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Abstract

We consider maximum likelihood estimation of a particular noninvertible ARMA model with
autoregressive conditionally heteroskedastic (ARCH) errors. The model can be seen as an extension
to so-called all-pass models in that it allows for autocorrelation and for more flexible forms of con-
ditional heteroskedasticity. These features may be attractive especially in economic and financial
applications. Unlike in previous literature on maximum likelihood estimation of noncausal and/or
noninvertible ARMA models and all-pass models, our estimation theory does allow for Gaussian
innovations. We give conditions under which a strongly consistent and asymptotically normally
distributed solution to the likelihood equations exists, and we also provide a consistent estimator
of the limiting covariance matrix.
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1 Introduction

Autoregressive moving average (ARMA) models are commonly used when modelling the conditional
mean of a (strictly) stationary time series. In conventional terminology (see, e.g., Brockwell and
Davis (2006)), an ARMA process is called causal if, at each point in time, its components can be
expressed as a weighted sum of present and past error terms. On the other hand, it is called invertible
if these error terms can be represented as a weighted sum of the present and past components of
the process. Stationarity and invertibility are typically expressed by requiring the autoregressive and
moving average polynomials to have their roots outside the unit circle. If causality (invertibility) does
not hold, the model is called noncausal (noninvertible); see Rosenblatt (2000) or the other references
listed below (in some of these references noncausal and/or noninvertible ARMA models are also called
‘nonminimum phase’).

Much of the literature on ARMA models considers only the conventional stationary and invertible
case. A reason for this is that if the error terms are independent and identically distributed (IID)
with a Gaussian distribution, also the observed process forms a Gaussian sequence, and in this case
a noncausal and/or noninvertible ARMA model will be statistically indistinguishable from a partic-
ular causal and invertible ARMA model (see, e.g., Rosenblatt (2000, pp. 10-11)). Therefore, in the
Gaussian case causality and invertibility are often imposed to ensure identification. However, in many
applications, it seems more reasonable to allow the observed process to be potentially non-Gaussian.
Alternatively, after fitting a causal and invertible ARMA model to an observed time series one may
find that the residuals appear non-Gaussian. In such cases, noncausal and/or noninvertible ARMA
models may be more appropriate and can be distinguished from their conventional causal and invert-
ible counterparts (see op. cit.). Allowing for the possibility of noncausality or noninvertibility can in
such cases also lead to a better fit and increased forecast accuracy (see Breidt and Hsu (2005) and
Lanne, Luoto, and Saikkonen (2010)). Noncausal and/or noninvertible ARMA models have found ap-
plications in various fields. Many of the early applications were in natural sciences or engineering, but
recently there have also been applications to economic and financial time series (for such applications,
see Huang and Pawitan (2000), Breidt, Davis, and Trindade (2001), Breidt and Hsu (2005), Wu and
Davis (2010), and Lanne and Saikkonen (in press)).

Maximum likelihood (ML) estimation in noncausal and/or noninvertible ARMA models has been
studied in a number of papers. Breidt, Davis, Lii, and Rosenblatt (1991) discussed the case of noncausal
AR models, Lii and Rosenblatt (1992) noninvertible MA models, and Lii and Rosenblatt (1996)
noncausal and/or noninvertible ARMA models. Andrews, Davis, and Breidt (2006) consider so called
all-pass models, which are noncausal and/or noninvertible ARMA models in which all the roots of the
autoregressive polynomial are reciprocals of the roots of the moving average polynomial and vice versa.

Estimation of all-pass models based on the least absolute deviation criterion and rank-based methods



are considered in Breidt, Davis, and Trindade (2001) and Andrews, Davis, and Breidt (2007). Other
relevant references include Huang and Pawitan (2000), Hsu and Breidt (2009), Lanne and Saikkonen
(2009), Wu and Davis (2010), Lanne and Saikkonen (in press), and the monograph Rosenblatt (2000).

All of the above-mentioned literature on noncausal and/or noninvertible ARMA models considers
the case in which the errors are IID. Unlike in the causal and invertible case, the observed process will
nevertheless be conditionally heteroskedastic (for details, see the discussion in Section 2 below). In-
deed, Breidt, Davis, and Trindade (2001) (partially) motivate (linear) all-pass models as alternatives
to nonlinear models with time varying conditional variances, such as Autoregressive Conditionally
Heteroskedastic (ARCH) models. However, they note that “While all-pass models can generate exam-
ples of linear time series with ‘nonlinear’ behavior, their dependence structure is highly constrained,
limiting their ability to compete with ARCH”. It is therefore of interest to consider noncausal and/or
noninvertible ARMA models with errors that are not IID but themselves conditionally heteroskedas-
tic, as such models may be more appropriate in many applications, especially those in economics and
finance. This paper is a first attempt in combining noncausal and/or noninvertible ARMA models
and ARCH-type models.

In this paper, we consider a particular noninvertible ARMA model with errors that are not IID, but
dependent, following a standard ARCH model. As discussed above, such models may be particularly
appealing in economic and financial applications. A typical feature of many financial time series is
that they are only mildly autocorrelated and, quite commonly, they are treated as uncorrelated. The
particular ARMA structure assumed in our model readily accommodates to such cases. With a simple
(linear) parameter restriction the ARMA structure of our model reduces to that assumed in (causal)
all-pass models, extending these models to allow for ARCH errors and thereby also addressing the
above-mentioned statement of Breidt, Davis, and Trindade (2001). However, a special feature of all-
pass models is that they assume uncorrelated data. In this respect, our model is more general and can
allow for (potentially mild) autocorrelation, which may be useful in some applications. On the other
hand, compared to fully general noninvertible (and possibly noncausal) ARMA models our model is
more restricted because, similarly to the previously considered all-pass models, it assumes that all
roots of the moving average polynomial lie inside the unit circle, hence excluding the case with roots
both inside and outside the unit circle.

As a preliminary step for our developments we give conditions for stationarity, ergodicity, and
existence of moments of the data generation process. Theory of ML estimation can then be developed
by extending the ideas put forward in the case of noncausal and noninvertible ARMA models and all-
pass models with IID errors (see Breidt, Davis, Lii, and Rosenblatt (1991), Lii and Rosenblatt (1996),
and Andrews, Davis, and Breidt (2006)). Similarly to Lii and Rosenblatt (1996) we first derive an
infeasible likelihood-like function that assumes knowledge of an infinite number of observations and

thereafter we show how to obtain a feasible approximate likelihood function that only involves observed



data. The former provides a useful theoretical tool which can be used to obtain results for the latter.
We give conditions under which a strongly consistent and asymptotically normally distributed solution
to the (approximate) likelihood equations exists, and we also provide a consistent estimator of the
limiting covariance matrix. The techniques used in the proofs also resemble those employed in the
estimation theory of conventional (causal and invertible) ARMA-ARCH models (see, e.g., Francq and
Zakoian (2004) and Meitz and Saikkonen (in press), and also Berkes and Horvath (2004) in which
estimation in ARCH models based on non-Gaussian likelihoods is considered). As already indicated,
our results can be specialized to (causal) all-pass models so that we also extend the work of Andrews,
Davis, and Breidt (2006) by allowing for ARCH type conditional heteroskedasticity.

In addition to allowing for ARCH errors this paper also differs in another important way from
the previous literature on noncausal and/or noninvertible ARMA models. In all previous papers on
ML estimation of noncausal and/or noninvertible ARMA models it has been necessary to constrain
the IID error sequence to be non-Gaussian. This has been due to the above-mentioned fact that
Gaussianity of the errors, or equivalently Gaussianity of the observed time series, makes it impossible
for the likelihood function to distinguish the considered noncausal and/or noninvertible ARMA model
from the corresponding causal and invertible counterpart with the same autocovariance function. A
related consequence is that the (limiting) information matrix will then be singular, and the usual
theory of ML estimation breaks down. In our noninvertible ARMA model the errors are dependent
and follow an ARCH process. The rescaled innovations (i.e., the process obtained by dividing the
errors by their conditional standard deviation) are still assumed to be IID but they are not required
to be non-Gaussian. The reason is that, even if the rescaled innovations are Gaussian, the error terms
will be non-Gaussian (although conditionally Gaussian) and, consequently, the observed noninvertible
ARMA-ARCH process will also be non-Gaussian. Therefore the above-mentioned complications with
Gaussian errors vanish, providing an intuition why conventional results on ML estimation are obtained
even if the rescaled innovations are Gaussian.

The plan of the paper is as follows. Section 2 introduces the model and the basic assumptions
employed. Section 3 first shows how to approximate the likelihood function and then obtains results
for the score vector and the Hessian matrix needed to prove the main results presented at the end of
the section. Section 4 concludes. All proofs along with auxiliary results are presented in Appendices
(further details of the proofs are provided in a Supplementary Appendix that is available from the
authors upon request).

Finally, a few notational conventions. Unless otherwise indicated, all vectors will be treated as
column vectors. For the sake of uncluttered notation, we shall write x = (z1,...,x,) for the (column)
vector z where the components z; may be either scalars or vectors (or both). For any scalar, vector, or
matrix x, the Euclidean norm is denoted by |z|. For a random variable (scalar, vector, or matrix), the

Ly—norm is denoted by [ X||, = (E[|X[P])/P, where p > 0 (note that this is a vector norm only when



p > 1). The indicator function will be denoted 1(-). We use 1 also to signify the vector (1,0,...,0)

whose dimension will be clear from the context. An identity matrix of order n will be denoted by I,,.

2 Model

Let y; (t =0, £1, £2, ...) be a stochastic process generated by
ag (B) y¢ = bo(B™ ey, (1)

where ag (B) =1—ap1B—--- — a07pBP, bo(B™Y)=1—-0p 1Bt —--- — bg,QB*Q, and g; is a zero
mean error term allowed to be conditionally heteroskedastic with the conditional heteroskedasticity
modeled by a standard stationary ARCH(R) process (see below). Moreover, B is the usual backward
shift operator (e.g., B*y; = y;_j for k = 0,41,...), and the polynomials ag (2) and by (2) have their

zeros outside the unit circle so that
ap(z) #0 for |z| <1 and by(z) #0 for |z] <1. (2)

The former condition in is the usual stationarity condition of an ARMA model. It implies that we

have the moving average representation

[o.¢]
ye=ao(B) ' bo(B Ner = Y e (3)
J==Q
in terms of €/, €t4+Q—1, . ... In this representation, 1 ; is the coefficient of 2J in the Laurent series

expansion of ag (z) "' bo(z71) = 1o (2), which is well defined for |z| < 1 4 d, with some positive d,.
Moreover, the coefficients v ; decay to zero at a geometric rate as j — oo. Because the argument of
the polynomial by () in is B~! and not B, the moving average representation (3 is not in terms
of past and present £; only but also involves €,4¢, €+Q—1, - .., €141. For the same reason, the latter
condition in means that the moving average part of the model is not invertible in the conventional

sense. Instead, we have an AR(o0) representation

oo
ee=bo(B~ ") lag (B) e = Y T ¥ets (4)
j=—P
interms of ys_p, ..., Yt, Yt+1, - - -, SO that €, is expressed in terms of the future of the process y;. In this

Yag (2) & 79 (2),

which is well defined for |z| > 1 — ¢, with some positive d;, and the coefficients 7 ; decay to zero at a

representation, m ; is the coefficient of 27 in the Laurent series expansion of bo(z71)~

geometric rate as j — oo.

As for the conditionally heteroskedastic error term &;, we assume that

&t = Ot (5)



where 7 is a sequence of continuous IID random variables with zero mean and unit variance and the

square of oy follows a conventional ARCH(R) process. Specifically,

2 2 2
0f =wo+ o1& 1 + - + Q0,REL R, (6)
where the parameters are assumed to satisfy the usual conditions wg > 0, ag,1,...,0r > 0. With

suitable further conditions to be discussed shortly the error term e; is stationary with E[e7] < co. In
the following discussion this will be assumed.

Consider the relation of this model to those discussed in earlier literature. In the special case
P = @ and ag (z) = bo(z) the observed process y; exhibits no autocorrelation (as ¢; is clearly an
uncorrelated sequence, this follows by observing that in this special case the spectral density of
is constant, cf. Breidt, Davis, and Trindade (2001)). In the case of a homoskedastic error term the
model is then similar to the (causal) all-pass model studied by Breidt, Davis, and Trindade (2001) and
Andrews, Davis, and Breidt (2006, 2007). This model in turn is a special case of the general (possibly)
noncausal and noninvertible ARMA model considered by Lii and Rosenblatt (1996) and Wu and Davis
(2010). A slight difference in formulation is, however, that in these previous papers the counterpart
of the operator bo(B~1) in is replaced by by (B) and, correspondingly, the inequality in the latter
condition in is reversed. Our formulation is similar to that used in noncausal autoregressive models
by Lanne and Saikkonen (in press) and, in the same way as in that paper, it appears convenient in
terms of statistical inference (see Section 3.1).

It may be worth noting that in our model the squared volatility process o? is, in general, not
the conditional variance of y; given the past history of the process. Using equation and denoting

expectations conditional on the past history of y,’s with E;_ [-], it is easy to see that

Ei 1|y = ao1yi—1+ -+ ao,pYi—p + Er—1[et] — o1 Er—1 [et41] — -+ — bo.gFEr—1 [et+0] -

As equation (4) makes clear, the error term g; is correlated with lagged and future values of y; and,
therefore, the conditional expectations on the right hand side of this equation are, in general, nonzero
and nonlinear functions of the variables y;_;, j > 1. Thus, the conditional mean of y;, and hence also
its conditional variance, is not obtained in the same way as in previous (invertible) ARMA models
with ARCH errors. Even when the error term &; is homoskedastic, that is, ag1 = -+ = o,g, the
conditional mean is, in general, a nonlinear function of past values of the process (see Rosenblatt
(2000), Section 5.4). This implies that even without an ARCH term the model exhibits conditional
heteroskedasticity albeit of a rather limited type, as already mentioned in the introduction. Although
o? does not have an interpretation as the conditional variance of y;, it is still the conditional variance
of the error term e; given the past history of the error terms; in our context homoskedasticity and
conditional heteroskedasticity will refer to properties of the error term ;. Specifying o7 as in @ also
appears to be a natural way to introduce conditionally heteroskedastic errors in the model , and it

also agrees with the formulation used in conventional causal and invertible ARMA-ARCH models.



Forecasting in the context of noncausal and/or noninvertible models has only recently been con-
sidered in Breidt and Hsu (2005) and Lanne, Luoto, and Saikkonen (2010). As their work and the
discussion in the preceding paragraph indicates, obtaining forecasts from our noninvertible ARMA-
ARCH model is not as straightforward as in the conventional invertible case. Even when the errors
are homoskedastic, explicit expressions for the conditional mean and variance of y; appear difficult to
obtain. We leave this for future research.

We now discuss assumptions which, among other things, imply that the preceding infinite sums
are well defined. Of the following three assumptions, the first one presents conditions imposed on
the innovation 7, the second one specifies the parameter space, and third will ensure the existence of

certain moments.

Assumption 1. The innovation process n; is a sequence of IID random wvariables with E [n] = 0
and FE [7]?] = 1. The distribution of n; is symmetric, and has a (Lebesgue) density f, (x; o) which
(possibly) depends on a parameter vector Ao (d x 1).

The conditions imposed on the density of the innovation in Assumption 1 are fairly mild and similar
to those used by Andrews, Davis, and Breidt (2006) in all-pass models and Lanne and Saikkonen (in
press) in noncausal autoregressive models. Requiring a symmetric distribution is only for simplicity
because otherwise the needed calculations and the expression of the limiting covariance matrix of the
ML estimator would become extremely involved. Further conditions on the density of the innovation
will be imposed later.

Our aim is to estimate the true but unknown parameter value 6y that characterizes the data
generation process and is assumed lie in the permissible parameter space © defined by the following
assumption. Denote a (2) =1 —ajz—---—apzl and b(2) =1 —byz — -+ — bgz¥. Decompose the pa-
rameter vector 6 as 6 = (0,6, 0., 04) where 0, = (a1,...,ap), 0y = (b1,...,bQ), 0c = (w, 11, ..., aR),
and 03 = \ € R contain the parameters for the AR-part, MA-part, ARCH-part, and the innovation

density, respectively. Now we can formulate the following assumption.

Assumption 2. The true parameter value 6y is an interior point of the permissible parameter space

0 =0, X0, x 0, x 0,4, where

0o = {(a1,...,ap) e R 1a(2) #£0 for |z| < 1},

Op = {(b1,--..bg) €R? :b(2) #0 for [z <1},

O = {(w. ... am) € 0.00)% w0 > w and F 0 < 1} with some w > 0,
04 C RY.

The assumption that the true parameter value 6 is an interior point of the parameter space is

standard and required to establish the asymptotic normality of the ML estimator. One particular



consequence of this is that the true values of the parameters aq, ..., apr are all positive, which in turn
implies that we necessarily have conditional heteroskedasticityﬂ

As will be seen shortly in Lemma 1 below, Assumptions 1 and 2 ensure that the data generation
process is well defined with finite second moments. However, for establishing asymptotic normality
of the ML estimator, finiteness of fourth order moments of the observed process will be needed. To

formulate an assumption ensuring this, we first introduce the matrix

010,17%2 Qp2 '+ QoR-1 QOR
n? o ... 0 0
II; = 0 1 0 0 . (7)
i 0 0 1 0 ]

This matrix can be used to write the ARCH-process @ in companion form which will be used to
prove our results (see the proof of Lemma 1 in Appendix B). Now we can formulate a condition that

guarantees finiteness of the needed moments.

Assumption 3. The matriz E [II; @ I1;] has spectral radius (i.e., largest absolute eigenvalue) strictly

less than one.

Note that this assumption implies that F [17?] < 00. Combined with the previous assumptions
it enables us to establish the basic properties of the data generation process needed in subsequent
developments. We denote by F,! the o—algebra generated by {n;_;, j > 0} and state the following

lemma whose proof can be found in Appendix B.

Lemma 1. Suppose Assumptions 1 and 2 hold. Then the process (yi,et,0¢) defined by equations ,
(@, and (@) is stationary and ergodic with FE [yﬂ , B [sf], and E [af] finite and oy F|' | —measurable,
et F;'-measurable, and y; ]-"Z7+Qfmea5umble. If Assumption 8 also holds, then E [yf], E [sﬂ, and

E [o}] are finite.

As already indicated, Lemma 1 (together with Lemmas A.1 and A.2 in Appendix A) ensures
that the infinite sums in and are well defined. Stationarity and ergodicity facilitate the use of
conventional limit theorems to prove asymptotic normality of the ML estimator. As already mentioned,
finiteness of second moments that follows from Assumptions 1 and 2 is not sufficient for this. Existence
of finite fourth moments of y; guaranteed by Assumption 3 is required. This, however, is not surprising
because in this respect the situation has been similar in the previous estimation theory of stationary
and invertible ARMA-ARCH models where known proofs also assume finite fourth moments (see

Francq and Zakolan (2004)).

'Results for the homoskedastic special case could be obtained by dropping the a—parameters from # and making similar
omissions throughout the paper. The assumptions would also require some adjustments, in particular the distribution

of 1 would need to be assumed to be non-Gaussian. To conserve space, we do not pursue this further.



3 Parameter estimation and statistical inference

3.1 Approximate likelihood function

Suppose we have an observed time series y1_p, ..., Yo, Y1, - - -, y7 generated by the process described
in the previous section, and our aim is to estimate the unknown parameter 6y using these observations.
ML estimation can be carried out by extending the ideas put forward in the case of homoskedastic
noncausal and noninvertible ARMA models and all-pass models; see Breidt, Davis, Lii, and Rosenblatt
(1991), Lii and Rosenblatt (1996), and Andrews, Davis, and Breidt (2006). However, as in these
papers, deriving a likelihood-like function to be used for estimation requires some care (the main
reason for this being that now y; depends on both the future and past of 7;). We will initially discuss
how to derive a likelihood-like function assuming that y; is available for all ¢, and subsequently provide
an approximation using only the observed data.

First we introduce counterparts of the processes ¢; and o? defined for 6 # 6. In analogue with

(@), set

uy(0) =b(B~)'a(B)y: = Z Y45
j=—P

where 7; is the coefficient of 27 in the Laurent series expansion of b(z71)"1a (2) 2 (z). Our definition

of the permissible parameter space makes it clear that u;(0) is well-defined for all § € ©. Moreover,

uy(0p) = &;. To define the counterpart of o2, set
hi(0) = w + aqu? 1 (0) 4 - + agu?_z(0) (8)

and notice that hy(6p) = 2. (Note also that u;(f) and h(6) require the knowledge of infinite future
of y’s so that the likelihood we first derive will not be feasible in practice.)
Now, to obtain an approximation of the likelihood, we first derive the joint density of an augmented

data vector using a change of variables argument. To this end, notice that

—app -+ —apyq 1 Y1-R—P 1 —bo1 -+ —bog €1-R

—app -+ —apq1 1 yr I —=bog - —boql leT+qQ

which can be obtained by using witht =1— R,...,T. More briefly, this relation can be written
as
Y1-RrR-P €1-R
M, =M,
yr ET+Q

with obvious definitions of the (T"+ R) x (T' + P + R) matrix M, and the (T"+ R) x (T'+ Q + R)



matrix M. With further augmenting we obtain the relation

Y1-R-P Y1-R-P
Ip : Opx(r+R) y Ip y
T -R
Ma - Mb ;
ET+1 €1-R
Io . 0gx(r+r) : 1o
| €T+Q | €T+Q

where the (square and (T + P + @ + R)-dimensional) coefficient matrices have determinants equal to
unity.

Using a standard sequential conditioning argument, we can write the joint density function of

(ET+Qs--+€1-RyY—Ry---»Y1-R—P) a8
fleriq,--serviler, - €1-R,Y—Rs -+, Y1-R—P)
T
el e veiry-ry s v1-r-P) - f(E0,- - €1 R YRy Y1-R—P),
=1

where f(-) is a generic notation for a (joint and/or conditional) density function indicated by its
arguments. In the homoskedastic case, the variables e7,(, ..., er41 in the first factor are independent
of the conditioning information (for sufficiently large T') but this is no longer the case in the presence

of heteroskedasticity. Instead, the first factor can be written as (again using a sequential conditioning

argument)
T+Q T+Q 1 Ut(eo)
—1 -1, _ )
H O fn(etat a)‘U) - H h1/2(6 )fn <h1/2(9 ),/\0> 5
t=T+1 t=T41 "t \70 t \Y0
which, among other things, depends on the variables er,...,er_g+1. Similarly, the middle term in

the preceding expression equals

L I wi(60)
-1 -1 (00
op  foletoy "3 0) = f ( ;/\o)-
tl;[ t n t g h;ﬂ(eo) n h;/Q(HO)
Using these expressions we can write the logarithm of the joint density function of the augmented
data vector (Yy1—p—p, ..., YT, ET+1,- - -, ET+Q) 88
T+Q
3 [log fo (hﬁ‘jgegu) —log htl/Q(@)]
t=T+1 3 ( )
- w(6)
+>° [log fa <h§@’))\> —log h}%)] +10g f(€0, - E1-R\ Y—Rs - - - Y1—R—P)-
t=1 t

Using Assumptions 1 and 2 and the assumptions to be imposed in subsequent sections it is not difficult

to see that the first and the third term in the above expression are stochastically bounded and therefore

10



asymptotically negligible. This suggests using

T
. _ . ut(ﬂ) . 1
LT(Q) =T 1 tE 1 lt(H) where lt(e) = log f77 <W7 A) — 5 log ht(@)

as an approximation to the log-likelihood of the observed data vector (yi,...,yr) (conditional on
initial values). However, as computing u:(6) and h¢(f) for t = 1,...,T is not feasible in terms of the
available data, a further approximation is needed.

To obtain a likelihood feasible in practice we need approximations to the sequences wu(#) and
hi(0) for t = 1,...,T that are expressible in terms of the observations y1_p,..., %0, ¥1,...,yr and
the parameters. We first define an approximation @;(6) to the sequence u;(6). To this end, set
Ur41(0) = -+ = ur1g(f) = 0 and recursively solve for ar(f),...,4;(0) by using the backward

recursion
u(0) =y —a1ye—1 — - - — apyi—p + b1te1(0) + - + bour(0), t=T,...,1

To obtain an approximation h(6) to the sequence hy () we set @io(0) = ug, - . ., i1_g(#) = u1_g, where

ug, ..., u1_p are real-valued constants independent of 9 Then we compute hi(6), ..., hr(0) as

hi(0) = w+ @2 1 (0) + - +apii_z(0), t=1,...,T. (9)

The resulting approximate log-likelihood takes the form

T -
[ =7t [ where 1, =lo () ; —} ogh
Lr(0)=T ;:1 1;(8) wh 1:(0) = log f,(m /2(9),/\> 5 10g hu(0).

In practice, estimation is carried out by maximizing Ly (6), whereas its infeasible counterpart Lz(6)
is useful in the subsequent theoretical results.

As mentioned in Section 2, our formulation of the model differs slightly from that used in related
previous papers where the counterpart of the operator bo(B~!) in is replaced by by (B) and the
inequality in the latter condition in is reversed. When this alternative formulation is used the
approximate log-likelihood function also involves the term log |bg| (cf. Lii and Rosenblatt (1996) and
Andrews, Davis, and Breidt (2006)). This term is absent from our approximate log-likelihood function
which makes constructing statistical tests for hypotheses on the unknown order of the polynomial b (z)
straightforward. Indeed, such hypothesis imply by = 0 which makes the term log |bg| undefined.
Dealing with this feature therefore calls for additional explanations (see Andrews, Davis, and Breidt

(2006)) not needed when our formulation is used.

>The choice tir+1(0) = - - - = @ir+g(0) = 0 for the end values is a counterpart of the common practice of setting initial
values to zero when estimating conventional invertible MA models by conditional maximum likelihood. On the other
hand, when the estimation of conventional ARCH models is considered, it is common to set the required initial values
to some positive constants, and our choice @o(0) = wo,...,%1-r(0) = ui—gr reflects this. These assumptions could be
relaxed so that these initializations would become dependent on the observed data and 6, but we do not pursue this

further.
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3.2 Score Vector

In this and the following subsection, we first consider the infeasible approximate log-likelihood Lz (6).
Due to stationarity, the function Ly (6) is easier to work with than its feasible counterpart Ly (6)
and, using assumptions to be made subsequently, it can be shown that the score vectors obtained
from Ly (0) and Ly () are asymptotically equivalent and so are the corresponding ML estimators
(see Section 3.4 and Appendix E).

As a first step, we obtain the asymptotic distribution of the score vector associated with Lz (),
evaluated at the true parameter value 6. The first partial derivatives of () are derived in Appendix
C (an assumption which guarantees the existence of these partial derivatives will be given shortly).
Here we only give the explicit expression of the score evaluated at the true parameter value. First some
notation. It will be convenient to decompose the score vector conformably with the decomposition
of the parameter vector 6 as 6 = (0,,0p,6.,04). In what follows, we will use a subscript to signify
a partial derivative indicated by the subscript, for instance lg+(0) = %lt(ﬁ), Ina(x; X)) = %fn(a:; A),
and fp\(x;\) = %fn(:n; A). To make the notation lighter, when taking derivatives with respect to the
subvectors 0, 0y, 0., or 04, we drop the 6 and only write the letter a, b, ¢ or d (for instance, we write
lat(8), hat(0) = %ht(e) and g, ¢(0) instead of lg, (), hg, ¢(0) and %ut(ﬁ)).

From Appendix C we find the score vector of a single observation evaluated at the true parameter

value as ~ _
a,t(0 ha,t (0,
€at™ ’Z(t o _ 4 352 ) (eqam + 1)
o B0 (6
I7tUb,;(t o) % b,;(Q o) (easme +1)
lo.+(60) = 1 he,t(60) ' ’
277 (ezm + 1)
i ENt ]
where e, = % and ey = %, and the components of the vectors uq (6p) and up¢ (6)
are given by
Uap,t (90) = —ao (B)_lgt—p (p: 17"'7P)7

ubtivt (00) = bO(B_I)_1€t+q (q = ]-a e 7Q)7

whereas

R R
ha,t (00) =2 Z Q0 rEt—rUa,t—r (90) 5 hb,t (00) =2 Z Qo rEt—rUpt—r (00) 5

r=1 r=1
and hey (6p) = (1,5%_1, ... ,5?71%).
We can now formulate an assumption that ensures that the score vector is well defined and asymp-
totically normally distributed. Let ©¢ be a compact convex set contained in the interior of © that has

Ay as an interior point, and partition O as Oy = Oy, X Og X Oge X Opq.
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Assumption 4.

(i) For all x € R and A € Ogq, fp(x;A) > 0 and f, (z; A) is twice continuously differentiable with
respect to (z; ).
(ii) For all X € Oq, [xfy(z;\)dx =0 and [ 2*f, (x;\)dz = 1.
(iti) The matriz Eleyqe) | is positive definite.
(iv) For all x € R, the functions

2 I3 (5 20) n £7 5, (@5 0)
f3 (@5 20) f3 (3 20)
are dominated by dy (1 + |2|™) with dy,dy > 0 and i |z| I (25 00) do < 0.
(v) For allx € R and X\ € O, the function |x2f777,\ (w3 \)| is dominated by a function f (z) such that
[ f(z)dz < cc.

Overall, Assumption 4 requires that the density function f; (x;\) satisfies regularity conditions
similar to those in Andrews, Davis, and Breidt (2006). Assumption 4(i) imposes a fairly conventional
differentiability condition that ensures the partial derivatives presented above exist for all x € R and
A € Ogg. In Assumption 1 we already required the innovations 7; to have a distribution with mean
zero and unit variance for the true parameter value Ag. Assumption 4(ii) extends this requirement to a
neighborhood of Ag. Milder analogues of the dominance conditions assumed in Assumptions 4(iv) and
(v) are also used in Andrews, Davis, and Breidt (2006). Being forced to strengthen these conditions in
the present context is a direct consequence of the necessity to have finite fourth moments not needed
in the homoskedastic case.

Assumption 4(iii) is similar to condition (A6) of Andrews, Davis, and Breidt (2006) and is needed
to show the positive definiteness of the information matrix, that is, the limiting covariance matrix of
the rescaled score vector. It is trivially satisfied by distributions such as the normal distribution which
are free of the parameter A (for such distributions the following lemma and results based on it need
obvious modifications). Assumption 4(iii) also holds for other commonly used distributions, including
the rescaled t—distribution and weighted averages of the normal distribution (cf. Remarks 4 and 5 of
Andrews, Davis, and Breidt (2006)).

As already discussed in the Introduction, a notable feature of our estimation theory is that, due
to the presence of conditional heteroskedasticity, it also works when the innovation sequence 7, is
Gaussian. Without conditional heteroskedasticity Gaussian innovations have to be excluded, as the
previous work on ML estimation of homoskedastic noninvertible (and noncausal) ARMA models shows.
In the homoskedastic case Gaussian innovations imply Gaussianity of the observed process, and in-
vertible and noninvertible ARMA models become indistinguishable by the autocovariance function
and, hence, the likelihood function. Thus, non-Gaussianity is needed to achieve identifiability and

also a positive definite information matrix (see, e.g., Lii and Rosenblatt (1996) and Andrews, Davis,
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and Breidt (2006)). As our model always contains an ARCH component (see Assumption 2 and the
following discussion), the observed process is not Gaussian even if the innovation sequence 7, is Gaus-
sian. Because the likelihood function is determined by the distribution of the observed process this
explains why we do not need to rule out Gaussian innovations.

To establish the asymptotic distribution of the score vector evaluated at the true parameter
value 0y we first derive an expression for the limiting covariance matrix of the rescaled score vec-
tor, Cov [Tl/ 2Lor (00)], and establish its positive definiteness. This is rather tedious and is given
in the following lemma. For this lemma, we need additional notation. We set ¢; = 1'II’1 with
IT = E[II] (see ), and let 1/1(()? and zp((fj)- stand for the coefficients in the power series expansions
ap ()1 = >0 @Z)éi? 2J and bo(z~ 1)1 = >0 zb(()?;z_j (these expansions are well defined by Assump-
tion 2; see Appendix A). For j < 0 the conventions @ZJ(()I?])- = d)éilj) =0 and ¢; = 0 will be assumed.

Lemma 2. If Assumptions 1-4 hold,
Cov [T1/2L97T (60)] = Z(60) asT — oo,

where I (6p) is finite, positive definite, and can be expressed as

Ap AY +BY Opy(ri1) Opxa
Ay +B Ay +B 0 0
T(9y) = | A2 T Ba An+Bn Ogumiy Ooxa

Or+1xp  ORi1)xQ Ass Al

O04xp 04x0 Ayz Ayy |
where
-~ 2 ta,i(0o) Uar(f0)] | 1 21 1 [ hayt (60) ha i (6o)
An = B[] 5| B e, P [P O p )
1 Ry +(60) P+ (6o 1 R+ (00) g ¢ (B0
Ay = ZE [(ex,tﬁt+1)2 b7t(20> 7t(2 )]_E [ex,t(ex,tnt+1) b7t(20) . )} (@xP)
o; o; 2 o} o
wp +(00) Uy (60) By (60) P, (00)
Ay — E|:6:%7t b,t(00) Uy } E[(m e+ 1)? b,t(20) bt ] (Q x Q)
ot Ot (9 (9
1 het(00) M. .(60)
A = yElenm+ 178 [PGOIER] (R )
O 0
1 he. +(60)
Ay = _QE[ecc,tnte)\,t]E|: ’22 } (dx R)
t

A44 = E[e)\7t6/>\,t] (dX d)

and typical elements of the matrices Ba; (Q x P) and Baa (Q x Q) are given by

(B21 Zw()’j qwo,] —p (q:177Q7p:177P)

7=0

and

(b -
(B22), = —42%,] M0)-a¢ (@d=1....Q).

14



The expression for the limiting covariance matrix of the score is rather involved. The matrices A;;
(1,7 =1,...,4) are obtained from the contemporaneous covariance matrix Cov [ly.(fy)], whereas the
matrices Bo; and Bgy are due to the serial correlation in the process lg}t(eo).

In the previous literature on noncausal and noninvertible ARMA models, it has been common
to use an approximation argument and reduce the proof of the asymptotic normality of the score
vector to that of a finite-dependent process for which a suitable central limit theorem is available
(see, e.g., Rosenblatt (2000, Ch. 8)). This approach appears tedious in the case with conditional
heteroskedasticity. It is shown in the proof of Lemma 2 (see Appendix C) that E [lg,(6p) | F," ;] =0
but, as the process lg+(6p) is serially correlated, a martingale central limit theorem is not applicable
(this also follows from the fact that [y (6p) is not F;'~measurable the reason for this being that wus; (6p)
depends on future innovations 7y, j > 0). However, from Lemma 1 and the expression of ly.(6p)
it is readily seen that ly.(fy) is stationary and ergodic and, as the following lemma shows, it is a
mixingale. This will allow us to use a central limit theorem due to Scott (1973). The definition of the
Lo—mixingale and its size used in the following lemma can be found in McLeish (1975) or Davidson

(1994, p. 247) (see also the proof of Lemma 3 in Appendix C).

Lemma 3. If Assumptions 1-4 hold, the sequence {a'lyp+(6p),F;'} is an Lo-mizingale of size —1 for

all conformable nonrandom vectors a # 0.

Using the preceding lemmas and a mixingale central limit theorem based on the aforementioned
theorem of Scott (1973) (see Lemma A.4 in Appendix A) we obtain the asymptotic distribution of the

score vector as follows.

Lemma 4. If Assumptions 1-4 hold,

T
T2 Loz (80) = T2 1o (B0) 5 N (0,2 (60)) ,
t=1

where the positive definite matriz I (0y) is given in Lemma 2.

3.3 Hessian Matrix

We next consider the Hessian matrix associated with the infeasible approximate log-likelihood function
Lr(0). Expressions for the required second partial derivatives are given in Appendix D. Similarly to
the first partial derivatives we use notations such as lpg +(0) = #;e,lt(e) and fp zo(T;A) = aa—;fn(x; A).
Our first result shows that the expectation of the Hessian evaluated at the true parameter value

coincides with the negative of the information matrix. For this we need the following assumption.

Assumption 5.

(i) For all x € R and all X € Oqg, the function |f, a (z;N)| is dominated by a function f(z) such
that [ f (x)dz < cc.
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(ii) [ fozz (23 00)dz =0
(i) [ 22 frae (23 00) do = 2

Assumption 5(i) is similar to Assumption 4(v) and imposes a conventional dominance condition
which ensures that a certain function that appears in the proof of the following lemma can be differ-
entiated under the integral sign. Assumptions 5(ii) and (iii) coincide with assumptions A3 and A4

used by Andrews, Davis, and Breidt (2006) in a similar context.
Lemma 5. If Assumptions 1-5 hold, E [lgg+ (60)] = —Z (0o).

To be able to prove the asymptotic normality of the infeasible approximate ML estimator we need
uniform convergence of the Hessian matrix in some neighborhood of the true parameter value. Our

next assumption is needed to establish this.

Assumption 6. For all x € R and all A € Oy, the functions

4 f?él,a: (.%'; )‘) #,A (:ZI; )‘) 4 fg,x:v (QZ; )\) 3,/\30 (‘T; )‘)

d
N @y T 2@y 2wy "

T (23 ) ’
In (z; )

are dominated by di(1 + |2|™) with dy,dy > 0 and [ |z]|™ f, (x; Mo) dz < cc.

These dominance conditions are very similar to those assumed in condition (A7) of Andrews,
Davis, and Breidt (2006). There are some differences, however. As with the moment conditions,
the allowance of conditionally heteroskedastic errors makes some of our dominance conditions more
stringent than their counterparts in Andrews, Davis, and Breidt (2006). Together with our previous
assumptions, Assumption 6 ensures that the Hessian matrix has a finite expectation uniformly over

©p. Formally, we can establish the following result.

Lemma 6. If Assumptions 1-6 hold,

sup |Logr (0) — T (0)] =0 a.s.,
(ASSH)

where J (8) = E [lgg+ (0)] is continuous at 6p.

3.4 Main Results

The preceding Lemmas 46 are the key ingredients required in proving that the infeasible approximate
log-likelihood equations Ly 7(6) = 0 have consistent and asymptotically normally distributed solutions.
To ensure that these results carry over to the feasible log-likelihood function IN/T(G), we have to
show that the feasible likelihood is asymptotically ‘close’ to its infeasible counterpart. The following

assumption is sufficient for this.
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Assumption 7. For all x € R, Az € R, and \ € Oy, and for some C < 0o and dyi,ds > 0,
ol + a5 X) — o(as )| < C((1+ [e]) | Al + [ Aal®2)

for the following choices of the function v(x; \):
(@) (i) vlw; \) = =3 (i) w(a; \) = D2l

. zz (T} 2(T5A) ;A
(b) (i) v(z; >—f’}m” (ii) v(a; A) = L2250 (i) (s 2) = La22 08,

Assumption 7 is an analogue of Assumption B in Lii and Rosenblatt (1992, 1996). In these papers,
the innovation density is not allowed to depend on an unknown parameter A, and for this reason their
conditions only include counterparts of conditions a(i) and b(i). Of the conditions in Assumption 7,

part (a) together with the earlier Assumptions 1-6 will suffice to prove the following result.

Lemma 7. If Assumptions 1-6 and 7(a) hold,
(i) supgee, | LT(0) — I~/T(9)| —0 as. asT — oo,

(ii) T/ sup9€@0|L97T(¢9) - [~/97T(9)| —0 a.s. asT — oo.

Lemma 7(i) shows that the feasible log-likelihood and its infeasible counterpart converge to each
other uniformly over ©g. This fact will enable us to deduce the existence of a consistent solution to
Lo(0) = 0 from the existence of a consistent solution to Lg 7 () = 0 which is a convenient first step
for the former result. Part (ii) of this Lemma will be used to show that these consistent solutions are
asymptotically equivalent.

We can now state the main result of the paper. Of the conditions presented above, Assumptions
1-6 and 7(a) are enough to ensure the existence of a consistent and asymptotically normal root of the
likelihood equations, whereas the additional Assumption 7(b) is required for consistent estimation of

the limiting covariance matrix.

Theorem 1. If Assumptions 1-6 and 7(a) hold, there ezists a sequence of solutions 07 to the (feasible)
likelihood equations Lg1(0) = 0 such that T/?(07 — 6) LN N(0,Z(6p)~ 1) as T — oo. If Assumption
7(b) also holds, a consistent estimator for the limiting covariance matrix is given by EG_QIT(GNT), that

is, E;G{T(éT) — Z(0p)" ! a.s. as T — oc.

Theorem 1 establishes the usual result on consistency and asymptotic normality of local maximizers
of the feasible approximate log-likelihood fJT(H). Without further assumptions one can straightfor-
wardly extend this result to allow for linear restrictions on the parameter vector 6y. In particular, using
the restriction 6y, = 6y, we can extend the work of Andrews, Davis, and Breidt (2006) to (causal)
all-pass models with ARCH-errors. The consistent estimator of the limiting covariance matrix makes
possible to apply conventional test procedures for testing hypotheses on the parameter vector 6y. For
instance, it is straightforward to show that Wald tests and likelihood ratio tests based on the feasible

approximate likelihood function have the usual limiting x?-distribution under the null hypothesis.
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4 Conclusion

In this paper we have developed an asymptotic estimation theory for a particular noninvertible ARMA
model with errors that are dependent and follow a standard ARCH model. We give conditions under
which a strongly consistent and asymptotically normally distributed solution to the (approximate)
likelihood equations exists, and for statistical inference we also provide a consistent estimator of
the limiting covariance matrix. The assumptions required to obtain these results are similar to those
previously used in ML estimation of noncausal and/or noninvertible ARMA models and all-pass models
with IID errors. An important exception is that we do not need to assume the innovations to be non-
Gaussian.

This paper also extends previous work on causal all-pass models to allow for ARCH-type condi-
tional heteroskedasticity. Although our ARMA specification is more general than that assumed in
all-pass models and allows for autocorrelation, it is still more restricted than in fully general nonin-
vertible (and possibly noncausal) ARMA models because, similarly to previously considered all-pass
models, it assumes that all roots of the moving average polynomial lie inside the unit circle. One
could consider a more general specification in which roots of the moving average polynomial both
inside and outside the unit circle are allowed. Another topic for potential future work is to extend our
results to the case where the errors follow a Generalized ARCH (GARCH) model. Finally, empirical
applications, especially to economic and financial time series, are of interest and will be considered in

future work.
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Appendix A: Auxiliary Results

This appendix contains four auxiliary lemmas that will be used to prove our main results. Their proofs
are given in the Supplementary Appendix. The first of these lemmas makes precise in what sense the
Laurent series expansions used in this paper are well-defined and satisfy the conditions mentioned in

the text.

Lemma A.1. (i) Suppose the polynomial a (z;0,) = 1—ay (04) z—---—ap (0,) 27 satisfies a (z;0,) # 0
for |z| <1 and 0, € ©4 and that the functions a;j(0,) (j =1,...,P) are continuous. Then, for each
0% € ©, there exists a neighborhood N (63) of 02 such that for all 0, € N (02), a(z;0,) has an inverse
a(z;ﬁa)_1 = Z;’;O wj(a) (0,) 27 defined by a Laurent series expansion that is absolutely convergent
for |z| < 14 6(03) with some positive 6 (03). Moreover, the coefficients in this expansion satisfy
supgaeN(9;)|w§a)(9a)| <Cph, j=0,1,2, ..., with some C < oo and p, < 1 (that both depend on 62).

(ii) Suppose the polynomial b(z;0,) = 1 — by (6p) 2 — -+ — bg (6) 29 satisfies b(z;0y) # 0 for
|z| <1 and 6, € Oy and that the functions b; (0y) (j =1,...,Q) are continuous. Then, for each
03 € Oy there exists a neighborhood N (03) of 03 such that for all 6, € N (6), b(z~;6,) has an inverse
b(z710,)7 ! = Z;O:o 1/1]@ (0y) 277 defined by a Laurent series expansion that is absolutely convergent
for 1 —6(6p) < |z| with some positive 6 (6y). Moreover, the coefficients in this expansion satisfy

supgbeN(9;)|w§b)(9b)| < C’p{;, j=0,1,2, ..., with some C < oo and py, <1 (that both depend on 6} ).

This result makes clear that the Laurent series expansions considered in this paper for functions of
the type a (z; 9a)_1, b (2_1; Hb)_l, a(z; Ha)_l b (z_l; 01,), a(z;6,)0 (z‘l; Hb)_l, etc., are well-defined (at
least) in some annulus 1 — 0 (67) < |z| < 1+ 6 (0;) containing the unit circle and that the coefficients,
say 1 (0a,6), in those expansions always satisfy sup(gmgb)eN(gz,@g)Wj (Ba,05)| < Cpll, j =0, £1, 2,
..., with some C' < oo and p < 1 and some neighborhood N (63, 6;) of a point of interest (63, 6;).

The next lemma shows that random processes defined via suitable convergent series expansions

(e.g., yp = Z;’i_Q o,j€¢—j in 1' are well-defined, and also gives conditions for existence of moments.

Lemma A.2. Consider a stationary process X; (¢) depending on a parameter ¢, ¢ € ®, and satis-
fying Hsup¢€q, | Xy (¢)|HT < oo with some r > 0. Moreover, let the sequence of constants k; (¢), also
depending on @, satisfy supyeq |Kj (¢)] < Cpll, j =0,+1,42,..., with some C < 0o and p < 1. Then
for each ¢ € ®, the series E;’ifoo ki (¢) Xe—j (@) converges with probability one, and if one defines
Vi (@) = 2252 oo K5 (¢) Xi—j (@), the process Yy (¢) satisfies |supyeq Yz (qﬁ)\Hr < 00.

Our third auxiliary lemma, which is similar to Lemma 4.1 of Francq and Zakoian (2004), concerns
the expectations of transformations of symmetric random variables, and will be used repeatedly to

prove the main results of the paper.

Lemma A.3. Let {Z;};° __ be a sequence of independent and identically distributed symmetric ran-

dom variables and letY = h(..., Zi_1,Z;, Zit1, . ..) with a measurable function h(. .., zi—1, zi, Zit1, .- -)-
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Suppose the function h(..., zi—1, zi, Zi+1, - - -) @8 an odd function of z;, that is, h(..., zi—1, Zi, Zit1,--.) =

—h(...,2i-1, =%, Zit1,---), and that E[|Y|] < co. Then E[Y] = 0.

The final lemma of this appendix presents a mixingale central limit theorem that can be applied
to establish asymptotic normality of the score vector. The definition of an Lo—mixingale and its size

can be found in McLeish (1975) or Davidson (1994, p. 247).

Lemma A.4. Let (0, F,P) be a probability space, (Z;);2 and ()12, two doubly-infinite se-

—o0
quences of stationary ergodic random variables defined on (Q, F,P), and Fi, t € Z, an increasing
sequence of sigma-algebras with Fy = o (&, €—1,...) the sigma-algebra generated by present and past
random variables €;. Suppose E[Z;] = 0, E[Z}] < oo, and that {Z;, Ff} is an Lo-mizingale with
size —1. Denote S, = >} | Z;. Then Var (n—1/2sn) — o2 with 0 < 0% < 00, and if 0 < o2, then

n1/2g, % N(0,02).

Appendix B: Data Generating Process

Proof of Lemma 1. Using the definition of the matrix II; in we can write the ARCH(R) model
in companion form as X; = II;_1Xy_1 + w, where the R—dimensional vectors X; and w are defined
as X; = (0,52,6?_1, ...,€?7R+1) and w = (wp,0,...,0). (In the case R = 1, define them as the scalars

X; = 0? and @w = wp.) Also define

_aO,l o Qo R-1 aO,R_
1 - 0 0
Il = B[] =
0 -1 0 |

By the constraints imposed on ©. in Assumption 2, we have Zi 10,; < 1 or, equivalently, the spectral
radius of the matrix II is strictly less than one (see, e.g., Proposition 1 in Francq and Zakoian (2004)).
Now, proceeding in the same way as in the proof of Lemma 2.1 of Chen and An (1998) we can conclude

that the process o7 is stationary and ergodic with the almost sure representation

ok
Ut2 =1 (IR+ZHHtl> w.

k=11=1
(The companion form used by Chen and An (1998) is slightly different from ours, but this has no
impact on the employed arguments.) Moreover, E [0?] < oo and oy is F;' —measurable. By
and Assumption 1, F [ef] < oo and g is F;'-measurable. The results concerning y; follow from the
representation and Lemmas A.1 and A.2. If Assumption 3 also holds, we can repeat the arguments
used in the proof of Theorem 3.1(i) of Chen and An (1998) by using our companion form and conclude

that finiteness of the fourth moments mentioned in the lemma follow. ®m
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We next present a lemma concerning expectations containing the process o7 that will repeatedly

be used in subsequent proofs. Recall the notation ¢; = 1'TI71 for j > 0, and c; =0 for j <O0.

Lemma B.1. Suppose Assumptions 1-3 hold. Let g(-) be a (measurable) function such that E [|g(n:)|] <
oo and E [|g(n)| n}] < oo, and let Hy—y be an F,' | ~measurable random variable with E [|[H;_1|] < co
and E [|Hi—1X¢|] < co. Let a be a nonnegative integer. Then the expectation E[Ht_lg(m)%ntaa] is
finite and equals coE [Hi—1) E [g(ne)n?] if E [g(n:)] = 0 whereas in general it equals

a—1

X af | 25t Blan] + B [H E [sit) + Blotw] (1108 |
k=0 t

H; 1 Xy
2

O

} — cE [Ht_1]> .

The proof of this lemma is given in the Supplementary Appendix. For later purposes we also note

that the constants c; satisfy the difference equation

R
cj = Z QQ,jCj—r, 7 >0. (10)
r=1

This can be justified as follows. Consider the stationary autoregressive process x; = ap12x¢—1 + -+~ +
ap rTt—r+ & where & is a white noise sequence. Define o (z) = 1—ag12—-- '—ao,RzR and write x; in
the moving average form z; = « (B)_1 &. Observing that IT is the coefficient matrix of the companion
form of the process z; we also have z; = 72 VIV1& ;= > 720 ¢jét—j- Thus, ()7t = >0 cjz?

from which equation can be deduced.

Appendix C: Score Vector

Expression for the score vector. Asin Section 3.2, we use a subscript to denote a partial derivative

indicated by the subscript. For notational brevity, denote
_ faa(h P (0)u(0); 2)
Fa(hy 2 (O)ur(9); 1)

Then, with straightforward differentiation one obtains

o 1(0) = Fr2 (b O

Crt 0 = .
0 ol 2 (0)u(0): A)

wes(6) 1 has(0) e (0 ]
at(0)3 ) ~ 3 e (ex’t(e)hij g(iﬂ ! 1)
upe(0) 1 hp(6) ue (0
lo.(0) = xa(0)32g) ~ 37w (ex’tw)h};gé) ! 1>
0,t 1 het(0) (6 (9) ue(6) + 1)
2 () \"HE 172 )

6)\,t(9)
Expressions for the partial derivatives of w; (6) and h (6). Next, we derive expressions for
the quantities hq((0), hp,t(6), het(0), ua(0), and up () that appear in the score vector. As hy(0) =

w+aru? ((0) + - + agu?_ z(0), straightforward computation gives
R R
hat (0) =2 Z apug—p (0) Uq,t—r (@), Dt (0) =2 Z oy (0) Ub,t—r (@),
r=1 r=1
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and hey (0) = (1,u?_1 (0),...,ul_g(6)). As for the partial derivatives of u;(f), using the representa-
tion u¢(0) = b(B~!)"1a (B) y; and noting that a%pa (B) yt = —Yi—p gives

Uay1(0) = =b (B 'y = —a(B) tupy(0) (p=1,...,P).

Next note that 8‘2 b(B Nue(f) = —B 9uy(0) + b(B ')up, (). From the relation b(B~)us(f) =
a (B)y; it follows that the left hand side is zero, and hence

up 1(0) =0 (B™") T urg(0) (¢=1,...,Q).

This completes the derivation of the score vector.
An auxiliary lemma. The following lemma contains results needed in subsequent derivations.

Its proof is straightforward and is given in the Supplementary Appendix.

Lemma C.1. If Assumptions 1-4 hold, then (i) EleZ nf] < oo, (i) Ele,] < oo, (iii) Ele3 n7] <
00, (iv) Ellezmi|] < oo, (v) Elexsel ]l < oo, (vi) Ellexiessml] < oo, (vii) Eless] = 0, (viii)
E[ezv,tnt + 1] = 07 (Z$) E [e$,tn7t2] = 0: (.’,C) E [eas,tn?] = _37 (1’2) E[e)\,t] = 07 (.’,CZZ) E [n?e)\,t] =0.

Proof of Lemma 2. We present the long proof in several steps. In Step 1, we show that
E [lgs (60) | /1] = 0, and hence also that E[lg,; (fp)] = 0. In Step 2, we derive the expressions
of the matrices A;; and B;;, whereas in Step 3 we establish that these matrices are finite. Step 4
shows that Z () is positive definite. In what follows, we will repeatedly make use of the following
expansions for the components of uq¢(0o), us+(60), ha,t(00), and hy(6) (as before, p will range over

the values 1,..., P, and g over the values 1,...,Q):

Uq,t(00) = —ao (B)_l [ot—pt—p] = _27/15) )Jt —p—iTlt—p—i (11a)
=0
-1 >
up,(60) = bo (B71) [0t+q77t+q]:Zi/}(()l?,)-at+q+j77t+q+j (11b)
=0

hap,t(e()) = 2Za0r€t rlUay,,t— 7“ 90 = _QZZQOTwOZUt rMt—rOt—r—p—ilt—r—p—i (110)

r=1 r=1 i=0
R R oo b
hogt(B0) = 2 corerrtip,i—r(B0) =2D > Oéo,rw(()}Ut—rUt—rUt—r+q+j77t—r+q+j (11d)
r=1 r=1 j=0

Step 1. First note that E [e;¢] = 0, E [ez e + 1) = 0, E [ezn7] = 0, and E [ex] = 0 (see Lemma
C.1), and that e, is independent of F," ;. Also note that uq(60), ha,t(00), het(o), and oy are all

F;' ;—measurable. Therefore, F [lg’t (0o) | .7-";771] = 0 clearly holds for the components corresponding

Ub,t(90) _
Tt

to the sub-vectors I, (0p), lci (6o), and lgt (6p). Now consider the sub-vector Iy, (6y) = ey
éh”;i(te())( ezt + 1), where the terms w((6g) and hy4(6y) are not F;' ;—measurable. As oy is F, |-

measurable, it suffices to establish that F [ez,tub’t(ﬁo) | .7-";7_1] =0and F [(ez,mt +1) hpt(6o) | .7-";7_1] =
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0. The former result is obtained straightforwardly by using the expansion of u, (fp) in and
the law of iterated expectations conditioning on ]-"t"ﬂ -1 For the latter result, note that in the
expansion of hbqyt(ﬁo) in the terms oy, and n;_, are ff_lfmeasurable. Therefore it suffices to
show that E [(egmt + 1) 0t—riqijTh—riqrj | Frq) =0 forallr =1,...,R, j>0,and ¢ =1,...,Q.
If t —r+q+j <t, this follows from the F,' ;—measurability of o/_, 4+ —riq+; and the fact that
(ez4m + 1) is independent of F,! ;| and has expectation zero. If t — r + ¢+ j > t, one can apply the

law of iterated expectations conditioning on F," and again show that the expectation is zero

rHq+j—1
making use of the fact that oy, 4qy; is F/ +q +jq1]measurable. Finally, if t —r +q+ j = ¢, we
need to show that E [(ez e + 1) oy | Fyly| = o+E [(exene + 1) me | Fi-y] = 0 which follows because
E [exm?] = E[n:] = 0. This completes the proof of Step 1.

Step 2. Our next task is to derive the limit of Cov [Tl/QLg,T (00)] as T — oo. To this end, first
note that ly; (fy) forms a stationary and ergodic process (this holds because it can be expressed in
terms of convergent power series expansions of stationary and ergodic processes). Moreover, as was
shown in Step 1, E [lg; (60)] = 0. Thus, as Lg.r (6) = T~ 321 g+ (6o),

T
T

T-1 .
Cov |T?Ly .z (90)} = E [lg, (60) I (60)] + >~ {E [lo. (80) ly1—; (00)] + E [l (60) U 11: (60)] }

i=1
so that, given that the expectations and limits exist,

Cov [Tl/zLM (90)} = 3" Eloy(80) 1), (60)] as T — cc.

S=—00

Thus, our aim is to compute Y00 Ellg (6o) 1y« (60)]-

We will show that (i) the off-diagonal block consisting of E [le:(60)ll, ,(60)], E[la:(60)l, s(60)],
E[lqt(@o)lg,s(ﬁo)], and E[Zd,t(Qg)l{)’s(Hg)] is zero for all ¢ and s, (ii) the block in the lower-right-hand
corner consisting of E[l.+(60)lt. s(60)], E [l4,:(60)I..5(60)], and E[lq(60)l} ,(6o)] has the form shown in
Lemma 2, (iii) the blocks consisting of E [la,¢(60)l}, ,(60)] and E [l +(60)Il, ;(6o)] yield the terms in Ay,
Ao, and By, and (iv) the block consisting of E[lm(ﬁo)lg,s(eo)] yields the terms in Asy and Bos.

Step 2(i). Because (lq(00),lct(00),1a(00); F;') forms a martingale difference sequence, both

E [let(00)l, +(00)] and E [lq:(00)l}, ;(00)] are zero for ¢t # s. To see that the same holds for ¢ = s, write

1 het(00) uhi(B0) 1 he,t(60) Mot (o)
Bl (0] = B[~ SenaCenamy+ 1) P00 2 gy et P
7 op o 4 o; o}
1 he.t(00) Iy 4 (00)
— {Bl(cam+ 17 [t 2e D],
% 0

where the latter equality holds because hq(6p), hei(60), uat(6o), and o are F,' ;—measurable and
Elesy] = Ele2 ;] = 0 (see Lemma C.1). To see that the latter expectation in the last expression is
zero, note that the terms h.¢(fy) and o} are even functions of 7, for all 7, and conclude from the expan-

sion of hg, (o) in (l1c) that each summand therein is an odd function of 7;_,. Therefore, it follows

23



from Lemma A.3 that the expectation E[o; *he¢(60)h, +(00)] is zero, and hence E [l.;(6o)l,, ;(6o)] = 0.
Similar arguments show that F [ld,t(eo)lg7t(90)] = 0; detalls are given in the Supplementary Appendix.
Now consider the expectations F [lc,t(Go)l{L 5(90)] and E [zd,t(eo)zg, < (60)]. By direct calculation,

1 het(00) Ups(B0) 1 het(00) Ty, 5 (0o)
lc,t(QO)l;),s(eO) = _561},8 (ecc,tnt + 1) 0_7% O + 1 (ex,tnt + 1) (ez,sns + 1) T? O'g ’
uy (60) 1 Ry <(00)

ld,t (0())12),3 (00) = €x,sE\t

O 2 (ex’sns +1) Ert 03 ’

and we show that each of the four terms appearing on the right hand sides of these equations has
expectation zero for all ¢ and s. For the first term of I.:(60)l} ;(6o), use the expansion of u, s(fo) in
(11bf) and conclude that we need to show that the () expressions

lhct 90

D) 0_20 Z% O s+q+jls+q+jCx,s (ex e + 1) q=1,..,0Q,
t0s ©

have expectation zero for all ¢ and s. Here we can consider each term in the summation separately

and omit constant multipliers. Thus, it suffices to consider terms of the form

h t 9() g ;
Mns-&-fﬁ-jex,s (ez,tnt + 1) .
O't Og

If t # s+ q+ j, the expression is an odd function of 7544+, and hence by Lemma A.3 its expectation
is zero. If t = s+ g + j, the variable 7, (e n: + 1) is independent of the other variables and has
expectation zero by Lemma C.1. Hence, the first term in the preceding expression of +(60)l, ,(6o)
has expectation zero. Similar arguments show that also the second term of lc,t(00>l;)7 s(00) and the two
terms of ld7t(00)l27 s(6o) have expectation zero; details are given in the Supplementary Appendix.

Step 2(ii). Because (I (6o), la.(00); F/') forms a martingale difference sequence, E [lc(60)I,. ,(60)],
E[ld,t(é?o)l’c,s(%)], and E[ld,t(ﬁo)lfi’s(eo)] are all zero when t # s. When t = s, simple calculations
making use of the ﬂ”_lfmeasurability of het(0o) and o and Lemma C.1 show that these expectations
yield the expressions of Ass, Ays, and Ay in Lemma 2.

Step 2(iii). Now consider the blocks involving E|la:(60)l, ;(fo)] and E[ly(6o)l}, ,(60)]. For the
former one, note that (l44(6); F;') forms a martingale difference sequence so that E [l4¢(60)l} 4(60)] =
0 for all ¢ # s. When ¢t = s, simple calculations making use of the F,' ;~measurability of hq (),
uqt(0p), and ¢ and Lemma C.1 show that E [la,t(eo)lg’t(ﬁg)] equals the expression of Aq; in Lemma
2. As for E [ly4(00)l, ;(fo)], arguments very similar to those already used in Step 2(i) can be used to
obtain the expressions of A9 and Ba; in Lemma 2; details are given in the Supplementary Appendix.

Step 2(iv). Finally, consider the block consisting of F [lbﬂg(eo)lg’ ,(60)]. To this end, write

ub,t(eo) ufm(@o) 1 hb,t(eo) h275<90)
(o)l (B0) = exiers o Os + 4 (exine + 1) (€x,sms +1) o? ol
L bo) 1,s(%0) 1 iyt (60) )0
—5Caxt (690,8773 + 1) M b, (2 0) — =€z (ex,tnt + 1) Lzo) b, ( 0) )
2 Ot o3 2 o7 o
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We begin with the first two terms of I+ (60)l}, ,(60). For t = s, these two terms have non-zero expecta-
tions that yield the expression of Ags in Lemma 2. When t # s, they have zero expectation. To show
this, we proceed as in Step 2(i) and conclude from the expansions of uy, ¢(6p) and hy, (6p) in
and that it suffices to show that the two expressions

Ot+q+j9 514+ " n e e
t ] G445 €z, tCx,
0¢0s FaH s gyt
Ot—rOt—r+q+j 0-5_7:0-8*54’@4’3

2 .2
005

Mt—rMt—r+q+5Ms =715 _71G15 (ex,tnt =+ 1) (61,5775 + 1)

have expectation zero whenever ¢ # s. In the first expression, as t # s, the only possibility for a
non-odd expression is t = s + §+ j and s = ¢t + ¢ + j, but these cannot hold at the same time. As
for the second expression, assume that s > ¢ (it is clear from the expression that the case s < ¢ can
be treated in a completely analogous manner). Then the largest index can be any of the three indices
s, t—r+q+j,ors—7+qd+j. If any of these three indices is alone the largest, the expression
will have expectation zero (with similar reasoning as before). The same holds if one of the indices
t—r+qg+jand s—7+q +5 is equal to s and the other is smaller than s (in this case the term
s (ez,sNs + 1) has expectation zero and is independent of the other terms). Thus, we must have
t—r+q+j=s—F+qG+y wf + a > s in order to have a (possibly) non-zero expectation. In this
case we must also have t —r = s — 7 in order to avoid an odd expression as a function of n;_,. With

these restrictions, the considered expression simplifies to

g
T o227 (ex i + 1) (ez,sns + 1) My
S

Making use of Lemma B.1 and the fact E [(ez i + 1) n2_jo2_:/0f] = E legyme + 1| E [n2_s02_;/0}] =
0 we conclude that this expression has expectation zero.

Now consider the two last terms in ly+(6o)l;, ,(69). Note that due to stationarity, the expectation
of the former with any s = t 4+ x equals the transpose of the expectation of the latter with s =¢ — z.
Therefore, if these expectations are summed over all s # ¢, the sum of the expectations of the latter
terms will simply be the transpose of the sum of the expectations of the former terms. Moreover, as
the derivations below will demonstrate, this sum will be symmetric. Thus, it suffices to consider the
third term in [ t(@g)lg s(6o) only, and multiply the result with 2. Making use of and , the

element (g, ) of this term can be expressed as

R oo o

b) Ot+q+j0s—r0s r1Gi;
Z Z Z 1"77/}0 3 77t+q+j773—r775_7»+q+3€m,t (ex,sns + 1) .

oo
r=1j=0Z—g t%s

In order to see which terms in this summation have non-zero expectation, note that the largest time
index in the summands is either t + g + j, s, or s — r + ¢ + j. If any of these three indices is alone

the largest, the term will have zero expectation. If s equals one of the other two indices while the
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other is smaller, then the summand contains the variable 71, (€5 sns + 1) that is independent of the
other variables involved and has zero expectation. Thus, in order to have nonzero expectation, we
must have t +q+ j :s—r+q+3d§fs+a2 s. In this case, we must also have t = s —r (< s) to
avoid an odd expression as a function of 7s_,. Thus, we can assume these restrictions under which

the considered expression simplifies to

(e e o]

R
Z Z Z o TwO,Jw (S;La Ns—r€a,smr (€x,s0s + 1) 031 q0
0 S

r=1j

Making use of Lemma B.1 and the facts F [(63373773 +1) ng] = —2 and E[ns_rez s—r] = —1 (see Lemma

C.1), the expression has expectation equal to

R oo o
b b . ~
933> a0t (g 4G —r =G+ —r =02 0).
r=1 j=0 j:()
As ¢, = 0 for a < 0, we may equally well consider the sum without the restriction a > 0. Also note
that this expression is symmetric in ¢ and ¢, and thus (as was noted above) the matrix Bag is obtained

by multiplying the above expression with 2, yielding

R oo oo
b) (b , o
*42220‘0,@83%3%1 (g+j—-r=4+j—r=a).
As the expression is symmetric, it suffices to consider the case ¢ > . Solving for j and a as j = j+q—4§

and a = ¢ + j — r and substituting to the preceding expression yields

742 Z @0 M[J 7/)(] J+g—gCati—r = 42 dJOJ q@bé?])-ich,
r=1 j=0 j=0

where the equality follows from 1’ and the convention @Z)éb)- =0, j < 0. The last expression equals
that given for (Bg2), ; in Lemma 2. Thus, we have established (iv), completing the proof of Step 2.

Step 3. We now show that our assumptions guarantee that the expression derived for Z () is
finite, thereby also guaranteeing the validity of the employed arguments. As the elements of By and
Bos are defined through convergent series, their finiteness is immediate. Hence it suffices to show that
the matrix A = FE [lg +(60)1 (90)] is finite. First consider the blocks A1y, Ass, A3, and A4y and note
that o2 > wp > 0 (see equation @ and Assumption 2). Making use of the Cauchy-Schwarz inequality

it is therefore easy to see that these blocks are finite if

Blezni], Elezd, Elleateaamll,  Elexeehds  luar(@)lly, Ihas(@o)lly,  Nhee(00)lly

are all finite. The four first terms are finite by Lemma C.1. As for the fifth term, making use of the
expansion ([11a)) and Lemmas A.1 and A.2 it is seen that even [Juq(6p)||, is finite because E [e}] < oo
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by Lemma 1. That ||hs:(60)|l, < oo holds can now be seen by using the expansion and the
Cauchy-Schwarz inequality whereas the finiteness of ||k, (6p)||,, follows from the fact that E [e}] < oo,

The finiteness of the blocks Ag; and Agy requires a somewhat more detailed investigation. (A
direct application of Holder’s inequality would lead to unnecessarily strong conditions.) Consider the

first of the four expectations appearing in the expressions of As; and Ags. Using the expansions in

(11c) and (11d)) it is seen that we need to consider the expectations of (p =1,..,P,¢=1,...,Q)

hy,t(00) P, 1 (00)

2
2 P} (ex,tnt + 1)
O Ot
- e Ot_rO Ot_f0
(a) t—rOt—r4-q+jO0t—70t—7F—p—i 2
—4 g E E g Q-0 rwoj ) M Mt —r- g N—i Mt —F—p—i (€xeMe + 1)7 .
r=17=1 j=0 i= Ot

The only terms in this summation that have nonzero expectation are those in whicht—r =t—7—p—1
and t — 7 =t —r+ g+ j. Therefore it suffices to consider these index combinations and show that

2 9
Ot—r0t—rtq+j 2 2
1 Ni— Tnt r+q+j (6337”775 + 1)
i

has an expectation bounded by a finite constant (independent of the indices). As the indices satisfy
t—r < t—r+q+j < t, arguments already used in similar previous calculations and the Cauchy-Schwarz

inequality give

2 2
Ot—r0t—r+q+j o 2 4 4 1/2 2 2
L O_;Lr cari Me— r77t r+q+j (ew,tnt + 1) <C (E[Et—T}E[O-t—T-HI'Fj]) E[nt—'r-HH‘j]E [(ex,t’rlt + 1) ]

for some finite C'. The expectations on the dominant side are finite by Lemma 1 and Lemma C.1.
The other three expectations appearing in the expressions of Ag; and Ago can be handled in a
similar manner making use of the expansions . Details are given in the Supplementary Appendix.
Step 4. As the matrix Z (6p) is block diagonal, what needs to be shown is that the blocks
A AL, + Bl Ass A
1 (6o) d;f 11 21 21 and 7> (6o) d;f 33 43
A21 +Ba1 Agz+ B Az Ay
are positive definite. We begin with the latter. Note that Zs (6p) is the covariance matrix of the vector

( (ex e+ 1) =257 he t(eo) €>\7t>. Therefore, what needs to be proven is that

1 he (0
a <—2(ex7mt + 1)’;(20)> + b'ex’t =0 a.s. (12)
t

only if a = 0 and b = 0 (a € REFL b € RY). Multiplying with o?n? and taking expectations
conditional on F;' | yields (by Lemma C.1(xii), E [nfer:] = 0) a’hcy(60) = 0 or, written out, a; +
ago? niy + - +agpi10l gnt = 0. If ag # 0, we obtain a contradiction, hence az = 0. Similarly,
ag = ---=apr+1 = 0, and thus also a; = 0. Therefore, becomes b'ey; = 0. By Assumption 4(iii),

Eley € ;] is positive definite, and hence necessarily b = 0. Thus Z5 (69) is positive definite.
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To prove that Z; (6p) is positive definite, define the processes xq¢ = 41+ + a2 (P x 1) and
Tpt = Tp 1t + Tp2t + Tp3e (Q x 1), where the vectors on the right-hand sides have the components
(p=1,...,P,¢=1,...,Q)

s e
(a) x,t
Lap1t = — g ¢0i0't—p—i7]t—p—i >
— ’ Ot
R o
_ (a) ex it + 1
Lap2t = 5 5 O‘O,Tw()ﬂ' Ot—rMt—rOt—r—p—illt—r—p—i o2 >
r=1i=0 t
s e
— (b) Irtquj
Loy 1t = § ¢07j — Ot
j:0 O-tquj
€x tnt +1 .
Tpy2t — — E E (7] rwojat rMt—rOt—r+qt+jTlt—r+q+j 1 (Q+] < T‘),
r=1 j=0
€xt+r—q—jiMt+r—q— ]+1 .
Tpy3¢ = — § E &%) r%]% q—j"Mt—q—j 02 ol (Q+] > T)-
r=1 j=0 t+r—q—j

It can now be shown that the process x; = (24, 2p) has the covariance matrix Cov|z;] = Z; (6y). The
lengthy arguments required to establish this are similar to those already used in Step 2 of the proof
and rely on the expansions f. The details are available in the Supplementary Appendix.
Making use of the way z; is constructed we now show that Cov[z;] is positive definite. First
decompose x¢ as Ty = (a1, To14 + To3t) + (Ta2t, Tp2t) def 21+ + 224 where, according to the
calculations given in the Supplementary Appendix, z;; and z; are uncorrelated. To show that
Cov [z] is positive definite, it thus suffices to show that Cov [z1] is positive definite. To do this, we
further decompose z1; into a sum of two uncorrelated components. To this end, define the processes

Cxt .
éz):_at]nt];a Jj=1

t?j

R
(& e + 1 ) .
5= e Z S ﬂ7t+r = )Ut*ﬂ?tfjl(J >r))om, =1
r=1 Ut+r —J
(eayeme + 1)ne
(62) —QjO1—j—j————, j=1,...,R
tj Ot

0, 7>R.

Note that these three series are serially uncorrelated (E[(t(‘;)gt((;)] = E[Ct(f’jl)gfgl)] = E[g‘t(?)g;?)] =0
for j # j) Moreover, non-contemporaneous elements of the different series also have zero correla-
tion (E[Ct(z.)(t(gl)] = [C(bl)(?)] = E[Ct{b?)(t(g)] =0 for j # j) Now write 21+ = (2a,1,4, 2p1¢) =

(a1, b1 ¢ + 2p3+). The components of 21+ can be expressed as

zap711t = xa{lﬁl’t - : :wo t ’L+p
— _ (®) (1) (62)
Zhg it = Tby it Toy 3t = E V0,5 (Ctjrq T Stita ) -
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To decompose z1 ¢ into two uncorrelated vectors, define K = max {P, @}, and write

a 2
fap,lt = Z QIZ)O \ Ct Ji+p + Z 1/}( )Ct H—p ap)l t + Zc(zp),l,t

i=K—p+1

(2 o B) (A1) (2) (1) (2)
(Ctﬁq + Ct]+¢1> + Z wO,j (Ct,jJrq + CtJJrq) by, 1t Tz g, 1,87
j=K—q+1

where the latter equalities define the vectors z% t) = (zc(llf e 21(711) t) and zft) = (z((fz e 2221) ,) that satisfy

214 = z% t) + zi t) Note that z% t) depends on Qt] , Ct(il , and Ct’j only for j = 1,..., K, whereas zft)

depends on these processes only for j > K. Therefore Zi,lt) and zft) are uncorrelated, and thus it

(1)

suffices to prove that Cov(z; ;] is positive deﬁnite

To show this, denote ¢ = (Ct(:ll), e tK’Ct 1 —|— (t 1 ,... (bl) + C(bQ)), and note that z( ) can be
(1)

written as z; ; = U, where the (P+Q) x 2K constant matrix \I/ has full row rank and whose expression

is given in the Supplementary Appendix. To prove that Cov[z&)] is positive definite, it thus suffices

Zbg, 1t =

||F1N i

to prove that Cov[(] is positive deﬁnite Equivalently, we can show that the covariance matrix of the
vector (Ct 1 ,C(bl) + C(b2), e ,Ct K C(bl + C(bQ)) is positive definite. This vector has a block-diagonal
covariance matrix with the 2-by-2 diagonal blocks given by the expectations of (k =1,...,K)

t(tzﬂ (a) (C(bl) +C(b2)>
G (6 +¢%) (ct,k vy’

It thus suffices to show that the covariance matrices of the vectors (Ct p ,C(bl + Ct(f)), k=1,...,K,
are positive definite. This requires a careful argument, and for clarity, we consider the two cases
1 <k <R and k > R separately.

In the latter case, (t(’bk?) = 0, and what needs to be proven is that the equality alﬁi + ao( tbl)
(a.s.) (k > R) implies a1 = ay = 0. Slightly reorganizing, this equality can be written as (note that

1 (k > r) can be omitted in this case)

Cxt—k & (ex,t+r—k77t+r—k + 1) 2
A1Mt—k€xt = A2 5 Z Qo7 3 N—k | O¢Tt- (13)
%%k . Otr—k

Squaring and taking expectations conditional on F," | yields

2
R
2.2 2 2 [ Cxit—k (extrr—kMirr—k + 1) 4
ain_ B [ex,t] = a3 < o2 - Zao,r ) M—k | 0.
t—k =1 t+r—k

As ap, > 0forall r =1,..., R (see Assumption 2) the difference in parentheses on the right-hand side
cannot be equal to zero a.s. (if it were, its expectation conditional on ]:t"_  would also equal zero a.s.,
but this expectation equals ex,t_k/at{k). Therefore, if a; = 0, then ay = 0, and vice versa.

On the other hand, if a; # 0 # ay (and k£ > R) multiply with i (eg,c +m¢), divide by a1 # 0,

and take expectations conditional on F," ; to obtain 77, (E [ei,t] — 1) = 0. In the non-Gaussian case,
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Ele2,] > 1 (see Remark 2 in Andrews, Davis, and Breidt (2006)), giving a contradiction. However, in
the Gaussian case e;; = —n; so that E [e%t] =1 and we need to use a different argument.

Multiplying with 7;_pm, dividing by ago? # 0, taking expectations conditional on Fl 1,
substituting e, ; = —7;, and reorganizing yields (note that ag r > 0 by Assumption 2)

0152 Rk [ 01 777:2 k 77t2 = (77t p— 1)
1 o ,,72 _ ,,72_ — +R— — o + aO —+r— ,)72_ . 14
=t = “ G5 — o Lot (14)

Next consider the event
Mesr—k| > My, 1< |ni| <2, ofipy <M, Ipf|<lforT=t—k+1,...,t—k+R—1,

which has positive probability for any fixed positive My and My (where Ms is large enough). (To see
this, it suffices to note that 7; has an everywhere positive density, and that o7 is stationary with finite
mean.) On this event (for any fixed M; and M), the right-hand side of is bounded in absolute
value by a constant independent of M, say C' (note that o, 2 is bounded). On the other, by choosing
M large enough, the left-hand side of will only attain values that are smaller than —C. Thus,
we have a contradiction.

Now consider the case 1 < k < R. We need to show that the equality algt( + ag( (bl)

(a.s.) (1 <k < R) implies a1 =ay = 0. If ap = 0, we clearly have a; = 0 also. Now suppose a; = 0,
but az # 0. In this case, (t k + CtbQ) 0 (a.s.) must hold (1 < k < R), so that

(em,tnt + 1)7715
Ot

f—
(%t k Z extJrr k77t+r r+1) _o (15)

Ot—kMNt—k | OtTt — Q0kOt—ETt—k
- -1 UtJrr k

Multiplying with oy, dividing by o4 # 0, taking expectations conditional on F;" | (recall
that E [(ezsm + 1)n7] = —2), and reorganizing yields

Cx,t—kMh—k 2 Z 0 5 (€xtrr—kTlerr—k + D), + 200,107 = 0. (16)
t+r k

Adding and subtracting o?/ af_ > taking expectations, and using Lemma B.1 we obtain

k—1

—2c, — E [Uf/af_k] +2 Z QQ,rCk—r + 2&0,]6 = 0.
r=1

Because ¢g = 1 and ¢; = 0 for j < 0, the identity leads to the contradiction [o? / of_k] = 0 (this
holds even in the Gaussian case which requires no special treatment).

Now consider the case a1 # 0 # as whereupon the equality algtk + ag(C(bl + (th)) =0 (a.s.)
(1 < k < R), multiplied by o and divided by oy_ras # 0, becomes

2 k-1 2
ap o} o}
_;nt—kex,t‘F Cat—k 3 E a0 (€x ttr—kMitr—k + 1)M—p—5—— - Mt — 0 ke Nt—k (€x e + 1)ne = 0.
2 Otk —1 Ottr—k
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For brevity, denote the difference in parentheses in the middle term by k;_1. Next, let by and by be
constants such that the variables (eg m:+1)n: —bim: —ba(ex t+1¢) and (1, (ex, + 7¢)) are uncorrelated.
The constants b; and by are determined by the linear regression of (e (1 + 1)1 on the (uncorrelated)
regressors 7y and (ez¢ + 7¢). In the Gaussian case e;; = —n; so that by = —2 and by is undefined.
In the non-Gaussian case, by = —2 and by = (Ele2 7] — 3)/(Ele2,] — 1) (Ele2,] > 1). Defining

a

Kie—1 = (= — o kb2)Ni—k, K24-1 = Ki—1+ GoM—k — Qo kb17Mt—k, and K31 = —ag kNe—k, the preceding

equation can be written as

Kip—1(€xt + M) + Ko -1 + K3 —1[(exne + 1)ne — bing — ba(ex +1:)] = 0.

By construction, the variables n, (eyx: + n¢), and (ez¢me + 1) 9 — bimy — ba(eqr + 1m¢) are uncorrelated

and r;¢—1 (i =1,2,3) are F; ;—measurable. Squaring and taking expectations conditional on F," ;,
W (B [eh] = 1) + 851+ 65, 1 Bl((eaume + e — bime — ba(eas +m)*] = 0. (17)

Each one of the three terms on the left hand side must be zero (a.s.). As k3,1 = —agrM—k 7# 0

(a.s.), the expectation in the third term is zero and therefore

(extme + 1) —bime — ba(ezt +m:) =0 (as.). (18)

If 7 is Gaussian we have e, ; = —n; and this equality becomes —n? 4+ (1 — by) n; = 0. This is clearly a
contradiction so that we can continue by assuming that 7, is non-Gaussian and that holds.

In the non-Gaussian case E [e%t] — 1> 0 and on the left hand side of we must have Kit_l =
(—Z—; — a(]’kb2>27’]t2_k = 0 (a.s.). This implies % = —ap b2, and hence ko1 = K—1 — agpbani—i —

o 11— = 0 can be written as

5 k-1 2
g g

ex,t—kO_Tt =Y o (Catpr—iMerr—k + Dne—i 3 F— —agr (b2 +b1) - =0 (as.). (19)
t—k r=1 t+r—k

Multiplying with 7;_j and taking expectations yields (cf. the steps following equation )

—FE [U?/U?—k] — 209 — o (b2 +b1) =0

and as by = —2, a contradiction is obtained unless by < 0 (in which case Ele2 ;n?] < 3).
Now consider equation . Substituting the definition of e;; and by = —2 and rearranging

equation (|18]) can be written as

fn,x (ntQ)‘O) _ (b2 - 3)77t — _n, ( by 1 2> -1
b .

o Xo) — nf—bo 2—3_52—3nt

By definition, the density functions satisfying this differential equation (with by < 0) are members of

the Pearson type VII distribution family (see Johnson, Kotz, and Balakrishnan (1994, Sec. 12.4.1)).
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Given that we also assume that E[n;] = 0, E[n?] = 1, and E[}] < oo, the only distribution not
contradicting is the rescaled t—distribution with density

- 000 = -2 (2 F0) /().

where the parameter A\g > 4 and I' () signifies the Gamma function. If we can show that rescaled

X
Xo — 2

2 —(Ao+1)/2
I (23 20) = C(Xo) (1 + >

t—densities violate equation the proof is complete.

To this end, note that for the rescaled t-distribution e;; = —éé“:;iﬁ; so that by = 2 — Ag, and
t

hence by + by = —\g. Equation can now be slightly rewritten as

2 k-1 2

g g

= o (Catpr kMeir—k + Dk > =+ agrron—k =0 (as.). (20)
r=1 t+r—k

Cxt—k 5
Otk

We now proceed iteratively. First suppose that £ = 1. Then becomes

2/, 2
€xt—10% /Ut—l + 040,1>\0"7t71 =0. (21)

Ao+D)ne—1 2 2 2 2 2
_fﬁﬁ%’ 07 = 0107 1Mi_; + Vi—2, Where vy_o = wo + 207 _oNi_o + - +

o, Raf_ Rnf_ g 18 Fly,—measurable, multiplying by o2 1(n?_1 + Ao — 2), and reorganizing results in

Substituting e, ;1 =

[—ozoylof_l] 771;3—1 + [—()\0 + Dvp_o + a071)\00t2_1 (Ao — 2)] n—1 = 0.

The coefficients in square brackets are F,’ ,~measurable and independent of n;_1 that follows a rescaled
t—distribution, and thus the only way to avoid a contradiction is that the coefficients are zero a.s. (if
they were not, the polynomial could be solved and rn:—1 expressed as a F, ,—measurable function).
However, the coefficient of 1} ; is —ap 107 ; which is nonzero, a contradiction.

Now suppose that £ > 1. Reorganizing, (20| can be written as

o
—agk—1(ez 1M1+ 1)7]t—kUTt +

k—2
€xt—k Mt—k
( 12 - § @0 (€xt4r—kMyr—k + 1) 2 ) Uz€2+a0,k>‘077t—k =0
t—1

A R —— Titr—k
or, with obvious definitions of the ]:Zlfmeasurable variables p1—o and v 42, as

0.2

_Oéo,kflntkaTt(em,t—lnt—l +1) + Ml,t—20752 + 149 =0.
t—1
o Xot+1)me— N .
Substituting e; ;-1 = —% and 07 = o107 11?1 + vi—2, multiplying with o2 ;(n?_; + Ao — 2),

and reorganizing we get

2 4 4 2
[ao,k—lﬂt—kao,latfl/\o + H17t—2a0,10t71] M1 + Kag—2Miq + kst—2 =0

where the coefficients k42 and k5;_o are ]-"ZLQfmeasurable (we omit their exact expressions for
brevity). As above, this equation can be seen as a polynomial in 7;_; with coefficients that are F," ,—

measurable and independent of 7,1 (which follows a rescaled ¢—distribution). Thus the only way to
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avoid a contradiction is that the coefficients are zero. In particular, the coefficient of n} ; needs to be
zero so that (dividing with ag102 | # 0) Q0 —1M—kA0 + p1t—202 1 = 0. Substituting the definition

of p1¢—2 into this expression and reorganizing yields

of 4 — o
Cat—h 5 Zaw (ex ttr—kMttr—k + Nt—k——— 2 + o k—1M—kAo = 0. (22)
Otk —1 Otir—k

Note that this is very close to equation . If k =2, we get em_gat{l/Ut{Q + ap,1m¢—2A0 = 0, which
is exactly the same as equation obtained above in the case kK = 1 except for a shift in the time
index. Hence, we can derive a contradiction.

For 2 < k < R, the proof proceeds iteratively using arguments analogous to those used in the two
previous paragraphs. For such values of k we arrive at a contradiction similarly as above. All the

details are available in the Supplementary Appendix. =

Proof of Lemma 3. Let lp;:(6p) i =1,...,P+Q+ R+d+ 1, denote the components of the vector
lp,t(6o). To establish the result, we need to show that the following conditions hold for alli =1, ..., P+
Q-+ R+d+1 (cf. Davidson 1994, Definition 16.1): i) E [|lg,;+(60)]] < 00, ii) || E [lg,(60) | F/]ll, < o0,
iii) E [lg,i4(60) | F1] =0, and iv) ||lg,i.4(60) — E [lo,ie(60) | Fi'pn ], < cp™ ™ for all m > 0 with some
¢ < oo and p < 1. Conditions i) and ii) hold because E[lg7t(90)l’9’t(90)] < 00, as shown in Step 3 of
the proof of Lemma 2 whereas condition iii) was shown in Step 1 of the same proof .

Condition iv) clearly holds for the components of the sub-vectors l,:(0y), lc+(6o), and l4:(00)

because they are F;'~measurable. Concerning the sub-vector l +(0y) = €44 ub’;ieo) % o, t(eo) (ezme + 1),

note that e, ¢, oy, and 7; are ]-"&mfmeasurable for all m > 0 so that

Ia(60) = B [1n4(60) | Flyn] = 25 {uns(6) = B [una(60) | Fin]}
1 et + 1
2" {(00) — B [10,(00) | Fi]}-

Recalling the expansions of up, +(60) and hy, ¢(6p) in , we obtain (¢ =1,...,Q)

m—q

K [qu,t(eo) |]:tn+m] = Z Ut+q+j77t+q+J
7=0
R m—q+r
E [hbq,t(eo) ’]:tn—l—m] = 22 Z aOerJUt rM—rOt—r+q+jTt—rdq+j-
r=1

Therefore, to establish iv), it suffices to show that

[e.9]

Cxt m+1
Z ‘lbo ‘ o —OttqtjM+qri|| < cp
j=max{0,m—qg+1} t 2
and
R 00
() || Cattt + 1 m+1
Z Z agr |’¢07]~| 5Ot Mt—rOt—r+q+jM—r+q+j|| =< CP

o
r=1 j=max{0,m—q+r+1} ¢
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forall g =1,..., and m > 0 for some ¢ < oo and p < 1.
In light of Lemma A.1, all that is required is to show that

Ut2+ +j o7 ¢ 2 Ut2 +q+j

2 q+j . 2 —r'it—r —rtq+j_ 2

E €.t 2 Nittq+s and E 2 (€w,t?7t + 1) 2 M—r+q+j
O O O

are dominated by a finite constant (independent of ¢, j, and r). For the former this is an immediate
consequence of Lemma B.1 and Lemma C.1. Concerning the latter, if —r+¢+ 7 > 0 the desired result
is obtained from Lemma B.1 and Lemma C.1. If —r+ ¢+ j < 0, the term (e +n: + 1)2 is independent
of the other terms involved and has finite expectation. Thus, using also the bound o? > wy > 0 we
can find a finite constant C' such that

2

2 2
Ot—rMi—r 2 Tt—r+qtj 2 2 .2 2 2
E| = (o + 1) — 5 gy | S OB |00 mi—r0irigus] B [Miriqs]
t t

< CE[ ] B ot ] P B iriga] -

Here the latter bound is based on the Cauchy-Schwarz inequality and the expectations therein are

finite by Lemma 1. =

Proof of Lemma 4. As was noted in the beginning of Step 2 in the proof of Lemma 2, lg ;(0y) forms
a stationary and ergodic process with E [lg+(6p)] = 0. In Step 3 of the same proof it was shown that
E[l97t(00)lg7t(90)] < 00, and hence E[|l97t(90)lg7t(90)\] < 0o. By Lemma 3, the sequence {a'lp¢(6), F/'}
is an Le—mixingale of size —1 for all conformable fixed vectors a # 0. By Lemma 2, the matrix
T (6) is positive definite and an application of Lemma A.4 yields the result 7-1/2 Z;‘FZI a'lg+(6) LN
N (0,d'Z (Ap) a). The stated result follows from this by the Cramér-Wold device. m

Appendix D: Hessian Matrix

Expression for the Hessian matrix. In accordance with the partition of 6 as 0 = (0,4, 0y, 0., 04),

we will denote the 16 blocks of the Hessian matrix with l,(6) = %, lpat(0) = g;i%’(g’)’ ete. In
what follows, we will also denote 0,4, = (04, 0, 0.).

Let us summarize what form the 16 blocks of the Hessian lgg (6) take. To simplify notation, define

B fn,m( 1/2() (0); \) fnx( 1/2( Jue(0); A) 2

i) = T B (8): ) <fn( 70 )ut<e>~A>>
) = el OO Fpa i Ou0)) ol O 0): )
’ Fols PO @) N)  Folhy OO0 N) ol (0 ue(8): N
Fan (00083 Fyn (2 (0)us(0): 3) Fya (i (0)ur(6): V)
Lo PO w08 Lol OO0 ) ol (0 ur(8): N

exi(f) =
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and also

u2 (7
Ei:(0) = % <;6m¢(9) 9) + 36:(:1:(9)ﬂ + 1)

he(6) h,?(6)
Eau(0) = *% (%x,t(@)% + exyt(9)>
El0) = — (el +1)

Now, straightforward differentiation yields the different blocks of lpg +(0) as

Ua,t(9) u;,t(g) hat(0) hfz,t(‘g)
o) n@) O T

laa,t(g) = exw,t(e)

ua,t(e) hg,t(e) ha,t(e) u;,,t(e) Uaa,t(e) haa,t(g)
TE2.(0) (h;”(a) @) h(0) h0)) " wt(0) 1% (6) 34(6) he(0)
Ub,t(g) ué,t(e) hb,t(e) hg,t(e)
lba,t(e) = ezx,t(a)mm 1,t()ht(9) ht(e)
Ub,t(9) hfm(ﬁ) hbt(‘g) u; (‘9) uba,t(g) hba,t(e)
+Rael0) (h%(@) @ o) nro)) O ) T B O )
Ups ) (0 +(0) hy (0
lbb,t(g) = €$$7t(9)hf/2((9)) f/';(())—i—Elt(Q)h}i)t (0‘9)) }Zt((Q))
up(0) P (0)  hy 1 (6) wy,,(0) upp,¢ (0) hipb 1 (0)
+E2t(9)<hi/2(9) ht(e) ht(e) h;/Q(Q) + m,t(e) hi/g(e) 3,t(9) ht(g) )
o hc,t(‘g) ha,t(e) hc,t(0> U@,t(e) hca,t(e)
laa0) = Ere®)5 ) T@) T2 O,y nre) T O )
h, (0 u, (0 .
R L
o hc,t (9) h/c,t (9) hcc,t(g)
lcc,t(e) — 1,t( ) ht(O) ht(é?) 3,t(9) ht(‘g) )

g 1(0) 1 ug(0) e (0) - ug,t(e) 1 w(0) hgt(H)
h*(0)  2h%(6) hi(6) ) a0 (6) = e”’t(g)<h;/2(9)  21%(0) hu(0) )
1 w(0) h/c,t(e)>

lact(0) = exzt(0) <_2hi/2(9) h(6)

lda,t(g) = 6)\51;7,5((9)(

laat(0) = exr(0).

Expressions for the second partial derivatives of wu; (6) and h;(#). To complete the deriva-

tion of the Hessian, we need expressions for uqq¢(0), upe,t(0), u+(6), and hg,,.g,,,+(0). Concerning
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ho,,.0,,..t(0), with straightforward differentiation we obtain

R

haa,t(e) = 2 Z Qp (ua,tfr(e)uiht_r(g) + utfr(e)uaa,tfr(e))
r=1
R

hba,t(e) = 2 Z Qp (ub,t—r(‘g)u;,t—r(e) + utfr(e)uba,t—r(e))
r=1

R
hope(0) = 2 Z oy (upg—r (O)upy s (0) + wg—r(0)upy 1 (6))
r=1

0 0
Q1 (N, (0 Qus_1 (O, (0
hoag (@) = | OO = | Pt O e )
| 2u—r(0)uy, , p(0)] | 2u—r(0)uy,,g(0)]

whereas hec(0) is a matrix of zeros. What remains is to compute wqqt(0), Upet(6), and upp(6).
Because g, ¢(0) = —b(B~') "ty (p=1,..., P), we have uqq(f) = 0. For the remaining two terms,
recall that from the relation b(B~1)us () = a (B)y; we obtain 86(357&?&0) =0forg=1,...,Q. On
the other hand,

0=

ob(B Yu(0) ., L Ouy(9)
TG = B () + 0BT

Taking partial derivatives with respect to a, (p=1,...,P)or b; (¢ =1,...,Q) yields

92b(B~V)uy(9) _,0uy(6) 1 0%uy(6)
O = e, ~ P "8, TP a0,
821)(3_1)ut(9) _ 8’U,t(9) _~8Ut(9) -1 82Ut(9)
— 22 V) pg—qZ7t\7) p—qZ7t\7) B
0 ab,db; ab; AR TS
so that
0% (0 110Uy (0 T 1 _
o)y O gy = b(B) T aB) g 0)
q P P
0%uy () —1y-1 (aUH (0) | Oueiq(0) —1y—
= B L2+ 4 >:2b(B D24 14(0)
Dby Ob; 9b; b, trata

This completes the calculation of the Hessian.

Proof of Lemma 5. The arguments used in the proof are analogous to those used in the proof of
Lemma 2, Step 2. For the sake of brevity, we only present a short outline of the required steps. All
the details are given in the Supplementary Appendix. There we first present an explicit expression
for the Hessian matrix evaluated at the true parameter value, lpg+(fg). Then we show that the four
blocks in the lower left-hand corner of this matrix (lea,t(60), lebv,t(60),s lda,t(60), and lgp¢(0p)) all have
expectation zero. Finally, a tedious argument shows that the remaining blocks have expectations that

equal —1 times the corresponding term in the covariance matrix of the score. m
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Proof of Lemma 6. From Lemma 1 and the expressions of the components of lgg.(f) at the
beginning of this Appendix it follows that lgg.(f) forms a stationary ergodic sequence of random
variables that are continuous in 6 over ©g. The desired result thus follows from Theorem 2.7 in
Straumann and Mikosch (2006) if we establish that E [supgeg, [log,¢(#)|] is finite. In light of the
expression of lgg+(6), definition of ©. in Assumption 2 (ensuring h¢(f) > w), and Holder’s inequality,

it suffices to show that

sup [ez¢(O)[|| » || sup lezat(O)l|| o ||sup [exat(O)|| » ||sup lexxe(O)]| -

0€0q 2 0€0g 2 [UASISH) 2 [UASISH) 1

sup (B0 | s B2 . | sup IEwsco)]

0€69 2 0€©q 2 0€6¢ 2

sup [ua(0)[|| , || sup |ub,t(9)|‘ ; 'SUP [aat(O)|| 5 ||sup [wart(@)|| » || sup [up(O)||
0€Bg 4 0€0g 4 (ASSH) 2 0€Oy 2 [ASSH 2
Sup heabcyt(e) heabceabcyt(e)

ocoo | () I, llocoo|  e(0) 5

are all finite. Recalling the definitions of the terms appearing in the first seven expressions, it is
straightforward to see that the first seven norms are finite by Assumptions 1-6.

Now consider the moment conditions required for the derivatives of u; (¢). Recall from Appendix C
the expressions ug, ¢(f) = —a(B) 'u—p(0) and up, +(0) = b(B~') " tu14(6), and from the beginning of
this appendix the expressions uqq:(6) = 0, up,q,(0) = —b(B~)1a(B)  uirq—p(#), and Upybst(0) =
2b(B~1)"2uy1414(0). In light of these and of Lemmas A.1 and A.2, the required moment conditions
are satisfied as long as ||supgce, |u¢(A)|||, is finite. Recalling that u;(0) = b(B~')"'a (B)y, this in
turn follows (due to Lemmas A.1 and A.2) because E[y}] < oo by Lemma 1.

To establish the moment conditions required for the derivatives of h;(), we first consider the
components of hg¢(0). Making use of the expression of h, (0) (see Appendix C), the Cauchy-Schwarz
inequality, and the facts that w > 0 and 0 < . < 1 (see Assumption 2), we obtain (p =1,..., P)

R /2 , g 1/2 R
hay1(0) < 2 (w +3 arui_w)) (Z aruzp,t_m) =2h,"2(0) (Z aruzp,t_w))
r=1 r=1

r=1

1/2

Therefore, as hy(0) > w > w > 0 for all § € Oy,

L (9) R 1/2
ap,t < 2
he(0) ‘ =0 (Z O‘?““m““”)

sup

[USCH [USCH r=1
. . hay,,t(0) . o . .
for some finite C'. Thus, it follows that Hsupgego h”TtQ)HL is finite if Hsupgeeo ‘uap,t(ﬁ)mél is finite

h 0 . .
%HL is finite for ¢ =

— but this has already been shown. With analogous reasoning, |supycg,
1,...,Q (for the expressions of hy, +(f) and the components of h.4(0), see Appendix C). Concerning
the vector hc (), the required moment condition is clearly satisfied for the first component. For the

remaining components, notice that c,u?_,.(9) < he(6) (r = 1,..., R), so that the components of h.¢(6)
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satisfy h;;;’(tg ) < a% The definition of the set ©g implies that «, is bounded away from zero on ©,

and thus the required moment condition holds.

Finally, we show the moment conditions required for the second partial derivatives of h;(6), and
start with hgq¢(0) (for the expressions of these derivatives, see the beginning of this appendix). From
the expression of hqq+(0) and the already shown fact that HSUngGO ua(0)]] , is finite, it follows that
it suffices to consider the sum Ele aptt—r(0)Ugqt—r(0). Using the Cauchy-Schwarz inequality and
the fact that hy(f) > w > w > 0 for all § € Oy it is seen that each element of this matrix satisfies
(p=1,....,P,p=1,...,P)

R R 1/2 , g 1/2
Z Ut (0)Uayap,t—r(0) < (w + Z ar“?—r(@) (Z O‘T‘“i@;,t—r(@) )
r=1 r=1

r=1
and hence
. & R 1/2
su o tp—p(0) g a;.t—r(0)] < C su opu? 0
eeg) h(0) ; rtt=r(B)tiapap ()] < eeg) (; rlepipt=rt ))
As we have already shown that ||supyce, [taa,t(6)] H2 is finite, we can conclude that ’SHPGGGO h‘;LZ’(te(f) ‘ H2

is finite. With similar reasoning the corresponding result for hy, (6) and hyp+(0) is obtained. Finally,
the moment results for the terms involving heq,¢(6) and he, () follow from the results ||supgee, [ut(6)] H4 <
00, ||supgeo, |ua,t(«9)|H4 < 00, and ||supgee, |up,(0)] H4 < oo that have already been proven. This com-

pletes the proof of the moment conditions. m

Appendix E: Main Results

Expressions for the feasible log-likelihood I;(f) and the score vector lp(6). Recall that for
each fixed T', the quantities u,(0) were defined through the initial and end conditions @7 41(0) = -+ =
Gr+q(0) = 0 and () = uo, . .., 41—r(0) = ui_g, and the backward recursion a(B)y; = b(B~1)i(0)

for t =T,...,1. In other words, for t =T,..., 1, the @(#) can be solved from the equations

a(B)yr = ur(0)
a(B)yr—1 = up—1(0) — brur(0)

a(B)yr—q = ir—q(8) — bilip_qg41(0) — -+ — bour(0) = b(B~")ir—_q(6)

a(B)yr = b(B~)u(9)

from which the @;(0) can be solved recursively and are seen to satisfy the relation

T—t
w(0) =Y vPa(Byyy, t=T....1, (23)
j=0
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cf. Andrews, Davis, and Breidt (2006, p. 1656). In contrast, from the relation a(B)y; = b(B~!)u(0)
one obtains the counterpart .
= > vi"a(B)yis. (24)
§=0
Once the quantities () are available, we can form hy(f), t = 1,...,T, by using equation @) and,
furthermore, the feasible log-likelihood I (6).
It is clear from that @.;(0) also depends on the sample size T', although we suppress this
dependence from the notation. Consequently, the feasible log-likelihood Zt(ﬁ) and its components and
derivatives also depend on T'. As a convention, relations involving variables associated with the feasible

log-likelihood (i;(8), h¢(6), etc.) are understood to hold only for t = 1,..., T unless otherwise stated.

vector give

Now we can derive the score vector. Exactly the same calculations that lead to the infeasible score
[~ fia,i (0 ha (8 i (6
e (0) 3555 — 3 (e n(0) 7548

) -
M) 2 () %(0) 1)
R é:}c,t(e) b,tz(e) _ lh~b,t(9) (éa: t(g) Bllt;ge) + 1)

_ R/ 2 he(6) ’ 0
lp+(0) = Ry (0) ‘ 0] ,
’ _l hc t(a) ~ ut(9)
2 T (0) (G%t(e)””(e) + 1)
6)@5(9)

where -

o) = B O)0):) Fyr (R (0)(0): )
7 Fo(hy 2(0) @ (6); A) Fo(hy2(0)a(6); 1)

and tq¢(0), Upt(6), h%t(ﬁ), hb,t(ﬁ), and hcﬁt(H) are obtained next.

Expressions for the partial derivatives of @ () and h, (). From @) we immediately find that

and é,\,t(H) =

)

]Nlaﬂf(H) = 2a1ﬁt 1(0)Ua7t 1(9) + -+ 2aRﬁt—R(9>ﬂa,t—R(0)
] (

hot(0) = 200t-1(0)tpe—1(0) + - - + 20ty p(0)U—r(0)

het(0) = (L, a2 1(0),.... a7 R(0)).
Now consider the partial derivatives @, (6) and iy, +(6) which, due to the initializations @711(0) = --- =
Ur+q(0) = 0and 4o(0) = ug, ..., U1—g(0) = u1_pg,arezerofort =0,...,1-Rand t =T+1,...,T+Q.
Fort=1,...,T, from the partial derivatives with respect to a, (p =1,..., P) are obtained as

Tt
Uq,t(0) = — Z w}-”)yt—p+j- (25)
=0

To derive the partial derivatives with respect to b, (¢ = 1,...,Q), first note that the relation
a(B)y: = b(B~ )i (#) implies 9b(B~1)i(0)/0b, = 0. On the other hand, Ob(B~1)a(0)/0b, =
—B™9(0) + b(B~1)0u(0)/9b,, so that one obtains the relation b(B~1)d1.(0) /b, = iit44(0). Due to
the initialization (not satisfying this relation) the recursive argument used for () yields

T—t

b, 1(0) = > it q15(0). (26)

J=0
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In contrast, the corresponding partial derivatives of u;(f) with respect to a, and b, were given by

Uy (0) = =Y 0y and wp4(0) = > urigr5(6). (27)
j=0

Jj=0

This completes the computation of the derivatives of ;(6).
An auxiliary lemma. The following lemma whose proof is given in the Supplementary Appendix

concerns differences between various feasible and infeasible quantities needed later. Denote

ei(0) = f”(h;/gfe)v) A) and  &(0) = log fn<h~1/£(9§).)\>

To express the results in a reasonably compact form, we also define the following sequences of constants.

Fort=1,...,T,let U4 = pt 17t

1, t=1,....R 1+ (T+1—-t)p!H=t t=1,....R
U27t: and Ug,t:
plt=t t=R+1,....T (T+1-t)p!* =t t=R+1,...,T

where p € (0,1) (cf. the discussion after Lemma A.1).

Lemma E.1. If Assumptions 1-6 and 7(a) hold, then, fort=1,...,T,

(i) ||supgee, [ut(8) — @ (9)[||, < CUL, (ii)  ||supgee, |uf (0) — @i (0)|||, < CULs,
(iii)  |[supgee, [he(0) — hu(0)] H2 < CUsyy, (iv)  |supgee, llog he(0) — log hu(0)] H2 < CUsy,
ut(0)  ae(6) < ; Ua,t(0) _ @au(0) <

(v) SUPgee | 1720g ~ 71/%(q) e CUszy, (vi) SUPoeey |,172(g) ~ 71/%(q) s CUsy,
.. ha.t(0 hat(0 up (0 (]

(vii) ||supgee, | g — S| < Oy, (i) wmwoggg—gg;4ﬁscwm
. hot(0)  Tupi(0) het(0)  he,t(0)

(iz)  |swwoce, [y — i ||, < Vs @ [supsce, hf(e> |l = ot

(zi)  ||supgee, lex1(0) — Ext(O)l||,, < CUst, (i)  ||supgee, lex(8) — exs(B)l|,, < CUsay,

(ziii) ||supgeo, |et(6) — (0 ]H < CUsy,
where the constant C' < oo varies from part to part (but is independent of t, T, and 0), and where

parts (xi)—(ziii) hold for some ry,ra,r3 > 0.

Note that due to the initializations for t =0,...,1— Rand t =T+1,...,T+ @, the differences in

Lemma E.1 are non-negligible for ¢ ‘close’ to 1 and T', and diminish as T increases for ‘intermediate’

values of t.

Proof of Lemma 7. (i) Note that |Lr (8) — Ly ()] < T~1 31, [1:(8) — ¢(0)|, where |1:(8) — 1;(8)| <
lec(0) — €.(0)] + %[log hi(0) — log he(6)|, because 1;(0) = e;(0) — 1 1og hy(#) and similarly for 1;(0). By
Loeve’s ¢,—inequality (see Davidson (1994), p. 140) and Lemma E.1(iv) and (xiii) we thus obtain
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||sup9€@o|lt(9) - l~t(9)|Hp < CUy, for some finite constant C' and a small enough positive exponent p

(the exact value of it does not matter). Using this result we can justify (in a moment) that

T
lim Z sup |1:(0) — 1;(0)] < 00 as., (28)

T—o0 9= 0c6,
which implies supyeg, | L1 (0) — Ly (9)] <T7! Zthl Supgee, |lt(0) — 1;(0)| = 0 a.s. as T — oo, proving
the desired result.

To justify , denote [§ = supgeg, |l¢(0) — 1,(0)| for t = 1,...,T, and for every fixed (sufficiently
large) T define I3* = [? for t = 1,...,R and [3* = l}_(t_(RH)) fort = R+ 1,...,T. Obviously
ST 180 = ST 12, so that proving limy o S0, I8® < 00 a.s. will establish . To this end, notice
that, fort=R+1,...,T,

< Cp =T (B+D) = o =R

P

sup |l (- (r11))(0) = lr—i—(ra1)) (0)]

122, =
K Pyt

so that for a suitably defined new C' we have [|I*]|, < Cptforallt =1,...,T. Theresult limp_,q Zthl ;3* <
oo a.s. now follows from Lemma A.2 of Meitz and Saikkonen (in press), and proof of part (i) is complete.

(ii) Proof of part (ii) is similar and is given in the Supplementary Appendix. =

Proof of Theorem 1. The proof makes use of standard arguments, and hence we only present an
outline of the required steps (additional details are available in the Supplementary Appendix).
Existence of a consistent root. We first show that there exists a sequence of solutions Or to
the infeasible likelihood equations Lg () = 0 that are strongly consistent for 6y, and then that the
same holds for the solutions f7 to the feasible likelihood equations E&T(G) = 0. To this end, choose
a small fixed € > 0 such that the sphere ©, = {6 : |§ — 0y| = €} is contained in ©y. We will compare
the values attained by Ly (6) on this sphere with Ly (6p). For an arbitrary point § € ©,, using a

second-order Taylor expansion around 6y and adding and subtracting terms yields

Ly(0) = Lr(60) = (0~ 60) Lo (o) + 5 (6 — 00 [Laor (62) — T (8)] (6 o)

5 (0 00) 17 (02) = T (60)] (0~ 60) + 5 (6~ )" T (60) (0 — 00)

= S14+ 59+ S3+ 94,

where 0, lies on the line segment between 6 and 6y, and the latter equality defines the terms S;,
i =1,...,4. We show in the Supplementary Appendix that (a) for any sufficiently small fixed e,
Supgeo, (S1+52) — 0 a.s. as T' — oo. The terms S3 and S4 do not depend on T', and we show in
the Supplementary Appendix that (b) there exists a positive § such that for each sufficiently small ¢,
Supgeo, (S3 + Sa) < —d€?. Therefore, for each sufficiently small e,

sup Ly (0) < Ly (6y) a.s. as T — oc. (29)
0cO.
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As a consequence, for each fixed sufficiently small ¢, and for all T" sufficiently large, Ly () must have
a local maximum, and hence a root of the likelihood equation Lg7(#) = 0, in the interior of ©, with
probability one. Having established this, the existence of a sequence éT, independent of €, such that
the éT are solutions of the likelihood equations Ly 7(0) = 0 for all sufficiently large 7" and that éT — b
a.s. as T'— oo can be shown as in Serfling (1980, pp. 147-148).

Now consider the feasible likelihood, and first note that

sup [Lr (0) — Lt (69)] < sup|Lr (0) — L7 (0)| + sup [Lz () — Lz (60)] + | LT (60) — L (o)

0eO. 0cO. 0€O.
< 2sup |Lr (0) — Ly (0)] + sup [Lr (8) — Lt ()]
96@0 96@5

By Lemma 7, the first term on the majorant side converges to zero a.s. as T'— oo, whereas by ,
for each sufficiently small €, supgcg, L7 (#) < Lt (69) a.s. as T' — oo. Therefore, for each sufficiently
small €, supgeo, L1 (8) < Lt (69) a.s. as T — oo. The existence of a sequence f7 such that the 67 are
solutions of the feasible likelihood equations lN'/g,T(G) = ( for all sufficiently large T and éT — By a.s.
as T'— oo can be deduced as in the case of the infeasible likelihood.

Asymptotic Normality. Using Lemmas 4-6 in conjunction with standard arguments it can be
shown that TV2(0p — 6y) — N(0,Z(6p)!) as T — oo (see, e.g., Lemma D.4 in Meitz and Saikkonen
(in press)). Moreover, exactly as in the proof of Lemma D.6 in Meitz and Saikkonen (in press) it can
be shown that T%/2(7 — f7) — 0 a.s. as T — oo, from which the desired result follows.

Consistent estimation of the limiting covariance matrix. In light of the strong consistency
of f7, the uniform convergence of Lgg7 () (Lemma 6), and the fact that Elgg, (60)] = —Z(fo) with
Z(6p) positive definite (Lemmas 2 and 5), it is immediate that L(;QI’T(GNT) — Z(6g) ! as. as T — oo
(cf. Lemma A.1 of Potscher and Prucha (1991)). For the same conclusion to hold for ie_el,T(éT) we
need to show that supQEQO’L(%)’T (0) — Log.r (0)] — 0 a.s. as T — oo. That this holds under the
additional Assumption 7(b) is shown in the Supplementary Appendix. m
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