1 D
c
1)

−1Dc′

1 ,

leading to

MDc = M
(2)
Dc

= M
(1)
Dc

−M
(1)
Dc

Dc
2(D

c′

2 M
(1)
Dc

Dc
2)

−Dc′

2 M
(1)
Dc

. (28)

Note that for MDc , we have to invert (NT ×NT ) matrices, which can be computa-

tionally difficult.

The last model to deal with is model (12). Let Dd = (Dd
1 , D

d
2 , D

d
3), where the

adjusted dummy matrices are all defined above:

Dd
1 = Db

1 of size (R×N2) ,

Dd
2 = Dc

1 of size (R×NT ) ,

Dd
3 = Dc

2 of size (R×NT ) .

Defining the partial projector matrices M
(1)
Dd

and M
(2)
Dd

as

M
(1)
Dd

= IR −Dd
1(D

d′

1 Dd
1)

−1Dd′

1 and

M
(2)
Dd

= M
(1)
Dd

−M
(1)
Dd

Dd′

2 (Dd′

2 M
(1)
Dd

Dd
2)

−Dd′

2 M
(1)
Dd

,

the appropriate transformation for model (12) is now

MDd
= M

(3)
Dd

= M
(2)
Dd

−M
(2)
Dd

Dd′

3 (Dd′

3 M
(2)
Dd

Dd
3)

−Dd′

3 M
(2)
Dd

. (29)

It can be easily verified that MDd
is idempotent and MDd

Dd = 0, so all the fixed

effects are indeed eliminated.3 As model (10) is covered by model (12), projection (29)

eliminates the fixed effects from that model as well. Moreover, as suggested above,

all three-way fixed effects models are in fact nested into model (12). It is therefore

intuitive that transformation (29) clears the fixed effects in all model formulations.

Using (29) is not always advantageous, however, as the transformation involves the

inversion of potentially large matrices (of order NT ). In the case of most models

studied, we can find suitable unbalanced transformations at the cost of only inverting

(T × T ) matrices; or in some cases, we can even derive scalar transformations. It is

good to know, however, that there is a general projection that is universally applicable

to all three-way models in the presence of all kinds of data issues.

3 A STATA program code for transformation (29) with a user-friendly detailed expla-
nation is available at www.personal.ceu.hu/staff/repec/pdf/stata-program document-

dofile.pdf. Estimation of model (12) is then easily done for any kind of incompleteness.
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It is worth noting that transformations (26), (27), (28), and (29) are all dealing

in a natural way with the no self-flow problem, as only the rows corresponding to

the i = j observations need to be deleted from the corresponding dummy variable

matrices.

All transformations detailed above can also be rewritten in a semi-scalar form.

Let us show here how this idea works on transformation (29), as all subsequent

transformations can be dealt with in the same way. Let

ϕ = C−D̄′y and ω = C̃−(M
(2)
Dd

Dd
3)

′y ξ = C−D̄′Dd
3ω ,

where

C =
(
Dd

2

)′
D̄ , D̄ =

(
IR −Dd

1(D
d′

1 Dd
1)

−1Dd′

1

)
Dd

2 , and C̃ = Dd′

3 M
(2)
Dd

Dd
3 .

Now the scalar representation of transformation (29) is

[MDd
y]ijt = yijt−

1

|Tij |
∑
t∈Tij

yijt+
1

|Tij |
a′ijϕ−ϕit−ωjt+

1

|Tij |
ã′ijω+ξit−

1

|Tij |
(
abij
)′
ξ ,

where aij and ãij are the column vectors corresponding to observations (ij) from

matrices A = Dd′

2 Dd
1 and Ã = Dd′

3 Dd
1 , respectively; ϕit is the (it)-th element of the

(NT × 1) column vector ϕ; ωjt is the (jt)-th element of the (NT × 1) column vector

ω; and finally, ξit is the element corresponding to the (it)-th observation from the

(NT × 1) column vector, ξ.4

Transformation (29) can also be generalized into a four-dimensional setup. Let

the dummy variables matrices for the four fixed effects in (14) be denoted by De =

(De
1, D

e
2, D

e
3, D

e
4) and let M

(k)
De

be the transformation that clears out the first k fixed

effects; namely, M
(k)
De

· (De
1, . . . , D

e
k) = (0, . . . , 0) for k = 1 . . . 4. The appropriate

within transformation to clear out the first k fixed effects is then

M
(k)
De

= M
(k−1)
De

−
(
M

(k−1)
De

De
k

)[(
M

(k−1)
De

De
k

)′ (
M

(k−1)
De

De
k

)]− (
M

(k−1)
De

De
k

)′
, (30)

where the first step in the iteration is

M
(1)
De

= I −De
1

(
(De

1)
′
De

1

)−1
(De

1)
′ ,

4 From a computational point of view, the calculation of matrix MDd is by far the most
resource requiring as we have to invert (NT×NT ) size matrices. Simplifications related
to this can dramatically reduce CPU and storage requirements. This topic, however, is
well beyond the scope of this paper.
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and the iteration should be processed until k = 4. Note that none of this hinges on

the model specification and can be done to any other multi-dimensional fixed effects

model.

5. Dynamic Models

In the case of dynamic autoregressive models, the use of which is unavoidable if

the data generating process has partial adjustment or some kind of memory, the

within estimators in a usual panel data framework are biased. In this section we

generalize these well-known results to this higher dimensional setup. We first derive

a general semi-asymptotic bias formulae, then we make it specific for each of the

models introduced in Section 2; and lastly, we propose consistent estimators for the

problematic models.

5.1 Nickell Biases

The models of Section 2 can all be written in the general dynamic form

y = ρy−1 +Dπ + ε , (31)

where D and π correspond to any of the specific D and π discussed in Section 2. With

MD, the projection matrix orthogonal to D,

ρ̂ =
y′−1MDy

y′−1MDy−1
= ρ+

tr(MDεy′−1)

tr(MDy−1y′−1)
, (32)

where y and y−1 are the column vectors of dependent and lagged dependent variables,

respectively, of size N2T . Let

B0 =

(
0 0

IT−1 0

)
of size (T × T ) ,

Γ0 ≡ (IT − ρB0)
−1 =


1 . . . . . . 0

ρ
. . .

...
. . .

. . .
...

ρT−1 ρ 1

 of size (T × T ) ,

Ψ0 =


1 ρ ρT−1

ρ
. . .

. . .

. . .
. . . ρ

ρT−1 ρ 1

 = IT + ρ(Γ0B0 + (Γ0B0)
′) of size (T × T ) ,
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and let B = IN2 ⊗B0,Γ = IN2 ⊗ Γ0,Ψ = IN2 ⊗Ψ0 define matrices necessary for the

general bias formulae. With e1, the first unit vector of size (T ×1), and y0 having N2

elements [the initial values of the yijt for all (ij) pair],

By = y−1 − y0 ⊗ e1 .

Therefore, model (31) can be rewritten as

y = ρBy + ρy0 ⊗ e1 +Dπ + ε , or (IN2T − ρB)y = ρy0 ⊗ e1 +Dπ + ε ,

which ultimately leads to

y = ρΓ(y0 ⊗ e1) + ΓDπ + Γϵ .

Let ε+ be ε advanced by one time period. Then, under the stationarity of εijt,

E(y−1ε
′) = E(yε′+) = ΓE(εε′+) = σ2

εΓB .

So, for the expectation of the numerator in (32), we obtain

E(tr(MDεy′−1)) = σ2
εtr(MDΓB) =

σ2
ε

2ρ
(tr(MDΨ)− tr(MD)) ,

with Ψ = (IN2T + ρ(ΓB + (ΓB)′)). For the denominator in (32),

E(tr(MDy−1y
′
−1)) = E(tr(MDyy′))

= ρ2E(tr(MDy−1y
′
−1)) + σ2

εtr(MD) + 2E(tr(MDεy′−1)) ,

so, as E(tr(MDεy′−1)) = σ2
εtr(MDΓB),

E(tr(MDy−1y
′
−1)) =

σ2
ε

1− ρ2
(tr(MD) + 2tr(MDΓB)) =

σ2
ε

1− ρ2
tr(MDΨ) .

Combining the expressions for the numerator and denominator, we get

plim
N→∞

ρ̂ = ρ+
1− ρ2

2ρ

(
1− plim

N→∞

tr(MD)

tr(MDΨ)

)
. (33)
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As for the specific models, given that tr(ITΨ0) = tr(IT ), the traces are summarized

in Table 2.

Table 2: Traces for the models considered

Model tr(MD) tr(MDΨ)

(2) (N − 1)(NT + T − 2) (N − 1)(NT + T − 2θ)

(5) N2(T − 1) N2(T − θ)

(7) (N2 − 1)(T − 1) (N2 − 1)(T − θ)

(8) NT (N − 1) NT (N − 1)

(10) (N − 1)2T (N − 1)2T

(12) (N − 1)2(T − 1) (N − 1)2(T − θ)

with

θ = tr(J̄TΨ0) = 1 + 2
ρ

1− ρ

(
1− 1

T

1− ρT

1− ρ

)
.

Therefore, following (33), the individual asymptotic biases are given in Table 3.

Table 3: Asymptotic biases for the models considered

Model plim
N→∞

ρ̂− ρ

(2) 1−ρ2

2ρ

(
1− plim

N→∞

NT + T − 2

NT + T − 2θ

)
= 0

(5), (7), (12) 1−ρ2

2ρ

(
1− T−1

T−θ

)
(8), (10) 0

5.2 Arellano–Bond Estimation

As seen above, we have problems with the N inconsistency of models (5), (7) and

(12) in the dynamic case. Luckily, many of the well-known instrumental variables (IV)

estimators developed to deal with dynamic panel data models can be generalized to

these higher dimensions as well, as the number of available orthogonality conditions

increases together with the dimensions. Let us take the example of one of the most

frequently used estimators: the Arellano and Bond IV estimator [see Arellano and

Bond (1991) and Harris et al. (2008), p. 260] for the estimation of model (5).

The model is written up in first differences, such as

(yijt − yijt−1) = ρ (yijt−1 − yijt−2) + (εijt − εijt−1) , t = 3, . . . , T
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or

∆yijt = ρ∆yijt−1 +∆εijt, t = 3, . . . , T.

The yijt−k, (k = 2, . . . , t − 1) are valid instruments for ∆yijt−1, as ∆yijt−1 is N

asymptotically correlated with yijt−k, however, yijt−k are not with ∆εijt. As a result,

the full instrument set for a given cross-sectional pair, (ij) is

zij =


yij1 0 · · · · · · 0 · · · 0

0 yij1 yij2 0 0 · · · 0
... · · ·

...
... · · ·

...

0 · · · 0 0 yij1 · · · yijT−2


of size ((T − 2)× (T − 1)(T − 2)/2). The resulting IV estimator of ρ is

ρ̂AB =
[
∆y′−1ZAB (Z ′

ABΩZAB)
−1

Z ′
AB∆y−1

]−1

∆y′−1ZAB (Z ′
ABΩZAB)

−1
Z ′
AB∆y,

where ∆y and ∆y−1 are the panel first differences, ZAB = (z′11, z
′
12, . . . , z

′
NN )

′
, and

Ω = (IN2 ⊗ Σ) is the covariance matrix, with known form

Σ =


2 −1 0 · · · 0

−1 2 −1 · · · 0

0
. . .

. . .
. . . 0

0 · · · −1 2 −1

0 · · · 0 −1 2

 of size ((T − 2)× (T − 2)) .

The generalized Arellano-Bond estimator behaves in exactly the same way as the

“original” two dimensional one, regardless of the dimensionality of the model.

In the case of models (7) and (12), to derive an Arellano-Bond–type estimator,

we need to insert one further step. After taking the first differences, we implement a

simple transformation in order to get to a model with only (ij) pairwise interaction

effects, exactly as in model (5). We then proceed as above, as the ZAB instruments

are valid for these transformed models as well. Let us start with model (7) and take

the first differences to get

∆yijt = ρ∆yijt−1 +∆λt +∆εijt .

Now, instead of estimating this equation directly with IV, we carry out the following

cross-sectional transformation:

∆ỹijt =

(
∆yijt −

1

N

N∑
i=1

∆yijt

)
,
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or introduce the notation ∆ȳ.jt = 1
N

∑N
i=1 ∆yijt. We also notice that the λ-s had

been eliminated from the model:

(∆yijt −∆ȳ.jt) = ρ (∆yijt−1 −∆ȳ.jt−1) + (∆εijt −∆ε̄.jt) .

We can see that the ZAB instruments proposed above are valid again for (∆yijt−1 −∆ȳ.jt−1),

as they are uncorrelated with (∆εijt −∆ε̄.jt), but are correlated with the former. The

IV estimator of ρ, ρ̂AB has again the form

ρ̂AB =
[
∆ỹ′−1ZAB(Z

′
ABΩZAB)

−1Z ′
AB∆ỹ−1

]−1
∆ỹ′−1ZAB(Z

′
ABΩZAB)

−1Z ′
AB∆ỹ,

with ∆ỹ and ∆ỹ−1 being the transformed panel first differences of the dependent

variable.

Continuing now with model (12), the transformation needed in this case is∆yijt −
1

N

N∑
i=1

∆yijt −
1

N

N∑
j=1

∆yijt +
1

N2

N∑
i=1

N∑
j=1

∆yijt

 .

Picking up the previously introduced notation and using the fact that the fixed effects

are cleared again, we get

(∆yijt −∆ȳ.jt −∆ȳi.t +∆ȳ..t) =

= ρ(∆yijt−1 −∆ȳ.jt−1 −∆ȳi.t−1 +∆ȳ..t−1) + (∆εijt −∆ε̄.jt −∆ε̄i.t +∆ε̄..t) .

The ZAB instruments can be used again on this transformed model to get a consistent

estimator for ρ.

6. Conclusion

In the case of three and higher dimensional fixed effects panel data models, due to

the many interaction effects, the number of dummy variables in the models increase

dramatically. As a consequence, even when the number of individuals and time periods

is not too large, the OLS estimator becomes, unfortunately, practically unfeasible.

The obvious answer to this challenge is to use appropriate within estimators, which

do not require the explicit incorporation of the fixed effects into the model. Although

these within estimators are more complex than seen in the usual two dimensional

panel data models, they are quite useful in these higher dimensional setups. However,

unlike in two dimensions, they are biased in the case of some very relevant data

problems, such as the lack of self-flows or unbalanced observations. These properties

must be taken into account by all researchers relying on these methods. Also, in
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dynamic models, for some, but not all fixed effects formulations, the Within estimators

are biased and inconsistent. Therefore, appropriate estimation methods need to be

derived to deal with these cases.
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