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Abstract

We modify the Additively Non-ignorable (AN) model of Hirano et. al. (2001) so that it is

suitable for data collection e�orts that have a short panel component. Our modi�cation yields

a convenient semi-parametric bias correction framework for handling endogenous attrition and

substitution behavior that can emerge when multiple visits to the same unit are planned. We

apply our methodology to data from the Household Labor Force Survey (HLFS) in Turkey,

which shares a key design feature (namely a rotating sample frame) of popular surveys such as

the Current Population Survey and the European Union Labor Force Survey. The correction

amounts to adjusting the observed joint distribution over the state space using re�ation factors

expressed as parametric functions of the states occupied in subsequent rounds. Unlike standard

weighting schemes, our method produces a unique set of corrected joint probabilites that are

consistent with the margins used for computing the published cross-section statistics. Inference

about the nature of the bias is implemented via Bootstrap methods. Our empirical results show

that attrition/substitution in HLFS is a statistically and substantially important concern.

Keywords: attrition; substitution; selectivity; short panel; rotating sample frame; labor force

survey.



1 Introduction

Attrition has been a major concern in applied research based on panel data. The study by Hausman

and Wise (1979) constitutes an early attempt to model attrition as the outcome of rational eco-

nomic behavior that can systematically bias the �ndings based on the balanced panel (subsample of

non-attritors). As such the attrition problem is intimately related to the class of problems collected

under the title of selectivity (Heckman, 1987). The subject has also drawn the attention of survey

researchers (Madow et al., 1983). Formalizations by Rubin (1976), and Little (1982) (collected in

Little and Rubin, 1987) have paved the way for establishing common terminology such as missing

completely at random (which describes situations where non-attrittors constitute a random subsam-

ple of the full sample) and ignorable attrition (when attrition does not impart bias on the outcome

under study).

Our paper builds on an important contribution by Hirano, Imbens, Ridder and Rubin (Hirano

et al., 2001). Their paper approaches the attrition issue as an identi�cation problem that amounts

to recovering the joint distribution of interest for the full population, when all we have is a subsam-

ple subjected to potentially non-ignorable attrition. They work with a discrete joint distribution

that characterizes the �nite outcomes of interest, express the attrition probability as a function

of the set of outcomes before and after attrition, and establish that identi�cation can be achieved

when unbiased estimates of the marginal distributions are available. While the typical panel data

collection e�ort yields an unbiased estimator of the �rst round marginal distribution, attrition ren-

ders subsequent round marginals suspect. Hirano et al. (2001) exploit an independently conducted

cross-section survey (so-called refreshment sample) to provide an unbiased estimator for the second

round marginal distribution. As usual, adjustment of the balanced sample proceeds by using the

inverted attrition (selection) probabilities as weights. Equating the row and column sums of the

reweighted balanced panel cell counts (fractions) to the respective marginals, a just-identi�ed system

of equations that yields the parameter estimates of the weighting function is obtained. Since the

weighting function only allows for main e�ects and rules out interactions, Hirano et al. (2001) name

this model Additively Non-ignorable (AN) model of attrition. They show that both the popular

formulations of Little-Rubin and the Hausman-Wise model are nested within the AN model. Thus

the AN model not only o�ers a theoretically appealing correction for attrition, but it also a�ords
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tests of widely used models.

In this paper we establish that the key ideas embedded in the AN model can be used for

addressing a broader class of non-response problems. In particular we modify the AN model so that

it is suitable for data collection e�orts that have a short panel component. Household surveys that

have this feature � such as the Household Labor Force Surveys (HLFS) in Turkey we use below, as

well as popular data sets such as the Current Population Survey (CPS) in the U.S., and most country

surveys included in the European Union Labor Force Survey (EULFS) � call for repeat visits to the

same household according to a pre-determined schedule but limit the maximum number of visits.

The schedule is supported by a rotational design that ensures nationwide representation as well as

updating. Towards that end, after each round households that exit the sample frame are replaced by

a group of new households. If the data collection agency provides the weights needed for rendering

the subset of new household nationally representative, this amounts to having a refreshment sample,

as in Hirano et al. (2001).

Even if weights were available, the idea of treating the subsample that is rotated in as a re-

freshment (i.e. independent) sample has an important drawback. The properly weighted marginals

based on the subsample will typically not be the same as the weighted marginals calculated on the

full cross-section and published as period-speci�c o�cial statistics. Since our approach does not

require a refreshment sample, it is not subject to this criticism.

Surveys that rely on a rotational design use typically have an address- or dwelling-based sample

frame. In some cases a longitudinal view is adopted, so that households (or individuals) that enter

the sample frame are followed even when they leave the original address (such as the CPS, see

BLS, 2002). In other cases the data collection agency prefers to treat each round of the data as an

independent cross-section (such as some country components of the EULFS, see EUROSTAT, 2007).

The data set we work with, HLFS-Turkey, is a typical example of the latter (TURKSTAT, 2001).

Residential addresses are kept in the sample frame for a certain time and visited according to the

rotation schedule whether or not any respondents are found. Standard non-response adjustments

(based on demographics) are used to obtain marginal distributions, which in turn serve as the

source of published o�cial statistics. Since a subset of the households are surveyed in two adjoining

periods, such surveys also lend themselves for dynamic analyses. However �nding suitable weights

is a challenge.
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The problem is attributable to the fact that such data not only su�er from attrition (response

followed by non-response) but also from substitution (non-response followed by response). As we

show below, in these cases a key parameter of the AN model is not identi�ed. However, a correction

scheme which renders the dynamic estimates consistent with the o�cial cross-sectional statistics can

still be found. Since this amounts to treating the unidenti�ed probability as a nuisance parameter,

we term the new model Rescaled Additively Non-ignorable (RAN) model of attrition. We show

that the model can be estimated with semi-parametric methods which are computationally simpler

than the EM-algorithm based imputation methods used in Hirano et al. (2001). In fact the data

requirements for implementation of RAN methodology are extremely minimal: namely, the joint

distribution obtained from the balanced panel, the marginal distributions obtained from another

data source that does not have the representation problems, and the sample sizes that yielded the

respective distibutions.

The idea of reconciling observed �ow data between states with cross sectional stocks via prob-

abilistic adjustments expressed as a function of the states predates Hirano et al. (2001). Abowd

and Zellner (1985) and Stasny (1986, 1988) work with counts obtained from short panels, and focus

on adjusting the �ow data so that they are consistent with the properly weighted margins that

represent the target population. The conrasts with their approaches and ours will be taken up be-

low. In fact all these approaches can be situated within a broader statistical framework directed at

reconciling key statistical features of survey data with what is known about the population (Little,

1993). Although it is not directed to panel data, the model based adjustment of Little and Wu

(1991) in particular echoes the fundamental ideas exploited in AN and RAN models.

We begin our formal treatment in Section 2 by introducing our model and establish its links

with the AN Model. In Section 3 we discuss our estimation and inference methodology. We then

relate our approach to others developed in the statistics literature. Section 4 contains examples that

illustrate the utility and potential limitations of the proposed approach. Section 5 o�ers a short

compilation of the lessons learned from a broader investigation. We conclude the paper with a brief

summary of the key aspects of our model and potential uses.
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2 RAN Model

Consider data collection e�orts directed to households which utilize a rotational design, whereby each

household remains in the sample frame for a predetermined number of periods. Several advantages

are apparent: Firstly, by limiting the number of revisits, the cost of the data collection e�ort is

balanced against the response burden imposed on the households. Secondly, by including a fresh

subsample every period, the sample is kept up to date. Thirdly, the rotational design yields a short

panel. However use of the panel component ushers in new challenges when drawing inferences about

the population. In fact it is often not fully exploited for want of weighting schemes consistent with

those used in obtaining the cross-sectional estimates.

Without loss of generality we refer to the equally spaced rounds of data collection as the �rst

period and the second period. We distinguish between the complete panel (CP), which includes

all subjects intended for repeat visits, and the balanced panel (BP), which only includes subjects

who have been successfully interviewed in both periods. We also keep track of households which

are rotated out of the sample after period 1, and households which are rotated in during period 2.

We introduce three random variables and associated parameters:

D =

 1 if designated for the Complete Panel (w/prob. = δ)

0 if not (w/prob. = 1− δ)
, (1)

C =


1 if observed in the 1st period only (w/prob. = γ1)

2 if observed in the 2nd period only (w/prob. = γ2)

3 if observed in both periods (w/prob. = γ3 = 1− γ1 − γ2)

, given D = 1; (2)

R =

 1 if observed in the 1st period for the last time (w/prob = φ)

2 if observed in the 2nd period for the �rst time (w/prob = 1− φ)
, given D = 0. (3)

Although D and R are usually predetermined as part of the sampling frame, it may be useful to
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treat them as random variables because of practical issues such as encountering an establishment

rather than a household at the address, and non-response by households. We shift the focus to

individuals, so thatD = 1 indicates that the individual is designated for the CP. For such individuals,

there are 3 possibilities: C = 1 denotes attritors, C = 2 denotes substitutes, and C = 3 denotes

individuals observed in both periods (i.e., those in the balanced panel). If an individual is not

designated for the CP (D = 0), then she either rotates out (R = 1) or rotates in (R = 2).

Let y and x denote random variables which are the main objects of the data collection e�ort. We

distinguish between endogenous outcomes (y) and exogenous covariates (x). Some of the exogenous

covariates may serve as objects of strati�cation. Others may identify subpopulations of interest.

The primary objective of the statistical agency is to produce period-speci�c statistical indicators

based on y, conditional on x. In what follows we use subscripts to denote period-speci�c values of

y, and for notational convenience (and without loss of generality) treat x as time invariant. The

joint distribution of interest is f(y1, y2|x). In the typical application this is a discrete distribution

which classi�es individuals of a given type according to a pair of outcomes (y1, y2). We suppress

the conditioning on x for brevity, and use equation (1) to express the joint distribution as:

f(y1, y2) = f(y1, y2, D = 0) + f(y1, y2, D = 1). (4)

We then use equations (2)-(3) and break down the components further as

f(y1, y2) = f(y1, y2, D = 0, R = 1) + f(y1, y2, D = 0, R = 2) + f(y1, y2, D = 1, C = 1) (5)

+f(y1, y2, D = 1, C = 2) + f(y1, y2, D = 1, C = 3).

Let's examine each of the �ve components in turn. We begin with the terms for individuals who

are not designated for the CP. Repeated use of Bayes' Theorem yields

f(y1, y2, D = 0, R = 1) = Pr(R = 1|y1, y2, D = 0)f(y1, y2, D = 0)

= Pr(R = 1|y1, y2, D = 0)Pr(D = 0|y1, y2)f(y1, y2)

= Pr(R = 1|D = 0)Pr(D = 0)f(y1, y2)

= φ(1− δ)f(y1, y2), (6)
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where we used the fact that designation of an individual for rotation, or for the CP is done inde-

pendently of (y1, y2). Likewise,

f(y1, y2, D = 0, R = 2) = (1− φ)(1− δ)f(y1, y2). (7)

Equations (6) and (7) show that the contribution to the joint distribution of interest by individuals

who are not designated for the CP is a rescaled version of that distribution. Put di�erently, there is

no additional information in the D = 0 subsample that can be exploited for the purposes of recov-

ering the joint distribution. Next, we turn to the terms in equation (5) for individuals designated

for the CP (D = 1 subsample) and establish that this is no longer the case. For attritors we have

f(y1, y2, D = 1, C = 1) = Pr(C = 1|y1, y2, D = 1)f(y1, y2, D = 1)

= Pr(C = 1|y1, y2, D = 1)Pr(D = 1|y1, y2)f(y1, y2)

= Pr(C = 1|y1, y2, D = 1)Pr(D = 1)f(y1, y2)

= Pr(C = 1|y1, y2, D = 1)δf(y1, y2), (8)

where we used the fact that designation of an individual for the CP is done independently of (y1, y2).

Note that in equation (8) the probability of attrition is expressed as a function of (y1, y2). Likewise

for substitutes we have

f(y1, y2, D = 1, C = 2) = Pr(C = 2|y1, y2, D = 1)δf(y1, y2). (9)

As seen in equation (9), the probability of substitution is also a function of (y1, y2). The remaining

term in (5) may be obtained as:

f(y1, y2, D = 1, C = 3) = f(y1, y2|D = 1, C = 3)Pr(D = 1, C = 3)

= f(y1, y2|D = 1, C = 3)Pr(C = 3|D = 1)Pr(D = 1)

= f(y1, y2|D = 1, C = 3)γ3δ. (10)

It is straightforward to see that f(y1, y2|D = 1, C = 3) can be identi�ed non-parametrically from
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the balanced panel. However, since the balanced panel consists of individuals who have not been

subjected to attrition or substitution, in general f(y1, y2|D = 1, C = 3) 6= f(y1, y2).

Substitution of the terms on the right hand sides of equations (6)-(10) in equation (5) yields:

f(y1, y2) = φ(1− δ)f(y1, y2) + (1− φ)(1− δ)f(y1, y2) + Pr(C = 1|y1, y2, D = 1)δf(y1, y2)

+Pr(C = 2|y1, y2, D = 1)δf(y1, y2) + f(y1, y2|D = 1, BP = 3)γ3δ. (11)

Upon collecting terms, simplifying and rearranging we get

f(y1, y2) =
f(y1, y2|D = 1, C = 3)γ3

[1− Pr(C = 1|y1, y2, D = 1)− Pr(C = 2|y1, y2, D = 1)]
. (12)

Finally, using the fact that
∑3

m=1 Pr(C = m|y1, y2, D = 1) = 1,we get

f(y1, y2) =
f(y1, y2|D = 1, C = 3)γ3
Pr(C = 3|y1, y2, D = 1)

. (13)

The last equation is equivalent to the key equation of the AN Model of Hirano et al. (2001:

1647). Recall that the case they study involves a two period panel, and the only concern is non-

ignorable non-response (attrition) in the second period.1 Thus γ3 = Pr(C = 3|D = 1) is non-

parametrically identi�ed. They specify the probability in the denominator of (13) as a parametric

function of (y1, y2), and investigate the conditions under which it can be identi�ed. In our case the

sampling design involves rotation, whereby non-ignorable non-response may occur either in period

1 (substitution) or period 2 (attrition). This poses additional challenges for the identi�cation of

γ3.
2As we proceed to show, it can be treated as a nuisance parameter. Thus our version of (13) is:

f(y1, y2) = w(y1, y2)f(y1, y2|D = 1, C = 3), (14)

where w(y1, y2) = γ3/Pr(C = 3|y1, y2, D = 1) > 0 by construction. Additional restrictions on

w(y1, y2) are needed for identi�cation.

As in Hirano et al. (2001), we use the restrictions on joint probabilities imposed by the marginals.

1Non-response in the initial period can be handled by reweighting via x.
2Typically the subsets of CP are identi�ed in the data set. However, since we do not know which weights to attach

to a given individual, this information is not su�cient for identifying γ3 = Pr(C = 3|D = 1).
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In the AN model, the original sample yields the unbiased marginal distribution for the �rst period,

and the refreshment sample provides the unbiased marginal distribution for the second period.3

In our case identifying information comes from the marginal distributions which are the (properly

weighted) cross-sectional statistics published by the data collection agency. Restoring the condi-

tioning on covariates x, the equations of interest are:

∑
y2

f(y1, y2|x) =
∑
y2

w(y1, y2|x)f(y1, y2|D = 1, C = 3, x) = f1(y1|x), (15)

∑
y1

f(y1, y2|x) =
∑
y1

w(y1, y2|x)f(y1, y2|D = 1, C = 3, x) = f2(y2|x). (16)

Equation (14) has a form which is familiar to survey data users. Once the function w(y1, y2) is

estimated, it can be used to in�ate/de�ate (i.e. re�ate) the cells of the balanced panel so that the

object of interest f(y1, y2|x) can be recovered. Suppose y has k distinct values so that f(y1, y2|x)

can be viewed as a k × k table. Equations (15)-(16) provide the restrictions that must be satis-

�ed by the re�ated balanced panel fractions where w(y1, y2) serve as the re�ation factors. Since∑
y1

∑
y2
f(y1, y2|x) = 1, for k ≥ 2 the marginals provide 2k− 1 pieces of independent information.

Thus the k2 re�ation factors viewed as functions of (y1, y2) can have at most 2k − 1 unknown pa-

rameters. We mimic the approach in Hirano et al. (2001) and impose additivity. To assess the role

of parametric assumptions, we follow Chen (2001) and entertain three di�erent speci�cations for

this function, respectively linear, convex and concave. Details will emerge in the next section.

It is straightforward to establish that the RAN model has all the features that render the AN

model attractive. Firstly, since the RAN model preserves the additivity restriction of the AN model,

identi�cation proof in Hirano et al. (2001) still applies.4 Secondly, it nests the popular models of

attrition. If non-response is ignorable, w(y1, y2) = 1 for all (y1, y2) combinations. This is the case

dubbed as Missing Completely at Random (MCAR) by Rubin (1976). If non-response is a function

of the �rst period outcomes only, w(y1, y2) = w(y1). Little and Rubin (1987), and others � for

example Fitzgerald et al. (1998), Hirano et al. (2001) � call this case Missing at Random because in

a regular panel it is straightforward to adjust the balanced panel fractions using probability weights

3To study the consequnces of attrition in the standard panel context, Fitzgerald at al. (1998) and MaCurdy et al.
(1998) rely on comparisons of later wave distributions with independent samples but do not propose a formal model
of correction for attrition.

4For a simpler proof see Bhattacharya (2008).
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expressed as a function of observables in the �rst period. Note that in the present case we are

dealing with substitution as well as attrition. Since substitution implies that �rst period outcomes

are unobserved, it is not possible to carry out the adjustment based on period 1 information alone.

We use the naming convention anyway, to convey the fact that the re�ation factors are expressed

as a function of �rst period outcomes only (even though they may be unobserved for a subset of the

sample). Finally, if non-response is a function of second period outcomes only, w(y1, y2) = w(y2).

Hirano et al. (2001) call this the Hausman and Wise (HW) model because the case was �rst studied

by Hausman and Wise (1979).5

3 Estimation and Inference in RAN Model

For a given set of observed fractions f(y1, y2|D = 1, C = 3, x) obtained from the balanced panel, and

cross-section estimates f1(y1|x) and f2(y2|x) obtained from o�cial statistics, estimation problem

boils down to solving a system of 2k − 1 equations in at most 2k − 1 unknowns.6 We impose a

functional form for w(.), and estimate it parametrically, as ŵ(y1, y2|x) = w(θ̂|y1, y2, x) where θ

has at most 2k − 1 elements. We then compute the joint probabilities of interest (re�ated panel

fractions) as a product of the estimated re�ation factors and the observed fractions:

f(y1, y2|x) = ŵ(y1, y2|x)f(y1, y2|D = 1, C = 3, x) (17)

For inference, we rely on standard Bootstrap methodology (Efron, 1979). Each of the random

components f(y1, y2|D = 1, C = 3, x), f1(y1|x) and f2(y2|x) need to be bootstrapped. Technically

speaking the joint distribution for the balanced panel is extracted from the same data set that

yields the marginals. That is, all three distributions are functions of the survey data that have

been collected during the two periods under study. These functions involve predetermined features,

such as censoring due to the rotation design. They also involve the unknown attrition/substitution

process. In addition, the function that maps the cross-section data into o�cial statistics includes

5Fitzgerald et al. (1998) also study this model and contrast it with MAR using popular selection terminology.
They point out that while selection in the MAR model is on (�rst period) observables, selection in the HW model
is on unobservables (unobserved second period outcomes). The observable/unobservable distinction is not useful for
characterizing the attrition/substititution encountered in a short panel obtained from a rotating sample frame.

6In our empirical work we relied on MATLAB's prede�ned function fsolve(.) to �nd the solution to this system.
In fact EXCEL's prede�ned function `solver' is also capable of handling the computations.
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the weights used by the statistical agency, which may be known, or unknown (as in our case). Thus,

a joint bootstrap scheme is elusive.

In the case of HLFS-Turkey, the rotation schedule of the sample frame ensures that about half

of the addresses overlap (D = 1 in the set-up of section 2). Two distinct groups of individuals

who are not designated for the complete panel (R = 1 and R = 2) also contribute to the raw

marginals. Furthermore, TURKSTAT manipulates the raw marginals using period speci�c weights

based on demographic characteristics of individuals (namely age, sex and geographic location). This

adjustment aims to bring the distribution of demographic attributes in line with those obtained from

independent population projections. The corrected marginals are reported as o�cial statistics.7

With these features in mind, we propose drawing three independent bootstrap samples that have

the same sample size as in the raw data. We resample from the actual balanced panel that yields

f(y1, y2|D = 1, C = 3, x) and two arti�cially created marginal samples which yield the fractions

ft(yt|x) published by TURKSTAT. Using these three independent bootstrap samples, we can solve

(15)-(16) to calculate a new θ̂. After conducting a suitable number of replications (we used 100), we

can obtain bootstrap means, standard errors and estimated variance-covariance matrix for θ̂. These

statistics can be used along with standard asymptotic theory (E�ron, 1979) to test the statistical

signi�cance of the parameters of the RAN model, and hypotheses concerning the nature of the

attrition process.

Apart from choice of the functional form for w(.), our procedure is fully non-parametric. We

propose treating each distinct x as a separate stratum, and repeating the estimation/inference

exercise. Clearly there are some practical limits to this fully non-parametric procedure; we will

return to this issue below, when we discuss the lessons learned from a broader empirical investigation.

At this point it is appropriate to provide a brief account of how our adjustment procedure di�ers

from existing methods. As mentioned earlier, Abowd and Zellner (1985) and Stasny (1986, 1988)

deal with the same substantive issues, but work with counts. The goal is to adjust the gross �ow data

so that it can be reconciled with the marginals. Abowd and Zellner (1985) use a multiplicative model

to distribute those who are not observed in both periods to the appropriate margins (original set of

7By analogy to the widely used concept of �strati�cation,� Little (1993) refers to the procedures for reweighting sur-
vey data using information from aggregate data on the population obtained from other sources as �post-strati�cation.�
Clearly, the weights do some correction for attrition and substitution, but whether this is adequate can be debated in
light of the evidence in Tunali (2009). Since this methodology is sanctioned by Eurostat, we do not question it here.
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states plus two others, respectively attritor/substitute and rotated in/out). Like us (see Section 4)

they study three states (nine cells in the �ow matrix), but estimate 18 unknown parameters subject

to six restrictions coming from the margins. Thus, they not only allow interaction e�ects, but they

also distinguish between attrition and substitution parameters. Clearly this overparametrized model

cannot be used to implement separate adjustments for each period pair. They assume stationarity

and use multiple rounds of CPS data to estimate �average� parameters by minimizing the weighted

squared deviation of the adjusted gross �ow margins from the observed population margins.

Stasny (1986, 1988) uses an additive model that resembles ours. In her model an individual

designated for the panel can lose either its row or column designation, with di�erent probabilities.

In the richest models (A and D in Stasny, 1988) she expresses one of these probabilities as a function

of states occupied in the �rst period, the other as a function of states occupied in the second period.

Thus, the probability that someone designated for the complete panel ends up in one of the margins,

is a function of the states in both periods. Clearly this treatment is exactly the same as ours. In her

examples there are three states and six free parameters for each period pair, which can be estimated

subject to the six restrictions on the margins. She is able to identify an extra parameter because she

uses count data, while we work with shares. She uses maximum likelihood estimation on multiple

rounds of data from CPS and Canadian LFS.

There is a well-established line of research in the statistical literature which is directed at the

important distintion between the sampled and the target population, and on methods used in

reconciling them (Madow et al., 1983). Little (1993) refers to adjustments of data obtained from

surveys (i.e. sampled population) using aggregate data on the (target) population obtained from

other sources as �post-strati�cation.� The bulk of this paper is concerned with the case when the

population joint distribution of the post-strati�cation variables is known. Little brie�y discusses

a case which is of special interest for us: only the marginal population distributions of the post-

strati�cation variables are known. When non-response is present, the joint distribution of the

post-strati�cation variables in the sample is not adequate for estimation (unless MCAR or MAR

is assumed). This case is covered at length in Little and Wu (1991) where a formal model for

nonresponse is given. Notably they address the identi�cation issue and show that a model in which

the response probability is expressed as a product of row and column e�ects is just identi�ed.

They propose an iterative method (raking) for estimation of this model. This version of the post-
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strati�cation exercise is intimately connected with the AN/RAN approach. Instead of the additive

model that drives the correction is AN/RAN models, Little and Wu (1991) have a multiplicative

model. Furthermore in estimating the AN model, Hirano et al. (2001) adopt the predictive modeling

perspective of Little (1991), whereby imputation of the missing outcomes precedes the estimation of

the joint distribution of interest. In the RAN model we proceed with the estimation of the re�ation

factors and the adjusted cell probabilities without engaging in computationally costly imputation.

4 Examples

We illustrate the utility of the RAN model by applying it to a case where y indicates labor market

status and takes one of three values (0 = non-participant, 1 = employed, 2 = unemployed). In

this case the equation system (15)-(16) yields �ve independent equations, so we can estimate up

to 5 parameters. We express w(y1, y2|x) as function of a linear index in (y1, y2) and use indicators

for distinct labor market states. We take the individuals who are not in the labor force in both

periods (y1 = 0, y2 = 0) as our reference category. The other distinct categories yt have their own

parameters in each time period. For period t(= 1, 2), the indicators may be de�ned as:

zt1 =

 1

0

if employed (yt = 1)

otherwise
; (18)

zt2 =

 1

0

if unemployed (yt = 2)

otherwise
.

Let z′ = (1 z′1 z
′
2) = [1 z11 z12 z21 z22], θ

′ = [θ00 θ11 θ12 θ21 θ22], and de�ne the linear index:

i(y1, y2) = i(θ′z|x) = θ00 + θ11z11 + θ12z12 + θ21z21 + θ22z22 (19)

This function is additive in the unknown θ's which capture the dependency on the labor market

states (y1, y2) via z1 and z2. As in Hirano et al. (2001), we rule out interactions and focus on the main

e�ects of the labor market states. In obtaining the re�ation factors, we use three parametric forms:

(i) linear: wL(y1, y2|x) = i(θ′z|x), (ii) convex: wX(y1, y2|x) = exp
{
i(θ′z|x)

}
, and (iii) concave:
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wE(y1, y2|x) = 2 − exp
{
i(θ′z|x)

}
. Note that w(y1, y2) = 1 iff θ00 = 1, θ11 = θ12 = θ21 = θ22 = 0

in the linear case. In the nonlinear cases, w(y1, y2) = 1 iff θ00 = θ11 = θ12 = θ21 = θ22 = 0.

For the linear case, the restrictions implied by equations (15)-(16) can be represented as in

Table 1, where py1y2 = f(y1, y2|D = 1, C = 3, x). To recapitulate, the task amounts to �nding the

re�ation factors (functions of θ's) which would bring the adjusted cell probabilities in line with the

marginals reported by the data collection agency.

Table 1: A 3x3 Linear RAN Model
y2 = 0 y2 = 1 y2 = 2 Row sum

y1 = 0 θ00p00 (θ00 + θ21)p01 (θ00 + θ22)p02 f1(0)

y1 = 1 (θ00 + θ11)p10 (θ00 + θ11 + θ21)p11 (θ00 + θ11 + θ22)p21 f1(1)

y1 = 2 (θ00 + θ12)p20 (θ00 + θ12 + θ21)p21 (θ00 + θ12 + θ22)p22 f1(2)

Col. sum f2(0) f2(1) f2(2) 1

For the linear case, the system of equations has the observationally equivalent representation

given below:



∑2
j=0 p0j 0 0 p01 p02∑2
j=0 p1j

∑2
j=0 p1j 0 p11 p12∑2

j=0 p2j 0
∑2

j=0 p2j p21 p22∑2
k=0 pk0 p10 p20 0 0∑2
k=0 pk1 p11 p21

∑2
k=0 pk1 0∑2

k=0 pk2 p12 p22 0
∑2

k=0 pk2





θ00

θ11

θ12

θ21

θ22


=



f1(0)

f1(1)

f1(2)

f2(0)

f2(1)

f2(2)


(20)

Inspection reveals that the system is of the form Aθ = b where A is of rank = 5. One of the

constraints is redundant, in the sense that it will be automatically met once the solution to the

reduced system is found. We prove this in the appendix by starting with a particular system of

�ve equations in �ve unknowns, and showing that any other representation can be transformed to

the one we started with by a simple pivoting operation. Consequently, the solution to the reduced

system is unique, and does not depend on which constraint is left out.

In Table 2, we compiled a set of parameter estimates from a 3x3 RAN model for annual transi-

tions on data from the Household Labor Force Survey (HLFS) in Turkey, together with bootstrap

means and standard errors based on 100 replications. In this case x denotes the entire working age

population, ages 15 and over. The balanced panel contained over 20, 000 observations. The �rst
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Table 2: A 3x3 RAN Model - Parameter Estimates
Annual Transitions Between 2001-Q1 and 2002-Q1

x = age 15 and over

Parameter θ00 θ11 θ12 θ21 θ22
(i) w(.) linear:

Estimate 0.8987 0.0956 0.2524 0.1315 0.1779

Bootstrap mean 0.8994 0.0999 0.2423 0.1263 0.1755

Bootstrap std. error 0.0063 0.0282 0.0509 0.0290 0.0507

(ii) w(.) convex:

Estimate −0.1057 0.0957 0.2306 0.1293 0.1703

Bootstrap mean −0.1050 0.0999 0.2221 0.1243 0.1672

Bootstrap std. error 0.0070 0.0283 0.0440 0.0288 0.0462

(iii) w(.) concave:

Estimate −0.0975 0.0960 0.2848 0.1349 0.1885

Bootstrap mean −0.0968 0.1007 0.2725 0.1295 0.1875

Bootstrap std. error 0.0060 0.0298 0.0656 0.0308 0.0602

Sample Sizes:

Balanced panel 21, 731

First period cross-section 52, 389

Second period cross-section 53, 810
Data Source: Household Labor Force Survey, TURKSTAT.

and second period marginals in the raw data contained over 52, 000 observations. Thus it is not

surprising that all RAN model parameters are estimated extremely precisely.

As we noted earlier, HLFS sample frame ensures that about half of the addresses visited in a

given period are also visited the next period. Taking the sample sizes we reported above, we see that

the balanced panel sample amounted to about 40 percent of the respective marginals. The fact that

this fraction is considerably lower than the expected 0.5 can be taken as a rough statistic that warns

us about the potential severity of the attrition/substitution problem.8 What matters, of course, is

whether the process that excludes individuals designated for the complete panel from the balanced

panel is ignorable. Given the evidence from the bootstrap exercise, we do not expect this to be the

case. In fact, Wald tests provide overwhelming evidence that the attrition and substitution process

is non-ignorable. Furthermore, alternatives to RAN model are deemed inadequate for capturing the

selectivity (all p−values are practically zero). The key insight from labor economics, that attrition

and substitution behavior is intimately connected with labor market behavior, is vindicated.

In Table 3, we compiled the set of re�ation factor estimates we obtained from the RAN model

8The realized magnitudes of attrition and substitution in the HLFS over the period 2000-2002 are reported in
Tunali (2009).
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Table 3: A 3X3 RAN Model - Re�ation Factors
Annual Transitions Between 2001-Q1 and 2002-Q1

x = age 15 and over

y2 = 0 y2 = 1 y2 = 2 Row sum

y1 = 0


0.8986
0.8997
0.8976

 0.5052


1.0302
1.0238
1.0366

 0.0566


1.0766
1.0667
1.0870

 0.0159 f1(0)

y1 = 1


0.9943
0.9901
0.9985

 0.0740


1.1258
1.1267
1.1248

 0.2952


1.1722
1.1739
1.1706

 0.0209 f1(1)

y1 = 2


1.1511
1.1330
1.1708

 0.0113


1.2826
1.2894
1.2754

 0.0122


1.3290
1.3433
1.3133

 0.0085 f1(2)

Col. sum f2(0) f2(1) f2(2) 1

parameter estimates reported in Table 2. For brevity we excluded the numbers for the margins.

The numbers reported in each cell are of the form given on the right hand side of equation (17). For

each cell we report the estimates of the re�ation factors w(.) associated with all three functional

forms (respectively linear, convex, concave; shown inside braces) followed by the fraction obtained

from the balanced panel. Re�ation factors below (above) one mark labor market states which are

overrepresented (underrepresented) in the balanced panel. Note that for some states the bias induced

by attrition/substitution is practically zero [see (y1 = 1, y2 = 0)] but for others it is substantial [e.g.

(y1 = 2, y2 = 2)]. The �ndings from our sensitivity analysis are typical, in that functional form

does not make much of a di�erence.

Table 4: A 3x3 RAN Model - Adjusted and [Unadjusted] Joint and Marginal Probabilities
Annual Transitions Between 2001-Q1 and 2002-Q1

x = age 15 and over

y2 = 0 y2 = 1 y2 = 2 Row sum

y1 = 0
0.4540
[0.5052]

0.0584
[0.0566]

0.0172
[0.0160]

0.5296
[0.5778]

y1 = 1
0.0736
[0.0740]

0.3323
[0.2952]

0.0245
[0.0209]

0.4305
[0.3902]

y1 = 2
0.0130
[0.0113]

0.0156
[0.0122]

0.0113
[0.0085]

0.0399
[0.0320]

Col. sum
0.5406
[0.5905]

0.4063
[0.3640]

0.0530
[0.0454]

1

Table 4 provides the unadjusted joint probabilities and marginals obtained from the balanced

panel (shown in brackets) along with the adjusted versions obtained from the linear RAN model.
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Table 5: 3x3 RAN Model - Adjusted and [Unadjusted] Transition Probabilities
Annual Transitions Between 2001-Q1 and 2002-Q1

x = age 15 and over

y2 = 0 y2 = 1 y2 = 2 Row sum

y1 = 0
0.8573
[0.8744]

0.1102
[0.0980]

0.0325
[0.0276]

1
[1]

y1 = 1
0.1710
[0.1898]

0.7720
[0.7565]

0.0570
[0.0537]

1
[1]

y1 = 2
0.3250
[0.3525]

0.3917
[0.3813]

0.2833
[0.2662]

1
[1]

The magnitudes of the biases in the balanced panel [discrepancies between f(y1, y2|D = 1, C = 3, x)

and f(y1, y2|x)] range between -24 and 11 percent. Six of the 9 cells have biases of 10% or more in

absolute value.

In Table 5, the associated forward transition probabilities are shown. As in the previous table,

the numbers in brackets are the unadjusted ones. Almost surely someone who views the evidence

will argue that the di�erences between unadjusted and adjusted magnitudes are not large enough to

warrant correction. It is worth noting that even though the picture of labor dynamics that emerges

might not be di�erent by some measure of closeness, the correction is still warranted because it

produces a version which is fully consistent with the cross-section estimates. This capability of the

RAN model is especially important in the case of statistical agencies like TURKSTAT, who refuse

to exploit the short panel dimension of the HLFS on the grounds that there is no weighting method

that can reconcile dynamic and static estimates.

As we argued above, the non-parametric feature of the RAN model is attractive, but it has the

usual shortcomings that data based methods have. To illustrate the possible pitfalls, we consider

another example, where x denotes males aged 35-54 who have high school education and reside

in urban areas of Turkey. RAN model estimates for this partition of the sample are reported in

Table 6. In this case the statistical evidence favors the hypothesis that attrition/substitution is

ignorable. Note that the sample sizes are small, and consequently bootstrapped standard errors

based on 100 replications are large. In fact in some cases the bootstrapped means are very di�erent

from the estimated parameter value (see θ12 and θ22 for the concave case). This �nding exposes

the well-known fragility of the bootstrap method when sample sizes are too small. In such cases it

would be advisable to increase the number of bootstrap replications (say to 1,000) before passing
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Table 6: Another 3x3 RAN Model - Parameter Estimates
Annual Transitions Between 2001-Q1 and 2002-Q1

x = male, ages 35-54, high school education, residing in urban areas

Parameter θ00 θ11 θ12 θ21 θ22
(i) w(.) linear:

Estimate 0.9472 −0.0234 0.1348 0.0688 0.3507

Bootstrap mean 0.9465 −0.0003 0.2731 0.0524 0.3638

Bootstrap std. error 0.1271 0.2530 0.5869 0.2220 0.4227

(ii) w(.) convex:

Estimate −0.0540 −0.0231 0.1191 0.0697 0.3127

Bootstrap mean −0.0699 0.0028 0.1813 0.0646 0.2934

Bootstrap std. error 0.1345 0.2620 0.4179 0.2281 0.3471

(iii) w(.) concave:

Estimate −0.0518 −0.0239 0.1560 0.0681 0.4101

Bootstrap mean −0.0378 −0.0037 2.6577 0.0415 2.6068

Bootstrap std. error 0.1340 0.2570 9.0427 0.2262 8.5999

Sample Sizes:

Balanced panel 460

First period cross-section 1, 416

Second period cross-section 1, 440

judgement on ignorability.

When the narrower objective of producing dynamic statistics consistent with the cross-section

statistics is adopted, the correction can proceed despite our cautionary remark. In fact, the re�ation

factors for the subsample under examination reported in Table 7 point to a surprisingly consistent

picture regardless of choice of functional form. Interestingly, small cell sizes that produced the

fragility in the bootstrap stage rescues the re�ation stage. For example, consider cell (y1 = 2, y2 = 2)

for which substantial di�erences are observed across parametric forms (see the second digits after the

decimal point reported inside braces). In the balanced panel there are only 4 individuals in this cell.

Under the alternative parametric assumptions the adjusted fractions for this cell are respectively

0.012464, 0.012694 and 0.012198. Thus, as long as small cell sizes yield a small magnitude for pjk

(< 0.01, say), the di�erences in RAN model re�ection factor estimates by functional form do not

translate to comparable di�erences in the magnitudes of the adjusted fraction.
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Table 7: Another 3×3 RAN Model - Re�ation Factors
Annual Transitions Between 2001-Q1 and 2002-Q1

x = male, ages 35-54, high school education, residing in urban areas

y2 = 0 y2 = 1 y2 = 2 Row sum

y1 = 0


0.9471
0.9474
0.9468

 0.0978


1.0160
1.0158
1.0162

 0.0196


1.2978
1.2952
1.3011

 0.0087 f1(0)

y1 = 1


0.9237
0.9258
0.9214

 0.0652


0.9926
0.9927
0.9924

 0.7543


1.2744
1.2657
1.2843

 0.0239 f1(1)

y1 = 2


1.0819
1.0672
1.0989

 0.0109


1.1508
1.1443
1.1583

 0.0109


1.4326
1.4591
1.4021

 0.0087 f1(2)

Col. sum f2(0) f2(1) f2(2) 1

5 Findings From a Broader Investigation

As can be inferred from our second example, in our broader empirical investigation we exposed the

parametric features of RAN model to a torture test by choosing x to identify smaller and smaller

segments of the population. This exercise is warranted, because statistical agencies often publish

o�cial statistics broken down by a high dimensional x. The question is whether RAN model can

rise to the challenge of yielding their dynamic counterparts.

The covariates we studied included sex (male, female), location (urban, rural), education (4

categories) and age (5 groups). Notably, the RAN model yielded extremely robust results as long

as cell counts in the balanced panel remained within acceptable ranges for the sample sizes un-

der investigation. In extreme cases when cell sizes were extremely small, we ran into occasional

convergence problems during the bootstrap stage. This problem was attributable to the fact that

some bootstrapped samples yielded zero cell counts, in which case correction could not proceed.

Clearly zeros encountered during bootstrapping are random as opposed to structural zeros. We

were able to �x the problem by adding an observation to the empty cell and adjusting the sample

size accordingly.

The �x we developed was also useful in higher dimensional RAN models (up to 5×5) we ex-

perimented with. Clearly empirical �ndings regarding the nature of attrition/substitution can, and

do vary, from one time period to the other, and with choice of x. With su�cient data, a second

stage analysis can be performed to shed light on the patterns (see Ikizler and Tunali, 2012 and

18



Gokce and Tunali, 2012 for substantive examples from 4×4 RAN models). The fragility exposed in

Table 6 suggests that the number of bootstrap replications we used (100) may not be adequate for

credibly testing whether attrition/substitution is nonignorable. Nonetheless there are valid reasons

for proceeding with the correction whether or not attrition/substitution is ignorable. Overall, our

non-parametric approach with respect to x worked extremely well. In our systematic examination

of annual and quarterly transitions over the 2000-2002 period, we discovered that the RAN model

produced estimates of transition rates for commonly used partitions of the full sample (jointly by

sex and location, by education, by broad age groups) that are robust to choice of functional form.

Even further partitioning of the subsamples identi�ed by sex-location pairs either by education, or

by broad age groups, proved to be feasible. Thus our method is worthy of adoption for statistical

and policy analysis purposes.

6 Conclusion

In this paper we tackle a generalized version of the attrition problem, typically associated with

longitudinal data. The motivation for the generalization comes from the observation that many

sustained large scale data collection e�orts (CPS and the European Union Statistics on Income

and Living Conditions (EU-SILC) being some well-known examples) involve multiple visits to the

same address/household over a short period of time. Another feature of these e�orts is the use

of a rotational design whereby a fresh set of addresses/households are systematically added to,

and excluded from, the sample frame according to a predetermined schedule. Notably these data

sets have a short panel component that can support dynamic analyses. What stands in the way

is the concern that the balanced panel which can be used for tracking the dynamics may not be

representative of the population at a given point of time. The generalization we o�er recognizes that

proper use of such short panels requires corrections for non-response after initial response (attrition)

as well as response after initial non-response (substitution). Furthermore, attrition/substitution

behavior is allowed to be endogenous to the outcomes of interest.

In our empirical example outcomes are labor market states occupied by an individual. Endo-

geneity implies that particular labor market outcome combinations could make individuals more

or less prone to exclusion from the balanced panel. The model we use exploits the set-up and key
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insights in Hirano et al. (2001) but departs from it in its computational simplicity, especially when

the linear version is adopted. The correction amounts to re�ating the balanced panel fractions

(cell means) by factors expressed as a parametric function of the states under examination. Our

empirical investigation of annual transition data from the Household Labor Force Survey in Turkey

showed that attrition/substitution is a serious concern, in the sense that transition rates obtained

from the balanced panel are sytematically distorted. The RAN model based adjustment not only

corrects these distortions, but it also revelas the attrition and substitution patterns. Based on

our systematic empirical investigation, results did not display sensitivity to the parametric features

of the RAN model. Thus the linear version � which is extremely simple to implement � appears

suitable for empirical work.

Another attractive feature of the RAN model is the non-parametric treatment of covariates

(such as sex, location, age groups, etc.). That is, each distinct covariate combination is associated

with its own set of parameters and re�ation factors. In a nutshell, RAN model is designed to

produce estimates of transition rates which are consistent with cross-section statistics, conditional

on covariates of interest. As such it is likely to gain the approval of o�cial statistical agencies.

Furthermore, estimation does not require micro data. To implement the adjustments, it is

su�cient to have the joint distribution obtained from the balanced panel that links the two legs of

the short panel alongwith the marginal distributions obtained from representative data collected at

each leg. To do inference, we additionally need the sample sizes that yielded the three distributions

we work with. Since all of this information is readily available from statistical agencies in tabular

form, the proposed methodology should appeal to a very broad audience.
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Appendix

Let Aj denote the 5x5 partition of the A matrix de�ned implicitly by equation (20) with the jth

row removed, and let bj denote the 5x1 partition of vector b with the jth row removed, j = 1, 2, ..6.
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With this notation, the system with the 6th equation removed can be expressed as A6θ = b6 and

has the explicit form given below:

∑2
j=0 p0j 0 0 p01 p02∑2
j=0 p1j

∑2
j=0 p1j 0 p11 p12∑2

j=0 p2j 0
∑2

j=0 p2j p21 p22∑2
k=0 pk0 p10 p20 0 0∑2
k=0 pk1 p11 p21

∑2
k=0 pk1 0





θ00

θ11

θ12

θ21

θ22


=



f1(0)

f1(1)

f1(2)

f2(0)

f2(1)


.

Given what we know about marginal and joint distributions, it is straighforward to see that

rank(A6) = 5. Thus the solution to the reduced system of equations is unique and is given by

θ̂ =A−16 b6. Next, we de�ne the following 5x5 pivot matrices:

E1 =



−1 −1 1 1 1

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, E2 =



1 0 0 0 0

−1 −1 1 1 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


,

E3 =



1 0 0 0 0

0 1 0 0 0

−1 −1 1 1 1

0 0 0 1 0

0 0 0 0 1


, E4 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 1 1 −1 −1

0 0 0 0 1


,

E5 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 1 1 −1 −1


.

It is straightforward to show that for j = 1, 2, .., 5, EjAj = A6, and Ejbj = b6. Since the pivot

matrices are of full rank, this proves that all six sytems are equivalent, and yield the same unique

solution θ̂.
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