
Alan, Sule; Atalay, Kadir; Crossley, Thomas F.

Working Paper

Euler Equation Estimation on Micro Data

Working Paper, No. 1221

Provided in Cooperation with:
Koç University - TÜSİAD Economic Research Forum, Istanbul

Suggested Citation: Alan, Sule; Atalay, Kadir; Crossley, Thomas F. (2012) : Euler Equation Estimation
on Micro Data, Working Paper, No. 1221, Koç University-TÜSİAD Economic Research Forum (ERF),
Istanbul

This Version is available at:
https://hdl.handle.net/10419/108609

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/108609
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


KOÇ UNIVERSITY-TÜSİAD ECONOMIC RESEARCH FORUM  
WORKING PAPER SERIES 

 
 
 
 
 
 
 
 
 

EULER EQUATION ESTIMATION ON MICRO DATA 
 
 

 
 

 
Sule Alan 

Kadir Atalay 
Thomas F. Crossley 

 
 
 
 
 
 

Working Paper 1221 
August 2012  

 
 
 
 
 

 
 
 
 
 

 
 
 
 

KOÇ UNIVERSITY-TÜSİAD ECONOMIC RESEARCH FORUM  
Rumelifeneri Yolu 34450 Sarıyer/Istanbul 



Euler Equation Estimation on Micro Data∗

Sule Alan†Kadir Atalay‡and Thomas F. Crossley§

July 25, 2012

Abstract

First order conditions from the dynamic optimization problems of consumers and firms are
important tools in empirical macroeconomics. When estimated on micro-data these equations
are typically linearized so standard IV or GMM methods can be employed to deal with the mea-
surement error that is endemic to survey data. However, it has recently been argued that the
approximation bias induced by linearization may be worse than the problems that linearization is
intended to solve. This paper explores this issue in the context of consumption Euler equations.
These equations form the basis of estimates of key macroeconomic parameters: the elasticity of
inter-temporal substitution (EIS) and relative prudence. We numerically solve and simulate 6
different life-cycle models, and then use the simulated data as the basis for a series of Monte
Carlo experiments in which we consider the validity and relevance of conventional instruments,
the consequences of different data sampling schemes, and the effectiveness of alternative estimation
strategies. The first-order Euler equation leads to biased estimates of the EIS, but that bias is
perhaps not too large when there is a sufficient time dimension to the data, and sufficient variation
in interest rates. A sufficient time dimension can only realistically be achieved with a synthetic
cohort. Estimates are unlikely to be very precise. Bias will be worse the more impatient agents are.
The second order Euler equation suffers from a weak instrument problem and offers no advantage
over the first-order approximation.
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1 Introduction

Models based on dynamic optimization problems faced by economic agents have long been the work

horses of macroeconomics. Since Hall (1978), first order conditions (known as Euler Equations) from

these optimization problems have been used extensively to test these models against economic data

and as a basis for estimating preference and technology parameters. This tradition includes: tests and

estimates of the life-cycle models of consumption (see for example, Attanasio et. al. 1999); studies of

the investment behaviour of firms (for example, Bond and Meghir 1994, or Mulligan, 2004); and tests

of asset pricing theories (for example, Mehra and Prescott, 1985).

The main attraction of the Euler equation approach is that it allows researchers to estimate pref-

erence parameters with limited data and without fully specifying the stochastic processes that agents

face. In principle, researchers do not need to model agents’ expectations or (in the case of consumers)

observe their wealth when estimating preference and technology parameters. Unfortunately these ad-

vantages of the Euler Equation approach are significantly diminished by practical problems that arise

from the nature of the available data.

In this paper, we evaluate the econometric problems that arise in the estimation of Euler equations

on micro data, focusing in particular on the consumption Euler equation. The key parameters that

researcher recover from the consumption Euler equation are the elasticity of of inter-temporal substi-

tution (EIS) and the degree of relative prudence. Estimated values of these parameters are central to

our thinking about macroeconomic policies such as the UK’s temporary VAT cut during the crisis of

2008-9 (Crossley et al., 2009). We numerically solve and simulate 6 different life-cycle models, and

then use the simulated data as the basis for a series of Monte Carlo experiments in which we consider

the validity and relevance of conventional instruments, the consequences of different data sampling

schemes, and the effectiveness of alternative estimation strategies.

Euler equations represent the behavior of an individual agent (households and firms). There is

substantial evidence that estimating these models with aggregate data can lead not only to biased

parameter estimates but also to false rejections of the underlying models (see for example, Attanasio

and Weber, 1993). As a result, researchers have moved towards using household/firm level data instead

of aggregate time series data. This solution generates a further problem because measurement error

is endemic to such survey data. This measurement error interacts with the nonlinear structure of

the Euler equation: in the presence of measurement error, standard non-linear GMM methods yield

inconsistent estimates (Amemiya, 1985). This problem is in turn normally addressed by taking a first-
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, or possibly second-order approximation to the Euler equation (to give a linearized or approximate

Euler equation) and then using standard linear IV and GMM techniques to deal with the measurement

error.

However, it may be that this particular cure is worse than the disease. Higher order terms that are

ignored in the approximation are potentially correlated with the typical instruments (lagged variables)

used in these estimation procedures, and this can lead to substantial bias. Consequently, the usefulness

of approximate Euler Equations is now in question. Several papers have explored this issue in the

context of the consumption Euler equation. The common approach of these studies is that they solve

and simulate a life-cycle consumption model and then perform Monte-Carlo experiments with the

simulated data to investigate whether a linearized Euler equation yields good estimates of the preference

parameters (that is, they investigate whether it is possible to recover the preference parameters values

that were assumed in solving the model and generating the simulated data). Ludvigson and Paxson

(2001) investigate the estimation of the relative prudence parameter in an environment with a fixed

interest rate and impatient agents. Following the empirical strategy of Dynan (1993), they employ a

second-order approximation to the Euler equation as the basis for estimation. They conclude that this

strategy for estimating the prudence parameter is not useful because instruments typically employed are

correlated with the approximation error. Carroll (2001) reaches the same conclusion for the elasticity

of inter-temporal substitution (EIS) in an environment with cross-sectional variation in interest rates.

A common feature of these studies is the lack of time series variation in interest rates. Attanasio and

Low (2004) argue that with sufficiently long sample periods and enough time-series variation in the

inter-temporal price (interest rate), good estimates of the EIS can be obtained with linearized Euler

equations.1

We go beyond the previous literature in a number of key respects. First, we consider a range of

different economic models and a range of different data structures (for example, true panels and syn-

thetic panels constructed at the birth cohorts level). Second, we add realistic measurement error to our

simulated data. Third, unlike previous studies, we examine the validity of usual instruments directly

(as well as documenting the distribution of resulting estimates). As we know the true parameters

values underlying simulated data, we can construct the true residuals to the linearized Euler equation,

and hence test instrument validity even in cases when the model is just identified. Fourth, we assess
1There are alternatives. Alan, Attanasio and Browning (2009) introduce two new nonlinear GMM estimators that

deal with measurement error in particular circumstances. Alan and Browning (2010) propose an approach that is not
based on Euler equations but rather on modeling expectation errors directly.
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not only instrument validity but also instrument relevance.2The issue of instrument relevance (whether

instruments are weak) has been studied for consumption Euler equations estimated on aggregate data

(Yogo, 2004), but not, to our knowledge, in the case of approximate Euler equations estimated on micro

data. Fifth, we propose a useful way of predicting when estimation based linearized Euler equations is

likely to be effective. Finally, we consider the consequences of parameter heterogeneity for linearized

Euler Equation Estimation.

We proceed as follows. We study variants of a standard life cycle model in which consumers have

time-separable (CRRA) preferences and face (aggregate) interest rate uncertainty and uninsurable

idiosyncratic income risk. We first solve numerically for policy functions in 6 different models (that

is, 6 different choices with respect to parameter values and constraints), which cover and extend the

range of different economic environments studied in the literature. We then simulate these models to

generate populations of agents that are ex ante identical but ex post heterogeneous.

Next, we propose simple non-parametric statistic to summarize the key characteristic of these

different environments. The average derivative of log consumption with respect to cash-on-hand weights

the semi-elasticity of the policy function (consumption function) with respect to cash-on-hand by the

agents’ ex-post cash-on-hand (asset) distribution. While the consumption function varies with different

values of preference and income process parameters, it will typically exhibit the same general shape:

steep at low wealth levels and much flatter (and near linear) at high wealth levels (where agents are

largely self insured). As we shall elaborate below, for a given risk aversion, the approximation bias in a

linearized Euler equation depends on the variance of consumption growth. This depends primarily on

the sensitivity of log consumption to shocks to cash-on-hand, which is controlled by the semi-elasticity

of the consumption function. Thus the key consequence of different parameter values (especially

discount rates) is not so much the shape of the resulting policy function but rather which part of the

policy function is ex-post relevant for agents. The average semi-elasticity measure integrates over the

ex-post distribution of the key state variable (cash-on-hand) and so captures both the semi-elasticity

of the policy function per se, and the ex-post relevance of different parts of the state space (and hence

different parts of the policy function). We use this measure to predict models for which linearized

Euler Equations are likely to be a poor basis for estimation.
2Following common practice, we use “valid” to refer to an instrument that is uncorrelated with the residual in the

equation of interest (and “invalid” to describe an instrument that is correlated with the residual.) We use “relevant” to
describe an instrument that is strongly correlated with the regressor whose correlation with the residual motivates the
use of and instrumental variable or GMM estimator. An instrument that is not strongly correlated with the endogenous
regressor is “weak” , or not relevant. See Murray (2006) for a survey of potential problems with instruments.
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We then conduct Monte Carlo experiments in which we sample from the simulated populations

according to the different data structures facing researchers. We consider true panels of different

lengths, as well as the construction of synthetic cohorts that follow birth cohorts through repeated

cross-sectional surveys, such as the U.S. Consumer Expenditure Survey. Synthetic cohorts typically

afford a longer time dimension than available panels, and this data structure has been used to estimate

Euler Equations (see for example, Blundell, Browning and Meghir, 1994; Attanasio and Weber, 1995;

Attanasio et. al. 1999).

In each Monte Carlo experiment, we test the validity and relevance of the instruments typically

used in the estimation. We then consider the resulting estimates of the key economic parameters (the

elasticity of inter-temporal substitution and the degree of relative prudence). We consider both first-

and second-order approximations to the exact Euler Equation. In experiments in which instrument

relevance appears to be a concern, we consider limited information maximum likelihood estimation as

an alternative to Linear GMM estimation.

In all the models we studied, variables that are orthogonal to the innovation in marginal utility

(and so valid instruments for the exact Euler equation) are not valid instruments when a linearized

Euler Equation is employed. The lagged interest rate is the only exception. Nevertheless, we find

that, across a range of quite different models, the linearized Euler Equation is modestly successful in

recovering the EIS when a long panel is available. For example, with a first-order approximation to

the Euler equation, a long panel, the standard instrument set, and realistic measurement error, mean

bias ranges between 3 and 16% of the true value of the parameter.

Additional findings, however, suggest this fairly positive result is of limited importance. First, with

impatient models, even with a long panel, the estimates are quite imprecise. For example, when the

true value of the EIS is 0.25, confidence intervals often include both 0 and 0.5. Second, when we

move to more realistic data structures, the performance of the linearized Euler Equation deteriorates

significantly. With a panel length corresponding to the most frequently employed PSID data, we

sometimes find mean bias that is a twice as large as the true parameter. We also show that the 2nd

order approximation to the Euler equation does not provide a superior basis for estimation, and in

fact suffers from a weak instrument problem: the standard instruments do not have useful predictive

power for the second order term.

Although our experiments with synthetic cohorts (which are a realistic route a long time dimension)

do confirm that they result in less mean bias than a short panel, the same experiments also reveal
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a significant loss of precision relative to a panel of the same length. We do find some evidence that

synthetic cohorts out-preform true panels in the presence of significant parameter heterogeneity.

For a given data structure, we do find that the effective semi-elasticity predicts the performance of

linearized Euler equation estimation across models (albeit, not perfectly).

The remainder of the paper is organized as follows. Section 2 reviews the problems associated

with linearized Euler equation estimation. Section 3 introduces the six different life-cycle models we

study. Section 4 describes the design of our Monte Carlo studies, and in particular, the different data

structures we consider. Section 5 develops our summary measure of the effective semi-elasticity of

a consumption function. Section 6 presents the results of our Monte Carlo experiments. Section 7

provides a concluding discussion.

2 The Econometrics of Euler Equation Approximation

Consider a standard life cycle model in which the consumer consumes a single good, has time-separable

preferences and holds long and possibly short positions of a single asset. The first order condition from

this problem is3

U
′
(Ct) = βEt[1 +Rt+1U

′
(Ct+1)] (1)

where U
′
is the marginal utility of consumption, β is the discount factor and Rt+1 is the real rate

between periods t and t+1. A widely used functional form for the sub-utility function is the iso-elastic

form:

U(Ct) =
C

(1−γ)
t

1− γ
(2)

where the parameter γ is the coefficient of relative risk aversion. Interest usually centers on the recip-

rocal of this parameter, (1/γ), the elasticity of inter-temporal substitution (EIS), or on the coefficient

of relative prudence, which is γ+1
2 .

Substituting this utility function into equation (1) yields an exact Euler equation:

(
Ct+1

Ct

)−γ
(1 +Rt+1)β = εt+1 (3)

3Of course, if the agent has access to several assets, and she is not at a corner, one can derive a similar condition for
each of these assets.
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with Et(εt+1) = 1 where εt+1 represents the expectation error (the innovation in discounted marginal

utility), which the theory implies is orthogonal to variables in the information set at time t. This

relationship is the the basis of very many estimates of the preference parameters (β, γ) and tests

for the validity of the orthogonality conditions implied by the theory. GMM estimation is based on

the orthogonality of the error term to all variables dated “t” or before, such as lagged consumption,

interest rate and income variables. As originally emphasized by Hall (1978), this is a very attractive

procedure since one can estimate the preference parameters without explicitly specifying the stochastic

environment that agents face.

Nonlinear GMM estimation on micro data is inconsistent if the consumption data are measured with

error. For example, if we allow for a multiplicative measurement error so that observed consumption

is given by:

C0
t = Ctηt (4)

then the exact Euler equation for observable consumption becomes

(
C0
t+1

C0
t

)−γ
(1 +Rt+1)β =

(
ηt+1

ηt

)−γ
εt+1 (5)

The problem is that the composite error term does not have a conditional expectation of unity, even

if we assume that εt and ηt are independent4

Et

[(
ηt+1

ηt

)−γ
εt+1

]
= Et

(
ηt+1

ηt

)−γ
Et(εt+1) = Et

(
ηt+1

ηt

)−γ
6= 1 (6)

It is now widely accepted that household level consumption data is likely to be very noisy. For

example, Runkle (1991) estimates 76% of the variation in the growth rate of food consumption in

the PSID is due to measurement error; Shapiro (1984) arrives at an even higher estimate of 92%

noise. Using a procedure that allows for preference heterogeneity, Alan and Browning (2010) obtain

an estimate of 86%. Dynan (1993) reports the standard deviation of changes in log consumption in

the CEX (American Consumer Expenditure Survey) is 0.2, which seems too large for “true” variations.

The other widely used data sources are quasi-panels, constructed from cross-section expenditure survey

information by taking within-period means following the birth cohorts through time (e.g. taking means

over all the 25 year-olds in one year and all the 26 year-olds in the next year). Although this averaging

reduces the effect of measurement error, the construction of quasi-panels from samples which change
4Note that ηt is not in the agent’s information set at time t and cannot be taken outside the conditional expectation.
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over time induces sampling error that acts very much like measurement error (Deaton, 1985).

One way to deal with measurement error problem is to linearize the equation (3) and use standard

linear IV and GMM techniques. In particular, the convention is to assume measurement error in

consumption is multiplicative. Naturally, log-linearization will move such measurement error into the

additive residual. Measurement error results in residuals with a MA(1) structure, but variables lagged

twice (or more) are still valid instruments. Following the steps in Carroll (2001) we get:

∆logCh,t+1 = α+
1
γ
log(1 +Rt+1) + eh,t+1 (7)

for the first order approximation and

∆logCh,t+1 = α+
1
γ
log(1 +Rt+1) +

γ + 1
2

[∆logCh,t+1]2 + vh,t+1 (8)

For the second order approximation. The constant term α contains the discount rate (β) and the means

of the higher order moments consumption growth and interest rates (for the first-order approximation,

this would be the second and higher moments; for the second order approximation, this is the third and

higher order moments.) In either case the residual term contains (i) the true innovation in marginal

utility (or “expectation error”) between t and t + 1, εt+1, (ii) the measurement errors at t and t + 1,

and (iii) an approximation error composed of variation in the higher moments of consumption growth

and interest rates (conditional on past information).

3 Life Cycle Models Studied

In order to investigate the problems associated with the estimation of approximate Euler equations,

we compare six different life cycle models of consumption which correspond to different economic

environments studied in the literature. In all six models, preferences are time-separable and within

period utility is iso-elastic with the coefficient of relative risk aversion set to 4 (so that the EIS is 0.25).

Agents face two types of income shocks, permanent and transitory. The income process of agent h

is:

Yh,t = Ph,tUh,t (9)

where Uh,t is an i.i.d. lognormal transitory shock with unit mean and a constant variance eσ
2
u − 1 and
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Ph,t is permanent income which follows a log random walk process:

Ph,t = GPh,t−1Zh,t (10)

where Zh,t is an i.i.d. lognormal permanent shock with unit mean and a constant variance eσ
2
z − 1.

In our simulations we set σu to 0.1 and σz to 0.05; these values are in line with those used in the

literature (they are identical to those used in Attanasio and Low, 2004) and experiments with other

values give similar results. We assume that the innovations to income are independent over time and

across individuals so that we abstract from aggregate shocks to income. However, there are aggregate

shocks in these environments because realizations of the real interest rate are assumed to be the same

across agents. The real interest rate follows an AR(1) process with a mean of 0.03, an AR parameter

of 0.6 and a standard deviation of the error of 0.025 (see Alan and Browning, 2010). In some models

we augment the income process just described with the possibility of a zero income realization (details

given below).

Table 1 presents the parameter values assumed for the 6 models. The models differ by degree

of impatience (since we are ignoring income growth, the degree of impatience is determined by the

difference between real interest rate and individual’s discount rate), by the possibility of a zero income

realization, and by the type borrowing constraint (either the natural borrowing constraint – the agent

can only borrow what she can pay back with certainty – or an explicit, period-by-period constraint.)

Table 2 summarizes the distinguishing features of the six models. Model AL-P is similar to the

environment studied by Attanasio and Low (2004). Agents’ discount rates are equal to the mean real

interest rate (0.03) and there is only the natural borrowing constraint. The important feature of this

model is that even though borrowing is allowed up to the natural limit, individuals do not borrow

because they are quite patient and so have a strong taste for accumulation. The second model, AL-I,

is an impatient version of the first model. In this model the discount rate of agents set to 0.07. As a

result agents in AL-I borrow especially early in life.

Model C-P and C-I are motivated by Carroll (2001). In these models we augment the income

process described above by allowing transitory income shocks to take a ‘0’ value in any given period

with small probability (specifically, with probability 0.01) .5 This addition to the model strengthens

agents’ precautionary motive. Moreover this assumption, along with backward induction and the fact
5Carroll (2001) specifies zero-income probabilities of 0.01, 0.03 and 0.05 in alternative experiments. Attanasio and

Low (2004) allow for zero-income with a probability of 0.05 in one of their robustness checks.
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that marginal utility of zero consumption is infinite means that agents will not borrow. The resulting

consumption functions are very steep at low wealth levels. C-I is very close to the “buffer-stock” model

studied by Carroll; C-P retains the income process from Carroll’s study but assumes more patient

agents.

Finally, we examine two versions of the environment first proposed by Deaton (1991) but not

previously considered in the Monte Carlo studies of Euler equation estimation. In these models,

individuals are explicitly prevented from borrowing. This assumption (with a lower bound for labour

income) leads to a kink in the consumption function. We have two motivations for including these

models. First, households with zero assets are observed in real data and these models (particularly

the impatient version) can replicate that fact, while the models described above do not. Second, a

comparison of D-P and AL-P will help clarify our arguments below regarding the key features of the

economic environment.

We solve these 6 different life cycle models using standard methods. Further details of our speci-

fication, solution and simulation of the life cycle models are given in the Appendix. After solving for

the consumption function of a generic household for 60 periods for each model, we simulate 60-period

consumption paths for 10,000 ex-ante identical agents (households) and discard the first 10 and last

10 periods. We then use the resulting simulated data (for each model) as the basis of our Monte Carlo

experiments.

4 Monte Carlo Design

Our Monte Carlo experiments draw repeatedly from the simulated population of agents (ie., consump-

tion paths) described above. This is done 1000 times. In each case a sample of 1000 agents is drawn

from the population of 10,000 with replacement. However, we mimic three different data structures.

The first is a long panel. Each of the 1000 agents is followed for 40 periods. As emphasized by Cham-

berlain (1984) and others (see Attanasio and Low, 2004) the orthogonality conditions implied by theory

hold in with long T . Thus a long panel is a best case scenario for Euler equation estimation. However,

typical lengths of household panels are much shorter, and very long panels will inevitably suffer from

attrition and other problems. We therefore also consider shorter panel data sets with T = 14. This

length roughly mimics the available PSID data on food expenditure from 1974 to 19876 which has been
6Although the PSID began in 1969 and continues, the food variables expenditure are very hard to interpret prior

to 1974, and food related questions are suspended for several years after 1987. This case illustrates typical practical
problems with true panels. It is not sufficient for the panel to continue for many periods. It is also necessary that the
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much used in Euler Equation estimation (see Alan and Browning, 2010, and the references therein).

Finally, one way in which researchers have tried to get around the short length of available panels

is to construct synthetic cohorts from repeated cross-sectional surveys. Some repeated cross-sectional

surveys, such as the Family Expenditure Survey (UK) or the Consumer Expenditure Survey (US) are

available for many years. They do not allow for individual agents to be followed over time. However,

cohorts defined by fixed characteristics can be followed by time and, as shown by Browning et al. (1985)

and Deaton (1985) this allows for the estimation of linear models (of individual agent behaviour) in

differences at the aggregate cohort level. Thus such data can be used to estimate linearized Euler

equations. Note that this is not the same as estimating an Euler equation on aggregate consumption

data; the individual-agent-level equation is explicitly aggregated, avoiding the problems identified by

Attanasio and Weber (1993).7

Attanasio and Low (2004) emphasize that aggregation to the cohort level can have additional

benefits (in addition to long T ); in particular, there can be some averaging-out of the measurement

error in household level consumption data. However, there are downsides to aggregation as well. While

no variation in aggregate level instruments (the lagged interest rate) is lost, potentially useful within-

cohort variation in other instruments (lagged consumption growth, lagged income) is lost. Moreover,

as shown in Deaton (1985), constructing cohort means year by year from fresh samples is subject to

sampling error, and this sampling error effectively induces a cohort-level measurement error in the

means. Thus it is of interest to compare the performance of linearized Euler equation estimation on

synthetic cohort data to the estimation of the same equation on true panels of different lengths.

In our Monte Carlo experiments on synthetic cohort estimation, we construct a synthetic cohort of

length T = 40 from our simulated populations. For our synthetic cohort, we draw, with replacement,

1000 agents for each period (t = 1, 2, 3. . . 40); thus the synthetic cohort is constructed from different

samples of individuals for each period, as would be the case in constructing a synthetic cohort from

the U.S. Consumer Expenditure Survey or the U.K. Family Expenditure Survey.

For each of these data structures (long panel, short panel, synthetic cohort), our baseline ex-

periments are conducted twice: first on the simulated data, and then on the simulated data with

measurement error added. Experiments on the simulated data without measurement error allow us

to isolate the effect of approximation bias and are comparable to previous papers in the literature.

consumption information be collected continuously and in a consistent fashion.
7As pointed out in Attanasio and Low (2004), estimation on synthetic cohorts requires an equation that is linear in

parameters. Estimation on aggregate data requires a household level equation that is also linear in variables.
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So they are a useful starting point. Of course, in the absence of measurement error, and with true

panel data, there is no reason to work with the linear approximation to the Euler equation, as one

could estimate the exact Euler equation by nonlinear GMM (as noted above, to use a synthetic cohort

requires the linear approximation). When we add measurement error to the simulated data, we create

a scenario which mimics the one faced by researchers using actual consumption data. Again, when

we work with synthetic cohort, this measurement error will be averaged out, but a second source of

measurement error (the sampling variation in cohort means) is introduced.

The measurement error that we add to the simulated data at the individual agent level is i.i.d

log normal with a unit mean and a variance of 0.004 such that the approximately 75% of the period

to period variance in consumption growth is due to the noise, close to the estimate for the PSID in

Runkle (1991).8 When working with the unadulterated simulated data, we lag instruments once, but

when we add measurement error to the simulated data we lag consumption instruments twice, because

i.i.d measurement error in consumption levels induces measurement error with an MA(1) structure in

consumption changes. We also use twice-lagged consumption growth and income instruments when

working with synthetic cohorts, because of the measurement error in cohort means induced by sampling.

All the different data structures we consider are summarized in Table 3.

In each of our experiments, we consider two things. As in previous papers in this literature, we

examine the actual estimates in repeated samples. We report the mean finite sample bias in 1000

replications, and also the mean standard error. However, we also go beyond the previous literature

and look directly at the properties of the instrument in the simulated data. The instruments we

consider are the ones used extensively in the literature: lagged interest rates, lagged consumption

growth and lagged income.9 We add lagged consumption growth squared to the instrument set for

the second order approximation. We consider the validity of these instruments – whether they are

uncorrelated with the residual in the log-linearized Euler equation (Equation number here) – and the

relevance of these instruments – the strength with which they predict the endogenous variables in the

estimating equation.

Note that because we know the true value of the preference parameter (γ) in our simulated data,

we can use the true parameter value to construct the true residuals in the linearized Euler equation
8This is the same measurement error structure as assumed in Alan, Attanasio and Browning (2009). We also repeated

our experiments with a measurement error variance that implied that approximately 50% of the period to period variance
in consumption growth is due to the noise (i.e. with a smaller measurement error variance.) The results were similar to
those obtained under our baseline measurement error assumption, and so for sake of brevity they are not reported, but
are available upon request.

9We use the same instrument set as Attanasio and Low (2004).
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(plus a constant). That is, inverting equations (7) and (8) and evaluating at γ = 4 gives:

∆logCh,t+1 −
1
4
log(1 +Rt+1) = α+ eh,t+1 (11)

for the first order approximation and

∆logCh,t+1 −
1
4
log(1 +Rt+1)− 4 + 1

2
(∆logCh,t+1)2 = α+ vh,t+1 (12)

for the second order approximation. All the terms on the left-hand side of equations (11) and (12)

are observed in our simulated data, so we can calculate the right-hand side for each observation in the

data. Those quantities will not be mean zero (because they contain the constant from the linearized

Euler equation). As described in Section 2, the variation in those terms across individuals and time

comes from innovations to marginal utility, measurement error, and approximation error (where the

latter comprises variation in higher-order moments in consumption growth and interest rates. The

constructed residuals on the right-hand side of equations (11) and (12) may or may not be correlated

with the instruments. We will assume that the measurement error is orthogonal to the instruments.

Theory indicates that the expectation error - but and not necessarily the approximation error - should

be orthogonal to lagged variables. But with the constructed residuals in hand, the issues is open to

direct empirical investigation.

Our instrument validity test is then a t-test obtained from the regression of these constructed

residuals on our instruments. The null hypothesis is that the residuals are uncorrelated with the

instruments: a significant t-statistic would suggest that instruments are not valid. Estimation of

linearized Euler equations (with the standard instruments) will not be a promising strategy if we get

many rejections of this null hypothesis. We report the fraction of t-statistics in the repeated samples

of our Monte Carlo experiments that exceed 1.96 in absolute value (corresponding to a 5% test). It

is important to note that this is not a standard over-identification test. Because we can construct the

appropriate residuals, we can test the validity of the instruments even when the equation of interest is

just identified.

In each sample in each experiment we also conduct the “first stage” regression(s) of the endogenous

regressors on the instruments to examine instrument relevance (that is, to check for weak instruments).

The endogenous regressors are the contemporaneous interest rate, and, in the case of the 2nd order

approximation, the square of consumption growth. We establish instrument relevance using the Cragg-
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Donald F statistic.10 The null hypothesis of this test is instruments are jointly weak. Estimation of

linearized Euler equations (with the standard instruments) can only be a promising strategy if we get

many rejections of this null hypothesis. Stock and Yogo (2005) calculated the critical values for this test

as a function of the number of included endogenous regressors, the number of instrumental variable, and

the desired maximal bias of the IV estimator relative to OLS. In the case for one endogenous variable,

allowing for a maximum relative bias of 10% compared to OLS, and at the 5% significance level and

with three of instruments (as in our experiments with the first-order linearized Euler equation), the

critical value is 9.08 for Linear GMM, and 6.46 for LIML. When there are two endogenous variables,

a maximum relative bias of 10% compared to OLS, a 5% significance level and four instruments (as in

our experiments with the second-order linearized Euler equation), the critical value is 7.56 for Linear

GMM , and 4.72 for LIML.

In our experiments realizations of the interest rate process are common to all agents. This means

that we have an aggregate variable on the right-hand side of equations (7) and (8) and the usual formu-

las may significantly underestimate the standard error of the estimates (Moulton, 1986). Accordingly,

we cluster the standard error on the time period.

Finally, we note that when estimating on data simulated from models D-P and particularly D-I the

Euler equation does not hold in situations where the explicit borrowing constraint is binding. Thus

we delete form the estimation sample all observations with cash on hand strictly equal to zero at t−1.

Note that the conditional expectation expressed in Equation (1) which underpins Euler equation still

holds conditional on this selection: we are selecting on the basis of a variable in the information set.

5 The Consumption Function and Linearized Euler Equations

Before turning to the Monte Carlo results, it is useful to develop some hypotheses regarding when the

estimation of linearized Euler Equations is likely to perform well, and when it is likely to fail.

The potential problem with the approximate Euler equation (Equation 7 or 8) is that variation

in the higher order moments of consumption growth (and consumption growth and interest rates)

that are subsumed into the residual term may be correlated with lagged variables, leaving researchers

without any valid instruments. For example, there is no theoretical reason that the lagged consumption

growth should be uncorrelated with conditional skewness. We refer to the resulting inconsistency of

the estimate as approximation bias.
10This is the F statistics from the first stage when there is only one endogenous regressor.
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Of course, this is more likely to be a problem the larger (and more variable) the higher moments

are. For example, a comparison of the first- and second- order approximations in Section 2 (Equation

7 or 8) shows that the key omitted variable in the first-order linearized Euler Equation is the variance

of consumption growth, which may be correlated with the lagged consumption growth.

The models we consider are homogeneous with respect to the stochastic processes. For a given

model, all agents face the same income and interest rate processes. Across models, the interest rate

process is the same, and the only difference across models in the income process is the small positive

probability of zero income realization in models three and four. Thus differences in the variance of

consumption growth are driven not by these stochastic processes but rather by the sensitivity of log

consumption to realizations of the state variables. This in turn is controlled by the semi-elasticity of

consumption function (policy rule) with respect to the state variables. The semi-elasticity with respect

to cash-on-hand turns out to be critical. A large semi-elasticity implies that shocks to cash-on-hand

will pass through to greater variability in consumption growth. This has two consequences. First,

from the point of view of estimating interest rate responses, greater variability in consumption growth

coming from income shocks means more noise and hence less precision. Second, when the higher

order moments of consumption growth are larger, there is more scope for them to vary and potentially

correlate with the instruments.11Thus we expect that when the semi-elasticity is large, estimates based

on linearized Euler equations will be certainly be less precise, and they may be more biased.

Figure 1 illustrates these key characteristics of our models. For each model, the numerically solved

consumption function for age 40, and the (simulated) distribution of normalized cash-on hand at the

same age are plotted. Of course the consumption function also depends on the interest rate. We solve

the model for a stochastic interest rate but for comparability we simulate all 6 models with a common

vector of interest rate realizations. In all our simulations the interest rate realization at age 40 is 0.033

(recall that the long run average of the interest rate process is 0.03.)

In most of the models we study, the policy functions (that is, consumption functions) are nonlinear,

and broadly similar: steep (and curved) at low cash-on-hand levels but much flatter (and near-linear)

at high cash-on-hand levels. The consumption function for AL-P is distinctive in that it is linear, while

the consumption for D-P is distinguished by a sharp kink.

What determines the degree of approximation bias is not overall shape of the policy function (which
11If the higher moments of consumption growth were large but varied neither through time or across agents, then of

course they would be subsumed in the intercept of the linearized Euler Equation, and could not be correlated with the
instruments. The point here is that larger second and higher moments give greater scope for potential correlation.
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is common across many models) but the semi-elasticity of the consumption function in the region of

the state space in which agents operate. It is clear from the figures that cash-on-hand distributions of

patient models (Models AL-P, C-P and D-P) are located at higher cash-on-hand levels. As a result, for

agents in these models, the steep parts of the consumption function are irrelevant and their weighted

average semi-elasticity is low. On the contrary, in impatient models (Models AL-I, C-I and D-I) agents

accumulate very little wealth. They operate on the steep part of their consumption function, and the

weighted average semi-elasticity is high. The consumption growth of these agents will thus be much

more sensitive to shocks to cash on hand, and the resulting higher variability of consumption growth

gives greater scope for approximation bias.

To summarize the effective semi-elasticity of the consumption function for each of our models, we

use our simulated data to estimate, non-parametrically, the weighted average semi-elasticity of the

consumption function. This statistic weights the semi-elasticity of the underlying consumption func-

tion (at age 40 and the corresponding realized interest rate) at every point by the ex-post density

of normalized cash-on-hand.12 To do this, we allow log consumption values from each age-40 con-

sumption function to be a flexible function of the normalized cash-on-hand (x).13 That is, first we

non-parametrically estimate:

E[logci|xi;A, r] = gA,r(xi) (13)

on the simulated data. We do this using local polynomial regression, which provides convenient

estimates of ∂gA,r

∂x (x) at each evaluation point. In practice, we evaluate at each x point (cash-on-hand

level) that arises in the simulated data, for age 40. Next, we take a weighted average of this measure,

where the weights are the age-specific empirical density ˆf(x) of cash-on-hand in the simulated data at

each evaluation point.14 Thus we calculate:

effective semi− elasticity =
ˆ ˆ∂gA,r

∂x
(x) ˆf(x)dx (14)

The effective semi-elasticity for each model is given in each panel of Figure 1.

A comparison of AL-P and D-P illustrates our point. These models are superficially quite different

in the sense that borrowing is allowed in AL-P but not in D-P and the shapes of the consumption

functions for these two models are very different. However, in the region of the state space where
12This is the ratio of cash on hand to permanent income.
13We could, of course, calculate the same statistic at different ages. The value of the statistic changes marginally, but

the ordering of the models does not.
14For more on average derivative estimation see, for example, Deaton and Ng. (1998).
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agents operate, as indicated by the empirical density of cash on hand, the consumption functions are

very similar, and this is reflected in almost identical values for the effective semi-elasticity.

Our hypothesis is that estimation of linearized Euler Equation will perform poorly when the ef-

fective semi-elasticity is large, as it is in the impatient models (AL-I, D-I, and C-I) and that among

impatient models, performance may be worse when the effective semi-elasticity is higher. For example,

performance is expected to be worse in D-I and C-I than in AL-I. Among apparently different models

with very similar effective semi-elasticity, such as AL-P and D-P, we would expect performance to be

quite similar. Of course, the effective semi-elasticity is not an object that we would calculate ex-ante

on real data (in which cash-on-hand is typically not observed).15 We calculate it here on the simu-

lated data to clarify and test intuition about the performance of linearized Euler equations in different

environments.

6 Monte Carlo Results

6.1 Baseline Experiments

We begin our discussion of the results of the Monte Carlo experiments with Table 4. Here we consider

estimation of a first order approximation the Euler equation. Table 4 reports evidence on instrument

validity and instrument relevance. As described above, instrument validity is assessed by regressing

the error term from the linearized Euler equation (plus a constant) on the instruments. The error

term is calculated (without estimation) from the simulated interest rate and consumption growth, and

the true value of the preference parameter, γ (see equation 10). Instrument relevance is assessed by

regressing the endogenous explanatory variable - here the interest rate - on the instrument set. Again

the instrument set includes lagged interest rate, lagged consumption growth and lagged income.

The final column of Table 4 reveals that in these models, using the first order approximation as

a basis for estimation, the standard instrument set has very good predictive power for the interest

rate. There is no issue of weak instruments. The table also shows that the lagged interest rate is

always a valid instrument. In no model and no sample does it have a significant correlation with

the error term.16 In impatient models (AL-I, C-I, and D-I) we have significant validity problems

with the other instruments. For example, in AL-I, without measurement error, we find that lagged

consumption growth is significantly correlated with the error term in 985 out of 1000 samples; For
15For example, in the PSID, wealth is observed only every five years.
16The complete absence of rejections suggests that our clustered standard errors are too conservative.
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C-I lagged consumption growth is significantly correlated with the error term in all 1000 samples.

This suggests that lagged consumption growth and lagged income are not valid instruments for the

estimation of the first-order linearized Euler equation (even though the model we simulate implies

that they must be uncorrelated with the innovation in marginal utility). Interestingly, adding realistic

measurement error to consumption appears to improve the situation because it weakens the correlation

between these instruments and the error terms (without much cost in terms of instrument relevance.)

For example, in the C-I model, the frequency with which lagged consumption growth is significantly

correlated with the error term falls from 100% to 15%. This could be because the error terms now

contain the measurement error (in addition to the variation in approximation error and the innovations

to marginal utility) or it could be because, in the presence of measurement error we use second (rather

than first) lags of consumption growth in the instrument. Nevertheless, the results in this table strongly

suggest that only the lagged interest rate should be used in the instrument set.

Table 5 reports the estimates of the EIS that result from estimating the first-order linearized Euler

Equation on these models. The left-hand column gives the results with unadulterated consumption

data; the second column gives the results when realistic measurement error is added to the data. The

true value of the EIS is 0.25. For each model, and in each column, we report three numbers. First,

at the top, the mean estimate in 1000 samples. Second, in round parentheses, the mean standard

error of the estimate across the samples. Note that the standard errors calculated in each sample are

robust to heteroskedasticity and clustered on time period. Third, in square parentheses the mean of

the percentage bias across the samples.17

In the left-hand column, without measurement error, we see the mean bias is negative in all models

the first-order linearization of the Euler equation tends to lead to underestimates of the EIS. As

expected the problem is much more severe in impatient models. In patient models, the mean bias is

about 5% of the true value. In impatient models, this rises to 12 to 22% of the true value.

The right-hand column of Table 5 reveals that measurement error sometimes worsens things, but

not always. There is a loss of precision in all cases, but this is sometimes small. The mean percentage

bias sometimes rises, and sometimes falls. The pattern of the estimation strategy performing much

better in models with patient agents is no longer so sharp.

Another aspect of Table 5 is that the effective semi-elasticity is moderately successful at predicting

performance of the linearized Euler Equations. For example, the AL-P and D-P models are quite
17We also calculated the median percentage bias in each case. These were very similar to the mean percentage bias

and are available on request.
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different (and have quite different consumption functions - see Figure 1), but they have very seminar

effective semi-elasticities and the the performance of the linearized Euler equation is quite similar

across the two models. More broadly, models in which agents are more impatient have higher effective-

elasticities and we find that with data from this models estimates of the EIS are less precise, and

generally more biased.

Tables 6 and 7 parallel Tables 4 and 5, but for the second-order approximation of the Euler

Equation. The first thing to note in Table 6 is that there are now strong signs of weak instrument

problems (recall that critical value for two endogenous and four instruments at the 5% significance

level is 7.56 for Linear GMM and 4.72 for LIML). The extra endogenous variable here is the square

of consumption growth, and the extra instrument the square of lagged consumption growth, as is

standard in the literature, but the instrument set has insufficient predictive power. In commenting on

the poor performance of the second-order linearization to of the Euler Equation, Attanasio and Low

(2004) postulated that the problem was the lack of a good instrument for the 2nd order term. The

statistical tests reported in the final column of Table 6 confirm that this is the case.

Turning to instrument validity, we see similar patterns as in Table 4. The lagged interest rate is

always a valid instrument, whereas the lags of consumption growth (and its square), and lagged income,

often are not. Problems of invalid instruments are greater in models with impatient agents and high

effective semi-elasticities, but are somewhat ameliorated by measurement error in consumption (and

the consequent use of second lags as instruments).

Table 7 reports the estimates. There are two coefficients to estimate in the 2nd-order approximate

Euler equation. The coefficient on the interest rate is the EIS, while the coefficient on the square of

consumption growth is the coefficient of relative prudence. For each we report the mean coefficient,

the mean standard error, and the mean percentage bias. As before all calculations are replicated with

and without measurement error in consumption.

There are two important questions here. First, do the estimates of the coefficient of relative

prudence contain any useful information. The answer is plainly no. In almost all models the estimates

are very imprecise and suffer from substantial mean bias. The second question is whether the inclusion

of the 2nd order term in consumption growth improves the estimate of the EIS, by reducing the scope

for approximation bias. Comparing Table 7 with Table 5 suggest no strong evidence of improvement.

We would summarize the result of these section as follows. With a long panel and sufficient variation

(recall that T= 40 here, and the auto-correlation coefficient in the interest rate process is 0.6), the
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linearized Euler Equation is modestly successful in recovering the EIS. Across a range of quite different

models, and with realistic measurement error in consumption, the mean bias in estimates of the EIS

ranges from 3% to 16% (see the 2nd column of Table 5). However, note that in impatient models,

the estimates are quite imprecise. For example, with the data from the AL-I model, with realistic

measurement error and the first-order approximation, the mean width of a confidence interval for the

EIS is 0.76, which would include both 0 and 0.5. There is no advantage to the 2nd order approximation

to the first-order approximation. In all the models we studied, the lagged interest rate is the only valid

instrument. It is the aggregate shocks to interest rates that identify the parameter of interest.18

These baseline estimates are based on a true annual panel of 40 years in length. While this is

useful “best case” scenario, given the cost of panel surveys, as well as problems with attrition, this is

not realistic. In the next subsection we consider two more realistic data structures.

6.2 Alternative Data Structures

In Tables 8 and 9 we report experiments with two more realistic data structures. As described in Section

4 these are a short annual panel of 14 years, and a synthetic cohort observed for 40 years. In this

subsection our intention is to be as realistic as possible and so we always experiment with consumption

data which includes measurement error. To facilitate comparison, we present results based on a long

true panel with measurement error (repeated from the previous section) alongside the results for more

realistic data structures. We focus on the AL and C models (both patient and impatient versions) and

only employ the first-order approximation to the Euler equation, as our baseline experiments indicated

no advantage to the 2nd-order approximation.

Table 8 reports our findings on instrument validity and instrument relevance with these alternative

data structures. There are two points to note. First, problems with the validity of lagged consumption

growth and lagged income as less apparent with the synthetic cohort. Thus it is largely the individual

(cross-sectional) variation in these instruments, rather than the time-series variation, that undermines

validity in the (true) panel data. Second, turning to instrument relevance, the instruments are much

weaker at the cohort level and in many case are below the critical value of the Cragg-Donaldson F-
18In our experiments, all agents face the aggregate interest rate, and the lagged aggregate interest rate is a very strong

instrument. In practice, there may be individual variation in the inter-temporal price which agents face which is not
easily observable to the researcher. On the other hand, our experimental setup presumes aggregate exogenous shocks to
interest rates. Part of the argument in Carroll (2001) is that in an equilibrium of a standard closed model, the interest
rate is not exogenous. We nevertheless think that it is reasonable to proceed on the basis that there are shocks to
aggregate interest rates that can be thought of as exogenous to typical consumers is a given country. Given the results
in Table 5, we did experiment with the just identified model (with the lagged interest rate as only instrument). This
gave very similar results and the details are available upon request.
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test (recall that critical value for one endogenous and three instruments at the 5% significance level

is 9.58 for Linear GMM and 6.46 for LIML) For this reason, when estimating the approximate Euler

equation these experiments, we used both linear Generalized Method of Moments (GMM) and Limited

Information Maximum Likelihood (LIML). The latter is known to perform better when instruments

are weak (see, eg., Andrews and Stock, 2005; Hahn, Hausman, and Kuersteiner, 2003).

Table 9 summarizes the estimates from these Monte Carlo experiments. As in Tables 5 and 9 we

report the mean estimates (in 1000 replications) the mean standard error and the mean percentage

bias. Estimation on the short panel is, in general, not successful. The extent of mean bias, particularly

on the impatient models, is unacceptable. For example, when the data are generated by AL-I, and

estimation is by linear GMM, the mean bias is 224% of the true parameter value. These results

suggest that 14 annual observations - as are afforded by the PSID - are not adequate for linearized

Euler Equation estimation.

We would expect LIML to perform better than GMM on the synthetic panel, where the instruments

are weak. LIML does in fact lead to more reliable estimates when the data are generated by AL-I,

and used to construct a synthetic panel. The mean bias is just 1.2% of the true parameter value, as

opposed to 27% when linear GMM is employed on the same 1000 data sets.

In terms of mean bias the synthetic cohort produces results that compare quite well to the long

panel, particularly when LIML is employed. The cost though is a loss of precision: the mean standard

error is about twice as large in the synthetic panel. Here we are estimating with a single cohort, and

some additional precision might come from following multiple birth cohorts through the data.

A summary of this section is that with realistic data structures, linearized Euler Equation estimation

seems much less promising.

6.3 The Effects of Parameter Heterogeneity

A final issue which we investigated is the effects of parameter heterogeneity. Emerging evidence strongly

suggests that the key structural parameters of the consumption Euler Equation are heterogeneous in

the population (see for example, Guvenen (2006) and Alan and Browning (2010)). Heterogeneity in the

EISi (1/γi) implies heterogeneity in the slope(s) of the linearized Euler equation. As noted in Section

2, the discount rate is subsumed in the constant of the linearized Euler equation, so that heterogeneity

in the discount ratesβi implies heterogeneous intercepts. Let ¯EIS be the mean of EIS and β̄ be the

mean discount factors in the population under study. Then the first-order approximation to the Euler
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equation is:

∆logCi,t+1 = αi + EISilog(1 +Rt+1) + ei,t+1

= ᾱ+ ¯EISlog(1 +Rt+1) + [(EISi − ¯EIS)log(1 +Rt+1) + (αi − ᾱ) + ei,t+1] (15)

Heterogeneity in preference parameters now enters the composite error term and it is immediately

obvious that many of the usual instruments are now unlikely to be valid for a second reason. Lagged

consumption growth will certainly be correlated with heterogeneity in discount rates or the EIS; lagged

income may be as well. In contrast the aggregate interest rate has only time series variation, and so

is orthogonal to time-invariant individual preference heterogeneity by construction. Thus preference

heterogeneity is a further reason why aggregate shocks to the inter-temporal price must play a central

role in identifying the parameters of interest. In the presence of preference heterogeneity, the synthetic

cohort data structure may have the further advantage that such heterogeneity, like measurement error

in consumption, is averaged out.

Table 10 reports a set of experiments designed to explore this issue. In the top panel of of Table 10

we report results from Monte Carlo experiments on data simulated from models. The first two have

been presented previously in Table 5: AL-P and AL-I with γ = 4 (and hence an EIS of 0.25). The

third is a variant of AL-P with γ = 6 (and hence an EIS of 0.167). In all three cases the simulated

data have been augmented with realistic measurement error. Estimation is based on the first-order

approximation to the Euler equation and is by linear GMM. With more curvature in utility (and hence

a lower EIS), the AL-P model has higher effective semi-elasticity of 0.0498 (as opposed to 0.0425 when

γ = 4 ). The top panel of Table 5 shows that with this additional curvature in utility, linearized

Euler equation estimation performs somewhat less well, at least in the AL-P model. There is more

suggestion of potential approximation bias: the lagged interest rate is often no longer valid. The mean

percentage bias doubles, from 6% to 12%.

The key results of this section, are in the next two panels of Table 10. Here, in each replication

we mix data from the two different models. In the middle panel we consider heterogeneity in the EIS

by mixing data from two versions of the AL-P. Half the agents are drawn from data generated by the

model with γ = 4, while the other half are drawn from data generated by the model with γ = 6. The

issue here is whether linearized Euler equation estimation recovers the mean EIS, which is 0.2085. We

considered two data structures: the long panel (T = 40) and a synthetic cohort of the same length.
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Linearized Euler equation estimation does reasonably well here, and recovers the mean EIS with about

as much accuracy and precision as with data from a homogenous model. There is no strong evidence

of an additional advantage to the synthetic cohort data structure. In fact, given the same T , the two

procedures exhibit similar performance, with mean bias of 7 or 8 percent. Again, there is a lack of

precision with the synthetic panel relative to the long panel.

The third panel we consider discount rate heterogeneity by mixing simulated data from models

AL-I and AL-P. Again, discount heterogeneity generates heterogeneous intercepts in the linearized

Euler equation. Here estimation on linearized Euler Equations does a poor job of recovering in the EIS

with mean bias of 20% or more. Note however, that this is not much worse than with data from the

homogenous AL-I model. The poor performance may be partly a consequence of the inclusion of data

from impatient agents, as well as of preference heterogeneity. Nevertheless, in this panel we do show

some evidence that the synthetic cohort performs a bit better, at least in terms of mean bias, than a

true panel of the same length. This is presumably due to the averaging out of individual heterogeneity.

As always, though, the synthetic cohort estimates are less precise.

Overall, the results of this subsection do not significantly alter the findings that emerged in the

previous subsections. The first-order Euler equation leads to biased estimates of the EIS, but that bias

is perhaps not too large when there is a sufficient time dimension to the data, and sufficient variation

in interest rates. A sufficient time dimension can only realistically be achieved with a synthetic cohort.

Estimates are unlikely to be very precise, and bias will be worse the more impatient agents are.

7 Discussion

A large empirical literature investigates the preference parameters that control the sensitivity of con-

sumption (or, equivalently, saving) to interest rates (the elasticity of inter-temporal substitution) and

to uncertainty (prudence). A common approach to estimating these parameters employs the (Euler

equation) derived from the dynamic optimization problem of a consumer. Often these non-linear equa-

tions are log-linearized (approximate Euler equations) so that linear instrumental variables methods

can be used to deal with measurement errors in consumption. However, it has recently been argued

that the approximation bias induced by linearization may be worse than the problems that linearization

is intended to solve. Consequently, the usefulness of the Euler equation approach has been debated.

We have explored this issue with a series of simulation studies. Our findings offer a reconciliation of

the debate.
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On the one hand, our results confirm the finding of Attanasio and Low (2004) that with sufficiently

long time series and sufficient variation in the interest rate, linearized Euler equation estimation works

reasonably well. We strongly affirm their emphasis on the central role that variation in the inter-

temporal price must play in estimating the elasticity of consumption with respect to that price. We

find no evidence that the particular models studied by Attanasio and Low (2004) generate data which

is particularly suitable for linearized Euler equation estimation. We also find that the second-order

approximation to the Euler equation provides no advantage over the first-order approximation and

directly confirm Attanasio and Low’s suggestion that the key problem with the second-order approx-

imation is that the conventional instruments have insufficient predictive power in this case. In other

words, we showed that estimation of the second-order approximation suffers from a weak instrument

problem.

More broadly, though, our findings support Carroll (2001) and others in this literature who are

skeptical of the usefulness of linearized Euler equation estimation. We find that the performance of

linearized Euler equation estimation declines, with both greater mean bias and a loss of precision, when

agents are moderately impatient. Perhaps more importantly, Linearized Euler equation estimation

does not appear to work well on any realistic data structure. A sufficient time dimension can only

realistically be achieved with a synthetic cohort, and our experiments suggest that estimates from

synthetic cohorts of sufficient length, while often exhibiting small mean bias, are quite imprecise.

How then, can we learn about the important structural parameters such as the EIS? One reaction

to these results would be to move toward the estimation of more fully specified structural models. We

have some sympathy with this view. At the same time, however, it is important not to lose sight of

what is learned from the data, and what is assumed by the model.
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Appendix: Specification, Solution and Simulation of Life-Cycle

Models

We assume that the utility function is intertemporally additive and the sub-utilities are iso-elastic.

The problem of the generic household is:

max
Ct

Et

T∑
t=1

βtu(Ct)

s.t. Xt+1 = (1 +Rt+1)(Xt − Ct) + Yt+1

where Ct is nondurable consumption in period t, Xt is cash-on-hand (total financial and nonfinancial

wealth) and Yt is current labor income. We assume that durable consumption and leisure are separable

from the nondurable consumption. The income process is assumed as follows:

Yt+1 = Pt+1Ut+1

Pt+1 = GPtNt+1

where G is predictable permanent income growth, Pt is permanent income which is subject to log-

normally distributed shocks Nt with mean unity and variance (eσ
2
n − 1), current income Yt equals

permanent income multiplied by a transitory shock, Ut , which is distributed lognormally with mean

one and variance (eσ
2
u − 1). The interest rate series is assumed to be generated by a stationary first

order autoregressive process with long-run mean µ and autoregressive coefficient ρ. Interest rates

shocks εt+1 are assumed to be white noise with variance, σ2
ε . The process is:

Rt+1 = (1− ρ)µ+ ρRt + εt+1.
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The inter-temporal model described above does not have an analytical solution due to the assumed

income uncertainty. Therefore we utilized the standard numerical dynamic programming methods to

obtain a solution. Since the utility function is additive over the life cycle we solved the model recursively

starting from the last period of life. We assume away any bequest motive so that consumption in period

T is:

Ct(xT ) = xT .

The problem is solved via policy function iteration using the terminal value condition. Having a

nonstationary income process makes the problem harder to solve since the range of possible income

values is too large. Instead, we redefine all relevant variables in terms of their ratios to permanent

income and solve for the consumption to income ratio. By doing this we reduced the number of

state variables to two, namely the cash on hand to income ratio and the interest rate. Moreover, we

obtain an iid income process which can be approximated by standard Quadrature methods. Given the

redefinition of the variables, the Euler equation can be written as:

θt(ωt, Rt)−γ − βEt[(1 +Rt+1)θt+1(ωt+1, Rt+1)−γn−γt+1 = 0

where θt = Ct

Pt
, ωt = xt

Pt
. At the terminal date T , consumption to income ratio is a function of only the

cash on hand to income ratio and since the bequest motive is assumed away it follows that θT = ωT .

For the income process, we use 10 point Gaussian Quadrature and we approximate the interest rate

process by forming a 10 point first order discrete Markov process. We use a cubic spline to approximate

the consumption function at each iteration. The agent is allowed to borrow the amount he can pay

back with certainty. In practice this constraint will never bind because the functional form of the

utility function implies that zero consumption results in infinite marginal utility. In models where

we do not assume an explicit borrowing limit (model 1, 2, 3 and 4), the consumption functions are

continuously differentiable. In fact, in our case where agents have iso-elastic preferences and income

uncertainty, consumption functions are strictly concave.

In order to solve the problem, we define an exogenous grid for the cash on hand to income ratio:

{xj}Jj=1. It is important to adjust the grid as the solution goes back in time. The algorithm finds the

consumption level that makes the standard Euler equation hold for each value of x and r. We made

the grid for x finer at lower levels in order to capture the curvature of the consumption function. After

solving for the consumption function of a generic household for 80 periods, we simulate consumption
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paths for 10,000 ex-ante identical households facing the same interest rate realizations. We use only

the middle 40 periods for the estimations. Table 1 presents the assumed parameter values for our

experiments.
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Table 1: Parameter Values 

 

Parameter Value 

Coefficient of Risk Aversion  4, 6 

Discount Rate            
1

=( )-1  0.03 and 0.07 

Standard Deviation of Permanent Income Shocks (  0.05 

Standard Deviation of Transitory Income Shocks 
u

 0.1 

Unconditional Mean of Interest Rate Process  0.03 

AR(1) Coefficient of Interest Rate Process  0.6 

Standard Deviation of Interest Rate Process  0.025 

Probability of Zero Income (Models 3 and 4) 0.01 

Table 2: Models 

 

Model Impatient Patient Borrowing Constraint 
Zero Income  
 Probability  

AL-P - Yes Life Time No 

AL-I Yes - Life Time No 

C-P - Yes Life Time Yes 

C-I Yes - Life Time Yes 

D-P - Yes Explicit No 

D-I Yes - Explicit No 
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Table 3: Data Structures 

 Measurement 
Error True Panel N T Cohorts 

Long Panel N Y 1000 40 - 

Long Panel Y Y 1000 40 - 

Short Panel Y Y 1000 14 - 

Synthetic Cohort Y N 1000 40 1 
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Table 4: First Order Approximation  

Instrument Validity and Relevance Results, 1000 replications 

 
Instrument Validity 

First Order :  

 

Instrument 
Relevance 

(First Stage) 

  Fraction of  t stats with absolute value greater than 1.96 F stat 

Model 
(effective 

semi-
elasticity) 

Measurement 
Error 

 
Lag Interest Rate 
 

Lag 
Consumption 

Growth Lag Income 
 

Mean 
[10% , 90%] 

AL-P No 0 0.035 0.066 7000 

(0.0425)     [6996 , 7003] 

 Yes 0 0.084 0.002 5524 

     [5522 , 5526] 
      

AL-I No 0 0.985 0.989 7458 

(0.0542)     [7450 , 7470] 

 Yes 0 0.134 0.732 7145 

     [7140 , 7151] 
      

C-P No 0 0.078 0.019 7362 

(0.0427)     [7320 , 7402] 

 Yes 0 0.109 0.004 7076 

     [7044 , 7113] 
      

C-I No 0 1 0.338 7362 

(0.1099)     [7320 , 7402] 

 Yes 0 0.150 0.020 7074 

     [7035 , 7108] 
      

D-P No 0 0.041 0.022 7438 

(0.0426)     [7431 , 7447] 

 Yes 0 0.092 0.004 7147 

     [7140 , 7157] 
      

D-I No 0 0.124 0.160 6961 

(0.3922)     [6853 , 7076] 

 Yes 0 0.061 0.045 6682 

     [6573 , 6775] 
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Notes to Table 4: 

1. The average semi elasticity of each model is reported in parentheses in the first column. All other numbers are 
result of 1000 Monte Carlo replications. 

2. For the first order approximation instruments, without measurement error case instruments used are lag interest 
rate, lag consumption growth and lag income.. For the measurement error cases, we use the twice lagged 
consumption instrument with the lag interest rate and lag income. 

3. Instrument validity test is a t-test obtained from the regression of constructed residuals on instruments. 
a. Instrument validity  columns report for each instrument the fraction of  t stats with absolute value 

greater than 1.96 (critical value at 5% significance level) 
b. Corresponding mean values of R2 for each regression are reported.  
a. Instrument Relevance column reports the Cragg-Donald F (CDF) statistic from the first stage of IV. 

For the first order approximation interest rate is the only endogenous variable and lagged interest rate, 
(twice )lagged consumption growth, lagged income are instruments. Mean values of  CDF are 
reported. CDF values at 10 and  90 percent are in parentheses.  

b. Stock and Yogo (2002) - test for weak instrument 
0

H =bias of two stage estimation relative to OLS is 

greater than 10%  
i. Critical Value at 5% significance level when the number of instruments is 3 and endogenous 

variable is 1  for Linear GMM = 9.08, for LIML=6.46. 

4. .The measurement error that we add to the simulated data is i.i.d log normal with a unit mean and a variance of 
0.004. 
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1. For each model and estimation strategy, the first number is the mean value of the estimate of the EIS in 1000 
Monte Carlo replications.  The second number, in parenthesis, is the mean robust standard errors clustered on 
period. The third number is the mean bias as the percentage of true parameter value. The effective semi-
elasticity of each model is reported in parentheses in the first column. 

 Table 5: Estimates of the EIS, 1000 replications 

 First Order Approximation 

True Value 
 

EIS:

 

1
0.25   

Model 
(effective semi-

elasticity) 

 
Base 

With 
Measurement Error 

AL-P mean coefficient 0.234 0.290 

(0.0425) (mean std. error) (0.078) (0.105) 

(mean bias as % of true parameter value) [-6.4] [16] 
 

 

  

AL-I mean coefficient 0.194 0.261 

(0.0542) (mean std. error) (0.192) (0.194) 

(mean bias as % of true parameter value) [-22.4] [4.4] 
 

 

  

C-P mean coefficient 0.242 0.258 

(0.0427) (mean std. error) (0.041) (0.048) 

(mean bias as % of true parameter value) [-3.2] [3.2] 
    

C-I mean coefficient 0.219 0.216 

(0.1099) (mean std. error) (0.039) (0.044) 

(mean bias as % of true parameter value) [-12.4] [-13.6] 
 

 

  

D-P mean coefficient 0.238 0.244 

(0.0426) (mean std. error) (0.060) (0.063) 

(mean bias as % of true parameter value) [-4.8] [-2.4] 
 

 

  

D-I mean coefficient 0.218 0.236 

(0.3922) (mean std. error) (0.109) (0.175) 

(mean bias as % of true parameter value) [-12.8] [-5.6] 
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Table 6: Second Order Approximation 

 Instrument Validity and Relevance Results, 1000 replications 

 

Instrument Validity 

Second Order :  

Instrument 
Relevance 

(First Stage) 

  Fraction of  t stats with absolute value greater than 1.96 CDF stat 

Model 
(effective semi-

elasticity) 

Measurement 
Error 

 
Lag Interest 

Rate 
 

Lag 
Consumption 

Growth 

Lag Income 
 

Lag 
Consumption 

Growth Square 

Mean 
[10% , 90%] 

AL-P No 0 0.048 0.027 0.062 3.24 

(0.0425)      [0.21, 9.78] 

 Yes 0 0.073 0.012 0.051 1.18 

      [0.01 , 4.49] 

       

AL-I No 0 0.487 0.554 0.690 93.6 

(0.0542)      [42.7 , 176] 

 Yes 0 0.056 0.143 0.055 3.82 

      [0.26 , 9.85] 

       

C-P No 0 0.074 0.007 0.065 401 

(0.0427)      [3.65 , 5149] 

 Yes 0 0.116 0.003 0.028 1.0151 

      [0.21 , 2.058] 

       

C-I No 0 0.450 0.050 0.113 2008 

(0.1099)      [483 , 5461] 

 Yes 0.003 0.053 0.012 0.041 8.81 

      [0.9 , 19.54] 

       

D-P No 0 0.043 0.011 0.053 7.53 

(0.0426)      [2.01 , 15.31] 

 Yes 0 0.084 0.005 0.018 1.09 

      [0.20 , 2.57] 

       

D-I No 0 0.055 0.129 0.061 2.59 

(0.3922)      [0.08 , 9.61] 

 Yes 0 0.060 0.031 0.050 0.95 

      [0.18 , 3.38] 
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Notes to Table 6: 

1. The effective semi elasticity of each model is reported in parentheses in the first column. All other numbers are 
result of 1000 Monte Carlo replications. 

2. For the second order approximation, without measurement error case instruments are lag interest rate, lag 
consumption growth and lag income and lagged consumption growth square. For the measurement error cases, 
we use the twice lagged consumption instruments with the lag interest rate and lag income. 

3. Instrument validity test is a t-test obtained from the regression of constructed residuals on instruments. 
a. Instrument validity  columns report for each instrument the fraction of  t stats with absolute value 

greater than 1.96 (critical value at 5% significance level) 
b. Corresponding mean values of R2 for each regression are reported.  

4. Instrument Relevance column reports the Cragg-Donald F (CDF) statistic from the first stage of IV. For the 
first order approximation interest rate is the only endogenous variable and lagged interest rate, twice lagged 
consumption growth, lagged income are instruments. For the second order, endogenous variables are interest 
rate and lagged consumption growth square and instruments are lagged interest rate, twice lagged consumption 
growth, twice lagged consumption growth square and lagged income. 

c. Mean values of  CDF are reported. CDF values at 10 and  90 percent are in parentheses.  

d. Stock and Yogo (2002) - test for weak instrument 
0

H =bias of two stage estimation relative to OLS is 

greater than 10%  
i. Critical Value at  5% significance level when the number of instruments is 4 and endogenous 

variable is 2 for Linear GMM = 7.56, for LIML =4.72 
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1. For each model and estimation strategy, the first number is the mean value of the estimate of the EIS and Prudence in 1000 Monte Carlo replications.  The 

second number, in parenthesis, is the mean robust standard errors clustered on period. The third number is the mean bias as the percentage of true parameter 
value. The effective semi elasticity of each model is reported in parentheses in the first column.

Table 7:  Second Order Approximation, Estimates of EIS and Prudence, 1000 replications 
  

 True Value EIS:

 

1
0.25  PRUDENCE:

 

1
2.5

2
 

Model 
(effective semi-elasticity) 

 
Base 

With 
Measurement 

Error 
Base 

With 
Measurement 

Error 

AL-P mean coefficient 0.243 0.291 2.90 0.662 

(0.0425) (mean std. error) (0.080) (0.119) (5.36) (6.093) 

(mean bias as % of true parameter value) [-3.6] [16.4] [16] [-73.5] 
      

AL-I mean coefficient 0.189 0.201 5.595 5.30 

(0.0542) (mean std. error) (0.197) (0.202) (0.896) (2.93) 

(mean bias as % of true parameter value) [-24.4] [-19.6] [124] [112] 
      

C-P mean coefficient 0.243 0.245 2.109 1.14 

(0.0427) (mean std. error) (0.040) (0.063) (2.031) (5.87) 

(mean bias as % of true parameter value) [-2.8] [-2] [-15.6] [-54.4] 
      

C-I mean coefficient 0.237 0.228 2.468 1.212 

(0.1099) (mean std. error) (0.041) (0.059) (0.364) (2.779) 

(mean bias as % of true parameter value) [-5.2] [-8.8] [-1.28] [-51.5] 
  

    

D-P mean coefficient 0.224 0.242 1.93 0.585 

(0.0426) (mean std. error) (0.058) (0.080) (3.22) (6.347) 

(mean bias as % of true parameter value) [-10.4] [-3.2] [-22.8] [-76.6] 
      

D-I mean coefficient 0.240 0.239 6.23 0.820 

(0.3922) (mean std. error) (0.123) (0.131) (7.188) (6.77) 

(mean bias as % of true parameter value) [-4] [-4.4] [149.2] [-67.2] 
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Table 8 : Different Data Structures 
First Order Approximation with Measurement Error 

Instrument Validity and Relevance Results. 

  Instrument Validity Instrument Relevance 

  Fraction of t stats bigger than 1.96 (2.024) F-stat 

Model 
(effective 

semi-
elasticity) 

 
 Lag 

Interest 
Rate 

Lag 
Consumption 

Growth 

Lag Income 
 

Mean 
[10% , 90%] 

AL-P Long Panel 0 0.084 0.002 5524 
(0.0425)     [5522 , 5526] 

 Short Panel 0 0.076 0.204 497 
     [496 , 500] 
 Synthetic Cohort 0.006 0.068 0.032 5.95 
     [4.92 , 11.53] 
      

AL-I Long Panel 0 0.134 0.732 7145 
(0.0542)     [7140 , 7151] 

 Short Panel 0 0.138 0.250 497 
     [496 , 500] 
 Synthetic Cohort 0 0.037 0.064 7.97 
     [6.36 , 12.9] 
      

C-P Long Panel 0 0.109 0.004 7076 
(0.0427)     [7044 , 7113] 

 Short Panel 0.014 0.135 0.024 491 
     [483 , 495] 
 Synthetic Cohort 0.017 0.092 0.039 7.90 
     [6.36 , 15.23] 
      

C-I Long Panel 0 0.150 0.013 7074 
(0.1099)     [7035 , 7108] 

 Short Panel 0.094 0.102 0.020 491 
     [485 , 497] 
 Synthetic Cohort 0.011 0.085 0.041 7.70 
     [6.37 , 14.87] 
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Notes to Table 8: 

1. Table reports the first order approximation results using the simulated data with measurement error. The measurement error that we add to the simulated data 
is i.i.d log normal with a unit mean and a variance of 0.004. 

 
2. The average semi elasticity of each model is reported in parentheses in the first column. All other numbers are result of 1000 Monte Carlo replications. 

 
3. For long panel and short panel data structures, we use the twice lagged consumption instrument with the lag interest rate and lag income. For the synthetic 

panel data, we also twice lagged the income.  
 

4. Instrument validity test is a t-test obtained from the regression of constructed residuals on instruments. 
a. For long panel and short panel data structures; instrument validity  columns report for each instrument the fraction of  t stats with absolute value 

greater than 1.96 (critical value at 5% significance level) 
b. For synthetic panel data, instrument validity  columns report for each instrument the fraction of  t stats with absolute value greater than 2.024 

(critical value at 5% significance level) 
 

5. Instrument Relevance column reports the Cragg-Donald F (CDF) statistic from the first stage of IV. For the first order approximation interest rate is the only 
endogenous variable and lagged interest rate, twice lagged consumption growth, (twice) lagged income are instruments.. 

a. Mean values of  CDF are reported. CDF values at 10 and  90 percent are in parentheses.  

b. Stock and Yogo (2002) - test for weak instrument 
0

H =bias of two stage estimation relative to OLS is greater than 10%  

i. Critical Value at 5% significance level when the number of instruments is 3 and endogenous variable is 1  for Linear GMM = 9.08, for 
LIML=6.46. 
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Table 9 : Different Data Structures, First Order Approximation with Measurement Error 
Estimates of EIS, 1000 Replications 

Model 
(effective 

semi-
elasticity) 

 

GMM LIML 

 
 

  
Mean bias as % of true 

parameter value  
Mean bias as % of true parameter 

value 

AL-P Long Panel 0.290 [16] 0.291 [16.4] 
(0.0425)  (0.105)  (0.109)  

 Short Panel 0.208 [-17] 0.208 [-17] 
  (0.11)  (0.114)  
 Synthetic Cohort 0.261 [4.4] 0.295 [18] 
  (0.159)  (0.20)  
      

AL-I Long Panel 0.261 [4.4] 0.240 [-4.4] 
(0.0542)  (0.194)  (0.198)  

 Short Panel 0.81 [224] 0.979 [290.8] 
  (1.007)  (1.113)  
 Synthetic Cohort 0.183 [-26.8] 0.252 [-1.2] 
  (0.197)  (0.240)  
      

C-P Long Panel 0.258 [3.2] 0.251 [0.4] 
(0.0427)  (0.048)  (0.049)  

 Short Panel 0.483 [93.2] 0.478 [91.2] 
  (0.366)  (0.406)  
 Synthetic Cohort 0.245 [-2] 0.254 [1.6] 
  (0.099)  (0.119)  
      

C-I Long Panel 0.216 [-13.6] 0.223 [-10.8] 
(0.1099)  (0.044)  (0.049)  

 Short Panel 0.476 [90.4] 0.481 [92.4] 
  (0.305)  (0.354)  
 Synthetic Cohort 0.209 [-16.4] 0.220 [-12] 
  (0.104)  (0.150)  
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Notes to Table 9: 
1. Table reports the first order approximation results using the simulated data with measurement error. The measurement error that 
we add to the simulated data is i.i.d log normal with a unit mean and a variance of 0.004. 
 
2. The average semi elasticity of each model is reported in parentheses in the first column. All other numbers are result of 1000 Monte 
Carlo replications. For each model and estimation strategy, the first number is the mean value of the estimate of the EIS in 1000 Monte Carlo replications.  The 

second number, in parenthesis, is the mean robust standard errors clustered on period. The third number which is in the square brackets is the mean bias as the 
percentage of true parameter value. 
 
3. For long panel and short panel data structures, we use the twice lagged consumption instrument with the lag interest rate and lag 
income. For the synthetic panel data, we also twice lagged the income.  
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Table 10 : Heterogeneity  

First Order Approximation with measurement error, 1000 replications 

  Instrument Validity Instrument Relevance Estimates of EIS 

  Fraction of t stats bigger than 1.96 (2.024) CDF –stat   

Model 

 

 

 
Lag Interest Rate 

Lag Consumption 

Growth 
Lag Income [10% , 90%] GMM 

AL-P   Long Panel 0 0.084 0.002 5524 0.234 

(ɣ =4, EIS=0.25)     [5522, 5526] (0.078) 

      [-6.4] 

       

AL-I  Long Panel 0 0.985 0.989 7458 0.194 

(ɣ =4, EIS=0.25)     [7450 , 7470] (0.192) 

      [-22.4] 

       

AL-P  (ɣ =6) Long Panel 0.374 0.083 0.003 5522 0.147 

(ɣ =4, EIS=0.167)     [5521 , 5527] (0.048) 

      [-11.9] 

CRRA Heterogenity       

AL-P   Long Panel 0 0.185 0.014 5520 0.224 

(ɣ =4, 6;      [5518, 5523] (0.078) 

mean EIS=0.2085)      [7.4] 

AL-P   
Synthetic 

Cohort 0.014 0.084 0.039 6.03 

 

0.192 

(ɣ =4, 6;      [4.92 , 11.63] (0.144) 

mean EIS=0.2085)      [-7.9] 

Discount Rate Heterogenity      

AL-P  & AL-I Long Panel 0.001 0.242 0.666 6980 0.189 

(ɣ =4, EIS=0.25)     [6936, 6993] (0.113) 

      [-24.4] 

AL-P  & AL-I Synthetic 

Cohort 0 0.062 0.066 7.48 

 

0.201 

(ɣ =4, EIS=0.25)     [6.37, 12.36] (0.141) 

      [-19.6] 
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Notes to Table 10: 
 

1. For long panel and short panel data structures, we use the twice lagged consumption instrument with the lag interest rate and lag income. For the synthetic 
panel data, we also twice lagged the income.  
 

2. Instrument validity test is a t-test obtained from the regression of constructed residuals on instruments. 
a. For long panel and short panel data structures; instrument validity  columns report for each instrument the fraction of  t stats with absolute value 

greater than 1.96 (critical value at 5% significance level) 
b. For synthetic panel data, instrument validity  columns report for each instrument the fraction of  t stats with absolute value greater than 2.024 

(critical value at 5% significance level) 
 

3. Instrument Relevance column reports the Cragg-Donald F (CDF) statistic from the first stage of IV. For the first order approximation interest rate is the only 
endogenous variable and lagged interest rate, twice lagged consumption growth, (twice) lagged income are instruments.. 

a. Mean values of  CDF are reported. CDF values at 10 and  90 percent are in parentheses.  

b. Stock and Yogo (2002) - test for weak instrument 
0

H =bias of two stage estimation relative to OLS is greater than 10%  

i. Critical Value at 5% significance level when the number of instruments is 3 and endogenous variable is 1  for Linear GMM = 9.08, for 
LIML=6.46. 
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Figure 1: Consumption Functions and Distribution of Cash-on-Hand 

 
Note to Figure 1: 

 Consumption Function and distribution of normalized cash-on-hand at the age of 40 . Non-parametrically 
calculated effective semi elasticity measures are in parentheses. X axis is cash-on-hand to permanent income 
ratio 
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