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1 Introduction

This paper studies wage equations for the US in the matching model of Mortensen and Pissarides

(1994), the leading approach in recent discussions of unemployment and vacancies at the macro-

economic level. It makes two main contributions. First, it shows that none of the formulations

in the literature with wages in all matches negotiated each period satisfies the natural criterion of

adequately capturing the macroeconomic dynamics of wages. Second, it provides a formulation

of wage rigidity that does so and, consistent with the micro evidence reported in Pissarides (2009)

and reiterated by Haefke et al. (2013), applies only to continuing matches, with wages negotiated

for all new matches.

These results are important for the following reason. If wage rigidity applies to new, as well as

continuing, matches, as in Gertler and Trigari (2009), it affects job creation and hence vacancies

and unemployment. But, as pointed out by Malcomson (1999, Section 4) and Pissarides (2009),

if it applies only to continuing matches, it affects only the timing of wage payments over the

duration of a match. So conclusions for vacancies and unemployment drawn from studies without

wage rigidity continue to apply.

Many empirical implementations of the Mortensen and Pissarides (1994) model assume Nash

bargaining of wages in all matches each period. See, for example, Cole and Rogerson (1999),

Yashiv (2000), Shimer (2005), Yashiv (2006) and Hagedorn and Manovskii (2008). Hagedorn and

Manovskii (2008) argue explicitly that their formulation satisfactorily reflects US data. Others

are more sceptical and incorporate history dependence in view of the considerable evidence from

individual panel data of wage rigidity at the microeconomic level.1 Studies include Shimer (2004),

Hall (2005a), Hall (2005b), Hall and Milgrom (2008), Gertler and Trigari (2009), Rudanko (2009),

Rudanko (2011) and Kudlyak (2014).2 Gertler and Trigari (2009) show that, with the addition of

wage rigidity, the matching model can account for the cyclical behaviour of both wages and labour

market activity. But the form of wage rigidity they use assumes wages for new matches are just

as rigid as wages for continuing matches, an assumption criticised by Pissarides (2009). From his

survey of the microeconometric evidence, Pissarides (2009) concludes that wages of job changers

(new matches) are substantially more procyclical than those of job stayers (continuing matches).

He also argues that, provided account is taken of fixed costs incurred after matching has occurred,

a model with just wages for new matches determined by the standard Nash bargain can account for

the observed volatility of unemployment. He does not, however, develop a specific model of wage

rigidity for continuing matches that actually captures the macroeconomic dynamics of wages.

The underlying problem for capturing the macrodynamics of wages with models in which

1See Dickens et al. (2007) for an overview of results from the International Wage Flexibility Project.
2There is also a growing literature applying disaggregated versions of the matching model with heterogeneous

firms and employees to micro data. For examples, see Cahuc et al. (2006) and Robin (2011).
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Figure 1: Top panel: real wages and corresponding fitted values for the calibration in Hagedorn

and Manovskii (2008). Middle panel: residuals = differences between data and model. Bottom

panel: autocorrelation function of residuals. Data: Hagedorn and Manovskii (2008).

wages in all matches are determined by the Nash bargain in every period is illustrated in Figure 1.

This compares the variation in the wage predicted by the calibration in Hagedorn and Manovskii

(2008) with the average wage in the data. The residuals are the difference between these. It is

apparent from the figure that the residuals are highly persistent (as measured by the autocorrela-

tion function), which is contrary to what one would expect if the model captured adequately the

dynamics of wages in the data.

Subsequent contributions have extended the model with all wages negotiated each period to

address this problem. Hall and Milgrom (2008) consider a different model of bargaining, cred-

ible bargaining. Hagedorn and Manovskii (2011) allow for “time to build” in vacancy creation.

Hagedorn and Manovskii (2013) add heterogeneity to match productivities and allow “on the job”

search by workers. To these can be added the fixed costs (for training, negotiation or adminis-

tration) incurred after matching suggested by Pissarides (2009). In this paper, we construct an

empirically implementable model that encompasses all these when all wages are negotiated each

period and show that, even with them all combined, the model still does not satisfactorily capture

the macroeconomic dynamics of wages in the US.

As an alternative to all wages being negotiated in each period, this paper constructs an empiri-

cally implementable model with wage rigidity for continuing matches but wages negotiated afresh
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for all new matches. The form of wage rigidity is that developed in Gertler and Trigari (2009) but

applied only to continuing, not to new, matches. This formulation satisfactorily captures the macro-

economic dynamics of wages in the US, despite having essentially only one additional parameter.

Alternative forms of wage rigidity for continuing matches are developed by Thomas and Worrall

(1988), Beaudry and DiNardo (1991), Rudanko (2009) and MacLeod and Malcomson (1993). The

first three, however, depend on workers being risk averse, which is not part the standard matching

model, and MacLeod and Malcomson (1993) is harder to implement empirically with aggregate

data. In any case, the purpose here is not to select between different models of wage rigidity for

continuing matches but to show that a wage equation with these general characteristics can capture

the macroeconomic dynamics of wages. The model we use is an empirically tractable one that

suffices for this purpose.

Our empirical analysis is based on limited-information estimation using the generalized method

of moments (GMM). Limited-information analysis is appealing because it allows us to avoid mak-

ing assumptions about the stochastic processes underlying a model that are not integral to it and

thus potentially rejecting the model because those auxiliary assumptions are inappropriate. The

models we estimate are forward-looking rational expectations models and this characteristic pro-

vides straightforward criteria for determining valid instruments. Moreover, in drawing our con-

clusions we make use of methods of inference that are robust to weak instruments, see Stock and

Wright (2000), and thus reduce the risk of drawing inappropriate inferences from statistical tests.

The paper is organized as follows. The next section sets out the theoretical wage equations we

use for econometric analysis. That is followed by sections on empirical specifications, the data

and estimation results. These are, in turn, followed by a conclusion. Appendix A sets out the full

details of the theoretical model from which the wage equations are derived. Appendix B contains

further derivations of equations in Appendix A, Appendix C a formal model of “on the job” search,

Appendix D additional information about the data used, and Appendix E supplementary empirical

results and robustness checks.

2 Theoretical wage equations

2.1 Wage equations without wage rigidity

The basic framework used here is the matching model of Mortensen and Pissarides (1994) as

developed by Hagedorn and Manovskii (2008) for empirical analysis. The model consists of five

equations: (1) a value equation for a filled job, (2) a value equation for an unfilled vacancy that is

set to zero because free entry is assumed, (3) a value equation for an employed worker, (4) a value

equation for an unemployed worker, and (5) a Nash bargaining equation that determines wages.
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Notation Description

pt average productivity in matches at t

wt average wage in matches at t

δt discount factor applied to t + 1 at t

st match separation probability at t

ct vacancy posting cost at t

γt difference in cost to firm and worker of making offers at t with credible bargaining

qt probability of filling a vacancy at t

ft probability of an unemployed worker finding employment at t

zt value of non-work activity at t

λ Nash bargain: β/ (1− β), for β the bargaining power of a worker

credible bargain: probability of negotiation breakdown

κ probability that employment starts at t for new match at t

δκt δt−1 (1− st − ft−1 + κst ft−1)

Table 1: Notation for all wages bargained each period

We adapt those equations to encompass the credible bargaining model of Hall and Milgrom (2008)

as an alternative to the Nash bargaining model, “time to build” in vacancy creation as suggested in

Hagedorn and Manovskii (2011), heterogeneity in match productivities as suggested in Hagedorn

and Manovskii (2013) and fixed costs incurred only after matching as suggested by Pissarides

(2009), together with some minor generalizations of inessential restrictions that there is no reason

to require the data to satisfy. The full model is set out in Appendix A. There we derive a wage

equation that, when wages in all matches are negotiated each period and with the notation in Table

1, takes the form

wt =
zt

1+ λ
+

λ

1+ λ

[
pt + ct

ft

(1− ftκ) qt

]
+

λ

1− λ2

γt − Et

(
δκ

t+1γt+1

)
1− ftκ

. (1)

This reduces to exactly the wage equation in Hagedorn and Manovskii (2008) when the parame-

ters incorporating the extensions to the model are set to appropriate values; specifically, κ = 0

(employment starts at t + 1 for new matches at t) and γt = 0 for all t (no cost to making offers

so bargaining is Nash). Given appropriate specifications for zt , ct and γt , (1) is an equation for the

average wage that can be estimated from available data.

To interpret (1), start with Nash bargaining (γt = 0 for all t). If employment lasted only a single

period, the worker would receive payoff zt and the firm 0 (because, at the bargaining stage, ct is a

sunk cost) if they do not form a match at t . If they form a match, the parties have productivity pt to

share between them. So Nash bargaining would result in wt = zt + β (pt − zt), where β ∈ [0, 1]

is the bargaining power of the worker. (To encompass the credible bargaining model, β is replaced

by λ/ (1+ λ) in (1).) With a continuing match, there is also the future to consider. With Nash

bargaining at t + 1 as well as at t , the worker’s expected future gains are proportional to the firm’s
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expected future gains. Moreover, because of free entry, the firm’s expected gains from t + 1 on

equal the cost ct of posting a vacancy at t less the period t gains. So, all future payoffs can be

written explicitly in terms of variables known at t, including ct as in (1). See Appendix A for the

detailed derivation. The term in (1) including γt and γt+1 needs to be added to incorporate credible

bargaining. For that model, λ has a different interpretation, see Table 1, but it still affects the other

terms in the same way as with Nash bargaining.

Equation (1) also captures the model of “on the job” search in Hagedorn and Manovskii (2013),

see Appendix A. But that model does not take explicit account of the change in the distribution of

match productivities over the business cycle induced by selection as workers search on the job for

more productive matches. In Appendix A, we present a wage equation that takes explicit account

of this. It includes variables we cannot calculate from the data, so we are not able to provide direct

estimates. However, as argued more technically in Appendix A, the effect of on the job search

works in the wrong direction for reconciling bargaining of wages for all matches in every period

with the persistence of wages in the data.

In the model in the appendix, on the job search introduces history dependence because free

entry now equates the average of the expected payoffs to the firm of filling a vacancy at t with an

unemployed and an employed worker to ct . The probability of filling the vacancy with an employed

worker depends on the distribution of productivities at t−1 because employed workers switch only

to a job with higher productivity. In deriving the equivalent of equation (1) for this model, one must

subtract that history dependent term from ct . So, when the distribution of actual productivities at

t − 1 is untypically favourable to high productivities (and, because of Nash bargaining, also high

wages at t − 1), the average wage at t is untypically low. Therefore, the effect on wage dynamics

is in the opposite direction of what is needed to generate the persistence in the data.

For reasons explained above, wage equation (1) depends on the future gains from the relation-

ship being satisfactorily measured in terms of the cost ct of creating a vacancy at t . It therefore

depends on the value equation for an unfilled vacancy being properly specified. If it is not, (1)

is mis-specified even if wages in all matches are negotiated every period. In particular, there are

some specifications of the time to build a vacancy in Hagedorn and Manovskii (2011) that affect

the value of an unfilled vacancy but are not captured in the specification used to derive (1). Thus,

our subsequent finding that (1) does not fit the data could result purely from this mis-specification,

not because some wages are not negotiated every period.

To rule out this possibility, we derive in Appendix A an alternative wage equation when all

wages are bargained each period that, although making use of the free entry condition that the

value of creating a vacancy is zero, does not rely on the specification of the equation for that value.
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This wage equation has the form

(1− ftκ) (wt − zt)− λ (pt − wt)

+ Et

∞∑
n=1

[
δκt,n − δtδ

κ
t+1,n−1 (1− st+1)

]
(1− ft+nκ) (wt+n − zt+n)

−
λ

1− λ

[
γt − δt Et (1− st+1) γt+1

]
= 0. (2)

where δκt,n =
∏n

i=1 δ
κ
t+i , with δκ

t,0 = 1, and δκt = δt−1 (1− st − ft−1 + κst ft−1). Instead of

capitalising a worker’s future gains from forming a match in terms of the cost ct of creating a

vacancy, wage equation (2) spells out those future gains explicitly in the terms wt+n − zt+n for

n ≥ 1. It is thus robust to the specification of the equation for the value of creating a vacancy and,

in particular, remains valid for any length of time to build a vacancy. It thus encompasses all the

specifications in Hagedorn and Manovskii (2011). Estimation of (2) requires the terms under the

summation sign to be truncated at some finite horizon.3 With δκt strictly less than 1 as implied by

the model, however, the approximation error from truncation can be made arbitrarily small for a

sufficiently long horizon. Given appropriate specifications for zt and γt , (2) is then an equation in

current and future average wages that can be estimated from available data.

2.2 Wage equation with wage rigidity

Gertler and Trigari (2009) use a form of wage rigidity that enables the matching model to account

for the cyclical behaviour of wages and labour market activity. Their form of wage rigidity has a

fixed probability that the wage for a match, whether new or continuing, is bargained in any one

period. But Haefke et al. (2013) find little evidence of wage rigidity for new hires at the microeco-

nomic level, reinforcing the micro evidence surveyed by Pissarides (2009). Here, therefore, we use

a model in which wages in continuing matches are subject to wage rigidity of the type analysed by

Gertler and Trigari (2009) but those in new matches are all bargained.

In Appendix A, we derive a wage equation for the average wage in new matches, w∗t , when the

wage for continuing matches is renegotiated with probability 1 − ψ . We allow for the possibility

that wages not renegotiated may be adjusted automatically to inflation by scaling them by the factor

π
−µ
t , where πt is the ratio of prices at t to prices at t − 1 and µ is a parameter to be estimated.

Wages here are measured in real terms. Thus, for µ = 1, the unrenegotiated wage is set in nominal

terms, for µ = 0 in real terms, with µ ∈ (0, 1) interpreted as the proportion of unrenegotiated

3This approach has been used by, for example, Rudd and Whelan (2006) for studying the new Keynesian Phillips

curve.
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wages set in nominal terms. The wage equation then takes the form

(1− ftκ)
(
w∗t − zt

)
− λ

[
(1− ftκ)

(
pt − w

∗
t

)
+ ct

ft

qt

]
−

λ

1− λ

[
γt − Et

(
δκt+1γt+1

)]
+ ψ (1+ λ) Et

{
δκt+1

(
π
−µ
t+1w

∗
t

−w∗t+1

)[ ∞∑
i=1

i∏
j=2

(
δt+ j−1

(
1− st+ j

)
ψπ
−µ
t+ j

)]}
= 0, (3)

where, as before, δκt = δt−1 (1− st − ft−1 + κst ft−1). Whenψ = 0, w∗t = wt and wage equation

(3) reduces to (1). In (1), with Nash bargaining only contemporaneous variables appear. (With

credible bargaining, the costs of making offers at t + 1 also appear.) Wage rigidity gives rise to

forward-looking behaviour because the wage currently negotiated may continue to apply at future

dates, which is captured by ψ 6= 0. Thus, our specification of wage rigidity involves relaxing the

single restriction ψ = 0, which turns out to make a big difference empirically.

The data contain the average wage wt but not the average wage for new matches w∗t . Appendix

A shows that, under the assumptions of the model, the relationship between these is given by

w∗t =
wt − π

−µ
t wt−1

1− ψ (1− st) jt−1/jt
+ π−µt wt−1. (4)

As with (2), estimation of (3) requires the terms under the summation sign on the right-hand

side to be truncated at some finite horizon. With δt+ j−1

(
1− st+ j

)
ψ strictly less than 1, the

approximation error from truncation can be made arbitrarily small for a sufficiently long horizon.

3 Empirical specifications

Empirical implementation of (1)–(3) requires specifications for zt , γt and ct . In Hagedorn and

Manovskii (2008), productivity is detrended and zt is a constant. The corresponding assumption

here is that zt is proportional to trend productivity, denoted p̄t . We make the same assumption for

γt . These give the specifications

zt = z p̄t , γt = γ p̄t , where z ≥ 0. (5)

For the vacancy posting cost, Hagedorn and Manovskii (2008) include two components, capital

and labour. Capital costs in period t are proportional to productivity in period t and so can be

written cK pt , where cK is a non-negative constant.4 Labour costs in period t are proportional

4Hagedorn and Manovskii (2008) actually assume that capital costs are cK pt/ p̄ and normalize p̄ to one, but then

HP filter the data, so this is equivalent to assuming that, after detrending the cost by the productivity trend, it is
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to the cyclical component of productivity, p̃t = pt/ p̄t , raised to the power ξ ∈ [0, 1], which

Hagedorn and Manovskii (2008) interpret as the elasticity of the labour cost of those engaged in

hiring with respect to productivity, and so can be written cW p̃
ξ
t p̄t , where cW is a non-negative

constant. See Hagedorn and Manovskii (2008) for a detailed discussion of the motivation for

these formulations. We add to these the post-matching fixed costs suggested in Pissarides (2009),

denoted by Ht , which we allow to have both capital and labour components specified in ways

corresponding to the vacancy posting costs in Hagedorn and Manovskii (2008), so

Ht = H K pt + H W p̃
ξ
t p̄t , H K , H W ≥ 0.

Because these costs are incurred only in the event of a match, they are multiplied by the probability

of matching qt in their impact on vacancy creation. Combining all these components for ct , we get

the empirical specification

ct = cK pt + cW p̃
ξ
t p̄t +

(
H K pt + H W p̃

ξ
t p̄t

)
qt , cK , cW , H K , H W ≥ 0, ξ ∈ [0, 1] . (6)

For estimation, we normalize the wage equations (1), (2) and (3) by trend productivity, which

corresponds to the use of detrended productivity in Hagedorn and Manovskii (2008) and ensures

all variables are stationary.5

4 Data

We use data on the nonfarm business sector of the USA, mainly from the Bureau of Labor Statistics

(BLS) and the OECD. The data are quarterly and cover the period 1951q1 to 2011q4. Our baseline

estimation results are for the period up to 2004q4 for comparability with earlier studies. A fuller

description of the data is in Appendix D.

We use this data to construct model-consistent data series. The number of new matches at t,

mt , is given by the total number of filled jobs at t , jt , less the number of continuing matches at t ,

(1− st) jt−1, so

mt = jt − (1− st) jt−1. (7)

The stock of vacancies at the end of period t , after matching takes place, is denoted vt . Hence, the

total number of vacancies available to be filled in period t is vt + mt . The stock of unemployed

workers seeking matches in period t consists of workers who were unemployed in the previous

period, lt−1 − jt−1 (where lt is the labour force at t), workers who were employed in the previous

proportional to the business cycle variation in productivity.
5We measure trend productivity using the HP filter with parameter 1600, as in Hagedorn and Manovskii (2008).

We detrend wages and productivity by the same productivity trend. The results are robust to the alternative of HP

filtering each series separately, see Table 13 in Appendix E.
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period but have lost their job, st jt−1, and net new entrants to the labour force, 1lt = lt − lt−1,

making lt − (1− st) jt−1 in total. Equivalently, this is given by the stock of unemployed workers

at the end of the period, ut , plus the total matches during the period, ut +mt . Thus, the probability

of filling a vacancy in period t is given by

qt =
mt

vt + mt

(8)

and the job-finding probability for unemployed workers by

ft =
mt

ut + mt

. (9)

Employment jt and unemployment ut are constructed and seasonally adjusted by the BLS from

the CPS. They correspond to the last month in the quarter in accordance with the model used here.

Employment consists of total nonfarm dependent employment (excluding the self-employed). The

labour force is the sum of employed and unemployed.

We adopt the practice discussed by Blanchard and Diamond (1990) of constructing a series

for separations from the number of short-term unemployed, us
t , in our case (because we are using

quarterly data) those with spells shorter than 14 weeks. Moreover, if the increase in the labour force

all goes through the unemployment pool first, this increase should be subtracted from the short-

term unemployed before calculating the separation rate. We adjusted the data for this, though the

effect on the calculated series for the separation rate st is very small. We also adjusted for direct

job-to-job flows using the procedure suggested in Shimer (2005) based on the idea that, on average,

a worker losing a job has half a period to find a new one before being recorded as unemployed.

Thus, short-term unemployment satisfies

us
t =

(
1−

1

2
ft

)
(1lt + st jt−1) .

Use of (7) and (9) to express ft as
[

jt − (1− st) jt−1

]
/
[
lt − (1− st) jt−1

]
enables us to solve for

a series for st that is consistent with the model.6 The resulting series is plotted in Figure 2. This

series is higher than the monthly separation rate series reported elsewhere (e.g., Shimer (2005,

Figure 7)), but it matches the cyclical pattern of the (monthly) series exactly. It illustrates the point

made by Mortensen and Nagypál (2007) and by Shimer (2005) that separation rates have not been

constant over this period.

Vacancy stocks vt are measured using the Conference Board Help-Wanted Index (HWI), which

is available in quarterly frequency from 1951 to 2008.7 The index is converted to total units using

6Even with the adjustment suggested by Shimer (2005), the measure of separations does not include workers

moving directly from jobs to self-employment or to leaving the labour force but it is not clear how to allow for that.
7The HWI series based on printed newspaper advertising was replaced by online advertising after 2008. The two
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Figure 2: The separation rate st computed from us
t =

(
1− 1

2

jt−(1−st ) jt−1

lt−(1−st ) jt−1

)
(1lt + st lt−1) using

employment, unemployment and short-term unemployment data from the BLS.

the job-openings series from the Job Openings and Labor Turnover Survey (JOLTS), which is

available only since December 2000. The HWI is known to contain low frequency fluctuations,

such as those resulting from newspaper consolidation in the 1960s and the internet revolution

recently, that are unrelated to labour market trends, see Shimer (2005). Following Shimer (2005),

we remove the effect of those trends using a low frequency filter, see Appendix D for details. The

probability of filling a vacancy qt is then calculated using data on employment and vacancies via

equations (7) and (8). The resulting series is plotted in Figure 3. We also plot on the same graph

the corresponding series for vt derived using the JOLTS data over the period (2001 on) for which

it is available. This shows that the two series match very closely (their correlation is 0.9).

Wages and productivity are from the BLS, which provides a measure of the labour share (in-

cluding non-wage compensation) and output per person in the nonfarm business sector. We adjust

for the ratio of marginal to average productivity using the scaling factor 0.679 computed by Hage-

dorn and Manovskii (2008). Because we use quarterly data, we specify the discount factor as

δt =
1

1+rt/4
,where rt is the annualized gross real interest rate, which we measure as the quarterly

average of daily 3-month Treasury bill interest rates deflated using the implicit price deflator for

nonfarm business obtained from the BLS.

series have coexisted since 2005. Barnichon (2010) compiled a composite print and online HWI index that extends to

2011. For comparability with Shimer (2005) and Hagedorn and Manovskii (2008), we use the original HWI series.

Robustness checks to alternative vacancy series are reported in Appendix E.
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Figure 3: The vacancy-filling probability qt using employment data from the BLS and vacancy

data from the Conference Board HWI and from JOLTS.

5 Estimation results

Estimation of equations (1), (2) and (3) is performed with GMM (Hansen (1982)). For robustness

to weak identification, we use the continuously updated estimator (CUE) proposed by Hansen et al.

(1996), and the S test proposed by Stock and Wright (2000). Confidence sets based on the S test

can be empty if the identifying restrictions are rejected for all admissible values of the parameters.

To check whether this is the case, it suffices to compare the minimum value of the S test statistic

to its critical value. This coincides with the J statistic of Hansen (1982) that tests the validity of

over-identifying restrictions, but unlike the standard Hansen test, the use of a higher critical value

makes it robust to weak identification.8

Let φt (θ) denote the expression on the left-hand side of (1), (2) or (3), as appropriate, with the

expectations operator removed, where θ is the vector of model parameters. This is a parametric

function of observed variables, whose expectation conditional on variables known at t is zero if

expectations are rational. The model’s testable implications can then be expressed in terms of

orthogonality restrictions of the form E [Z tφt(θ)] = 0, where Z t is a vector of instruments at

t . Rational expectations imply that lagged values of variables are uncorrelated with current and

future error terms so, as standard in macroeconomic time-series models with rational expectations,

we use lags of the variables in the model as instruments. Given the quarterly frequency of the

sample, we use four lags.9 For the estimation, parameter values are constrained to be consistent

with the model, specifically z, κ, ψ,µ, ξ ∈ [0, 1], and λ, cK , cW , H K , H W ≥ 0.

8See, for example, Mavroeidis et al. (2014, Section A.2.6).
9Because results may become unreliable when the number of instruments is large, see Andrews and Stock (2007),

we avoid using a larger number of instruments, but we find that our results are robust to different sets of instruments,

see Appendix E.
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All calculations were performed using Ox, see Doornik (2007).

5.1 Results with wages bargained in all matches every period

We first present estimates for the model with wages bargained in all matches each period. Table 2

reports results for wage equation (1).

Column 1 of Table 2 reports estimates for the specification in Hagedorn and Manovskii (2008)

with κ , the fraction of newly matched jobs that become active in less than one period, and the cost

parameters H K and H W set to 0. (The parameters γ and λ do not appear in this specification.)

A “period” in Hagedorn and Manovskii (2008) is one week. Here each period is a quarter, so

this specification corresponds to a longer lag between the decision to create a vacancy and the

possibility of the job becoming productive, as suggested by Hagedorn and Manovskii (2011). (A

shorter lag corresponds to κ > 0, which we allow for in column 2.) The point estimate of z, the

value of non-work activity, is essentially identical to the calibrated value 0.936 in Hagedorn and

Manovskii (2011) for the corresponding productivity series and the other parameters have large

standard errors — reassuring evidence that, when applied to the same formulation, our estimation

procedure yields results not inconsistent with their calibration procedure. But the over-identifying

restrictions of this model (implied by errors uncorrelated with the lagged instruments we use) are

overwhelmingly rejected by the Hansen test, even that using the more conservative projection p

value that is robust to weak identification. Column 2 reports estimates with κ restricted only to

[0, 1]. The point estimate of κ is zero and the value of the GMM objective function indicates

that this generalization of the timing does not improve fit. Column 3 of Table 2 reports estimates

allowing for the fixed costs H K and H W in the spirit of Pissarides (2009). This generalization

does not significantly improve the fit of the model either. For both these extensions, the Hansen

test continues to overwhelmingly reject the over-identifying restrictions. The standard errors are

large, especially so for the cost parameters. But these standard errors are unreliable for constructing

confidence intervals because there is no guarantee that the assumptions underlying standard t tests

are satisfied.

An alternative to Nash bargaining is the credible bargaining of Hall and Milgrom (2008). Equa-

tion (1) with γ unrestricted and λ ∈ [0, 1) corresponds to our formulation of credible bargaining

for application to quarterly data. Column 4 of Table 2 reports estimates for this model. Allowing

γ to be non-zero makes little difference to the fit, as measured by the value of the GMM objective

function. It also leaves the over-identifying restrictions rejected just as overwhelmingly by the

Hansen test.

Rejection by the Hansen test does not provide information about which aspects of the model

fail to fit the data. One way to assess this informally is by regressing the residuals of the model on
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Parameter 1 2 3 4

β 0.036
(0.891)

0.036
(0.843)

0.033
(2.568)

−
(−)

z 0.937
(0.060)

0.937
(0.056)

0.887
(0.308)

0.880
(0.411)

cK 0.440
(1803)

0.440
(953)

0.006
(751)

0.201
(579)

cW 0.267
(1817)

0.270
(966)

0.399
(777)

0.254
(627)

ξ 0.382
(4292)

0.383
(2290)

0.006
(1891)

0.000
(2388)

κ −
(−)

0.000
(0.390)

0.069
(0.382)

0.046
(0.425)

H K −
(−)

−
(−)

2.279
(245)

1.753
(1100)

H W −
(−)

−
(−)

0.157
(243)

0.599
(1313)

γ −
(−)

−
(−)

−
(−)

0.716
(86.3)

λ −
(−)

−
(−)

−
(−)

0.031
(3.632)

GMM objective 34.459 34.457 33.395 33.315

Hansen test p value 0.001 0.001 0.000 0.000

Hansen test proj. p value 0.007 0.007 0.010 0.010

Table 2: Estimates of models without wage rigidity, eq. (1).
Notes: In all models, z is the value of non-work activity, cK , cW are capital and labour vacancy posting costs, ξ is

the elasticity of the labour cost of those engaged in hiring with respect to productivity, κ is the fraction of matched

jobs that become active within the quarter, and H K , H W are Pissarides (2009) fixed costs. For the Nash bargaining

model (columns 1–3), β is the workers’ bargaining weight. For the credible bargaining model (column 4), γ is the

difference betwen firms’ and workers’ costs of making offers, and λ is the probability negotiations do not break down

between offers. Estimation method is CUE-GMM with Newey-West weight matrix with prewhitening over the sample

1952q2-2004q4, with a constant and four lags of wt , pt , ft and qt as instruments. Standard errors in parentheses. The

Hansen test p value is computed from a χ2(N − ν) distribution where N is the number of instruments and ν is the

number of parameters estimated in the interior of the parameter space. The Hansen test proj. p value is derived from

a χ2(N ) distribution.
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Parameter 1 2

β 0.111
(0.030)

−

z 0.865
(0.018)

0.933
(0.019)

κ 0.000
(0.356)

1.000
(0.242)

γ 0.000
(0.000)

−0.926
(0.219)

λ − 0.092
(0.023)

GMM objective 37.899 36.486

Hansen test p value 0.001 0.001

Hansen test proj. p value 0.003 0.004

Table 3: Estimates of models without wage rigidity independent of the value of creating a vacancy,
eq. (2), with the infinite sum truncated at 13 quarters.
Notes: In both models, z is the value of non-work activity and κ is the fraction of matched jobs that become active

within the quarter. For the Nash bargaining model (column 1), β is the workers’ bargaining weight. For the credible

bargaining model (column 2), γ is the difference betwen firms’ and workers’ costs of making offers, and λ is the

probability negotiations do not break down between offers. Estimation method is CUE-GMM with Newey-West

weight matrix with prewhitening over the sample 1952q2-2004q4, with a constant and four lags of wt , pt , ft and qt

as instruments. Standard errors in parentheses. The Hansen test p value is computed from a χ2(N − ν) distribution

where N is the number of instruments and ν is the number of parameters estimated in the interior of the parameter

space. The Hansen test proj. p value is derived from a χ2(N ) distribution.

the instruments. This reveals that the instrument that drives the rejection is wt−1: its coefficient is

close to one, while the coefficients on all other instruments are very close to zero. This supports

the message from Figure 1 that it is the persistence of wages that the model fails to capture.

Wage equation (1) is derived making use of the equation for the value of a vacancy. Rejection

of (1) might, therefore, be the result of misspecification of that equation and not a rejection of

wage bargaining for every job in every period. We check for this by estimating wage equation (2),

which is derived without any assumption about the form of the equation for the value of a vacancy.

It is consistent with any length of time to build a vacancy of the type considered in Hagedorn and

Manovskii (2011). Table 3 reports the results of estimating that.

For the results in Table 3, the infinite sum in (2) is truncated at 13 quarters, which makes use

of all the data available for the variables in that sum while keeping the estimation sample the same

as in Table 2, for comparability with Hagedorn and Manovskii (2008). The point estimates are,

however, very insensitive to the truncation length. Column 1 gives results for Nash bargaining,

column 2 for credible bargaining. Because wage equation (2) does not include ct , it does not yield

estimates of the cost parameters. But the important point here is that, despite these specifications

not depending on the form of the equation for the value of a vacancy, both Nash and credible

bargaining formulations continue to be resoundingly rejected. The implication is that no alternative

specification of the value of creating a vacancy will enable either bargaining model with wages for
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all jobs bargained in every period to capture the dynamics of wages in the data.

The most important point from these results is that, for all the specifications with wages ne-

gotiated in all matches in every period, the Hansen tests resoundingly reject the over-identifying

restrictions with a p value of 1% or lower even using the most conservative critical values robust

to weak identification, implying that the instruments are correlated with the residuals. Another

implication is that the confidence intervals discussed above that are robust to weak identification

are completely empty even at the 99% level for every parameter, despite the large standard errors.

There just does not exist any set of economically feasible parameter values that enable these mod-

els to capture in a statistically satisfactory way the dynamic pattern of wages in the data. Because

the formulation allows for heterogeneous match productivity and on the job search as in Hagedorn

and Manovskii (2013), this is strong evidence that these extensions of the basic matching model,

either alone or together, are insufficient to enable the model with the wage for each job bargained

in every period to capture the pattern of wages in the data. Moreover, the results in Table 3 imply

that no alternative formulation of the value of creating a vacancy, whether to incorporate time to

build as in Hagedorn and Manovskii (2011) or anything else, can overcome this.

The implication is that something more is required to enable the model to fit the dynamics of

wages. It need not be wage rigidity. But in the next section we show that the addition of wage

rigidity of the form modelled in Section 2.2 does enable the model to do so.

5.2 Results with wage rigidity

Wage equation (3) can be used to test the Nash and credible bargaining specifications in the pres-

ence of wage rigidity of the form in Section 2.2. The results of estimating that specification, with

w∗t specified by (4) and the infinite sum truncated at 28 quarters, are reported in columns 1–5 of

Table 4. (Truncation at 28 quarters makes use of all the data available up to the end of 2011 for

the variables in the infinite sum while leaving the estimation sample at 1952q2-2004q4 as used by

Hagedorn and Manovskii (2008). Table 12 in Appendix E gives results for other truncation lengths.

Beyond 8 quarters, the point estimates are completely insensitive to the truncation length.) The re-

sults in columns 1-4 are directly comparable to the corresponding columns of Table 2. The most

important finding is that, unlike the specifications without wage rigidity, these specifications all

comfortably pass the Hansen tests of over-identifying restrictions at conventional levels of sig-

nificance. Addition of the single extra parameter ψ is the reason for this. Thus for the model

with wage rigidity, unlike for that without wage rigidity, there exist sets of parameter values that

satisfactorily capture wage dynamics in US data.

The cost parameters cK , cW , ξ, H K and H W are not precisely estimated from the aggregate

time-series data we use for columns 1-4 of Table 4. (This is shown formally by the confidence in-
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Parameter 1 2 3 4 5

ψ 0.743
(0.027)

0.606
(0.069)

0.606
(0.073)

0.631
(0.084)

0.742
(0.026)

µ 0.123
(0.228)

0.023
(0.314)

0.023
(0.366)

0.000
(0.454)

0.130
(0.218)

β 0.090
(3.303)

0.077
(2.230)

0.077
(5.154)

−
(−)

0.060
(0.045)

z 0.946
(0.198)

0.943
(0.137)

0.943
(0.340)

1.000
(0.125)

0.947
(0.013)

cK 0.001
(1931.862)

0.007
(606.350)

0.007
(876.154)

0.000
(121.400)

0.194
(−)

cW 0.149
(1935.586)

0.046
(607.306)

0.046
(879.118)

0.083
(130.336)

0.045
(−)

ξ 0.293
(9394.965)

0.085
(12360.664)

0.085
(17529.835)

0.000
(1169.534)

0.449
(−)

κ −
(−)

1.000
(0.334)

1.000
(0.359)

1.000
(0.395)

0.000
(−)

H K −
(−)

−
(−)

0.000
(101.850)

0.011
(1200.852)

0.000
(−)

H W −
(−)

−
(−)

0.000
(102.460)

1.145
(1317.720)

0.000
(−)

γ −
(−)

−
(−)

−
(−)

−1.376
(176.249)

0.000
(−)

λ −
(−)

−
(−)

−
(−)

0.131
(16.2)

−
(−)

GMM objective 10.594 10.485 10.485 8.923 10.615

Hansen test p value 0.390 0.399 0.399 0.629 0.643

Hansen test proj. p value 0.877 0.882 0.882 0.943 0.876

Table 4: Estimates of models with wage rigidity, eq. (3), with w∗t specified by (4) and the infinite
sum truncated at 28 quarters.
Notes: In all models, ψ is the proportion of wages not negotiated in a quarter, µ is the proportion of wages not

negotiated that are set in nominal terms, z is the value of non-work activity, cK , cW are capital and labour vacancy

posting costs, ξ is the elasticity of the labour cost of those engaged in hiring with respect to productivity, κ is the

fraction of matched jobs that become active within the quarter, and H K , H W are Pissarides (2009) fixed costs. For the

Nash bargaining model (columns 1–3 and 5), β is the workers’ bargaining weight. For the credible bargaining model

(column 4), γ is the difference between firms’ and workers’ costs of making offers, and λ is the probability negotiations

do not break down between offers. In column 5, the cost parameters are calibrated using the approach of Hagedorn

and Manovskii (2008). Estimation method is CUE-GMM with Newey-West weight matrix with prewhitening over

the sample 1952q2-2004q4, with a constant and four lags of wt , pt , ft and qt as instruments. Standard errors in

parentheses. The Hansen test p value is computed from a χ2(N−ν) distribution where N is the number of instruments

and ν is the number of parameters estimated in the interior of the parameter space. The Hansen test proj. p value is

derived from a χ2(N ) distribution.
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Parameter Nash Barg. Cred. Barg. Nash Barg. calibr.

ψ 95% [0.15, 0.90] [0.25, 0.90] [0.62, 0.90]

90% [0.21, 0.88] [0.25, 0.88] [0.64, 0.87]

β 95% [0.00, 0.94] − [0.00, 0.24]

90% [0.00, 0.84] − [0.00, 0.22]

z 95% [0.25, 1.00] [0.11, 1.00] [0.88, 0.97]

90% [0.65, 1.00] [0.20, 1.00] [0.89, 0.97]

λ 95% − [0.00, 0.999]

90% − [0.00, 0.999]

Table 5: Confidence intervals based on the S test of Stock and Wright (2000) for the specifications
in columns 3, 4 and 5 of Table 4.
Notes: Confidence intervals reported only for parameters for which they do not comprise the entire admissible para-

meter range. In the first two columns all the remaining parameters are unrestricted. In the column “Nash Barg. calibr.”,

µ = 0 and the rest of the parameters are fixed at the calibrated values given in column 5 of Table 4.

tervals robust to weak identification that we report below). Calibration studies typically use other

data to determine values of cost parameters. In column 5, we report estimates of β and z for the

Nash bargaining model (together with the wage rigidity parameters) when the cost parameters are

calibrated following the procedure in Hagedorn and Manovskii (2008). Fixing the cost parameters

in this way hardly affects the fit of the model (compare with column 3, the unrestricted specifica-

tion) and this specification still comfortably passes the Hansen tests. Thus wage rigidity allows the

model to capture the dynamics of wages with values of the cost parameters consistent with those

commonly used in calibrated versions of the matching model.

Because standard errors are unreliable for constructing confidence intervals in the present con-

text, we construct confidence intervals that are robust to weak identification using the S test of

Stock and Wright (2000) in order to see how large the set of statistically acceptable parameter

values is. Unlike in the models in which wages are bargained for every match in every period,

confidence intervals for standard significance levels constructed in this way are not empty. Confi-

dence intervals at the 95% and 90% level for the specifications that correspond to columns 3 and

4 in Table 4 are reported in the first two columns of Table 5, respectively. (The final column of

Table 5 is discussed below). Confidence intervals for parameters not reported in Table 5 comprise

the entire parameter space; they are completely uninformative. In the case of the cost parameters

cK , cW , ξ, H K , H W , and γ, this is explained by the fact that they are unidentified when λ = 0

because then these parameters drop out of equation (3) and the restriction λ = 0 (which also

corresponds to β = 0) is acceptable at the 10% level in both specifications.

It may help with interpreting the confidence intervals in Table 5 to explain how they are con-

structed. Consider the confidence interval for the parameter ψ (the parameter that determines the

degree of wage rigidity). For each value of ψ, say ψ0, in the range of economically feasible values
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(in this case [0, 1]), we check whether there are any values of the remaining parameters such that

the model’s identifying restrictions are statistically acceptable at the desired level of significance.

Specifically, we compare the value of the S statistic, minimized over all parameters subject to the

restriction ψ = ψ0, to the appropriate 95% or 90% quantile of the χ2 distribution with degrees

of freedom equal to the number of identifying restrictions. The confidence interval contains all

the values ψ0 for which this test accepts. This procedure is repeated over a grid of values from

0 to 1, with increment .01 (so the confidence intervals are correct to two decimal places). Thus,

the top row of confidence intervals for ψ in Table 5 shows that there is no set of values for the

parameters other than ψ that enables the Nash bargaining specification to pass the S test at the

appropriate significance level for a value of ψ less than 0.15 or greater than 0.90. But there is a

set that does so for each intermediate value of ψ . For this parameter, all the confidence intervals

exclude zero, confirming the results of the previous section that, without wage rigidity, the model

is statistically unacceptable. They also exclude one, that is, completely rigid wages in continuing

matches. However, the confidence intervals for µ cover the entire parameter space, indicating that

this parameter is not identified, so the data is not sufficiently informative to distinguish between

nominal and real wage rigidity.

For z, the value of non-work activity as a proportion of productivity, the confidence intervals

in the first two columns of Table 5 are sufficiently wide to contain the values reported in earlier

studies that used calibration. In the Nash bargaining specification, the confidence intervals for β

are also wide, including values from zero to more than 0.8. The corresponding parameter λ in the

credible bargaining specification has the confidence intervals that contain all the values from 0 to

0.999 that we searched over. (For λ = 1, the model is not defined.) In particular, they contain

the calibrated value 0.995 in Hall and Milgrom (2008). There is thus very considerable latitude to

choose parameter values based on other data sources used to calibrate matching models that will

enable the model to capture the dynamics of wages if allowance is made for wage rigidity.

The column “Nash Barg calibr.” reports confidence intervals forψ, β and z in the Nash bargain-

ing specification with wage rigidity when µ = 0 (real wage rigidity) and all other parameters are

fixed at the calibrated values in column 5 of Table 4. The confidence intervals for these parameters

are very much smaller than in the other columns, so the use of additional sources of information to

calibrate the cost parameters substantially reduces the uncertainty surrounding the point estimates.

These confidence intervals have β below 0.25, and the value of non-market activity z no lower than

0.88, and neither inconsistent with their values in Hagedorn and Manovskii (2008) and Hagedorn

and Manovskii (2011). Such values of non-market activity are, however, higher than Mortensen

and Nagypál (2007) and Hall and Milgrom (2008) regard as plausible (Hall and Milgrom (2008)

suggest a calibrated value of 0.71), so this remains an important puzzle that cannot be addressed

just by allowing for wage rigidity of the form used here.
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The key message from these results is that there is a form of wage rigidity that enables the

model to capture in a statistically satisfactory way the dynamics of wages in US data. The time

series data we use are not themselves sufficiently informative to tie down the parameters of the

model tightly. But there is plenty of scope for determining parameter values from other data

sources that will capture those dynamics when wage rigidity is included in the model. That is in

contrast to the model with wages for all matches bargained every period, for which the time series

data are sufficiently informative to rule out any set of economically feasible parameter values that

does this. These conclusions remain robust to several variations in the data and specification, see

Appendix E.

5.3 Implications of the results

One implication of our results is that matching models with fully flexible wages of the type Hage-

dorn and Manovskii argue in a series of papers captures the behaviour of vacancies and unemploy-

ment do not capture the macroeconomic dynamics of wages. The alternative proposed by Gertler

and Trigari (2009) with the same degree of wage rigidity in all matches has been criticised by Pis-

sarides (2009) as inconsistent with the micro evidence that wages of job changers (new matches)

are substantially more flexible than those of job stayers (continuing matches). A second implica-

tion of our results is that a wage equation consistent with this micro evidence, with wage rigidity

only in continuing matches and flexible wages for all new matches, can capture the macroeconomic

dynamics of wages.

This second implication is important. As Malcomson (1999, Section 4) and Pissarides (2009)

point out, wage rigidity that applies only to continuing matches, unlike wage rigidity that applies

to all matches as in Gertler and Trigari (2009), has implications for unemployment and vacancies

no different from fully flexible wages, provided it does not result in inefficient separations. Wage

negotiation for new matches takes account of the wage rigidity and sets an initial wage such that

the expected present value of wages over the duration of the match is unaffected by that wage

rigidity. The wage rigidity thus results merely in an intertemporal redistribution of that expected

present value and so has no effect on the incentives for vacancy creation. Inefficient separations do

not occur in the model used here because all separations are assumed to be for exogenous reasons,

though even with endogenous separations they can be avoided by renegotiation. There is thus no

need to use wage equations that have implications for unemployment and vacancies different from

fully flexible wages to capture the macroeconomic dynamics of wages.

Other messages that come across strongly from our results are the following. The credible

bargaining model of Hall and Milgrom (2008) with all wage negotiated each period fares no better

than Nash bargaining in capturing the dynamics of wages. With our formulation of wage rigidity
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that applies only to continuing matches, with the wage negotiated for all new matches, the lower

bound of the 95% confidence interval for the proportion of wages not negotiated each quarter is

comfortably above zero, and this conclusion is robust to weak identification. The time-series data

we use are, however, not sufficiently informative to enable us to identify whether the rigidity should

be modelled in nominal or in real wages.

Moreover, among the sets of parameter values that capture those dynamics, there is plenty of

scope for selecting a set that is consistent with the other empirical evidence typically used for

calibration of matching models. In particular, those sets include the calibrated values in Hagedorn

and Manovskii (2008), Hall and Milgrom (2008), Pissarides (2009), Hagedorn and Manovskii

(2011) and many other papers in the literature. Thus our results are not inconsistent with the

findings of other studies concerning those parameters, as long as allowance is made for wage

rigidity in continuing matches. Disagreements between those studies about appropriate values for

the parameters need to be settled by other evidence.

6 Conclusion

In this paper, we have investigated econometrically wage equations for a matching model of the

US. We makes two main contributions. First, we show that none of the formulations in the literature

with wages in all matches negotiated each period satisfies the natural criterion of adequately cap-

turing the macroeconomic dynamics of wages. Second, we provide a formulation of wage rigidity

that does so and, consistent with the micro evidence reported in Pissarides (2009) and Haefke et al.

(2013), applies only to continuing matches, with wages negotiated for all new matches.

We reach this conclusion by nesting the Nash bargaining model and the credible bargaining

model of Hall and Milgrom (2008) within a common over-arching framework of which each is

a special case. The framework allows for heterogeneous match productivities and “on the job"

search as modelled in Hagedorn and Manovskii (2013) and gives rise to a wage equation that can be

estimated in a way that allows for the time to build in vacancy creation in Hagedorn and Manovskii

(2011) of any length. It enables us to apply standard statistical tests to investigate which models

are statistically acceptable restrictions of the over-arching framework and, in particular, capture

the dynamics of wages. Our statistically acceptable specification includes a parameter that allows

for wage rigidity in continuing, but not new, matches. Only with this parameter strictly positive

can the model capture the macroeconomic dynamics of wages. But this form of wage rigidity

has implications for unemployment and vacancies no different from fully flexible wages. There is

no need to use a wage equation with wage rigidity for new matches, with its markedly different

implications for unemployment and vacancies, to capture the macroeconomic dynamics of wages.
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Appendix A Full theoretical model

A.1 Basic framework

The path of output in a match is determined by a random draw at the time the match is formed

but may change over time (because, for example, of a general increase in productivity) at a rate

common to all matches. The distribution of match productivity is such that it is always worthwhile

to form a match when a vacant job and an unemployed worker meet. Match productivity in match

k at time t is denoted pk
t . In the basic model, separations occur only for exogenous reasons and at

the same rate for all matches — there is no on the job search. Thus the distribution of productivity

in actual matches is the same as the distribution of the productivity of potential matches. Denote

by J k
τ,t the expected present value of current and future profits at t to a firm from having a filled

job in match k whose wage was most recently negotiated at τ ≤ t . This equals (i) output pk
t net

of wage costs wk
τ,t for period t , plus (ii) the expected present value of profits J̃ k

τ,t+1 from period

t + 1 on (when taking account of the possibility that the wage is renegotiated at t + 1), discounted

by the discount factor δt and the probability (1− st+1) that the relationship is not ended before

production at t + 1 because the match is destroyed for exogenous reasons, plus (iii) the expected

payoff Vt+1 (if non-negative) of going back into the market for another employee if the match is

destroyed. (A new match results in a new productivity draw and negotiation of a new wage, so

Vt+1 does not depend on k.) Thus

J k
τ,t = pk

t − w
k
τ,t + δt Et

{
(1− st+1) J̃ k

τ,t+1 + st+1 max
[
0, Vt+1

]}
, for all k, t ≥ τ, (A.1)

where Et is the expectation operator conditional on information available at t . Hagedorn and

Manovskii (2008) and Hall and Milgrom (2008) assume st+1 constant for all t . Here we allow for

separation shocks in view of the importance Mortensen and Nagypál (2007) attribute to these.

In Hagedorn and Manovskii (2008), a new match at t results in employment starting at t+1 and

thus expected future profit δt Et J̃t,t+1, where J̃τ,t (with no superscript and t > τ ) is the average,

over the distribution of productivities of matches that negotiated the wage most recently at τ < t ,

of firms’ payoffs from such matches from t on. For the empirical work, we are restricted to

quarterly data, for which a one-period delay between matching and employment starting may seem

implausibly long. Hagedorn and Manovskii (2011), however, argue for a time to build between the

decision to create a vacancy and the possibility of a job becoming productive, for which they find

3 months appropriate. With the quarterly data used here, that corresponds to a one-period time to

build. To avoid being overly prescriptive, we allow for a one-period delay with probability 1 − κ

and zero delay with probability κ . The expected present value Vt of creating a vacancy at t for
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which productivity is not yet determined and the wage is to be negotiated is then

Vt = −ct + qt

[
κ Jt,t + (1− κ) δt Et J̃t,t+1

]
+ (1− qt) δt Et max

[
0, Vt+1

]
, for all t, (A.2)

where ct is the vacancy posting cost that must be incurred at the start of period t to create a

vacancy, qt is the probability the vacancy is matched with a worker, Jt,t (with no superscript) is

the expectation at t of a firm’s payoff from t on from a new match at t before match productivity

is known and the wage bargained, and J̃τ,t (with no superscript and t > τ ) is the average, over the

distribution of productivities of matches that negotiated wages most recently at τ < t , of firms’

payoffs from t on from such matches. (If wages are not negotiated every period, (A.2) implies

that a match at t with employment starting at t + 1 has its match productivity drawn, and its wage

negotiated, at t . Match productivity then changes at the same rate between t and t+1, and the wage

has the same possibility for renegotiation at t+1, as in continuing matches. If wages are negotiated

every period, J̃t,t+1 = Jt+1,t+1 so no such assumption is implied.) Free entry of vacancies when

(as in the data) new vacancies are created at each date implies

Vt = 0, for all t. (A.3)

For a worker in match k at t whose wage was most recently negotiated at τ ≤ t , the expected

present value of employment W k
τ,t is given by

W k
τ,t = w

k
τ,t + δt Et

[
(1− st+1) W̃ k

τ,t+1 + st+1Ut+1

]
, for all k, t ≥ τ, (A.4)

where W̃ k
τ,t+1 is the expected present value of employment from period t + 1 on (when taking

account of the possibility that the wage is renegotiated at t + 1) and Ut+1 is the expected present

value of starting period t + 1 unemployed, an event that happens with the probability st+1 that the

job comes to an end for exogenous reasons. The probability that a worker unemployed at t finds

a job in the matching process at t is denoted by ft , the value of non-work activity (including any

unemployment benefit) by zt . The expected present value Ut of seeking a match at t is then

Ut = ft

[
κWt,t + (1− κ)

(
zt + δt Et W̃t,t+1

)]
+ (1− ft) (zt + δt EtUt+1) , for all t, (A.5)

where Wt,t (with no superscript) is the expectation at t of a worker’s payoff from t on from a new

match at t before match productivity is known and the wage bargained, and W̃τ,t (with no super-

script and t > τ ) is the average, over the distribution of productivities of matches that negotiated

the wage most recently at τ < t , of workers’ payoffs from t on from such matches. The right-

hand side of (A.5) can be interpreted as follows. With probability ft , the worker is hired at t and

receives expected future utility
[
κWt,t + (1− κ)

(
zt + δt Et W̃t,t+1

)]
from being matched. With
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probability 1− ft the worker is not hired at t and receives utility zt for period t plus the expected

utility from starting period t + 1 unmatched.

Pissarides (2009) has argued for an extension of matching models to allow for fixed costs

incurred after matching has occurred, such as training, negotiation, or one-off administrative costs.

For our purposes, this specification corresponds to replacing the vacancy posting cost term ct in

(A.2) by the composite cost ct +qt Ht , where Ht is the fixed cost incurred by the firm after meeting

a new worker but before the wage is agreed (compare with Pissarides (2009, p. 1364)). To save on

notation, we retain the representation in (A.2) for developing the theory and make the appropriate

adjustment for the empirical analysis.

This model nests the case of homogeneous productivity and no wage rigidity by setting pk
t =

pt , w
k
τ,t = wt , J k

τ,t = J̃ k
τ,t = J̃τ,t = Jt,t and W k

τ,t = W̃ k
τ,t = W̃τ,t = Wt,t for all k, τ and t ≥ τ .

A.2 Wage determination in the basic model

A.2.1 Nash bargaining

Most of the literature on matching models follows Mortensen and Pissarides (1994) in modelling

wage determination by the Nash bargaining solution. The generalized form of that solution for the

wage negotiated for match k at t is

W k
t,t −Ut =

β

1− β

(
J k

t,t − Vt

)
, for β ∈ [0, 1), (A.6)

where β/ (1− β) is the bargaining power of workers relative to that of firms. With the free entry

condition Vt = 0, (A.6) reduces to the formulation in Hagedorn and Manovskii (2008)

W k
t −Ut =

β

1− β
J k

t , for β ∈ [0, 1). (A.7)

A.2.2 Credible bargaining

Hall and Milgrom (2008) develop an alternative to the standard Nash bargain in which there is

positive probability, here denoted α, that negotiations break down irrevocably each time a new

offer is made. They also include a cost to making an offer that we here denote by γ
f

t for each offer

the firm makes in period t and γwt for each offer the worker makes in period t . (The specification

in Hall and Milgrom (2008) corresponds to γwt = 0 but, for reasons that will become apparent, it

is useful to allow γwt > 0.) If negotiations break down, the parties search for alternative matches.

In Hall and Milgrom (2008), the parties alternate in making offers, starting with the firm, with at

most one offer made each period. Hall and Milgrom (2008) envisage each period as corresponding

to a day. With the data available, we are constrained to having each period correspond to a quarter,
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so the assumption of at most one offer per period seems implausible. For this reason, we generalize

the model to allow offers at fixed intervals that may be less than a whole period. Consider an

offer from the firm in match k at time η (0 ≤ η < 1) between t and t + 1 that would yield the

worker present value payoff W k
t+η,t+η. The worker will accept that offer if W k

t+η,t+η is at least

as great as the payoff from rejecting the offer, having negotiations break down with probability α

and receiving payoff Ut+η of seeking an alternative match, but otherwise making a counter-offer

resulting in expected present value payoff denoted Ŵ k
t+η. Recognizing this, the firm will make the

lowest offer satisfying that requirement, which gives the indifference condition

W k
t+η,t+η = αUt+η + (1− α) Ŵ k

t+η, η ∈ [0, 1) . (A.8)

Symmetrically, the firm will accept an offer with present value payoff J ′kt+η made by the worker at

time η (0 ≤ η < 1) between t and t + 1 if J ′kt+η is at least as great as the payoff from rejecting the

offer, having negotiations break down with probability α and receiving payoff Vt+η of seeking an

alternative match, but otherwise making a counter-offer resulting in expected present value payoff

denoted Ĵ k
t+η. Recognizing this, the worker will make the lowest offer satisfying that requirement,

which gives the indifference condition

J ′kt+η = αVt+η + (1− α) Ĵ k
t+η, η ∈ [0, 1) . (A.9)

In Hall and Milgrom (2008), the firm makes the first offer and in equilibrium that offer is always

accepted, so the bargained outcome corresponds to W k
t+η,t+η for η = 0.

In the specification in Hall and Milgrom (2008) with only one offer per period,

Ĵ k
t = δt Et

(
−γ f

t+1 + J k
t+1,t+1

)
; Ŵ k

t = zt + δt Et

(
−γwt+1 +W ′kt+1

)
, (A.10)

where W ′k
t+1 is the payoff to the worker from making an offer at t + 1. The alternative we consider

here, which seems more appropriate with periods of a quarter, is to let the time interval between

offers go to zero. Then

Ĵ k
t = −γ

f
t + J k

t,t ; Ŵ k
t = −γ

w
t +W ′kt . (A.11)

In that case, the indifference conditions (A.8) and (A.9) with η = 0 can be solved to give the

following sharing rule as an alternative to (A.6):

W k
t,t −Ut = (1− α)

(
J k

t,t − Vt

)
+

1− α

α
γt , (A.12)

where γt = (1− α) γ
f

t − γ
w
t . Note that γ

f
t and γwt cannot be separately identified from (A.12).

But permitting γwt > 0 allows the model to be consistent with an estimated γt < 0.
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A.2.3 Nesting Nash and credible bargaining

The Nash and credible bargaining outcomes (A.6) and (A.12) are special cases of the more general

formulation

W k
t,t −Ut = λ

(
J k

t,t − Vt

)
+

λ

1− λ
γt , (A.13)

with the models satisfying the restrictions

Nash bargaining (A.6) : λ =
β

1− β
∈ [0,∞) ; γt = 0;

Credible bargaining (A.12) : λ = 1− α ∈ [0, 1) . (A.14)

Averaged over all match productivities, (A.13) becomes

Wt,t −Ut = λ
(
Jt,t − Vt

)
+

λ

1− λ
γt , (A.15)

where we have made use of the linearity property of expectations.10

A.2.4 Wages bargained every period

With all wages bargained every period, the average wage wt is just the average of the wages for

each individual match k given by (A.13). Because, from (A.1) and (A.4), J k
t,t and W k

t,t are linear in

wk
t,t , the average wage is given by (A.15). In this case, (A.15) can be combined with (A.2), (A.3)

and (A.5) to yield wage equation (1) for the average wage. For Nash bargaining, λ = β/ (1− β)

and γt = 0 so (1) can be written

wt = βpt + (1− β) zt + βct

ft

qt (1− ftκ)
. (A.16)

When κ = 0, (A.16) is exactly the wage equation in Hagedorn and Manovskii (2008).

A.2.5 Wage equation independent of vacancy creation equation

A wage equation that is independent of the vacancy creation equation can be derived as follows.

From the free entry condition (A.3), Vt = 0 for all t . With the wage for every job bargained

in every period, J̃τ,t = Jt,t for τ ≤ t . With those specifications, (A.1) averaged over all match

productivities becomes

Jt,t = pt − wt + δt Et (1− st+1) Jt+1,t+1, for all t. (A.17)

10This follows by Tonelli’s theorem, see Billingsley (1995, Theorem 18.3).
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Also, with the wage for every job bargained in every period, W̃τ,t = Wt,t for τ ≤ t . Then (A.4)

averaged over all match productivities and (A.5) can be jointly solved forward to write

Wt,t −Ut = Et

∞∑
n=0

δκt,n (1− ft+nκ) (wt+n − zt+n) , (A.18)

where δκt,n =
∏n

i=1 δ
κ
t+i , with δκ

t,0 = 1, and δκt = δt−1 (1− st − ft−1 + κst ft−1). These two

conditions can be used with (A.15) to yield the wage equation (2).

A.3 Extensions to the basic model

Two important generalizations of the basic model in the literature are to on the job search and to

wages that are not negotiated every period.

A.3.1 On the job search

In the Hagedorn and Manovskii (2013) model of on the job search, wage determination in match

k takes, up to a log-linear approximation, the form (see their equation (1))

wk
t,t =

(
pk

t

)ζ
(ϑt)

ρ , for all k, t, (A.19)

where ϑt is a business cycle indicator that incorporates labour market tightness. For empirical

purposes, Hagedorn and Manovskii (2013, eq. (35)) normalize ζ = 1 because it is not identi-

fied separately from the standard deviation of the distribution of productivities. With ζ = 1 and

averaging over k, (A.19) corresponds to (A.16) with

(ϑt)
ρ = (1− β)

zt

pt

+ β

[
1+

ct

pt

ft

qt (1− ftκ)

]
.

The formulation in (A.19) does not take explicit account of the possibility that the measured

productivity process will be influenced by selection over the business cycle, as workers search on

the job for more productive matches. In Appendix C, we write down a model that explicitly takes

this into account and derive the resulting wage equation under the assumption that κ = 1. This is

given by:

wt =
zt

1+ λ
+

λ

1+ λ

[
pt +

ft

1− ft

ct/qt − %t J̃t

1− %t

]
− X t , for all t, (A.20)

where %t is the probability that a job is filled with a previously employed worker, J̃t is the average

value of a job filled with a previously employed worker, and X t is a term that has no impact on

the ensuing discussion. We cannot measure the variables in J̃t and X t from the available data,
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so we are not able to provide direct estimates of (A.20). But the following argument shows that

specification (A.20) cannot be expected to account for the type of persistence that we observe in

the data.

Consider the dynamic effect on wages of a shock to the productivity distribution. Suppose that

the distribution of productivities in period t−1 is untypically favourable to high productivity. This

implies that wt−1 is untypically high, since it is positively related to pt−1. If this also led to wt

being untypically high, it would result in positive persistence in wages, which would be consistent

with what we see in the data. Equation (A.20) shows that the impact of this shock on wt comes

from J̃t , since all other terms are unaffected by a purely transitory shock in the productivity process

in period t −1. The term J̃t depends positively on the distribution of productivities in period t −1,

in the sense that higher productivities in period t−1 will lead to a higher threshold for a successful

new match in period t with an already employed worker, thus making the average value of jobs

filled with already employed workers higher. Therefore, since wt is decreasing in J̃t , and the latter

rises in response to this productivity shock, wt falls, and this is in the opposite direction of what

we need in order fit the data.

A.3.2 Wage rigidity

Following Pissarides (2009), we model wage rigidity as applying only to continuing matches, with

wages for new matches all negotiated. The form of wage rigidity is that developed by Gertler and

Trigari (2009) but applied only to continuing, not new, matches. Persistence takes the form of a

fixed probability 1 − ψ that a firm renegotiates its wage in any period. In the absence of such

renegotiation, the wage remains the same as in the previous period. Thus the wage at t for a match

with wage most recently negotiated at τ ≤ t − 1 is

wk
t,t , with probability 1− ψ,

π
−µ
t wk

τ,t−1, with probability ψ,
, ψ,µ ∈ [0, 1] , (A.21)

where πt is the ratio of prices at t to prices at t−1, which we incorporate to allow for the possibility

that the previous period’s wage may be adjusted automatically in response to inflation, with µ a

parameter to be estimated. With wage rigidity of the form in (A.21),

J̃ k
τ,t = (1− ψ) J k

t,t + ψ J k
τ,t = J k

t,t − ψ
(
J k

t,t − J k
τ,t

)
(A.22)

W̃ k
τ,t = (1− ψ)W k

t,t + ψW k
τ,t = W k

t,t − ψ
(
W k

t,t −W k
τ,t

)
. (A.23)

(Recall that J̃ k
τ,t and W̃ k

τ,t refer to matches with wage negotiated at τ but not renegotiated before t .)

With wages negotiated in all new matches, (A.1), (A.2), (A.4) and (A.5) continue to apply.
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Manipulation of these conditions gives

J k
t+1,t+1 − J k

t,t+1

= −
(
W k

t+1,t+1 −W k
t,t+1

)
(A.24)

=
(
π
−µ
t+1w

k
t,t − w

k
t+1,t+1

)
Et+1

[
∞∑

i=1

i∏
j=2

(
δt+ j−1

(
1− st+ j

)
ψπ
−µ
t+ j

)]
, (A.25)

with the convention that the product term equals 1 for i < j . For a newly-bargained wage, (A.13)

applies. Moreover, with the formulation in (A.21), the distribution of match productivities for new

bargains is the same as that for all vacancies so the average newly-bargained wage is still given by

(A.15).

A.4 Empirical wage equation

Let w∗t denote the average newly-negotiated wage at t (that is, the average of wk
t,t for matches k

negotiating wages at t). Then, from (A.1) for τ = t averaged over all match productivities and

with Vt+1 ≥ 0 for all t (as it must be when the free entry condition (A.3) holds for all t),

Jt,t = pt − w
∗
t + δt Et

[
(1− st+1) J̃t,t+1 + st+1Vt+1

]
, for all t. (A.26)

This can be combined with (A.2) to give

Jt,t − Vt = (1− qtκ)
(

pt − w
∗
t

)
+ ct

+ δt Et

[
(1− st+1 − qt + qtκst+1)

(
J̃t,t+1 − Vt+1

)]
. (A.27)

Use of (A.22) in (A.27) gives

Jt,t − Vt

= (1− qtκ)
(

pt − w
∗
t

)
+ ct (A.28)

+ δt Et

[
(1− st+1 − qt + qtκst+1)

(
Jt+1,t+1 − Vt+1 − ψ

(
Jt+1,t+1 − Jt,t+1

))]
.

Similarly, from (A.4) for τ = t averaged over all match productivities,

Wt,t = w
∗
t + δt Et

[
(1− st+1) W̃t,t+1 + st+1Ut+1

]
, for all t. (A.29)
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This can be combined with (A.5) to give

Wt,t −Ut = (1− ftκ)
(
w∗t − zt

)
+ δt Et

[
(1− st+1 − ft + κ ftst+1)

(
W̃t,t+1 −Ut+1

)]
. (A.30)

Use of (A.23) in (A.30) gives

Wt,t −Ut = (1− ftκ)
(
w∗t − zt

)
+ δt Et

{
(1− st+1 − ft

+ κ ftst+1)
[
Wt+1,t+1 −Ut+1 − ψ

(
Wt+1,t+1 −Wt,t+1

)] }
.

Use of (A.15) forwarded one period and (A.24) in this allows it to be written

Wt,t −Ut

= (1− ftκ)
(
w∗t − zt

)
+ δt Et

{
(1− st+1 − ft (A.31)

+ κ ftst+1)

[
λ
(
Jt+1,t+1 − Vt+1

)
+

λ

1− λ
γt+1 + ψ

(
Jt+1,t+1 − Jt,t+1

)] }
.

Use of (A.28), (A.31) and the free entry condition (A.3) in (A.15) can, with some manipulation

(see Appendix B), be used to derive the wage equation (3) for newly formed matches in the text.

Empirical implementation of (3) requires a data series for the average newly-negotiated wage

w∗t . Under the assumptions of the model, continuing matches for which wages are renegotiated

have a random sample of match productivities. Thus, a series for the average newly-negotiated

wage consistent with the model can be derived using an approximation suggested by Gertler and

Trigari (2009) based on the law of large numbers. Let jt denote employment at t , which equals

the number of filled jobs. The total number of matches negotiating their wage at t comprises new

matches created at t mt = jt − (1− st) jt−1, plus continuing matches that renegotiate the wage at

t , (1− ψ) (1− st) jt−1. Hence the total wage bill at t , with wt the average wage in all matches at

t , is

wt jt =
{[

jt − (1− st) jt−1

]
+ (1− ψ) (1− st) jt−1

}
w∗t + ψ (1− st) jt−1π

−µ
t wt−1

=
[

jt − ψ (1− st) jt−1

]
w∗t + ψ (1− st) jt−1π

−µ
t wt−1.

So the average newly-negotiated wage is given by (4).
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Appendix B Derivations of equations

Table 6 gives definitions of variables in the theoretical models, Table 7 definitions of parameters.

B.1 Derivation of equation (A.12)

With the specification in (A.11), (A.8) and (A.9) with η = 0 become

W k
t,t = αUt + (1− α)

(
−γwt +W ′kt

)
(A.32)

J ′kt = αVt + (1− α)
(
−γ f

t + J k
t,t

)
. (A.33)

The terms in W ′kt and J ′kt in (A.32) and (A.33) can be eliminated in the following way. Multiply

(A.33) by 1− α and subtract it from (A.32) to get

W k
t,t − (1− α) J ′kt = αUt + (1− α)

(
−γwt +W ′kt

)
− α (1− α) Vt − (1− α)

2
(
−γ f

t + J k
t,t

)
.

Next note that W ′kt + J ′kt = W k
t,t + J k

t,t necessarily, so this can be written

W k
t,t = αUt − (1− α) γ

w
t + (1− α)

(
W k

t,t + J k
t,t

)
− α (1− α) Vt − (1− α)

2
(
−γ f

t + J k
t,t

)
or, subtracting W k

t,t from both sides

0 = αUt − (1− α) γ
w
t − αW k

t,t + (1− α) (1− (1− α)) J k
t,t − α (1− α) Vt + (1− α)

2 γ
f

t .

This can be rewritten as (A.12).

B.2 Derivation of equation (1)

Equation (1) is a special case of (3) with ψ = 0 and w∗t = wt , as is appropriate when all wages

are bargained every period.

B.3 Derivation of equation (A.18)

Equation (A.18) follows from solving forward equation (A.30) with, as appropriate when the wage

for all jobs is bargained every period, w∗t = wt and Et W̃t,t+1 = Et Wt+1,t+1.
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Variable Description

pk
t productivity in match k at t

pt average productivity in matches at t

pt trend productivity at t

p̃t pt/pt

wk
τ,t wage in match k at t negotiated at τ
wt average wage in matches at t

w∗t average of wages newly-negotiated at t

δt discount factor applied to t + 1 at t

st match separation probability at t

ct vacancy posting cost at t

γ
f

t cost to firm of making an offer at t with credible bargaining

γwt cost to worker of making an offer at t with credible bargaining

γt (1− α) γ f
t − γ

w
t

Ht cost of starting employment at t

qt probability of filling a vacancy at t

ft probability of finding employment at t

zt value of non-work activity at t

πt ratio of prices at t to prices at t − 1

J k
τ,t payoff to firm at t from match k with wage negotiated at τ

Jτ,t average payoff to firms at t from matches with wage negotiated at τ

J̃ k
τ,t expected J k

τ,t before possible renegotiation at t

J̃τ,t expected Jτ,t before possible renegotiation at t

W k
τ,t payoff to worker at t from match k with wage negotiated at τ

Wτ,t average payoff to workers at t from matches with wage negotiated at τ

W̃ k
τ,t expected W k

τ,t before possible renegotiation at t

W̃τ,t expected Wτ,t before possible renegotiation at t

Vt value of unfilled vacancy at t

Ut payoff to worker from seeking match at t

δκt δt−1 (1− st − ft−1 + κst ft−1)

Table 6: Variables in theoretical models

Parameter Definition

κ probability that employment starts at t for new match at t

β worker bargaining power in Nash bargain

α probability of negotiation breakdown with credible bargaining

λ β/ (1− β) with Nash bargaining; 1− α with credible bargaining

ψ degree of wage rigidity (equals 0 if none)

µ proportion of unrenegotiated wages set in nominal terms

Table 7: Parameters in theoretical models
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B.4 Derivation of equation (2)

Multiply (A.17) through by λ and use (A.15) to substitute for Jt,t and Jt+1,t+1 to get

Wt,t −Ut −
λ

1− λ
γt = λ (pt − wt)+ δt Et

[
(1− st+1)

(
Wt+1,t+1 −Ut+1 −

λ

1− λ
γt+1

)]
.

(A.34)

Use of (A.18) to substitute for Wt,t −Ut and Wt+1,t+1 −Ut+1 in (A.34) yields (2).

B.5 Derivation of equations (A.24) and (A.25)

Let Ṽ k
t = max

[
0, V k

t

]
for notational simplicity. From (A.1) for τ = t and (A.22),

J k
t,t+1 = pk

t+1 − π
−µ
t+1w

k
t,t + δt+1 Et+1

[
(1− st+2) J̃ k

t,t+2 + st+2Ṽ k
t+2

]
= pk

t+1 − π
−µ
t+1w

k
t,t

+ δt+1 Et+1

{
(1− st+2)

[
(1− ψ) J k

t+2,t+2 + ψ J k
t,t+2

]
+ st+2Ṽ k

t+2

}
. (A.35)

Moreover, from (A.1) with the wage negotiated at t + 1 and (A.22),

J k
t+1,t+1 = pk

t+1 − w
k
t+1,t+1 + δt+1 Et+1

[
(1− st+2) J̃ k

t+1,t+2 + st+2Ṽ k
t+2

]
= pk

t+1 − w
k
t+1,t+1

+ δt+1 Et+1

{
(1− st+2)

[
(1− ψ) J k

t+2,t+2 + ψ J k
t+1,t+2

]
+ st+2Ṽ k

t+2

}
.

Hence,

J k
t+1,t+1 − J k

t,t+1 = π
−µ
t+1w

k
t,t −w

k
t+1,t+1 + δt+1 Et+1

[
(1− st+2) ψ

(
J k

t+1,t+2 − J k
t,t+2

)]
. (A.36)

Furthermore, again from (A.1) and (A.22),

J k
t,t+2 = pk

t+2 − π
−µ
t+2π

−µ
t+1w

k
t,t + δt+2 Et+2

[
(1− st+3) J̃ k

t,t+3 + st+3Ṽ k
t+3

]
= pk

t+2 − π
−µ
t+2π

−µ
t+1w

k
t,t

+ δt+2 Et+2

{
(1− st+3)

[
(1− ψ) J k

t+3,t+3 + ψ J k
t,t+3

]
+ st+3Ṽ k

t+3

}
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so, with the use of (A.35) forwarded one period,

J k
t+1,t+2 − J k

t,t+2

= pk
t+2 − π

−µ
t+2w

k
t+1,t+1 + δt+2 Et+2

{
(1− st+3)

[
(1− ψ) J k

t+3,t+3 + ψ J k
t+1,t+3

]
+ st+3Ṽ k

t+3

}
− pk

t+2 + π
−µ
t+2π

−µ
t+1w

k
t,t − δt+2 Et+2

{
(1− st+3)

[
(1− ψ) J k

t+3,t+3 + ψ J k
t,t+3

]
+ st+3Ṽ k

t+3

}
= π−µ

t+2

(
π
−µ
t+1w

k
t,t − w

k
t+1,t+1

)
+ δt+2 Et+2

[
(1− st+3) ψ

(
J k

t+1,t+3 − J k
t,t+3

)]
.

Use of this in (A.36) gives

J k
t+1,t+1 − J k

t,t+1 =
(
π
−µ
t+1w

k
t,t − w

k
t+1,t+1

) [
1+ δt+1 Et+1 (1− st+2) ψπ

−µ
t+2

]
+ δt+1 Et+1δt+2

[
(1− st+2) ψ (1− st+3) ψ

(
J k

t+1,t+3 − J k
t,t+3

)]
.

Proceeding recursively in this way gives

J k
t+1,t+1 − J k

t,t+1 =
(
π
−µ
t+1w

k
t,t − w

k
t+1,t+1

)
Et+1

[
1+

∞∑
i=2

i∏
j=2

(
δt+ j−1

(
1− st+ j

)
ψπ
−µ
t+ j

)]
.

With the convention that the product term equals 1 for i < j , this can be written as (A.25).

From (A.4) for τ = t and (A.23),

W k
t,t+1 = π

−µ
t+1w

k
t,t + δt+1 Et+1

[
(1− st+2) W̃ k

t,t+2 + st+2Ut+2

]
= π−µ

t+1w
k
t,t

+ δt+1 Et+1

{
(1− st+2)

[
(1− ψ)W k

t+2,t+2 + ψW k
t,t+2

]
+ st+2Ut+2

}
. (A.37)

Moreover, from (A.4) with the wage negotiated at t + 1 and (A.23),

W k
t+1,t+1 = w

k
t+1,t+1 + δt+1 Et+1

[
(1− st+2) W̃ k

t+1,t+2 + st+2Ut+2

]
= wk

t+1,t+1 + δt+1 Et+1

{
(1− st+2)

[
(1− ψ)W k

t+2,t+2 + ψW k
t+1,t+2

]
+ st+2Ut+2

}
.

Hence

W k
t+1,t+1 −W k

t,t+1 = w
k
t+1,t+1 − π

−µ
t+1w

k
t,t + δt+1 Et+1

[
(1− st+2) ψ

(
W k

t+1,t+2 −W k
t,t+2

)]
.

(A.38)

Furthermore, again from (A.4) and (A.23),

W k
t,t+2 = π

−µ
t+2π

−µ
t+1w

k
t,t + δt+2 Et+2

[
(1− st+3) W̃ k

t,t+3 + st+3Ut+3

]
= π−µ

t+2π
−µ
t+1w

k
t,t + δt+2 Et+2

{
(1− st+3)

[
(1− ψ)W k

t+3,t+3 + ψW k
t,t+3

]
+ st+3Ut+3

}
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so, with the use of (A.37) forwarded one period,

W k
t+1,t+2 −W k

t,t+2

= π−µ
t+2w

k
t+1,t+1 + δt+2 Et+2

{
(1− st+3)

[
(1− ψ)W k

t+3,t+3 + ψW k
t+1,t+3

]
+ st+3Ut+3

}
− π−µ

t+2π
−µ
t+1w

k
t,t − δt+2 Et+2

{
(1− st+3)

[
(1− ψ)W k

t+3,t+3 + ψW k
t,t+3

]
+ st+3Ut+3

}
= π−µ

t+2

(
wk

t+1,t+1 − π
−µ
t+1w

k
t,t

)
+ δt+2 Et+2

[
(1− st+3) ψ

(
W k

t+1,t+3 −W k
t,t+3

)]
.

Use of this in (A.38) gives

W k
t+1,t+1 −W k

t,t+1 =
(
wk

t+1,t+1 − π
−µ
t+1w

k
t,t

) [
1+ δt+1 Et+1 (1− st+2) ψπ

−µ
t+2

]
+ δt+1 Et+1δt+2

[
(1− st+2) ψ (1− st+3) ψ

(
W k

t+1,t+3 −W k
t,t+3

)]
.

Proceeding recursively in this way gives

W k
t+1,t+1 −W k

t,t+1 =
(
wk

t+1,t+1 − π
−µ
t+1w

k
t,t

)
Et+1

[
1+

∞∑
i=2

i∏
j=2

(
δt+ j−1

(
1− st+ j

)
ψπ
−µ
t+ j

)]

=
(
wk

t+1,t+1 − π
−µ
t+1w

k
t,t

)
Et+1

[
∞∑

i=1

i∏
j=2

(
δt+ j−1

(
1− st+ j

)
ψπ
−µ
t+ j

)]
,

(A.39)

again with the convention that the product term equals 1 for i < j . (A.24) then follows directly

from (A.25).
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B.6 Derivation of equation (A.27)

From (A.26) and (A.2) with Vt+1 ≥ 0 for all t ,

Jt,t − Vt

= (1− qtκ) Jt,t + ct −
[
qt (1− κ) δt Et J̃t,t+1 + (1− qt) δt Et Vt+1

]
= (1− qtκ)

{
pt − w

∗
t + δt Et

[
(1− st+1) J̃t,t+1 + st+1Vt+1

]}
+ ct −

[
qt (1− κ) δt Et J̃t,t+1 + (1− qt) δt Et Vt+1

]
= (1− qtκ)

(
pt − w

∗
t

)
+ ct + δt Et

{
(1− qtκ)

[
(1− st+1) J̃t,t+1 + st+1Vt+1

]
−
[
qt (1− κ) J̃t,t+1 + (1− qt) Vt+1

] }
= (1− qtκ)

(
pt − w

∗
t

)
+ ct + δt Et

{ [
(1− qtκ) (1− st+1)− qt (1− κ)

]
J̃t,t+1

+
[
(1− qtκ) st+1 − (1− qt)

]
Vt+1

}
= (1− qtκ)

(
pt − w

∗
t

)
+ ct + δt Et

{ [
1− st+1 − qtκ + qtκst+1 − qt + qtκ

]
J̃t,t+1

+
[
st+1 − qtκst+1 − 1+ qt

]
Vt+1

}
.

This can be re-written as (A.27).
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B.7 Derivation of equation (A.30)

From (A.29) and (A.5),

Wt,t −Ut

= (1− ftκ)Wt,t −
[

ft (1− κ)
(

zt + δt Et W̃t,t+1

)
+ (1− ft) (zt + δt EtUt+1)

]
= (1− ftκ)

{
w∗t + δt Et

[
(1− st+1) W̃t,t+1 + st+1Ut+1

]}
−
[

ft (1− κ) δt Et W̃t,t+1 + (1− ft) δt EtUt+1 + ft (1− κ) zt + (1− ft) zt

]
= (1− ftκ)

(
w∗t − zt

)
+ δt Et

{
(1− ftκ)

[
(1− st+1) W̃t,t+1 + st+1Ut+1

]
−
[

ft (1− κ) W̃t,t+1 + (1− ft)Ut+1

] }
= (1− ftκ)

(
w∗t − zt

)
+ δt Et

{ [
(1− ftκ) (1− st+1)− ft (1− κ)

]
W̃t,t+1

+
[
(1− ftκ) st+1 − (1− ft)

]
Ut+1

}
= (1− ftκ)

(
w∗t − zt

)
+ δt Et

{ [
1− st+1 − ftκ + ftκst+1 − ft + ftκ

]
W̃t,t+1

+
[
st+1 − ftκst+1 − 1+ ft

]
Ut+1

}
.

This can be re-written as (A.30).

B.8 Derivation of equation (3)

Use of (A.31) in (A.15) yields

(1− ftκ)
(
w∗t − zt

)
+ δt Et

{
(1− st+1 − ft

+ κ ftst+1)

[
λ
(
Jt+1,t+1 − Vt+1

)
+

λ

1− λ
γt+1 + ψ

(
Jt+1,t+1 − Jt,t+1

)] }
= λ

(
Jt,t − Vt

)
+

λ

1− λ
γt
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or

(1− ftκ)
(
w∗t − zt

)
= λ

(
Jt,t − Vt

)
− δt Et

{
(1− st+1 − ft + κ ftst+1)

[
λ
(
Jt+1,t+1 − Vt+1

)
+ ψ

(
Jt+1,t+1 − Jt,t+1

)]}
+

λ

1− λ

{
γt − δt Et

[
(1− st+1 − ft + κ ftst+1) γt+1

]}
. (A.40)

From (A.28) (subtracting the second line below from both sides),

Jt,t − Vt

− δt Et

{
(1− st+1 − ft + κ ftst+1)

[(
Jt+1,t+1 − Vt+1

)
+
ψ

λ

(
Jt+1,t+1 − Jt,t+1

)]}
= (1− qtκ)

(
pt − w

∗
t

)
+ ct

+ δt Et

[
(1− st+1 − qt + qtκst+1)

(
Jt+1,t+1 − Vt+1 − ψ

(
Jt+1,t+1 − Jt,t+1

))]
− δt Et

{
(1− st+1 − ft + κ ftst+1)

[(
Jt+1,t+1 − Vt+1

)
+
ψ

λ

(
Jt+1,t+1 − Jt,t+1

)]}
or

Jt,t − Vt

− δt Et

{
(1− st+1 − ft + κ ftst+1)

[(
Jt+1,t+1 − Vt+1

)
+
ψ

λ

(
Jt+1,t+1 − Jt,t+1

)]}
= (1− qtκ)

(
pt − w

∗
t

)
+ ct + δt Et

[ [
(1− st+1 − qt + qtκst+1)

− (1− st+1 − ft + κ ftst+1)
] (

Jt+1,t+1 − Vt+1

) ]
− ψδt Et

[
(1− st+1 − qt + qtκst+1)

(
Jt+1,t+1 − Jt,t+1

)
+ (1− st+1 − ft + κ ftst+1)

1

λ

(
Jt+1,t+1 − Jt,t+1

) ]
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or

Jt,t − Vt

− δt Et

{
(1− st+1 − ft + κ ftst+1)

[(
Jt+1,t+1 − Vt+1

)
+
ψ

λ

(
Jt+1,t+1 − Jt,t+1

)]}
= (1− ftκ)

(
pt − w

∗
t

)
+ κ ( ft − qt)

(
pt − w

∗
t

)
+ ct

ft

qt

− ct

ft − qt

qt

+ ( ft − qt) δt Et

[
(1− κst+1)

(
Jt+1,t+1 − Vt+1

)]
− ψδt Et

{[(
1+

1

λ

)
(1− st+1)−

(
ft

λ
+ qt

)
(1− κst+1)

] (
Jt+1,t+1 − Jt,t+1

)}
or

Jt,t − Vt

− δt Et

{
(1− st+1 − ft + κ ftst+1)

[(
Jt+1,t+1 − Vt+1

)
+
ψ

λ

(
Jt+1,t+1 − Jt,t+1

)]}
= (1− ftκ)

(
pt − w

∗
t

)
+ ct

ft

qt

+ ( ft − qt)

{
−

ct

qt

+ κ
(

pt − w
∗
t

)
+δt Et

[
(1− κst+1)

(
Jt+1,t+1 − Vt+1

)] }
− ψδt Et

{[(
1+

1

λ

)
(1− st+1)−

(
ft

λ
+ qt

)
(1− κst+1)

] (
Jt+1,t+1 − Jt,t+1

)}
.

Hence (A.40) can be written

(1− ftκ)
(
w∗t − zt

)
= λ

[
(1− ftκ)

(
pt − w

∗
t

)
+ ct

ft

qt

]
+ λ ( ft − qt)

{
−

ct

qt

+ κ
(

pt − w
∗
t

)
+ δt Et

[
(1− κst+1)

(
Jt+1,t+1 − Vt+1

)]}
− λψδt Et

{[(
1+

1

λ

)
(1− st+1)−

(
ft

λ
+ qt

)
(1− κst+1)

] (
Jt+1,t+1 − Jt,t+1

)}
+

λ

1− λ

{
γt − δt Et

[
(1− st+1 − ft + κ ftst+1) γt+1

]}
. (A.41)

With new vacancies created for which the wage is negotiated at every t , free entry (A.3) implies

Vt = Vt+1 = 0. From (A.2) with Vt = Vt+1 = 0,

κ Jt,t + (1− κ) δt Et J̃t,t+1 −
ct

qt

= 0, for all t.
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Substitution for Jt,t from (A.26) in this, with use of the free entry condition (A.3) so Vt+1 = 0,

yields

κ
(

pt − w
∗
t

)
+ κδt Et

[
(1− st+1) J̃t,t+1

]
+ (1− κ) δt Et J̃t,t+1 −

ct

qt

= 0, for all t,

or

κ
(

pt − w
∗
t

)
+ δt Et

[
(1− κst+1) J̃t+1,t+1

]
−

ct

qt

= 0, for all t.

With the use of (A.22), this can be written

κ
(

pt − w
∗
t

)
+ δt Et

{
(1− κst+1)

[
Jt+1,t+1 − ψ

(
Jt+1,t+1 − Jt,t+1

)]}
−

ct

qt

= 0, for all t,

or

κ
(

pt − w
∗
t

)
+ δt Et

[
(1− κst+1) Jt+1,t+1

]
−

ct

qt

= ψδt Et

[
(1− κst+1)

(
Jt+1,t+1 − Jt,t+1

)]
,

for all t. (A.42)

With the use of (A.42) and Vt+1 = 0, (A.41) can be written

(1− ftκ)
(
w∗t − zt

)
= λ

[
(1− ftκ)

(
pt − w

∗
t

)
+ ct

ft

qt

]
+ λ ( ft − qt) ψδt Et

[
(1− κst+1)

(
Jt+1,t+1 − Jt,t+1

)]
− λψδt Et

{[(
1+

1

λ

)
(1− st+1)−

(
ft

λ
+ qt

)
(1− κst+1)

] (
Jt+1,t+1 − Jt,t+1

)}
+

λ

1− λ

{
γt − δt Et

[
(1− st+1 − ft + κ ftst+1) γt+1

]}
or

(1− ftκ)
(
w∗t − zt

)
= λ

[
(1− ftκ)

(
pt − w

∗
t

)
+ ct

ft

qt

]
+ λψδt Et

{[
( ft − qt) (1− κst+1)

−

(
1+

1

λ

)
(1− st+1)+

(
ft

λ
+ qt

)
(1− κst+1)

] (
Jt+1,t+1 − Jt,t+1

) }
+

λ

1− λ

{
γt − δt Et

[
(1− st+1 − ft + κ ftst+1) γt+1

]}
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or

(1− ftκ)
(
w∗t − zt

)
= λ

[
(1− ftκ)

(
pt − w

∗
t

)
+ ct

ft

qt

]
+ λψδt Et

{[
ft

(
1+

1

λ

)
(1− κst+1)−

(
1+

1

λ

)
(1− st+1)

] (
Jt+1,t+1 − Jt,t+1

)}
+

λ

1− λ

{
γt − δt Et

[
(1− st+1 − ft + κ ftst+1) γt+1

]}
or

(1− ftκ)
(
w∗t − zt

)
= λ

[
(1− ftκ)

(
pt − w

∗
t

)
+ ct

ft

qt

]
+ ψ (1+ λ) δt Et

{[
ft (1− κst+1)− (1− st+1)

] (
Jt+1,t+1 − Jt,t+1

)}
+

λ

1− λ

{
γt − δt Et

[
(1− st+1 − ft + κ ftst+1) γt+1

]}
.

With the definition δκt = δt−1 (1− st − ft−1 + κst ft−1), this can be written

(1− ftκ)
(
w∗t − zt

)
= λ

[
(1− ftκ)

(
pt − w

∗
t

)
+ ct

ft

qt

]
+

λ

1− λ

[
γt − Et

(
δκt+1γt+1

)]
− ψ (1+ λ) Et

[
δκt+1

(
Jt+1,t+1 − Jt,t+1

)]
. (A.43)

With the use of (A.25) averaged over all jobs, equation (A.43) can be written as (3).

Appendix C “On the job” search

In this appendix, we present a model of “on the job” search by workers and examine its implications

for the persistence of aggregate wages. Following Hagedorn and Manovskii (2013), we consider

match quality that is not the same for all matches and matched workers who can search on the job

for better matches while still matched.

C.1 Model

Suppose, as assumed in Hagedorn and Manovskii (2013), productivity in a match, p, is idiosyn-

cratic and drawn each time a worker and a job meet for potential matching from a distribution

that is the same for all potential matches. Then the payoffs to being unemployed are the same
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for all those unemployed, and the payoffs to having an unfilled vacancy the same for all unfilled

vacancies, and depend only on the distribution of productivities in potential matches.

Let pk
t denote the productivity at time t of match k, and we will use similar notation for other

variables, e.g., wk
t . Without loss of generality, let pk

t = ek
t p̂t , where ek

t is an idiosyncratic compo-

nent of productivity in match k, and p̂t is aggregate productivity in potential matches. To proceed,

we need to make assumptions about the distribution of the idiosyncratic component for potential

matches and actual matches, which are not the same with “on the job” search. For potential new

matches we assume that ek
t is independent and identically distributed (iid), and independent of p̂t ,

and we denote its distribution function by 8̂. By the definition of p̂t , the mean of 8̂ is one. For

ek
t in continuing matches, we will consider the following two polar cases: (i) ek

t is redrawn every

period from 8̂ (no dependence); and (ii) ek
t is constant over the duration of match k, i.e. ek

t = ek
t−1

(perfect dependence). We assume that all potential matches are productive. Apart from that, no

other restrictions on the support of the distributions 8̂ and 8t are necessary, so we will omit the

limits of integration except where integrating over a subset of the support.

For the model with “on the job” search we need to define the following additional variables:

f̂t probability that an already matched worker finds a new match

ζt probability worker with whom potential match is made is already matched

8t (·) probability distribution of idiosyncratic productivity in actual matches

8̂ (·) probability distribution of idiosyncratic productivity in potential matches

J k
t value to firm of match k in period t

W k
t value to worker of match k in period t

p̂t average productivity across all potential matches

pt average productivity in period t across all actual matches

Ĵt average value to firm of filling a vacancy with previously unmatched worker

J̃t average value to firm of filling a vacancy with previously matched worker

Jt average value to firm of filling a vacancy , Jt = (1− ζt) Ĵt + ζt J̃t

A worker already in match k at the beginning of period t changes job if finding a new match k′

(which happens with probability f̂t ) and the new match is of better quality than the existing one,

ek′

t > ek
t (which happens with probability 1 − 8̂

(
ek

t

)
). The value of a filled job with productivity

pk
t is

J k
t = pk

t − w
k
t + δt Ek

t

{[
1− f̂t+1

(
1− 8̂

(
ek

t+1

))]
(1− st+1) J k

t+1

}
, for all t, k, (A.44)

where Ek
t denotes expectations conditional on aggregate and idiosyncratic information at t and

f̂t+1

[
1− 8̂

(
ek

t+1

)]
is the probability of the worker finding a match k′ with productivity pk′

t+1 >
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pk
t+1. The free entry condition is

Vt = 0, for all t. (A.45)

Given this, the value of an unfilled vacancy is

−ct + qt (1− ζt) Ĵt + qtζt J̃t = 0, for all t. (A.46)

The reasoning is as follows. Making a vacancy available at t costs ct . With probability qt , the

vacancy meets with a worker. Conditional on meeting a worker, that worker is unemployed with

probability (1− ζt), in which case a new match is made with the expected payoff to the vacancy

creation conditional on this outcome given by

Ĵt =

∫
J k

t d8̂k,

where we use the shorthand notation 8̂k = 8
(
ek

t

)
. With probability ζt , the worker is already

matched, in which case a new match is formed only if the (idiosyncratic) productivity draw for

the new match exceeds that in the worker’s current match ek
t . So a new match is formed only if

the productivity draw for the vacancy from the distribution 8̂ exceeds ek
t and the expected payoff

conditional on this outcome is ∫ ∞
ek

t

J k′

t d8̂k′ .

To get the expected payoff conditional on meeting a matched worker, this integral must itself be

integrated over all the possible values of ek
t , with the probability distribution of matches surviving

from the previous period to get J̃t , which is different depending on whether or not ek
t−1 is redrawn

for t . Note that (A.46) can also be written as

0 = −ct + qt Jt , (A.47)

where Jt is average value of filling a vacancy.

For the worker, the payoff in match k is given by

W k
t = w

k
t + δt Et (st+1Ut+1)+ δt Ek

t

{
(1− st+1)

×

[(
1− f̂t+1

(
1− 8̂

(
ek

t+1

)))
W k

t+1 + f̂t+1

∫ ∞
ek

t+1

W k′

t+1d8̂k′

]}
, for all t, k. (A.48)

The payoff to starting period t unemployed is

Ut = ft Ŵt + (1− ft) (zt + δt EtUt+1) , for all t, (A.49)
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where

Ŵt =

∫
W k

t d8̂k .

Nash bargaining yields

W k
t −Ut = λJ k

t , for all t, k. (A.50)

C.2 Wage equation

We can rewrite (A.48) as

W k
t = w

k
t + δt Et (st+1Ut+1)+ δt Ek

t

{
(1− st+1)

×

[(
1− f̂t+1

(
1− 8̂

(
ek

t+1

))) (
W k

t+1 −Ut+1

)
+ f̂t+1

∫ ∞
ek

t+1

(
W k′

t+1 −Ut+1

)
d8̂k′

]}
+ δt Ek

t

[
(1− st+1)Ut+1

]
,

or

W k
t = w

k
t + δt Et (Ut+1)+ δt Ek

t

{
(1− st+1)

×

[(
1− f̂t+1

(
1− 8̂

(
ek

t+1

))) (
W k

t+1 −Ut+1

)
+ f̂t+1

∫ ∞
ek

t+1

(
W k′

t+1 −Ut+1

)
d8̂k′

]}
. (A.51)

Substituting for W k
t −Ut = λJ k

t from the Nash bargain into (A.51) yields

W k
t = w

k
t + δt Et (Ut+1)+ λδt Ek

t

{
(1− st+1)

×

[(
1− f̂t+1

(
1− 8̂

(
ek

t+1

)))
J k

t+1 + f̂t+1

∫ ∞
ek

t+1

J k′

t+1d8̂k′

]}
. (A.52)

Taking expectations over k in (A.44) with respect to the distribution 8 in all matches, we have

Jt = pt − wt + At . (A.53)

where

At = δt

∫
Ek

t

{
(1− st+1)

(
1− f̂t+1

[(
1− 8̂

(
ek

t_1

))])
J k

t+1

}
d8k

t . (A.54)
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Taking expectations over k in (A.44) with respect to the distribution 8̂ in potential new matches,

we have

Ĵt = p̂t − ŵt + Ât , for all t, (A.55)

where

Ât = δt

∫
Ek

t

{
(1− st+1)

(
1− f̂t+1

[(
1− 8̂

(
ek

t+1

))])
J k

t+1

}
d8̂k . (A.56)

Averaging (A.52) over k using 8t yields

Wt = wt + δt Et (Ut+1)+ λAt + λBt , (A.57)

where

Bt = δt

∫
Ek

t

[
(1− st+1) f̂t+1

(∫ ∞
ek

t+1

J k′

t+1d8̂k′

)]
d8k

t . (A.58)

Similarly, averaging (A.52) over k using 8̂t yields

Ŵt = ŵt + δt Et (Ut+1)+ λ Ât + λB̂t , (A.59)

where

B̂t = δt

∫
Ek

t

[
(1− st+1) f̂t+1

(∫ ∞
ek

t+1

J k′

t+1d8̂k′

)]
d8̂k .

Equations (A.49) and (A.59) imply

Ut − δt Et (Ut+1) = (1− ft) zt + ft

(
Ŵt − δt EtUt+1

)
= (1− ft) zt + ftŵt + λ ft

(
Ât + B̂t

)
. (A.60)

Averaging (A.50) over k using 8̂t yields

Ŵt = λ Ĵt +Ut .

Using this to substitute for Ŵt in (A.59), using (A.60) and rearranging yields

λ Ĵt = (1− ft)
(
ŵt − zt

)
+ λ (1− ft)

(
Ât + B̂t

)
.

Substituting for Ât using (A.55) yields

λ Ĵt = (1− ft)
(
ŵt − zt

)
+ λ (1− ft)

(
Ĵt + ŵt − p̂t

)
+ λ (1− ft) B̂t ,

or

λ ft Ĵt = (1− ft)
(
(1+ λ) ŵt − λ p̂t − zt

)
+ λ (1− ft) B̂t .
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Rearranging yields

(1+ λ) ŵt − λ p̂t = zt + λ

(
ft

1− ft

Ĵt − B̂t

)
. (A.61)

Averaging (A.50) over k using 8t yields

Wt = λJt +Ut .

Using this to substitute for Wt in (A.57), using (A.60) and rearranging yields

λJt = wt − (1− ft) zt − ftŵt + λ (At + Bt)− λ ft

(
Ât + B̂t

)
.

Substituting for Jt using (A.53) and Ât using (A.55) yields

λ (pt − wt) = wt − (1− ft) zt − ftŵt + λBt − λ ft

(
Ĵt + ŵt − p̂t + B̂t

)
,

or

λpt + ftŵt + λ ft

(
ŵt − p̂t

)
= (1+ λ)wt − (1− ft) zt + λBt − λ ft

(
Ĵt + B̂t

)
,

or

λpt + ft

[
(1+ λ) ŵt − λ p̂t

]
= (1+ λ)wt − (1− ft) zt + λBt − λ ft

(
Ĵt + B̂t

)
Using (A.61) in this yields

λpt + ft zt + λ ft

(
ft

1− ft

Ĵt − B̂t

)
= (1+ λ)wt − (1− ft) zt + λBt − λ ft

(
Ĵt + B̂t

)
,

or

λpt + ft zt + λ ft

ft

1− ft

Ĵt = (1+ λ)wt − (1− ft) zt + λBt − λ ft Ĵt ,

or

λpt = (1+ λ)wt − zt + λBt − λ ft

(
ft

1− ft

+ 1

)
Ĵt ,

or

wt =
1

1+ λ
zt +

λ

1+ λ

(
pt +

ft

1− ft

Ĵt

)
−

λ

1+ λ
Bt . (A.62)

The free entry condition (A.46) implies

Ĵt =
ct/qt − ζt J̃t

1− ζt

.

Using this to substitute for Ĵt in (A.62) yields

wt =
1

1+ λ
zt +

λ

1+ λ

(
pt +

ft

1− ft

ct/qt − ζt J̃t

1− ζt

)
−

λ

1+ λ
Bt , (A.63)
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which is equation (A.20) in Section A.3.1. With no “on the job” search, ζt = f̂t = Bt = 0, so this

reduces exactly to the wage equation (1) in the main paper.

Our concern here is how changes in the distribution 8t over time affect the persistence of

wages in (A.63). The term Bt does not depend on the past productivity distribution 8t−1, so we

need to consider only J̃t . Consider the two polar cases that we mentioned at the beginning. Under

the assumption that ek
t in continuing matches is redrawn from the distribution of potential matches

8̂, we have

J̃t =

∫ (∫ ∞
ek

t

J k′

t d8̂k′

)
d8̂k . (A.64)

This clearly does not depend on 8t−1, so does not introduce any additional persistence to wages.

Our alternative assumption is that idiosyncratic productivity is constant in continuing matches,

so ek
t = ek

t−1. Hence

J̃t =

∫ (∫ ∞
ek

t−1

J k′

t d8̂k′

)
d8t−1

(
ek

t−1

)
=

∫ (∫ ∞
ek

t−1

J k′

t d8̂k′

)
d8k

t−1. (A.65)

In this case, wt depends on the past productivity distribution 8t−1. Moreover, since J̃t appears

with a negative sign, the effect of a positive productivity shock in period t − 1 would be to reduce

wages in period t, other things equal.

Appendix D Data

Series Description Source Series ID Sample

Labor share nfb, sa, level BLS PRS85006173 1948q1-2011q3

Output per person nfb, sa, index BLS PRS85006163 1948q1-2011q4

Unemployment total, sa, end of quarter BLS LNS13000000 1948q1-2011q4

Unemployment total, nsa, end of quarter BLS LNU03000000 1948q1-2011q4

Unemployment rate sa, quarterly average BLS LNS14000000Q 1948q1-2011q4

Unempl. < 5 weeks total, sa, monthly BLS LNS13008396 1948m1-2011m12

Unempl. < 5 weeks total, nsa, monthly BLS LNU03008396 1948m1-2011m12

Unempl. 5 – 14 weeks total, sa, monthly BLS LNS13008396 1948m1-2011m12

Unempl. 5 – 14 weeks total, nsa, monthly BLS LNU03008756 1948m1-2011m12

Unempl. < 14 weeks total, last month of quarter derived – 1948q1-2011q4

Employment nf, total, sa, end of quarter BLS CES0000000001 1948q1-2011q4

Employment nf, total, nsa, end of quarter BLS CEU0000000001 1948q1-2011q4

Help Wanted Index (HWI) index, sa MEI 1951q1-2008q1

Job openings rate
openings

openings + employment
Barnichon (2010) – 1951q1-2011q3

Job openings nf, total, sa, total over quarter BLS/JOLTS JTS00000000JOL 2001q1-2011q4

Separations nf, total, sa, total over quarter BLS/JOLTS JTS00000000TSL 2001q1-2011q4

3mTbill sec. market rate, quart. av. FRED TB3MS_20120305 1948q1-2011q4

Implicit price deflator nfb, index BLS PRS85006143 1948q1-2011q4

Table 8: Data description and sources.
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Abbreviations: nfb is nonfarm business sector, nf is nonfarm sector, sa is seasonally adjusted, nsa is non-seasonally

adjusted, end of quarter is last month of quarter.

Sources: BLS is Bureau of Labor Statistics, JOLTS is Job Openings and Labor Turnover Survey, MEI is OECD Main

Economic Indicators, FRED is St. Louis Fed’s Economic Database.

Table 8 specifies the raw data we use, with sources. Figure 1 uses the original data of Hagedorn

and Manovskii (2008), downloaded from the AER website. This data contains series for the labour

share, output per person, the unemployment rate and HWI from 1951q1 to 2004q4. All other

empirical results in the paper use the most recent revisions of these series. A comparison of the

series used by Hagedorn and Manovskii (2008) with the most recent revisions is in Table 9. For the

labour share and productivity series, the revisions are minor. The unemployment and HWI series

are identical.

Vacancies are measured using the approach described in Shimer (2005, p. 29), specifically

removing variations at very low frequency (in logs), computed using the HP filter with smoothing

parameter 105. Barnichon (2010) provides a different vacancy series, available from his website.

This is derived by merging newspaper advertising data (which was discontinued after 2008q1)

with online advertising (available since 1995) to create a composite HWI index. Barnichon (2010)

reports a vacancy rate series vr that conforms to the JOLTS definition, that is, vr = V
V+J

, where

V is total vacancies and J is employment. Using our data on employment, we obtain a measure of

total vacancies as V = vr

1−vr J . (We compute this at the monthly frequency and then aggregate to

quarterly).

Vacancy data are used primarily for a measure of the probability of filling a vacancy, qt . Table

10 compares series for this probability using the different vacancy series. Our baseline measure

(based on filtered HWI), constructed as in Shimer (2005), is very similar to the measure based

on JOLTS data (correlation 0.88). It is also very similar to the one based on the vacancy data

constructed by Barnichon (2010) (correlation 0.97). The measure that uses the raw (unfiltered)

HWI data is very different from the others.

Summary statistics for the series that appear in the model of equation (3) are in Table 11.

Appendix E Additional empirical results

This appendix gives details of various robustness checks.

Table 12 gives estimates corresponding to column 4 of Table 4 for different truncation lengths

of the infinite sum on the right-hand side of equation (3). The point estimates are identical to 3

decimal places for truncations of 8 or more quarters.

Table 13 gives estimates corresponding to Table 4 with wages and productivity separately de-
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Series st. dev. first autocorrelation correlation

Labor share, ours 0.020 0.899 0.989

Labor share, HM 0.020 0.907 -

log(prod)-HP trend, ours 0.0133 0.758 0.990

log(prod)-HP trend, HM 0.0132 0.765 -

Unemployment rate, ours 0.015 0.966 1

Unemployment rate, HM 0.015 0.966 -

HWI (unfiltered), ours 0.373 0.978 1

HWI (unfiltered), HM 0.373 0.978 -

Table 9: Comparison of Hagedorn and Manovskii (2008) data series (HM) with the most recent

revisions (ours). HP trend is computed with smoothing parameter 1600.

Correlations over JOLTS sample 2001q1-2008q1

Vacancy series Unfiltered HWI Barnichon (2010) JOLTS

Filtered HWI 0.161 0.965 0.876

Unfiltered HWI 1 0.104 0.103

Barnichon (2010) 1 0.956

JOLTS 1

Summary statistics

JOLTS sample 2001q1-2008q1 full sample 1951q1-2008q1

Vacancy series st. dev. first autocorrelation st. dev. first autocorrelation

Filtered HWI 0.040 0.776 0.067 0.944

Unfiltered HWI 0.064 0.691 0.097 0.943

Barnichon (2010) 0.042 0.789 0.073 0.945

JOLTS 0.044 0.834 - -

Table 10: Series for probability of filling a vacancy with different vacancy series.

Series st. dev. first autocorrelation

wt 0.017 0.940

pt 0.013 0.762

ft 0.066 0.941

qt 0.032 0.741

st 0.015 0.914

δt 0.006 0.681

πt 0.007 0.818

Table 11: Summary statistics for the variables used in the econometric model. wt and pt are

detrended using HP filter-based productivity trend.
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Truncation length (quarters): 28 24 20 16 12 8

ψ 0.631 0.631 0.631 0.631 0.631 0.631

µ 0.000 0.000 0.000 0.000 0.000 0.000

z 1.000 1.000 1.000 1.000 1.000 1.000

cK 0.000 0.000 0.000 0.000 0.000 0.000

cW 0.083 0.083 0.083 0.083 0.083 0.083

ξ 0.000 0.000 0.000 0.000 0.000 0.000

κ 1.000 1.000 1.000 1.000 1.000 1.000

H K 0.011 0.011 0.011 0.011 0.011 0.011

H W 1.145 1.145 1.145 1.145 1.145 1.145

γ −1.376 −1.376 −1.376 −1.376 −1.376 −1.376

λ 0.131 0.131 0.131 0.131 0.131 0.131

GMM objective 8.923 8.923 8.923 8.923 8.920 8.909

Table 12: Estimates of eq. (3) with truncation of the infinite sum at various quarters.

trended (using separate HP filters). The fit is slightly worse than with the baseline specification in

Table 4. The point estimates of the parameters are similar, with somewhat higher β and lower λ

(though still well within the confidence intervals given in Table 5 for the baseline specification),

but with point estimates of zero for both the vacancy posting cost parameters. The point estimates

of ψ remain significantly greater than zero, so our main conclusions are unaffected.

Table 14 gives estimates corresponding to Table 4 using the following instrument set: a con-

stant, four lags of wt and three lags of pt , ft , qt , and st . The conclusions to be drawn remain

unchanged.

Table 15 gives estimates corresponding to Table 4 with non-seasonally adjusted data for em-

ployment and unemployment. The fit is slightly worse than in the baseline specification in Table 4

but the conclusions we draw remain unchanged.

Table 16 gives estimates corresponding to Table 4 with vacancy data as computed by Barnichon

(2010) and the sample extended by 3 years to 2007q4. These give somewhat higher point estimates

for β and λ than the baseline specification in Table 4 (though still well within the confidence

intervals given in Table 5 for the baseline specification). But the estimates of the wage rigidity

parameter ψ are not very different, so our main conclusions remain unchanged.
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Parameter 1 2 3 4

ψ 0.682
(0.024)

0.682
(0.054)

0.682
(0.064)

0.516
(0.078)

µ 0.040
(0.179)

0.040
(0.190)

0.040
(0.292)

0.000
(0.271)

β 0.280
(1.450)

0.280
(1.476)

0.280
(5.208)

−
(−)

z 0.930
(0.143)

0.930
(0.147)

0.930
(0.528)

1.000
(0.034)

cK 0.000
(8.265)

0.000
(8.437)

0.000
(18.856)

0.000
(23.25)

cW 0.000
(8.267)

0.000
(8.440)

0.000
(18.858)

0.000
(23.27)

ξ 0.097
(3×1013)

0.097
(3×1013)

0.097
(3×1013)

0.164
(3518)

κ −
(−)

0.000
(0.588)

0.000
(0.838)

1.000
(0.467)

H K −
(−)

−
(−)

0.000
(64.660)

1.470
(1217)

H W −
(−)

−
(−)

0.000
(64.812)

0.337
(1333)

γ −
(−)

−
(−)

−
(−)

−1.877
(150.3)

λ −
(−)

−
(−)

−
(−)

0.123
(9.841)

GMM objective 13.153 13.153 13.153 11.526

Hansen test p value 0.358 0.358 0.358 0.490

Hansen test proj. p value 0.726 0.726 0.726 0.832

Table 13: Estimates of eq. (3) as in Table 4 with wages detrended by an HP filter with smoothing

parameter 1600, instead of by the productivity trend.
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Parameter 1 2 3 4

ψ 0.746
(0.028)

0.746
(0.054)

0.746
(0.062)

0.632
(0.079)

µ 0.256
(0.188)

0.256
(0.222)

0.256
(0.259)

0.060
(0.542)

β 0.020
(3.493)

0.020
(4.041)

0.020
(11.940)

−
(−)

z 0.950
(0.180)

0.950
(0.210)

0.950
(0.621)

1.000
(0.104)

cK 0.330
(5375.722)

0.330
(7596.439)

0.330
(9385.721)

0.704
(3308.491)

cW 0.504
(5463.599)

0.504
(7717.699)

0.504
(9784.890)

0.482
(3642.685)

ξ 0.162
(9281.905)

0.162
(13099.239)

0.162
(16085.326)

0.800
(1074.968)

κ −
(−)

0.000
(0.544)

0.000
(0.660)

0.931
(0.450)

H K −
(−)

−
(−)

0.000
(1431.706)

0.629
(31165.073)

H W −
(−)

−
(−)

0.000
(1435.087)

6.284
(32967.394)

γ −
(−)

−
(−)

−
(−)

−11.523
(4905.867)

λ −
(−)

−
(−)

−
(−)

0.013
(5.633)

GMM objective 11.511 11.511 11.511 8.562

Hansen test p value 0.319 0.319 0.319 0.286

Hansen test proj. p value 0.829 0.829 0.829 0.953

Table 14: Estimates of eq. (3) as in Table 4 with the instrument set consisting of a constant, four

lags of wt and three lags of pt , qt , ft and st .
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Parameter 1 2 3 4

ψ 0.736
(0.050)

0.736
(0.054)

0.736
(0.072)

0.616
(0.078)

µ 0.301
(0.272)

0.301
(0.283)

0.301
(0.273)

0.242
(0.304)

β 0.013
(3.022)

0.013
(3.071)

0.013
(4.625)

−
(−)

z 0.951
(0.162)

0.951
(0.166)

0.951
(0.242)

0.952
(0.113)

cK 0.294
(10293.212)

0.294
(10302.540)

0.294
(11957.181)

0.000
(15722.291)

cW 1.334
(10626.352)

1.334
(10640.468)

1.334
(12461.001)

1.159
(16188.884)

ξ 0.000
(7971.002)

0.000
(7980.958)

0.000
(9111.905)

0.033
(12910.579)

κ −
(−)

0.000
(0.508)

0.000
(0.626)

1.000
(0.319)

H K −
(−)

−
(−)

0.000
(797.681)

0.002
(1386.153)

H W −
(−)

−
(−)

0.000
(797.131)

0.127
(1403.494)

γ −
(−)

−
(−)

−
(−)

−0.055
(33.678)

λ −
(−)

−
(−)

−
(−)

0.005
(2.496)

GMM objective 17.824 17.824 17.824 15.150

Hansen test p value 0.086 0.086 0.086 0.056

Hansen test proj. p value 0.400 0.400 0.400 0.585

Table 15: Estimates of eq. (3) as in Table 4 with non-seasonally adjusted data for employment and

unemployment.
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Parameter 1 2 3 4

ψ 0.674
(0.034)

0.670
(0.056)

0.670
(0.068)

0.670
(0.071)

µ 0.000
(0.366)

0.000
(0.370)

0.000
(0.388)

0.000
(0.453)

β 0.386
(1.937)

0.385
(2.040)

0.385
(17.793)

−
(−)

z 0.909
(0.283)

0.908
(0.301)

0.908
(2.810)

0.911
(2.622)

cK 0.000
(221.351)

0.000
(250.214)

0.000
(749.895)

0.000
(788.170)

cW 0.028
(221.437)

0.030
(250.321)

0.030
(751.319)

0.031
(789.446)

ξ 0.248
(6147.263)

0.269
(6341.802)

0.269
(18459.787)

0.356
(16322.833)

κ −
(−)

0.000
(0.468)

0.000
(0.534)

0.000
(0.762)

H K −
(−)

−
(−)

0.000
(140.474)

0.000
(155.331)

H W −
(−)

−
(−)

0.000
(141.168)

0.000
(155.220)

γ −
(−)

−
(−)

−
(−)

−0.004
(1.244)

λ −
(−)

−
(−)

−
(−)

0.622
(42.277)

GMM objective 17.178 17.163 17.163 17.157

Hansen test p value 0.143 0.144 0.144 0.103

Hansen test proj. p value 0.442 0.443 0.443 0.444

Table 16: Estimates of eq. (3) as in Table 4 with vacancy data computed by Barnichon (2010) and

the sample extended by 3 years to 2007q4.
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