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1 Introduction

Testing for autocorrelation or predictability in time series data has attracted considerable in-

terest in various fields of application. A prominent example is testing the predictability of asset

returns which has rather a long history in empirical finance (see Campbell, Lo, and MacKinlay

(1997, Ch. 2)). As serial correlation in asset returns is weak at best, tests based directly on the

sample autocorrelation function tend to lack power, and testing has, in addition, been based on

time series processes implied by structural models. Amongst these, the first-order autoregres-

sive moving average (ARMA(1,1)) process implied by the price-trend model of Taylor (1982)

and the mean-reversion model of Poterba and Summers (1988) has been influential.

Testing for autocorrelation within the conventional (stationary and invertible) ARMA(1,1)

model is a nonstandard problem, and appropriate tests have been proposed by Andrews and

Ploberger (1996) and Nankervis and Savin (2010), whose work is closely related to ours. How-

ever, these authors, as well as all others we are aware of, base their tests on invertible ARMA

models. In this paper, we take a different approach and develop tests for autocorrelation in the

context of a noninvertible ARMA(1,1) model. We argue that, in addition to the convenience of

leading to standard tests, the employed noninvertible ARMA model may also provide a more

powerful framework for testing autocorrelation or predictability than its invertible counterpart.

One reason for this is that, unlike its invertible counterpart, the noninvertible ARMA model

is capable of capturing conditional heteroskedasticity likely to be involved in many empirical

applications. Furthermore, while the tests of Andrews and Ploberger (1996) and Nankervis and

Savin (2010) are only designed for testing for autocorrelation, our noninvertible ARMA model

also makes possible to discriminate between autocorrelation and nonlinear predictability. These

convenient features require that the data generation process is non-Gaussian which can be seen

as a necessary identification condition. However, from the practical point of view this may

not be a serious limitation in that Gaussianity is frequently rejected in applications, especially

when testing the predictability of asset returns.
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As a starting point both Andrews and Ploberger (1996) and Nankervis and Savin (2010)

have the stationary and invertible ARMA(1,1) model

yt = φ0yt−1 + εt − ϑ0εt−1, (1)

where the parameters φ0 and ϑ0 satisfy |φ0| < 1 and |ϑ0| < 1, and εt is an uncorrelated zero

mean error term, that is, white noise. For testing purposes the model is reparameterized as

yt = (ϑ0 + β0) yt−1 + εt − ϑ0εt−1,

where β0 = φ0− ϑ0. The null hypothesis of interest is that yt is white noise or that β0 = 0. As
the null hypothesis implies that yt = εt, the nuisance parameter ϑ0 is present only under the

alternative, explaining why the testing problem is nonstandard (cf. Davies (1977)).

Based on a Gaussian likelihood Andrews and Ploberger (1996) show that their likelihood

ratio (LR) test and so-called supremum Lagrange multiplier (LM) tests and average exponential

LM tests have desirable asymptotic properties, and they justify the asymptotic distributions of

these tests without invoking Gaussianity and independence that were initially used to motivate

the tests. Nankervis and Savin (2010) modify (some of) the tests of Andrews and Ploberger

(1996) to make them applicable to a wider range of data generation processes. Using a gen-

eral near epoch dependence assumption, they develop several test statistics with the same

asymptotic distributions as the corresponding tests statistics of Andrews and Ploberger (1996).

Unlike the tests of Andrews and Ploberger (1996), those of Nankervis and Savin (2010) are valid

for data that are uncorrelated but dependent exhibiting, for instance, ARCH type conditional

heteroskedasticity.

A noninvertible version of the ARMA(1,1) model (1) is obtained by assuming |ϑ0| > 1

instead of |ϑ0| < 1. Asymptotic estimation theory of this kind of ARMA models has been

studied in several papers (see, e.g., Lii and Rosenblatt (1996) and Wu and Davis (2010)). This

theory is not limited to the first order case, and it also allows for the possibility that the

autoregressive part is noncausal, which in the special case (1) means that |φ0| > 1. We shall
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not consider noncausal ARMA models in this paper. Some of the recent work on the estimation

of noninvertible ARMA models has been focused on so-called all-pass models which in the first

order (causal) case are obtained from (1) by imposing the restriction φ0 = 1/ϑ0 (|ϑ0| > 1) (see
Breidt, Davis, and Trindade (2001) and Andrews, Davis, and Breidt (2006, 2007)). From the

viewpoint of testing for serial correlation, all-pass processes are interesting in that they can

generate time series that are uncorrelated but dependent. This is a useful feature in testing

for predictability as it facilitates detecting nonlinear dependence in case no autocorrelation

is found. However, as already indicated the dependence of an all-pass process requires non-

Gaussian data which is also required in the estimation theory discussed above as well as in the

tests developed in this paper (see the aforementioned references and the discussion in the next

section).

The LR and Wald tests to be derived in this paper are not directly based on the formu-

lation of the noninvertible ARMA(1,1) model discussed in the preceding paragraph and the

references therein. Instead, we use a formulation similar to that in Meitz and Saikkonen (2011)

where parameter estimation in a noninvertible ARMA model with autoregressive conditionally

heteroskedastic errors is studied. The reason for this is the fact that while assuming |ϑ0| > 1 in
(1) makes the model noninvertible, it also complicates the derivation of the tests. This can be

seen by noticing that in (1) |φ0| < 1 is assumed and the null hypothesis β0 = 0 can equivalently
be stated as φ0 = ϑ0, provided |ϑ0| > 1 is not assumed. In addition to a general noninvertible
ARMA model we also consider tests within the corresponding all-pass model. Due to the afore-

mentioned reasons of identification, our theoretical results assume a general non-Gaussian error

distribution. In the empirical application of the paper, Student’s t—distribution is employed.

We illustrate the usefulness of our tests by an application to quarterly U.S. stock returns,

for which the noninvertible ARMA(1,1) model is found to provide an adequate description. In

particular, and in contrast to the invertible ARMA(1,1) model, this model is able to capture

the conditional heteroskedasticity present in the return series. The tests indicate that while

there is little evidence in favor of autocorrelation, the returns are still dependent and, hence,
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predictable. The tests of Nankervis and Savin (2010) agree on the absence of autocorrelation,

but they have little to say about predictability in general.

The remainder of the paper is organized as follows. Section 2 introduces our formulation

of the noninvertible ARMA(1,1) model and discusses its properties. The test procedures are

derived in Section 3 and studied by means of Monte Carlo simulation experiments in Section

4. An empirical application to testing the predictability of U.S. stock returns is presented in

Section 5. Finally, Section 6 concludes. Some technical details are deferred to Appendices.

2 Noninvertible ARMA(1,1) and all-pass models

In this section, we discuss our formulation of the noninvertible ARMA(1,1) model, and its

special case the all-pass model, in some detail. We define our noninvertible ARMA(1,1) model

by the equation

yt = φ0yt−1 + εt−1 − θ0εt, (2)

where φ0 and θ0 are parameters satisfying |φ0| < 1 and |θ0| < 1, and εt is an uncorrelated

error term with zero mean and finite variance σ20. (Throughout the paper, a subscript zero

signifies a true (but unknown) parameter value.) Letting B denote the backward shift operator

(Bkεt = εt−k, k = 0,±1,±2, . . .) we can write equation (2) as

(1− φ0B) yt = (1− θ0B
−1)Bεt. (3)

When θ0 �= 0, the connection between the specifications (1) and (2) is given by θ0 = 1/ϑ0 and
εt = −ϑ0εt; when θ0 = 0, the moving average part in (2) reduces to the uncorrelated error term
εt−1, and the same is achieved in (1) by setting ϑ0 = 0 and εt = εt−1.

As already discussed in the Introduction, meaningful application of a noninvertible ARMA

model requires a non-Gaussian data generation process. To illustrate this, using well-known

results on linear filters (see, e.g., Brockwell and Davis (1991, Sec. 4.4)), the spectral density
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function of the noninvertible ARMA(1,1) process yt in (2) can be seen to equal

σ20
2π

|(1− θ0e
iω)e−iω|2

|1− φ0e
−iω|2 =

σ20
2π

|1− θ0e
−iω|2

|1− φ0e
−iω|2 . (4)

The right-hand side of (4) coincides with the spectral density function of a conventional invert-

ible ARMA(1,1) process with the same parameter values as in (2). This means that invertible

and noninvertible ARMA processes cannot be distinguished by the spectral density function

and, hence, by the autocovariance function. As the Gaussian likelihood function of an ARMA

model is determined by the autocovariance function of the observed process, it also becomes

understandable why estimation and statistical testing in noninvertible ARMA models assumes

a non-Gaussian data generation process (in our case, a specific reason is that the information

matrix based on a Gaussian likelihood becomes singular under the considered null hypotheses,

as demonstrated in Appendix C). Known results on maximum likelihood (ML) and quasi ML

estimation of noninvertible ARMA models also require that the error term is independent and

identically distributed (IID). Unless otherwise stated we shall therefore assume that the error

term εt in our model (2) is non-Gaussian and IID.

An interesting special case of the noninvertible ARMA(1,1) model (2) is obtained when

φ0 = θ0. In this case, the process is called an all-pass process and defined as

yt = φ0yt−1 + εt−1 − φ0εt, (5)

where |φ0| < 1 and εt is non-Gaussian and IID, as in (2). All-pass processes are uncorrelated
(the spectral density in (4) reduces to σ20/2π when φ0 = θ0), but dependent (note that in (3)

the operators 1− φ0B and 1− θ0B
−1 do not cancel out even when φ0 = θ0). It may be worth

noting, however, that, even though uncorrelated, all-pass processes are in general predictable.

A formal justification for this fact is given in Appendix A, where it is demonstrated that the

best (in mean square error sense) predictor of a (non-Gaussian) all-pass process is nonzero.

As discussed by Breidt, Davis, and Trindade (2001), all-pass models can, to some extent,

allow for nonlinear behavior, especially of the kind typically modeled by ARCH type models.
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The same holds true for noninvertible ARMA models in general. In Appendix A we derive

the autocorrelation function of squared observations from a noninvertible ARMA(1,1) process,

Cor(y2t , y
2
t+k), and from the expression therein it can be seen that for non-Gaussian errors one

may expect to observe autocorrelation in squared observations generated by a noninvertible

ARMA(1,1) process or an all-pass process. For certain values of the parameters φ0 and θ0,

the autocorrelation in squared observations can be quite strong. This happens especially when

the signs of φ0 and θ0 are different in which case the first order autocorrelation can even be

close to unity. In such cases the series itself is also autocorrelated so that the situation is

different from that in (pure) GARCH processes. In the all-pass process, the autocorrelation in

squared observations is always rather mild, indicating that it may not be appropriate, say, for

frequently observed financial time series which are typically (nearly) uncorrelated and exhibit

strong conditional heteroskedasticity.

As a remark, we also note that if an invertible ARMA model is fitted to a time series

generated by a (non-Gaussian) noninvertible ARMA process, the resulting squared residuals

tend to be autocorrelated. To see this, write equation (3) as

(1− φ0B) yt = (1− θ0B)ξt, ξt =
(1− θ0B

−1)
(1− θ0B)

Bεt,

where ξt is an all-pass process. Thus, when θ0 �= 0, the errors ξt are uncorrelated but, as

discussed in the previous paragraph, their squares are generally correlated.

We close this section by introducing the hypotheses we are interested in testing within the

noninvertible ARMA(1,1) model (2) or the all-pass model (5). As there are more than one

hypothesis, some kind of a sequential approach may be employed. One possibility is to start

from the totally unrestricted model and test whether it reduces to an all-pass model. The

hypothesis of interest is then

HAP : φ0 = θ0 in model (2).

The alternative is φ0 �= θ0. If this hypothesis is rejected the conclusion is that the process

is autocorrelated. In case of nonrejection it is still possible that the common value of the
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parameters φ0 and θ0 is zero in which case the observed process is IID. For studying this, the

relevant hypothesis is

H(AP)
IID : φ0 = 0 in model (5)

with the alternative being φ0 �= 0. In this case, a rejection means that the process is uncor-

related but dependent and (nonlinearly) predictable, whereas a nonrejection supports the IID

hypothesis.

If the IID process is a priori highly plausible, it may be a good idea to test for the IID

hypothesis

HI ID : φ0 = θ0 = 0 in model (2)

directly within the unrestricted noninvertible ARMA(1,1) model. If a rejection results, the

relevant hypothesis to test next is the all-pass hypothesis HAP . However, according to our

simulation experiments in Section 4 the LR and Wald tests of the IID hypothesis HI ID may

have relatively low power against close alternatives, suggesting that slight deviations from

independence may not be detected. Therefore, if on a priori grounds the IID hypothesis is

implausible, it may be advisable to start out with the all-pass hypothesis HAP so as not to

dismiss potential weak nonlinear dependence. For instance, in testing the predictability of

asset returns, the general wisdom seems to be that the IID hypothesis is very unlikely to hold

so that the all-pass hypothesis should be more interesting than the IID hypothesis.

As already discussed, all-pass processes exhibit ARCH-type dependence in the form of

correlation in the squared observations. In this respect, our assumption of the error term εt

in (2) (and (5)) being IID may not be so restrictive after all, as mild forms of conditional

heteroskedasticity are permitted under the null hypothesis of most interest. As a comparison,

the tests of Andrews and Ploberger (1996) do not allow for this kind of dependence but those of

Nankervis and Savin (2010) do. The assumptions of Nankervis and Savin (2010) are in fact very

general allowing for nonlinear dependences not covered by our noninvertible ARMA model. On

the other hand, their tests do not facilitate discrimination between nonlinear dependence and
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independence although this may not be such a serious shortcoming, if the IID assumption can

be precluded as incredible as seems to be the case in certain applications.

3 Test procedures

We now formulate (approximate) Wald and LR tests for the hypotheses introduced in the

previous section. We start with a brief discussion of the assumptions needed.

We have already assumed the error term εt to be non-Gaussian and IID. Assume further

that εt has a continuous distribution with a density function fσ0 (x;λ0) = σ−10 f
(
σ−10 x;λ0

)
that

may also depend on the parameter vector λ0 (d× 1) in addition to the scale parameter σ0.
For our theoretical developments, the function f (x;λ) has to satisfy a number of regularity

conditions similar to those used in related previous work on noninvertible and noncausal ARMA

models (see Breidt et al. (1991), Lii and Rosenblatt (1996), Andrews, Davis, and Breidt (2006),

and Lanne and Saikkonen (2011)). These conditions are technical in nature, and we relegate

their precise formulation to Appendix C, where further discussion is also provided. Here we

only note that the required conditions are satisfied by several conventional distributions such as

the (rescaled) Student’s t—distribution and weighted averages of Gaussian distributions. Their

exact formulation is adopted from a recent paper by Meitz and Saikkonen (2011) where an

asymptotic estimation theory for noninvertible ARMA models is extended to allow for ARCH

type conditional heteroskedasticity. In the present context, the assumptions used in Meitz and

Saikkonen (2011) are convenient because, unlike in other related previous work, the formulation

of the employed noninvertible ARMA model is similar to (2). On the other hand, because some

of these assumptions were originally designed to deal with conditional heteroskedasticity they

may be unnecessarily strong in our context. However, as the main focus of our paper is to

present a new approach of testing for autocorrelation and predictability, no attempt is made

to find the weakest possible assumptions.

To set notation, collect the parameters of the model (2) in the vector δ = (φ, θ, σ, λ). The
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permissible parameter space is given by |φ| < 1, |θ| < 1, σ > 0, and λ ∈ Λ where Λ ⊂ R
d.

Suppose that observations y0, . . . , yT are available. We estimate the parameters by maximizing

the approximate log-likelihood function (divided by T )

L̃T (δ) = T−1
T∑
t=1

log f

(
ε̃t−1(δ)
σ

;λ

)
− 1
2
log σ2

the derivation of which is discussed in some detail in Appendix B. Here we only note that the

quantities ε̃T−1 (δ) , . . . , ε̃0 (δ) are solved by using the backward recursion

ε̃t−1 (δ) = yt − φyt−1 + θε̃t (δ) , t = T, . . . , 1,

with end condition ε̃T (δ) = 0. It is demonstrated in Appendix C that, under the regularity

conditions stated therein, the approximate log-likelihood function L̃T (δ) has a (local) maximizer

δ̃ which is consistent and asymptotically normally distributed. Specifically, we have

√
T (δ̃ − δ0)

d→ N(0, I(δ0)−1) as T →∞,

where the positive definite matrix I(δ0) is defined in Appendix C. Here it suffices to note
that a consistent estimator of I(δ0) is obtained in the usual way from the Hessian of the

log-likelihood function (but not from the outer product of the score matrix). Thus, denoting

JT (δ) = −∂2L̃T (δ)/∂δ∂δ′ we have JT (δ̃) p→ I(δ0).
The preceding discussion can readily be modified to concern estimation of parameters of the

all-pass model (5). It suffices to redefine δ = (φ, σ, λ) and compute ε̃t−1 (δ) in the approximate

log-likelihood function L̃T (δ) with the restriction φ = θ. The asymptotic normality result of the

obtained estimator then applies with a consistent estimator of the limiting covariance matrix

defined in terms of the Hessian of the employed counterpart of L̃T (δ).

Based on the preceding results we can derive Wald and LR tests for the hypotheses intro-

duced in the preceding section. First consider the all-pass hypothesis HAP and partition the

parameter vector δ as δ = (δ1, δ2), where δ1 = (φ, θ) and δ2 = (σ, λ). Let δ̃ = (δ̃1, δ̃2) and

JT (δ̃) = [Jδiδj ,T (δ̃)] (i, j = 1, 2) be the corresponding partitions of the estimator δ̃ and the
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matrix JT (δ̃). To simplify notation, we denote J̃ij = Jδiδj ,T (δ̃) (i, j = 1, 2). Then, defining the
vector a = (1,−1) we can write the Wald test statistic for HAP as

WAP = T δ̃
′
1a
[
a′(J̃11 − J̃12J̃ −1

22 J̃21)−1a
]−1

a′δ̃1
d→ χ21 under HAP .

Of course, one can alternatively obtain a Wald test with asymptotic standard normal distrib-

ution. For the corresponding likelihood ratio test, let δ̃AP = (φ̃AP , φ̃AP , σ̃AP , λ̃AP) signify the ML

estimator of δ0 constrained by HAP . Then, the LR test statistic for testing HAP reads as

LRAP = 2T
[
L̃T (δ̃)− L̃T (δ̃AP)

] d→ χ21 under HAP .

Obtaining a Wald test for the IID hypothesis H(AP)
IID with a standard normal limiting dis-

tribution is simple. The test statistic is just the estimator φ̃AP divided by its approximate

standard error obtained from the square root of the first diagonal element of the inverse of the

relevant Hessian discussed above. For the corresponding LR test one needs to estimate the

nuisance parameters σ0 and λ0, that is, maximize the likelihood function defined by assuming

that the observed series yt, t = 0, . . . , T , is IID with marginal distribution characterized by the

density fσ0 (x;λ0). Denoting the resulting restricted estimator of the parameter vector δ0 by

δ̃I ID = (0, 0, σ̃I ID , λ̃I ID ) we get the LR test statistic

LR(AP)IID = 2T
[
L̃T (δ̃AP)− L̃T (δ̃I ID )

] d→ χ21 under H(AP)
IID .

Along the same lines one can also construct a test for the IID hypothesis HI ID . The Wald

test statistic can be formed by replacing the vector a in test statistic WAP by a 2 × 2 identity
matrix whereas the corresponding LR test statistic can be formed by replacing the estimator

δ̃AP in test statistic LRAP by the estimator δ̃I ID . Both of these test statistics have an asymptotic

χ22 distribution under the null hypothesis.

It may be noted that the preceding tests obtained in the considered noninvertible ARMA(1,1)

model are “standard” leading to an asymptotic chi-squared or standard normal limiting dis-

tribution. This is not the case when serial correlation is tested in the conventional invertible
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ARMA(1,1) model. Then a non-standard testing problem with complicated limiting distribu-

tions results because a nuisance parameter is present in the model only under the alternative

hypothesis; see Andrews and Ploberger (1996) and Nankervis and Savin (2010).

4 Simulation study

In this section, we explore the finite-sample properties of the proposed tests by means of Monte

Carlo simulation experiments. In addition to reporting the results of a number of size and

power simulations of the Wald and LR tests, we also simulated the tests of Nankervis and Savin

(2010) for comparison. The new tests are shown to be superior in testing the null hypothesis of

no autocorrelation against the noninvertible ARMA(1,1) process. Throughout the results are

based on 10,000 replications, and two sample sizes, 200 and 500, are considered.

Table 1 presents the rejection rates of the 5% level Wald and LR tests, when the data are

generated from the noninvertible ARMA(1,1) model with the error term having Student’s t—

distribution with 5 degrees of freedom (this error distribution is also used in other simulation

experiments discussed in this section). As far as the all-pass hypothesis HAP in the noninvertible

ARMA(1,1) model is concerned, the size of the Wald test seems to be closer to the nominal

size than that of the LR test. In order to study the power of the tests, we consider alternative

data generation processes with φ0 fixed at 0.8 and and θ0 taking values between 0.85 and 0.65.

Comparable parameter values are likely to be encountered in typical empirical applications

of these tests. The rejection rates of both tests increase as a function of the distance of θ0

from 0.8, with an equal distance resulting in greater empirical power when θ0 exceeds 0.8. In

general, both tests have good power compared to the tests of Nankervis and Savin (2010) (to

be discussed in more detail below), and the differences between them are minor.

The rejection rates of the Wald and LR tests for the IID hypothesis H(AP)
IID in the all-pass

model are reported for different values of the parameters in the middle panel of Table 1. With

200 observations, both tests slightly overreject, but with the greater sample size, the rejection
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rates lie close to the nominal size. The empirical power is reasonable already for relatively small

deviations from the null hypothesis, and it increases steadily with the parameter values. The

differences between the Wald and LR tests are minor.

The lower panel of Table 1 presents the rejection rates of the Wald and LR tests for the IID

hypothesis HI ID in the noninvertible ARMA(1,1) model. In accordance with the tests of the IID

hypothesis H(AP)
IID in the all-pass model, both tests tend to overreject with only 200 observations,

with the overrejection problem relieved as the sample size increases. With 200 observations, the

size of the Wald test is more seriously distorted, but at the greater sample size, the difference

between the tests is negligible. The power properties of the tests developed for the hypotheses

HI ID and H
(AP)
IID are similar but the latter seem to be superior, especially at alternatives close

to the null hypothesis. This suggests that it might be preferable to test for independence in

the all-pass model instead of the unrestricted noninvertible ARMA(1,1) model, provided the

all-pass restriction is not rejected.

For comparison, in Table 2, we report the rejection rates of the Exp-LM∞ test of Nankervis

and Savin (2010), which is the one of their tests that they recommend for nonseasonal applica-

tions in economics and finance. As the null hypothesis of these tests is that of no autocorrelation,

they should be compared to our tests of the all-pass hypothesis HAP . The finite-sample behavior

of their sup LM and Exp-LM0 tests is similar in our setup (to save space the results are not

reported, but they are available upon request). Application of these tests requires choice of a

weight matrix, i.e., an estimator of the asymptotic covariance matrix of the sample autocor-

relations. We consider three different weight matrices: the identity matrix and the VARHAC

estimator with the lag length selected by the Akaike and Bayesian information criteria (AIC and

BIC, respectively). The program used for VARHAC was downloaded from Wouter den Haan’s

web page (http://www.wouterdenhaan.com/varhac.html). In accordance with the simulation

results of Nankervis and Savin (2010), we find the test based on the Akaike information criterion

clearly inferior in small samples. In particular, in this case the test tends to overreject heavily,

while there is only slight overrejection with the other choices of the weight matrix, especially
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with as many as 500 observations. As far as power is concerned, qualitatively the findings are

similar to those for the tests of the all-pass hypothesis HAP in the upper panel of Table 1, but

in each case the Exp-LM∞ test is beaten by our Wald and LR tests by a considerable margin.

For instance, when θ0 = 0.9 and T = 200, the Wald and Exp-LM∞ tests reject approximately

75% and 30% of the time, respectively, with both tests suffering from small size distortions

of similar magnitude. This indicates that for testing for serial correlation in the noninvertible

ARMA model, the new tests are clearly superior to the those of Nankervis and Savin (2010),

especially when autocorrelation is relatively weak.

As discussed in Section 2, when the values of φ0 and θ0 are very different, the noninvertible

ARMA(1,1) process can exhibit even strong ARCH-type dependence. Hence, it is plausible that

our tests have some power against serially uncorrelated GARCH processes, i.e., they may reject

the all-pass hypothesis HAP although the series is not autocorrelated but strongly conditionally

heteroskedastic. It is worth noting, however, that there are no statistical reasons why our tests

should maintain their size in cases like these which are outside the model class assumed to

derive the tests.

To check how sensitive our tests are to ARCH-type dependence we ran simulations with

the GARCH(1,1) model as the data generation process. We used the same parameter values

as Nankervis and Savin (2010) did in their simulations, but instead of Gaussian errors, we gen-

erated errors from Student’s t—distribution with 5 degrees of freedom. The parameter values

of Nankervis and Savin (2010) imply rather strong ARCH effects, and, not surprisingly, our

tests have nonnegligible, but relatively low power against this data generation process. The

rejection rates of the Wald test of the all-pass hypothesis HAP equal 0.13 and 0.15 with 200

and 500 observations, respectively. With the LR test the corresponding figures are higher, 0.19

and 0.25, respectively, indicating a somewhat stronger sensitivity to the considered GARCH

process. Further experiments with a number of other parameter values resulted in similar out-

comes. Thus, although the rejection rates for pure GARCH models are not very high, test

results must be interpreted with care to avoid mixing autocorrelation up with conditional het-
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eroskedasticity. Therefore, the tests cannot without reservation be recommended for frequently

sampled financial time series exhibiting strong conditional heteroskedasticity.

5 Empirical application

As pointed out in the Introduction, testing the predictability of asset returns continues to be

an active area of research in finance. In the early literature, the absence of predictability was

considered an indication of market efficiency, i.e., it was argued that because rational investors

use information efficiently, returns should be unpredictable. However, the later developments

in dynamic asset pricing theory have demonstrated that this is the case only under very special

conditions, including the assumption of risk neutral investors. Hence, the results of predictabil-

ity tests, in general, yield no direct conclusions concerning market efficiency, but they are

interesting from the viewpoint of studying asset pricing models and investment strategies.

Campbell, Lo, and MacKinlay (1997, Ch. 2) discuss three different types of dependencies in

asset returns that have been explored in the empirical finance literature. Under the strictest as-

sumption considered, returns are independently and identically distributed, while the majority

of the empirical literature concentrates on testing the presence of autocorrelation. Our two-

stage testing procedure outlined in Section 3 provides a unified framework that encompasses

both of these rather separate literatures. In addition, it facilitates testing nonlinear predictabil-

ity whose presence is in line with modern asset pricing theory (cf. Singleton (2006, Ch. 9)). The

third assumption made in part of the previous literature, independence with heterogeneity, is

largely unexplored due to lack of suitable methods.

In our testing approach, rejection of the all-pass hypothesis HAP indicates the presence of

autocorrelation. On the other hand, if it is not rejected, the conditional IID hypothesis H (AP)
IID

can next be tested, and its rejection indicates that the returns follow an all-pass process, and are

thus predictable. Conversely if H (AP)
IID is not rejected, the returns are deemed unpredictable. The

underlying assumption of the procedure is that the returns are generated by the noninvertible
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ARMA(1,1) process. Previous analyses have often been based on its invertible counterpart

implied by the price-trend model of Taylor (1982) and the mean-reversion model of Poterba and

Summers (1988). Both models produce the same autocorrelation function, but the noninvertible

ARMA model has a number of benefits discussed above. Of course, it is necessary to confirm

the fit of this model by diagnostic checks before proceeding with the tests.

In our empirical analysis, we test the predictability of quarterly U.S. returns on three

value-weighted size-ordered stock portfolios and the market portfolio. The data were obtained

from Kenneth French’s web page (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html), and the portfolios include all NYSE, AMEX, and NASDAQ stocks with

data for June of each year. The monthly simple returns from 1947:1 to 2007:12 were converted to

continuously compounded quarterly return series. We consider only quarterly returns because

more frequently sampled return series presumably exhibit too strong autoregressive conditional

heteroskedasticity coupled with too weak autocorrelation for the noninvertible ARMA process

to capture.

As a preliminary analysis, we estimate the invertible Gaussian ARMA(1,1) model for each

(demeaned) series. These models are adequate in the sense of capturing all autocorrelation,

but the squared residuals are strongly autocorrelated, with the fourth-order McLeod-Li test

rejecting at the 1% level in each case. Furthermore, as expected, the residuals exhibit consid-

erable excess kurtosis, which shows up as rejections in the Jarque-Bera test at any reasonable

significance level. Hence, we proceed with noninvertible ARMA(1,1) models with Student’s

t—distributed errors.

The estimation results are presented in the upper panel of Table 3. For all portfolios, the

estimated degrees-of-freedom parameter is small, reconfirming the need for a leptokurtic error

distribution, and also the Q-Q plots of the residuals (not shown) indicate good fit. The estimates

of φ0 and θ0 are always large and lie rather close to each other. All parameters are quite

accurately estimated. Neither the residuals nor their squares are autocorrelated, indicating

that the noninvertible ARMA model successfully captures conditional heteroskedasticity. For
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comparison, we also estimated the invertible ARMA(1,1) model with Student’s t—distributed

errors for each series. Although this model produces serially uncorrelated residuals as well,

some conditional heteroskedasticity seems to be remaining. For the two portfolios with the

smallest firms, the fourth-order McLeod-Li test rejects even at the 5% level. Thus, in terms of

fit, the noninvertible models seem superior.

The result of autocorrelation and independence tests are reported in the lower panel of Table

3. We could first test for independence, i.e., hypothesis HI ID in the noninvertible ARMA(1,1)

model, but because stock returns are highly unlikely to be IID, we follow the two-stage testing

procedure outlined in Section 3. As far as the all-pass hypothesis HAP is concerned, the tests

lend little support to autocorrelation in the returns. It is only for the returns on the stocks of

the smallest firms that the Wald test rejects at the 10% level. Although virtually no evidence

in favor of autocorrelation is found, the returns may still exhibit nonlinear predictability, and

we proceed with the tests of the IID hypothesis H(AP)
IID in the all-pass model. The Wald test

rejects with very small p-values in each case, while the results of the LR test are more varied.

For the market return, H(AP)
IID is rejected at the 1% level, and for the two portfolios consisting

of the stocks of the largest firms at the 10% level. However, for the smallest firms, the LR

test does not reject at any reasonable level of significance, suggesting independence. With the

potential exception of the smallest firms, we can thus conclude that the returns are neither

independently and identically distributed nor autocorrelated, but they are still predictable in

the sense of being generated by the all-pass model.

The discrepancies in the results of the Wald and LR tests for the smallest firms most likely

follow from the fact that the likelihood surface is very flat with two local maxima, the global

one given in Table 3 and another one in the vicinity of the point φ0 = θ0 = 0. Under the

constraint φ0 = θ0, the global optimum (—0.072) lies close to the latter, which explains the

nonrejection of the IID hypothesis in the LR test even though the ML estimates of φ0 and θ0 in

Table 3 are quite different from zero. Given these considerations, we are inclined to conclude

that also the returns on the stocks of the smallest firms are not IID but predictable albeit not

16



autocorrelated.

The result of the Exp-LM∞ test reported on the bottom row of Table 3 indicate no rejections

at reasonable significance levels. The other two tests of Nankervis and Savin (2010) lead to

similar conclusions. As far as autocorrelation is concerned, this test yields the same conclusion

as our tests of the hypothesis HAP . However, our two-stage testing procedure goes beyond

this in finding (nonlinear) predictability, while the Nankervis-Savin tests are only designed for

testing autocorrelation.

6 Conclusion

The test procedures for autocorrelation and predictability developed in this paper within the

noninvertible ARMA(1,1) model add to the available tests previously obtained within the con-

ventional invertible ARMA(1,1) model. A convenient feature of the procedures, not shared by

their previous counterparts, is that in addition to testing for autocorrelation, they also facili-

tate testing for nonlinear predictability. The noninvertible ARMA model also differs from its

invertible counterpart in that, to some extent, it can allow for conditional heteroskedasticity in

the data. These features require a non-Gaussian data generation process which, however, need

not be a serious limitation in that Gaussianity is quite often found inappropriate, for instance,

in modeling economic and financial time series. This also turned out to be the case in our

empirical application to testing the predictability of U.S. stock returns.

Although the noninvertible ARMA(1,1) model is theoretically well motivated and probably

empirically adequate in typical financial applications, our test procedures can be extended to

higher-order ARMAmodels in a straightforward manner. In contrast, the corresponding testing

problem in the conventional invertible ARMA model is nonstandard, making such extensions

tedious. In addition to extensions to higher-order models, our results open a number of other

avenues for future research. First, instead of ML estimation, the least absolute deviation

estimation developed in Breidt, Davis, and Trindade (2001) and Wu and Davis (2010) could
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be employed. Although this approach tends to result in less powerful tests, it has the benefit

of not having to specify the error distribution. This feature may be useful when modeling

highly leptokurtic financial data. Second, it may also be of interest to consider similar tests

within a noninvertible ARMA model involving an ARCH or GARCH component. Some work

in this direction was recently done by Meitz and Saikkonen (2011) who studied ML estimation

by allowing for conventional ARCH errors in the noninvertible ARMA model. Such extensions

are likely to be needed in applications to frequently observed financial data. Third, while we

have considered methods of assessing predictability by means of tests on the parameters of

the model, quantifying the accuracy of out-of-sample forecasts might also be of interest. This

calls for the development of a forecasting method for the noninvertible ARMA model that lies

outside the scope of this paper. Finally, in addition to quarterly U.S. stock returns studied in

this paper, also returns from other markets and more frequently sampled returns, including

those from the foreign exchange market, would be interesting.
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Appendix A: Additional technical details

Predictability of an all-pass process. Consider an all-pass process yt = φ0yt−1+ εt−1−φ0εt
with |φ0| < 1, φ0 �= 0, and εt non-Gaussian and IID. Denote ut = yt − φ0yt−1 = εt−1 − φ0εt.

Because ut is a noninvertible MA process, according to Rosenblatt (2000, Corollary 5.4.3)

and subject to mild moment conditions on εt (see op. cit.), the best one-step predictor of ut,

E[ut | ut−s, s ≥ 1], must be nonlinear. On the other hand, as the AR-polynomial 1 − φ0B is

causal, yt =
∑∞

j=0 φ
j
0ut−j, and the σ—algebras σ (ut−s, s ≥ 1) and σ (yt−s, s ≥ 1) coincide, so

that

E[ut | ut−s, s ≥ 1] = E[ut | yt−s, s ≥ 1] = E[yt−φ0yt−1 | yt−s, s ≥ 1] = E[yt | yt−s, s ≥ 1]−φ0yt−1.

If yt is not predictable, E[yt | yt−s, s ≥ 1] = 0, in which case E[ut | ut−s, s ≥ 1] = −φ0yt−1 =
−φ0

∑∞
j=0 φ

j
0ut−1−j, an expression linear in ut−s, s ≥ 1, a contradiction. Therefore yt must be

predictable, with the best predictor being nonlinear.

Autocorrelation function of squared observations from a noninvertible ARMA(1,1)

process. First conclude from (2) that yt has the linear representation

yt =

∞∑
j=−1

ψ0,jεt−1−j, (6)

where ψ0,j is the coefficient of z
j in the Laurent series expansion of (1− φ0z)

−1(1− θ0z
−1)

def
=

ψ0 (z). Now assume that εt has finite fourth moments and consider the autocorrelation function

of y2t . As in Brockwell and Davis (1991, the proof of Proposition 7.3.1) one obtains

Cor
(
y2t , y

2
t+k

)
=
(κ0 − 3)

∑∞
j=−1 ψ

2
0,jψ

2
0,j+k + 2

(∑∞
j=−1 ψ0,jψ0,j+k

)2
(κ0 − 3)

∑∞
j=−1 ψ

4
0,j + 2

(∑∞
j=−1 ψ

2
0,j

)2 , k ≥ 0, (7)

where κ0 = E (ε4t ) /σ
4
0. This shows that the squared process y

2
t is autocorrelated when κ0 �= 3

or, equivalently, when the (excess) kurtosis of εt is nonzero. Thus, for non-Gaussian errors one

may expect to observe autocorrelation in squared observations obtained from a noninvertible

ARMA(1,1) processes. For all-pass processes the right hand side of (7) simplifies because, due
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to lack of autocorrelation, the second term in the numerator vanishes. However, the first term

is generally nonzero, illustrating the aforementioned dependence of all-pass processes.

An explicit expression for the right hand side of (7) as a function of the parameters φ0, θ0,

and κ0 is derived next. First note that the coefficients ψ0,j in the linear representation (6) are

given by ψ0,−1 = −θ0 and ψ0,j = (1− φ0θ0)φ
j
0, j = 0, 1, . . .. With straightforward computation

one obtains

∞∑
j=−1

ψ20,j = θ20 +
(1− φ0θ0)

2

1− φ20
∞∑

j=−1
ψ0,jψ0,j+k = (1− φ0θ0)φ

k−1
0

[
(1− φ0θ0)φ0
1− φ20

− θ0

]
, k > 0.

Note that the expression in the brackets vanishes when the all-pass restriction φ0 = θ0 holds.

Further computations give

∞∑
j=−1

ψ40,j = θ40 +
(1− φ0θ0)

4

1− φ40
∞∑

j=−1
ψ20,jψ

2
0,j+k = (1− φ0θ0)

2 φ2k−20

[
(1− φ0θ0)

2 φ20
1− φ40

+ θ20

]
, k > 0.

Substituting the preceding expressions on the right hand side of (7) and simplifying yields

Cor
(
y2t , y

2
t+k

)
= (1− φ0θ0)

2 φ2k−20

(κ0 − 3)
[
(1−φ0θ0)2φ20

1−φ40 + θ20

]
+ 2

[
(1−φ0θ0)φ0

1−φ20 − θ0

]2
(κ0 − 3)

[
θ40 +

(1−φ0θ0)4
1−φ40

]
+ 2

[
θ20 +

(1−φ0θ0)2
1−φ20

]2
for k > 0.

Appendix B: The approximate likelihood function of the

noninvertible ARMA(1,1) model

Following Lii and Rosenblatt (1996), Andrews, Davis, and Breidt (2006), and Meitz and Saikko-

nen (2011) we estimate the parameters of the model by an approximate ML procedure. As in
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these papers it can be shown that, conditional on the initial value y0, the log-likelihood of the

parameter vector δ = (φ, θ, σ, λ) based on the observed data (y1, . . . , yT ) (divided by T ) can be

approximated by

LT (δ) = T−1
T∑
t=1

log f

(
εt−1(δ)
σ

;λ

)
− 1
2
log σ2,

where

εt−1(δ) = θ(B−1)−1φ (B) yt =
∞∑

j=−1
�jyt+j

with�j the coefficient of zj in the Laurent series expansion of θ(z−1)−1φ (z)
def
= � (z). However,

as computing εt(δ) for t = 1, . . . , T is not feasible in terms of the available data, a further ap-

proximation is needed. To obtain a likelihood feasible in practice we need an approximation for

εt−1(δ), t = 1, . . . , T , expressible in terms of the observations y0, y1, . . . , yT and the parameters.

To this end, set ε̃T (δ) = 0 and recursively solve for ε̃T−1(δ), . . . , ε̃0(δ) by using the backward

recursion

ε̃t−1 (δ) = yt − φ1yt−1 + θ1ε̃t(δ), t = T, . . . , 1.

As in the aforementioned papers, the resulting approximate log-likelihood then takes the form

L̃T (δ) = T−1
T∑
t=1

log f

(
ε̃t−1(δ)
σ

;λ

)
− 1
2
log σ2.

In practice, estimation is carried out by maximizing L̃T (δ) over the permissible parameter space

(the infeasible counterpart LT (δ) can be used in theoretical derivations).

Appendix C: Asymptotic properties of the approximate

ML estimator

In this appendix, we discuss the asymptotic properties of the the approximate ML estimator

introduced in Appendix B, thereby justifying the test procedures presented in Secion 3. We

use results in Meitz and Saikkonen (2011). The noninvertible ARMA model considered in that
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paper differs in one minor respect of the one used in this paper. The difference only concerns

the time index in the error term εt. The formulation employed in Meitz and Saikkonen (2011)

is obtained from that in (1) by replacing εt by εt+1. From the viewpoint of parameter estima-

tion and deriving asymptotic properties of the estimators this difference is of no importance.

However, in order to facilitate comparison with the arguments in Meitz and Saikkonen (2011)

we explicitly present the formulation of their model which is

yt = φ0yt−1 + εt − θ0εt+1,

where the notation is exactly as in (2) except for the fact that εt has been replaced by εt+1. As

in Meitz and Saikkonen (2011), we first introduce the infeasible log-likelihood function

LT (δ) = T−1
T∑
t=1

log f

(
εt(δ)

σ
;λ

)
− 1
2
log σ2,

where

εt(δ) = θ(B−1)−1φ (B) yt =
∞∑

j=−1
�jyt+j,

with �j the coefficient of zj in the Laurent series expansion of θ(z−1)−1φ (z)
def
= � (z). The

feasible log-likelihood function L̃T (δ) is obtained from this by replacing εt(δ) by ε̃t(δ), t =

1, . . . , T , by setting ε̃T+1(δ) = 0 and recursively solving for ε̃T (δ), . . . , ε̃1(δ) with the backward

recursion

ε̃t (δ) = yt − φyt−1 + θε̃t+1(δ), t = T, . . . , 1.

To present the assumptions required for the asymptotic distribution of the approximate ML

estimator we need some notation. As we here use standardized innovations, we write εt as

εt = σ0ηt and we also use a subscript to signify a partial derivative indicated by the subscript,

for instance fx(x;λ) = ∂
∂x
f(x;λ), fλ(x;λ) = ∂

∂λ
f(x;λ), and fxx(x;λ) = ∂2

∂x2
f(x;λ). For brevity,

we set ex,t =
fx(ηt;λ0)
f(ηt;λ0)

and eλ,t =
fλ(ηt;λ0)
f(ηt;λ0)

, and let |·| signify the Euclidean norm. The following
assumptions are sufficient to obtain the desired results.

Assumption C.1.
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(i) The innovation process ηt is a sequence of IID random variables with E [ηt] = 0, E [η
2
t ] =

1, and E [η4t ] <∞. The distribution of ηt is non-Gaussian, and has a (Lebesgue) density

f (x;λ0) which (possibly) depends on a parameter vector λ0 taking values in an open subset

of Rd.

(ii) For all x ∈ R and λ in some neighborhood of λ0, f (x;λ) > 0 and f (x;λ) is twice

continuously differentiable with respect to (x;λ).

(iii) For all λ in some neighborhood of λ0,
∫
xf (x;λ) dx = 0 and

∫
x2f (x;λ) dx = 1.

(iv) The matrix E[eλ,te′λ,t] is positive definite.

(v)
∫
fxx (x;λ0) dx = 0 and

∫
x2fxx (x;λ0) dx = 2.

(vi) For all x ∈ R, all λ in some neighborhood of λ0, and every λi, i = 1, . . . , d, the functions

x4
f 4x (x;λ)

f 4 (x;λ)
,

f 4λi (x;λ)

f 4 (x;λ)
, x4

f 2xx (x;λ)

f 2 (x;λ)
,

f 2λix (x;λ)

f 2 (x;λ)
, and

∣∣∣∣fλλ (x;λ)f (x;λ)

∣∣∣∣
are dominated by d1(1 + |x|d2) with d1, d2 ≥ 0 and

∫ |x|d2 f (x;λ0) dx <∞.
(vii) For all x ∈ R and λ in some neighborhood of λ0, the functions |x2fλ (x;λ)| and |fλλ (x;λ)|

are dominated by a function f (x) such that
∫
f (x) dx <∞.

(viii) For all x ∈ R, 	x ∈ R, and λ in some neighborhood of λ0, and for some C < ∞ and

d1, d2 > 0,

|v(x+	x;λ)− v(x;λ)| ≤ C
(
(1 + |x|d1) |	x|+ |	x|d2)

for the following choices of the function v(x;λ):

(a) (i) v(x;λ) = fx(x;λ)
f(x;λ)

, (ii) v(x;λ) = fλ(x;λ)
f(x;λ)

.

(b) (i) v(x;λ) = fxx(x;λ)
f(x;λ)

, (ii) v(x;λ) = fλx(x;λ)
f(x;λ)

, (iii) v(x;λ) = fλλ(x;λ)
f(x;λ)

.
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Assumption C.1 consists of conditions modified from Assumptions 1—7 of Meitz and Saikko-

nen (2011). These authors consider maximum likelihood estimation of a noninvertible ARMA(P ,Q)

model in which the error terms εt are conditionally heteroskedastic and follow a standard

ARCH(R)—model. The noninvertible ARMA(1,1) model considered here is obtained as a spe-

cial case by setting P = Q = 1 and assuming the εt to be IID with constant variance σ20.

Besides minor differences in presentation, there are two essential differences between the

conditions above and Assumptions 1—7 of Meitz and Saikkonen (2011). First, we assume the

errors to be non-Gaussian. As was discussed in Section 2, in the present context it is necessary

to rule out Gaussian innovations. In Meitz and Saikkonen (2011) the situation is different as

there Gaussian innovations can be allowed due to the assumed ARCH-structure. Second, in

Meitz and Saikkonen (2011) the innovations were assumed to have a symmetric distribution.

The only reason for this was to simplify the otherwise complex derivations, and in the present

context this is not necessary.

As mentioned in Section 3, some of the employed assumptions in Meitz and Saikkonen (2011)

were imposed to deal with the assumed ARCH-structure and may, therefore, be unnecessarily

strong. For instance, it seems possible that the assumption of a finite fourth moment could

be replaced by a milder alternative. On the other hand, this moment condition is already

marginally weaker than what is assumed by Andrews and Ploberger (1996) and Nankervis and

Savin (2010) who, however, allowed for a considerably more general data generation process

than we do. Regarding other conditions in Assumption C.1, most of them have analogs in Lii

and Rosenblatt (1996) and Andrews, Davis, and Breidt (2006).

We can now state a result summarizing the asymptotic properties of the (feasible) ML

estimator δ̃T .

Theorem C.1. If Assumption C.1 holds, there exists a sequence of solutions δ̃T to the (feasible)

likelihood equations ∂L̃T (δ)/∂δ = 0 such that T 1/2(δ̃T − δ0) d→ N(0, I(δ0)−1) as T →∞, where
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I (δ0) takes the form

I (δ0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E[e2x,t](1− φ20)
−1 −(1− φ0θ0)

−1 0 0

−(1− φ0θ0)
−1 E[e2x,t](1− θ20)

−1 0 0

0 0 1
4σ40
E[(ex,tηt + 1)

2] − 1
2σ20
E[ex,tηte

′
λ,t]

0 0 − 1
2σ20
E[ex,tηteλ,t] E[eλ,te

′
λ,t]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Moreover, a consistent estimator for the limiting covariance matrix is given by −(∂2L̃T (δ̃T )/∂δ∂δ′)−1,

that is, −(∂2L̃T (δ̃T )/∂δ∂δ′)−1 → I(δ0)−1 a.s. as T →∞.

Theorem C.1 gives the conventional results concerning the asymptotic properties of a (local)

ML estimator. Theorem C.1 and the arguments used to prove it imply the validity of conven-

tional Wald and Likelihood Ratio test procedures, justifying the asymptotic distributions of

the test statistics presented in the text. Note that these results do not hold if ηt is Gaussian

because then E[e2x,t] = E[η2t ] = 1, showing that, when φ0 = θ0, the upper left hand corner of

the matrix I (δ0) in Theorem C.1 is singular.

Proof of Theorem C.1 (outline). Theorem 1 of Meitz and Saikkonen (2011) gives the

result of Theorem C.1 in the more general context of a noninvertible ARMA(P ,Q) model with

ARCH-errors. Given Assumption C.1, the result of Theorem C.1 can be established as in

Meitz and Saikkonen (2011). In broad terms, the line of proof is standard, mainly consisting

of establishing the following three facts: (i) the rescaled score vector evaluated at the true

parameter value is asymptotically normally distributed with zero mean and positive definite

covariance matrix I (δ0), (ii) the expectation of the Hessian evaluated at the true parameter
value coincides with −I (δ0), and (iii) the rescaled Hessian matrix converges uniformly in some
neighborhood of the true parameter value. These and the other necessary facts required to

establish Theorem C.1 can be proven by following the steps in the proof Theorem 1 in Meitz

and Saikkonen (2011). In general, the required derivations are now considerably shorter than

in Meitz and Saikkonen (2011) because therein ARCH-errors were allowed for. We omit the
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details of the proof, but in what follows briefly discuss two substantial differences in the proofs.

One issue requiring additional explanation is the proof of positive definiteness of I (δ0). As
seen above, we now have to assume the errors to be non-Gaussian which differs from Meitz

and Saikkonen (2011). Despite this, one can still follow the general line of proof in that paper

although the argument can be made considerably simpler. In the considered first order case

the positive definiteness of the upper left hand corner of I (δ0) is readily seen by computing the
determinant of this matrix and making use of the fact that in the non-Gaussian case E[e2x,t] > 1

holds (see Andrews, Davis, and Breidt (2006), Remark 2). The positive definiteness of the lower

right hand corner of I (δ0) can be established by using (a simplified version of) the argument
in the proof of Lemma 2 of Meitz and Saikkonen (2011) (see the beginning of Step 4 in their

proof).

The second main difference in the proofs comes from the fact that we allow the distribution

of ηt to be asymmetric. In Meitz and Saikkonen (2011) this was ruled out in order to simplify

the otherwise extremely complex derivations. One reason why symmetricity is not required here

is that the derivations are much simpler than in Meitz and Saikkonen (2011), with a majority of

the terms present in their derivations now dropping out. Second reason is that those terms that

remain also simplify (often because therein the error variance depends on the observations, and

here it is a constant). Third reason why symmetricity is not required is that some derivations

in Meitz and Saikkonen (2011) could have been justified without symmetricity, but this was

made use of because it lead to substantially shorter arguments.
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Table 1: Rejection rates of nominal 5% level Wald and LR tests: ARMA(1,1) models.

φ0 θ0 Wald Test LR Test

T = 200 T = 500 T = 200 T = 500

HAP : φ0 = θ0

0.00 0.00 0.063 0.054 0.074 0.074

0.80 0.80 0.063 0.053 0.081 0.071

0.80 0.85 0.277 0.544 0.274 0.541

0.80 0.90 0.746 0.988 0.722 0.987

0.80 0.95 0.945 1.000 0.942 1.000

0.80 0.75 0.177 0.430 0.261 0.507

0.80 0.70 0.549 0.927 0.635 0.949

0.80 0.65 0.843 0.998 0.889 0.999

H(AP)
IID : φ0 = 0 in All-Pass Model

0.00 0.00 0.089 0.047 0.077 0.066

0.10 0.10 0.222 0.327 0.213 0.411

0.20 0.20 0.525 0.847 0.466 0.819

0.40 0.40 0.890 0.991 0.836 0.988

0.60 0.60 0.967 0.997 0.917 0.997

HI ID : φ0 = θ0 = 0

0.00 0.00 0.101 0.066 0.071 0.065

0.10 0.10 0.208 0.303 0.155 0.284

0.20 0.20 0.469 0.756 0.393 0.741

0.40 0.40 0.859 0.984 0.797 0.986

0.60 0.60 0.955 0.997 0.895 0.996

The entries are rejection rates of the null hypotheses

φ0 = θ0 = 0 (upper panel) and φ0 = θ0 (lower panel). The

DGP is the ARMA(1,1) process with values of the φ0 and θ0
parameters given in the first and second column, respectively.

The errors are generated from Student’s t—distribution with 5

degrees of freedom. The number of replications is 10,000.
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Table 2: Rejection rates of nominal 5% level Exp-LM∞ test: ARMA(1,1) models.

φ0 θ0 Weight Matrix

I AIC BIC

T = 200 T = 500 T = 200 T = 500 T = 200 T = 500

0.00 0.00 0.067 0.051 0.131 0.077 0.080 0.055

0.80 0.80 0.062 0.041 0.163 0.088 0.082 0.060

0.80 0.85 0.184 0.205 0.184 0.205 0.126 0.208

0.80 0.90 0.295 0.787 0.323 0.709 0.311 0.750

0.80 0.95 0.540 0.967 0.522 0.954 0.553 0.964

0.80 0.75 0.139 0.246 0.220 0.239 0.162 0.265

0.80 0.70 0.344 0.755 0.312 0.489 0.352 0.716

0.80 0.65 0.628 0.975 0.397 0.667 0.596 0.916

The entries are rejection rates of the Exp-LM∞ test with the weight matrix being

the identity matrix (I) or selected by the Akaike (AIC) or the Bayesian (BIC) infor-

mation criterion. The number of autocorrelation coefficients, Tr, included in the test

statistic equals 20. The DGP is the ARMA(1,1) process with values of the φ0 and θ0
parameters given in the first and second column, respectively. The errors are generated

from Student’s t—distribution with 5 degrees of freedom. The number of replications is

10,000.
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Table 3: Estimation and test results for quarterly returns on the value-weighted market return

and returns on portfolios formed on size.

Portfolio

Market Bottom 30% Middle 40% Top 30%

φ0 0.793 0.867 0.723 0.791

(0.070) (0.034) (0.081) (0.070)

θ0 0.790 0.934 0.789 0.760

(0.078) (0.033) (0.078) (0.081)

σ0 8.156 11.809 9.852 7.727

(0.803) (1.106) (0.859) (0.688)

λ0 4.146 4.518 4.638 4.486

(1.241) (1.688) (1.575) (1.415)

HAP : φ0 = θ0

Wald 0.931 0.053 0.136 0.482

LR 0.930 0.162 0.157 0.460

H(AP)
IID : φ0 = 0 in All-Pass Model

Wald 6.20e—30 8.96e—9 1.16e—20 4.48e—27

LR 0.006 0.391 0.066 0.085

Exp-LM∞ 0.246 0.085 1.076 0.041

The ML estimates of the noninvertible ARMA(1,1) model are based on

the assumption of Student’s t—distributed errors with λ0 degrees of freedom.

The figures in parenteheses are standard errors computed from the Hessian

of the log-likelihood function. For the Wald and LR tests, p-values are

reported. The 10% and 5% critical values of the Exp-LM∞ test equal 1.418

and 1.973, respectively. The weight matrix in the Exp-LM∞ test is selected

by the BIC with a maximum of three lags, and the number of autocorrelation

coefficients, Tr, included in the test statistic equals 20.
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