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Abstract

This paper characterizes the equilibrium outcomes of two-stage games in which the second

mover has private information and can sign renegotiable contracts with a neutral third-party. Our

aim is to understand whether renegotiation-proof third-party contracts can confer a strategic ad-

vantage on the second mover. We first analyze non-renegotiable contracts and show that a “folk

theorem” holds: Any outcome in which the second mover best responds to the first mover’s ac-

tion and the first mover obtains a payoff at least as large as his “individually rational payoff” can

be supported. Renegotiation-proofness imposes some restrictions, which is most transparent in

games with externalities, i.e., games in which the first mover’s payoff increases (or decreases) in

the second mover’s action. In such games, a similar folk theorem holds with renegotation-proof

contracts as well, but the first mover’s individually rational payoff is in general higher.
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1 Introduction

Could an incumbent firm deter entry by contracting with third parties, such as a bank or a labor

union? Could a buyer get a better price from a seller if she is under a credit contract with a bank?

More generally can contracts with third parties change the outcome of a game to the advantage of the

contracting player? When contracts are observable and non-renegotiable, the answer to this ques-

tion is in general yes.1 In fact, there are several “folk theorem” type results for different classes of

games with observable and non-renegotiable third-party contracts.2 The effects of unobservable and

non-renegotiable third-party contracts are also well-understood: Nash equilibrium outcomes of a

game with and without third-party contracts are identical (Katz (1991)). In fact, all (and only) Nash

equilibrium outcomes of the original game can be supported as a sequential equilibrium outcome of

the game with unobservable and non-renegotiable contracts (Koçkesen and Ok (2004) and Koçkesen

(2007)). In this paper we seek an answer to this question for unobservable and renegotiable contracts.3

More precisely we consider the effects of renegotiation-proof third-party contracts in two-player

two-stage games where the second mover (player 2) has some payoff relevant private information.

In what we call the original game, Nature moves first and determines the state of the world θ. After

that, player 1 chooses an action a1 without observing θ. Player 2 observes both θ and a1, chooses a2,

and the game ends. Many models in economics such as the entry game, the Stackelberg game, and

monopolistic screening belong to this class of games.

In the game with contracts we let player 2 sign a contract with a neutral third-party before the

original game starts. A contract specifies transfers between player 2 and the third-party as a function

of the contractible outcomes, which we assume to be the action choices of the two players, (a1, a2).

The underlying and crucial assumption is that the private information of player 2 is not observable

by any other player, including the third-party, and thus non-contractible. We also assume that the

contract is never observed by player 1 and analyze the perfect Bayesian equilibria of the resulting

game with contracts.

Since contracts cannot depend on θ, in order to get a handle on the type of strategies that are

incentive compatible, we assume that player 2’s payoff function exhibits increasing differences in

(θ, a2). We first characterize outcomes that can be supported with non-renegotiable contracts, both

as a logical step in the analysis and to better isolate the effects of renegotiation (Section 3.1). We show

that any Bayesian Nash equilibrium of the original game in which player 2’s strategy is increasing can

be supported with third-party contracts. In fact, we prove a folk theorem type result: any outcome

(a∗
1 , a∗

2 (θ)) of the original game in which a∗
2 (θ) is a best response to a∗

1 for each θ and player 1’s payoff

is at least as large as his “individually rational” payoff, can be supported. Definition of individually

rational payoff is different from the standard one in that player 2, in minimizing player 1’s payoff, is

restricted to using increasing strategies.

We next consider renegotiable contracts: After player 1 moves, player 2 can make a renegotiation

1See, among many others, Vickers (1985), Fershtman and Judd (1987), Sklivas (1987), Koçkesen et.al. (2000), Brander and
Lewis (1986), Bolton and Scharfstein (1990), Snyder (1996), Spencer and Brander (1983), Brander and Spencer (1985), and
Eaton and Grossman (1986).

2See Fershtman, Judd, and Kalai (1991), Polo and Tedeschi (2000), and Katz (2006).
3Prat and Rustichini (2003) and Jackson and Wilkie (2005) analyze related models in which players can write action

contingent contracts before the game is played. Unlike the current paper, in these papers contractual relationships are not
exclusive and the focus is on the efficiency properties of the equilibrium set. Also related is Bhaskar (2009), in which players
need to pay a price to a supplier in order to play certain actions that are controlled by this supplier.
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offer to the third-party, who knows a1, but not θ, and can either accept the offer or reject it. We define

renegotiation-proof equilibrium as a perfect Bayesian equilibrium in which the equilibrium contract

is not renegotiated after any (θ, a1) and characterize the renegotiation-proof contracts and strategies

(Section 3.2).4

We obtain a complete characterization for games with externalities, i.e., games in which player 1’s

payoff is increasing or decreasing in Player 2’s action (Section 4). We show that, in this class of games,

a similar folk theorem holds with renegotiation-proof contracts as well. The difference from the result

for non-renegotiable contracts is in the definition of individually rational payoff: With renegotiation-

proof contracts the strategy of the highest type of player 2 must be a best response to each a1, whereas

no such restriction exists for non-renegotiable contracts.5

The class of games with externalities is large and contains many economic models. In Section 5

we apply our result to some that we find interesting. The canonical example, of course, is the Stack-

elberg competition. We show that in this game, the follower firm indeed benefits from renegotia-

tion-proof third-party contracts. This game can also be construed as an entry deterrence game, in

which case we show that entry can always be deterred with non-renegotiable contracts but only un-

der certain conditions with renegotiation-proof contracts, i.e., renegotiation has a real bite in these

games. We also analyze a standard monopolistic screening game in which the seller offers a menu

of quality-price pairs and a privately informed buyer chooses one item in the menu (or none). We

show that the buyer benefits from renegotiation-proof contracts but not as much as she would from

non-renegotiable contracts.

The closest paper to ours is Dewatripont (1988), which analyzes an entry-deterrence game in

which the incumbent signs a contract with a labor union before the game begins. A potential en-

trant observes the contract and then decides whether to enter or not. Renegotiation takes place after

the entry decision is made, during which the union offers a new contract to the incumbent. The

crucial assumption is that the incumbent has some payoff relevant private information during the

renegotiation process. Dewatripont (1988) shows that commitment effects exist in such a model and

may deter entry when contracts are publicly observable. We show that this commitment effect exists

for unobservable contracts as well. Also, we analyze arbitrary two-stage games and hence can gauge

the effects of third-party contracts in other interesting settings, for example in oligopoly models with

price competition or in monopolistic screening. Lastly, in our renegotiation protocol, the informed

party makes the new contract offer, whereas in Dewatripont’s, it is the uninformed party who makes

the offer. This turns out to make a difference as we discuss in some detail in Section 6.2.

In a related paper, Gerratana and Koçkesen (2011) also study the effects of renegotiation-proof

third-party contracts in two-stage games. However, that paper assumes that the original game is

with perfect information whereas the current one assumes it is a game with incomplete information.

This difference is crucial, because in the current paper renegotiation takes place under asymmetric

information about the type of player 2, whereas in Gerratana and Koçkesen (2011) the asymmetry

stems from the inability of the third-party to observe player 1’s move. Although, some aspects of the

4Our assumption that the third-party cannot observe θ during renegotiation is crucial. Otherwise, the result is trivial:
One can only support the perfect Bayesian equilibria of the original game. This is because, if both a1 and θ are common
knowledge, then player 2 and the third-party would renegotiate away any strategy of player 2 that does not maximize the
joint surplus, i.e., player 2’s payoff in the original game.

5This is true when player 1’s payoff is increasing in player 2’s action. If his payoff is decreasing, then player 2’s strategy
must be a best response for the lowest type.
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analyses of these two models are similar and use similar tools, namely theorems of the alternative,

the games to which they can be applied are completely different. This becomes most transparent in

Section 4 where we apply our results to games with externalities. Obtaining similarly sharp results

in Gerratana and Koçkesen (2011) has been possible in a different class of games and the results are

quite different.

Another related paper is Caillaud et al. (1995), which analyzes a game between two principal-

agent hierarchies. In the first stage of their game each principal decides whether to publicly offer a

contract to the agent; in the second stage each principal offers a secret contract to the agent, which,

if accepted, overwrites the public contract that might have been offered in stage 1; in the third stage

each agent receives payoff relevant information, decides whether to quit, and if he does not quit, he

plays a normal form game with the other agent. Their main question is whether there exist equilibria

of this game in which the principals choose not to offer a public contract in stage 1. If the answer

to this question is no, then the interpretation is that contracts have commitment value. They show

that contracts have commitment value if the market game stage is of Cournot type, but not if it is

of Bertrand type. The crucial difference between Caillaud et al. (1995) and our model is that they

allow initial public commitment to a contract and allow renegotiation only before the game begins,

whereas in our setting there is no possibility of public commitment and renegotiation can happen

both before and after the game begins.6

Finally, Bensaid and Gary-Bobo (1993) analyze a model in which the original game is a two-stage

game and the initial contract can be renegotiated after player 1 chooses an action. However, in their

model utility is not transferable between player 2 and the third-party. They show that, in a certain

class of games, contracts with third parties have a commitment effect, even when they are renego-

tiable. We analyze a model with transferable utility and show that commitment effects still exist.

2 The Model

Our aim is to understand the effects of renegotiation-proof third-party contracts in extensive form

games. We will do this in a particularly simple environment: two-stage games with private infor-

mation, which we call the original game. We then allow one of the players to sign a contract with a

third-party before the game begins and call this new game the game with third-party contracts. The

contracts specify a transfer between the player and the third-party as a function of the contractible

outcomes of the original game. The crucial aspect of our model is the presence of asymmetric infor-

mation between this player and the third-party during the renegotiation phase.

More precisely, we define the original game, denoted G , as follows: Nature chooses θ ∈ Θ ac-

cording to probability distribution p ∈∆(Θ). After the move of Nature, player 1, without observing θ,

chooses a1 ∈ A1. Lastly, player 2 observes (θ, a1) and chooses a2 ∈ A2. We assume that A1, A2, and Θ

are finite and let p(θ) denote the probability of Nature choosing θ. Payoff function of player i ∈ {1,2}

is given by ui : A×Θ→R, where A = A1 × A2.

We will first analyze the game with non-renegotiable third-party contracts, denoted Γ(G), which is

a three player extensive form game described by the following sequence of events:

Stage I. Player 2 offers a contract f : A →R to a third-party.

6This is also related to the fact that they assume the agents play a simultaneous move game whereas we focus on se-
quential move games.
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Stage II. The third-party accepts (denoted y) or rejects (denoted n) the contract.

1. In case of rejection the game ends, the third-party receives a fixed payoff of δ ∈ R, and

player 1 and 2 receive −∞.

2. In case of acceptance, the game goes to Stage III.

Stage III. Nature chooses θ ∈Θ according to p .

Stage IV. Player 1 chooses a1 ∈ A1 (without observing the contract or θ).

Stage V. Player 2 observes (θ, a1).

Stage VI. Player 2 chooses a2 ∈ A2.

It is easy to see that the contract offer is accepted in all equilibria, since offering a contract that

is rejected yields player 2 a very small payoff. Therefore, we can omit the third-party’s acceptance

decision from histories and represent an outcome of the game as ( f ,θ, a1, a2). The payoff functions

in Γ(G) are given by

v1
(

f , a1, a2,θ
)

=u1 (a1, a2,θ)

v2
(

f , a1, a2,θ
)

=u2 (a1, a2,θ)− f (a1, a2)

v3
(

f , a1, a2,θ
)

= f (a1, a2)

where v3 is the payoff function of the third-party.

The game is with renegotiable contracts if the contracting parties can renegotiate the contract

after Stage V and before Stage VI. The following sequence of events describe the renegotiation process

after any history
(

f ,θ, a1
)

.

Stage V(i). Player 2 either offers a new contract g : A → R to the third-party or chooses an action a2.

In the latter case the game ends and the outcome is
(

f ,θ, a1, a2
)

.

Stage V(ii). If player 2 offers a new contract, the third-party observes a1 but not θ, and either accepts

(denoted y) or rejects (denoted n) the offer.

If the third-party rejects the renegotiation offer g , then player 2 chooses a2 ∈ A2 and the outcome

is payoff equivalent to
(

f ,θ, a1, a2
)

. If he accepts, then player 2 chooses a2 ∈ A2 and the outcome

is payoff equivalent to
(

g ,θ, a1, a2
)

. This completes the description of the game with renegotiable

contracts, which we denote as ΓR (G).

A behavior strategy for player i ∈ {1,2,3} is defined as a set of probability measures βi ≡ {βi [I ] :

I ∈ Ii }, where Ii is the set of information sets of player i and βi [I ] is defined on the set of actions

available at information set I . One may writeβi [h] for βi [I ] for any history h ∈ I . By a system of beliefs,

we mean a set µ ≡ {µ[I ] : I ∈ Ii for some i }, where µ[I ] is a probability measure on I . A pair (β,µ) is

called an assessment. An assessment (β,µ) is said to be a perfect Bayesian equilibrium (PBE) if (1) each

player’s strategy is optimal at every information set given her beliefs and the other players’ strategies;

and (2) beliefs at every information set are consistent with observed histories and strategies.7

7See Fudenberg and Tirole (1991) for a precise definition of perfect Bayesian equilibrium.
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We will limit our analysis to pure behavior strategies, and hence a strategy profile of the original

game G is given by (b1,b2)∈ A1 × A
A1×Θ

2 . For any behavior strategy profile (b1,b2) in G , we say that an

assessment (β,µ) in Γ(G) (or ΓR (G)) induces (b1,b2) if in Γ(G) (ΓR (G)) player 1 plays according to b1

and, after the equilibrium contract, player 2 plays according to b2.8

Our ultimate aim is to characterize renegotiation-proof equilibria, in which the equilibrium con-

tract is not renegotiated after any history.9 More precisely,

Definition 1 (Renegotiation-Proof Equilibrium). A perfect Bayesian equilibrium (β∗,µ∗) of ΓR (G) is

renegotiation-proof if the equilibrium contract is not renegotiated after any a1 ∈ A1 and θ ∈Θ.

We say that a strategy profile (b1,b2) of the original game G can be supported with non-renegotiable

contracts if there exists a perfect Bayesian equilibrium of Γ(G) that induces (b1,b2). Similarly, a strat-

egy profile (b1,b2) of the original game G can be supported with renegotiation-proof contracts if there

exists a renegotiation-proof perfect Bayesian equilibrium of ΓR (G) that induces (b1,b2).

An easy backward induction argument shows that there exists a pure strategy perfect Bayesian

equilibrium of the original game G . It is also not difficult to see that there exists a pure strategy rene-

gotiation-proof perfect Bayesian equilibrium of ΓR (G). Indeed, let (b1,b2) be a pure strategy perfect

Bayesian equilibrium of the original game G and consider the following assessment (described only

partially): Player 2 offers the constant contract f (a1, a2)= δ for all (a1, a2), player 1 believes that this is

the contract and plays according to b1, player 2 plays according to b2 after ( f , a1,θ) for all (a1,θ). This,

of course, induces the perfect Bayesian equilibrium of the original game. The interesting question is

whether there are other outcomes of the original game that can be supported with renegotiation-

proof contracts. The next section shows that the answer, in general, is yes.

3 Main Results

There may be legal or technological constraints that might render contracts non-renegotiable and

therefore outcomes that can be supported by non-renegotiable contracts are of interest on their own.

Furthermore, understanding non-renegotiable contracts will help place our results within the liter-

ature and allow us to isolate the effects of renegotiation. Therefore, in this section we will first ana-

lyze the game with unobservable and non-renegotiable third-party contracts before moving on to the

analysis of renegotiable contracts.

3.1 Non-Renegotiable Contracts

Let G be an arbitrary original game and for any behavioral strategy profile (b1,b2) ∈ A1 × A
A1×Θ

2 of G ,

define the expected payoff of player i = 1,2 as

Ui (b1,b2) =
∑

θ∈Θ

p(θ)ui (b1,b2(b1,θ),θ).

8Note that in ΓR (G), player 2 may choose an action a2 ∈ A2 either without renegotiating the initial contract or after
attempting renegotiation.

9We follow the previous literature in our definition of renegotiation-proof equilibrium. See, for example, Maskin and
Tirole (1992) and Beaudry and Poitevin (1995).
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Also define the best response correspondences as

BR1(b2) = argmax
a1∈A1

U1(a1,b2) for all b2 ∈ A
A1×Θ

2

BR2(a1,θ) = argmax
a2∈A2

u2(a1, a2,θ) for all (a1,θ) ∈ A1 ×Θ.

We say that a strategy profile (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G if b∗
1 ∈ BR1(b∗

2 ) and

b∗
2 (b∗

1 ,θ) ∈ BR2(b∗
1 ,θ) for all θ. The difference between a perfect Bayesian equilibrium and a Bayesian

Nash equilibrium, of course, is that the former requires player 2 to best respond to every action of

player 1 whereas the latter requires best response to only the equilibrium action. Therefore, every

perfect Bayesian equilibrium is a Bayesian Nash equilibrium but not conversely.

Now let Γ(G) be the game with non-renegotiable third-party contracts and for any strategy profile

(b1,b2) of G define the expected transfer from player 2 to the third-party as

F (b1,b2) =
∑

θ∈Θ

p(θ) f (b1,b2(b1,θ)).

We first prove the following.

Proposition 1. A strategy profile (b∗
1 ,b∗

2 ) of G can be supported with non-renegotiable contracts if and

only if

1. (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G

and there exists a contract f : A →R such that

2. F (b∗
1 ,b∗

2 ) = δ,

3. u2(a1,b∗
2 (a1,θ),θ)− f (a1,b∗

2 (a1,θ)) ≥ u2(a1,b∗
2 (a1,θ′),θ)− f (a1,b∗

2 (a1,θ′)), for all a1 ∈ A1 and

all θ,θ′ ∈Θ.

Proposition 1 provides necessary and sufficient conditions for an outcome of an arbitrary original

game to be supported with non-renegotiable contracts. Condition 1 states that only Bayesian Nash

equilibrium outcomes can be supported, which follows from sequential rationality of players 1 and

2 in Γ(G). Condition 2 simply states that the third-party does not receive any rent in equilibrium,

whereas condition 3 is the incentive compatibility constraint.

We can obtain a sharper characterization if we impose an order structure on Θ and A2 and assume

that u2 exhibits increasing differences. Let %θ be a linear order on Θ and %2 a linear order on A2, and

denote their asymmetric parts by ≻θ and ≻2, respectively.

Definition 2 (Increasing Differences). u2 : A1 × A2 ×Θ → R is said to have increasing differences in

(%θ,%2) if θ%θ θ
′ and a2 %2 a′

2 imply that u2(a1, a2,θ)−u2(a1, a2,θ′) ≥ u2(a1, a′
2,θ)−u2(a1, a′

2,θ′). It is

said to have strictly increasing differences if θ≻θ θ
′ and a2 ≻2 a′

2 imply that u2(a1, a2,θ)−u2(a1, a2,θ′) >

u2(a1, a′
2,θ)−u2(a1, a′

2,θ′).

Definition 3 (Increasing Strategies). b2 : A1 ×Θ→ A2 is called increasing in (%θ ,%2) if for all a1 ∈ A1,

θ%θ θ
′ implies that b2(a1,θ)%2 b2(a1,θ′). Denote the set of all increasing b2 by B2.

For the rest of the paper, we restrict attention to games G in which there exist a linear order on Θ

and a linear order on A2 such that u2 has strictly increasing differences in (%θ ,%2). We then have the

following result.
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Proposition 2. A strategy profile (b∗
1 ,b∗

2 ) of the original game G can be supported with non-renegotiable

contracts if and only if (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G and b∗
2 is increasing in (%θ ,%2).

This result completely characterizes the strategy profiles that can be supported when contracts

are non-renegotiable (but still unobservable) in environments with asymmetric information. First,

it shows that third-party contracts potentially enlarges the set of outcomes that can arise in equilib-

rium. Second, while earlier papers showed that, when there is no asymmetric information, any Nash

equilibrium of the original game can be supported with unobservable contracts, this result shows that

only the subset of Bayesian Nash equilibria in which the second player plays an increasing strategy

can be supported if, instead, there is asymmetric information. The reason why only increasing strate-

gies of the second player can be supported is very similar to the reason why only increasing strategies

can be supported in standard adverse selection models: If the payoff function of player 2 exhibits

increasing differences, then incentive compatibility is equivalent to increasing strategies.

This result has an immediate corollary in terms of the outcomes that can be supported. For any

strategy profile (b1,b2) ∈ A1 × A
A1×Θ

2 , we define an outcome (a1, a2) ∈ A1 × AΘ

2 of G as a1 = b1 and

a2(θ) = b2(b1,θ). Define the individually rational payoff of player 1 as

U 1 = max
a1∈A1

min
b2∈B2

U1(a1,b2). (1)

This is the best payoff player 1 can guarantee for herself in game G , given that player 2 plays an in-

creasing strategy.10 The following easily follows from Proposition 2.

Theorem 1. An outcome (a∗
1 , a∗

2 ) of the original game G can be supported with non-renegotiable con-

tracts if and only if (1) a∗
2 (θ) ∈ BR2(a∗

1 ,θ) for all θ and (2) U1(a∗
1 , a∗

2 ) ≥U 1.

Again, note that, in general, outcomes that are not perfect Bayesian equilibrium outcomes of the

original game can also be supported. This can be achieved by writing a contract that leads player 2 to

punish player 1 when he deviates from his equilibrium action. Since contracts cannot be conditioned

on θ and u2 has increasing differences, player 2 can only use punishment strategies that are increasing

in θ. The best that player 1 can do by deviating is therefore given by U 1, and his equilibrium payoff

cannot be smaller than this payoff. This is condition (2). Condition (1), on the other hand, simply

follows from the requirement that only Bayesian Nash equilibrium outcomes can be supported, and

hence, player 2 must be best responding along the equilibrium path.

Note that if θ were contractible as well, we would not need to limit the punishment strategies to

be increasing. In this case, condition (2) would have the individually rational payoff defined as

max
a1∈A1

min
b2∈A

A1×Θ
2

U1(a1,b2).

In that case, the result would be the exact analog of those in models without asymmetric information,

i.e., Koçkesen and Ok (2004) and Koçkesen (2007).

We should also note that there are interesting environments in which non-contractibility of θ does

not restrict the set of outcomes that can be supported with non-renegotiable contracts. For example

10We should also note that this is different from the definition of individually rational payoff used in the repeated games
literature, which is the minmax payoff rather than the maxmin payoff. The maxmin payoff is at most equal to the minmax
payoff.
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if player 1’s payoff does not depend on θ, then the punishment does not have to depend on θ either.

Therefore, one can simply use a constant punishment after each deviation, which would be increas-

ing by construction. A second environment is games with externalities, in which u1 is increasing (or

decreasing) in a2. In this case, after any a1, the harshest punishment is the lowest (or highest) a2,

which is constant and hence increasing.

3.2 Renegotiable Contracts

In this section we will provide results that help identify the set of outcomes of any original game G that

can be supported by renegotiation-proof perfect Bayesian equilibria of the game with renegotiable

contracts ΓR (G). In the next section, we will use these results to obtain a complete characterization

in a special environment, namely, games with externalities.

In order to decide whether to accept a new contract offer in the renegotiation phase of ΓR (G),

the third-party forms beliefs regarding player 2’s strategy under the new contract and compares his

payoffs from the old and the new contracts. In equilibrium, these beliefs must be such that player 2’s

strategies are incentive compatible under the new contract. For easy reference, we define incentive

compatibility as a property of any contract-strategy pair ( f ,b2)∈C × A
A1×Θ

2 .

Definition 4 (Incentive Compatibility). ( f ,b2) ∈C × A
A1×Θ

2 is incentive compatible if

u2(a1,b2(a1,θ),θ)− f (a1,b2(a1,θ)) ≥ u2(a1,b2(a1,θ′),θ)− f (a1,b2(a1,θ′)) for all a1 ∈ A1 and θ,θ′ ∈Θ.

We next define our renegotiation-proofness concept, which follows from the definition of rene-

gotiation-proof perfect Bayesian equilibrium (Definition 1).

Definition 5 (Renegotiation-Proofness). We say that ( f ,b∗
2 ) ∈C × A

A1×Θ

2 is renegotiation-proof if for

all a1 ∈ A1 and θ ∈Θ for which there exists an incentive compatible (g ,b2) such that

u2(a1,b2(a1,θ),θ)− g (a1,b2(a1,θ)) > u2(a1,b∗
2 (a1,θ),θ)− f (b∗

2 (a1,θ)) (2)

there exists a θ′ ∈Θ such that

f (a1,b∗
2 (a1,θ′)) ≥ g (a1,b2(a1,θ′)) (3)

In words, if, for some (θ, a1), there is a contract g and an incentive compatible continuation play

b2 such that player 2 prefers g over f (i.e., (2) holds), there must exist a belief of the third-party (over

θ) under which it is optimal to reject g , which is implied by (3).11

Finally, we define a renegotiation-proof strategy as,

Definition 6 (Renegotiation-Proof Strategy). A strategy b2 ∈ A
A1×Θ

2 is renegotiation-proof if there ex-

ists an f ∈C such that ( f ,b2) is incentive compatible and renegotiation-proof.

The following result proves that Definitions 5 and 6 are indeed the correct definitions to work

with, in the sense that they identify the conditions that any contract f and strategy b2 must satisfy to

be part of a renegotiation-proof perfect Bayesian equilibrium of ΓR (G).

11This definition allows beliefs to be arbitrary following an off-the-equilibrium renegotiation offer. An alternative defi-
nition would be to require the beliefs to satisfy intuitive criterion. In Section 6.1 we show that our results go through with
minor modifications when we adopt this stronger version.
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Proposition 3. A strategy profile (b∗
1 ,b∗

2 ) of the original game G can be supported with renegotiation-

proof contracts if and only if (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G and b∗
2 is increasing and

renegotiation-proof.

However, it is not straightforward to apply these definitions directly to an arbitrary game. The

next set of results we present in this section use theorems of the alternative to obtain conditions in

terms of the primitives of the original game.

Fix an arbitrary a1 ∈ A1, let the number of elements of Θ be n, and order its elements so that

θn %θ θ
n−1 %θ · · ·θ

2 %θ θ
1. For any contract-strategy pair ( f ,b2), define f (a1) j = f (a1,b2(a1,θ j )), j =

1, . . . ,n, and let, with an abuse of notation, f (a1)∈R
n be the vector whose j -th component is given by

f (a1) j .

First, note that, under increasing differences, incentive compatibility of contract-strategy pair

(g ,b2) is equivalent to b2 being increasing. Second, it is immediate to realize that condition (3) in

Definition 5 is satisfied trivially if the strategy b2 does not lead to a higher surplus for the contract-

ing parties after (a1,θ). In other words, for each a1 and i = 1, . . . n, we need to check renegotiation-

proofness of ( f ,b∗
2 ) only against strategies belonging to the following set:

B(a1, i ,b∗
2 ) = {b2 ∈ A

A1×Θ

2 : b2 is increasing and u2(a1,b2(a1,θi ),θi ) >u2(a1,b∗
2 (a1,θi ),θi )}. (4)

Third, by Definition 5, ( f ,b∗
2 ) is not renegotiation-proof if and only if there exist a1 ∈ A1, i = 1, . . . n,

and incentive compatible (g ,b2) such that u2(a1,b2(a1,θi ),θi )−g (a1)i >u2(a1,b∗
2 (a1,θi ),θi )− f (a1)i

and g (a1) j > f (a1) j for all j = 1, . . . ,n. When u2 has increasing differences, incentive compatibility of

(g ,b2) is equivalent to the local upward and downward constraints:

g (a1) j − g (a1) j+1 ≤u2(a1,b2(a1,θ j ),θ j )−u2(a1,b2(a1,θ j+1),θ j ), j = 1, . . . ,n −1

−g (a1) j−1 + g (a1) j ≤u2(a1,b2(a1,θ j ),θ j )−u2(a1,b2(a1,θ j−1),θ j ), j = 2, . . . ,n

For any a1 ∈ A1, we can write these inequalities in matrix form as Dg (a1) ≤ U (a1,b2), where D is a

matrix of coefficients and U (a1,b2) a column vector with 2(n − 1) components, whose component

2 j −1 is given by

U (a1,b2)2 j−1 = u2(a1,b2(a1,θ j ),θ j )−u2(a1,b2(a1,θ j+1),θ j )

and component 2 j is given by

U (a1,b2)2 j = u2(a1,b2(a1,θ j+1),θ j+1)−u2(a1,b2(a1,θ j ),θ j+1)

Therefore, ( f ,b∗
2 ) is not renegotiation-proof if and only if there exist a1, i , b2 and ε ∈R

n such that

D( f (a1)+ε) ≤U (a1,b2), εi < u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ), ε≫ 0

These conditions can be written as [Ax ≫ 0,C x ≥ 0 has a solution x], once the vector x and matri-

ces A and C are appropriately defined. Motzkin’s theorem of the alternative (stated as Lemma 3 in

section 8) then implies that the necessary and sufficient condition for being renegotiation-proof is

[A′y1 +C ′y2 = 0, y1 > 0, y2 ≥ 0 has a solution y1, y2] (See Lemma 4 in section 8). The fact that u2 has
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increasing differences can then be used to prove the equivalence of this condition to the one stated

in the following theorem.

Theorem 2. ( f ,b∗
2 ) is renegotiation-proof if and only if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and b2 ∈

B(a1, i ,b∗
2 ) there exists a k ∈ {1,2, . . . , i −1} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

i−1
∑

j=k

U (a1,b2)2 j−1 ≤ f (a1)k − f (a1)i (5)

or there exists an l ∈ {i +1, i +2, . . . ,n} such that

u2(a1,b2(a1,θi ),θi )−u2(a1b∗
2 (a1,θi ),θi )+

l
∑

j=i+1

U (a1,b2)2( j−1) ≤ f (a1)l − f (a1)i (6)

Theorem 2 characterizes the conditions for which
(

f ,b∗
2

)

is renegotiation-proof. Our next step is

to find conditions for a strategy b∗
2 to be supported with renegotiation-proof contracts. The following

definition facilitates the exposition.

Definition 7. For any a1, i = 1, . . . ,n and b2 ∈B(a1, i ,b∗
2 ) we say that m(b2) ∈ {1,2, . . . ,n} is a blocking

type if

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ) ≤

i−1
∑

j=m(b2)

[

U (a1,b∗
2 )2 j−1 −U (a1,b2)2 j−1

]

(7)

or

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ) ≤

m(b2)
∑

j=i+1

[

U (a1,b∗
2 )2( j−1) −U (a1,b2)2( j−1)

]

(8)

We obtain the following necessary conditions for a strategy b∗
2 to be renegotiation-proof.

Proposition 4. A strategy b∗
2 ∈ A

A1×Θ

2 is renegotiation-proof only if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and

b2 ∈B(a1, i ,b∗
2 ) there is a blocking type.

The above condition becomes also sufficient for renegotiation-proofness with an additional re-

quirement about the relation of blocking types for different renegotiation opportunities.

Proposition 5. A strategy b∗
2 ∈ A

A1×Θ

2 is renegotiation-proof if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and

b2 ∈B(a1, i ,b∗
2 ) there is a blocking type m(bi

2) such that k < l , m(bk
2 ) > k, and m(bl

2) < l imply m(bk
2 ) ≤

m(bl
2).

The conditions given in Proposition (4) and (5) coincide when player 2 has only two types. There-

fore, Proposition (4) is a full characterization result for such games. Although, they fall short of provid-

ing a full characterization in games with more than two types, they help us do so in an environment

that is common to many economic models, namely, games with negative or positive externalities.

4 Games with Externalities

Theorem 2 characterizes renegotiation-proof contract-strategy pairs for very general environments.

However, its implications are not quite immediate in applications. In this section, we present a result
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that is particularly easy to apply. The only additional condition we need to impose on the original

game G is that player 1’s payoff is monotonically increasing or decreasing in player 2’s action, i.e., for

any a1 and θ, a′
2 %2 a2 implies either u1(a1, a′

2,θ) ≥ u1(a1, a2,θ) or u1(a1, a′
2,θ) ≤ u1(a1, a2,θ). Such

positive or negative externalities are very common in economic models. Indeed, the class of games

that satisfy these conditions includes Stackelberg and entry games, sequential Bertrand games with

differentiated products, monopolistic screening, and ultimatum bargaining, among others.

Let us first assume that player 1’s payoff function is increasing in player 2’s action. Consider any

outcome (a∗
1 , a∗

2 ) ∈ A1 × AΘ

2 of the original game G and let the expected payoff of player 1 at that

outcome be U1(a∗
1 , a∗

2 ) =
∑n

i=1 p(θi )u1(a∗
1 , a∗

2 (θi ),θi ). In order to support this outcome with renego-

tiation-proof contracts, a∗
1 must be a best response to player 2’s strategy. In other words, if player 1

plays another action, player 2’s strategy must “punish” him sufficiently so that he does not receive

a payoff higher than U1(a∗
1 , a∗

2 ). Since player 1’s payoff is increasing in a2, the harshest punishment

is to play the smallest possible a2. However, such a punishment strategy is not renegotiation proof,

as Lemma 7 in Section 8 shows.12 In fact, the only way to make it so, while keeping the punish-

ment as severe as possible, is to make the highest type of player 2 play a best response, while the

other types play the smallest a2 (see again Lemma 6 and 7 in the Section 8). Let us define such a

punishment strategy more precisely. Let a2 be the smallest element of A2, and for any a1 ∈ A1, let

b̂2(a1) ∈ argmina2∈BR2(a1,θn ) u1(a1, a2,θn ). Define the punishment strategy as

b+
2 (a1,θ) =







a2, θ< θn

b̂2(a1), θ= θn
(9)

The best payoff that player 1 can achieve against this strategy is

U+
1 = max

a1
U1(a1,b+

2 ) (10)

We can now state our result more formally.

Theorem 3. Suppose u1 is increasing in a2. Then, an outcome (a∗
1 , a∗

2 ) ∈ A1 × AΘ

2 of the original game

G can be supported with renegotiation-proof contracts if and only if (1) a∗
2 (θ) ∈ BR2(a∗

1 ,θ) for all θ ∈Θ

and (2) U1(a∗
1 , a∗

2 ) ≥U+
1 .

Condition (1) of Theorem 3 simply states that player 2’s strategy must be sequentially rational

along the equilibrium path, which is a direct consequence of Proposition 3. Condition (2) just recapit-

ulates our previous discussion: Following a deviation, the harshest renegotiation-proof punishment

player 2 can inflict upon player 1 is to make type θn best respond, while all the other types play the

smallest possible action. Player 1’s expected payoff cannot be smaller than the highest payoff he can

get by deviating and getting punished in this manner by player 2.

Comparing Theorem 1 and 3 makes the effect of renegotiation in this environment very clear. If

the contracts are non-renegotiable, then any outcome (a1, a2) in which player 2 best responds on the

equilibrium path and player 1 receives his individually rational payoff maxa1 U (a1, a2) can be sup-

ported.13 With renegotiation-proof contracts only the definition of the individually rational payoff

12More precisely, this lemma shows that renegotiation-proofness of a strategy b2 ∈ A
A1×Θ

2 implies that the highest (lowest,
resp.) type does not have a profitable deviation to a higher (lower, resp.) action.

13Remember from the discussion at the end of Section 3.1 that this would also be the set of outcomes that can be sup-
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changes: All types of player 2 punishes a deviation by player 1 in the harshest possible way by playing

a2, except the highest type, who must play a best response to make her strategy renegotiation-proof.

Theorem 3 presents the result for the case of positive externalities. The negative externality case

is symmetric. If player 1’s payoff function is decreasing in player 2’s action, the harshest punishment

that player 2 can inflict upon player 1 is to play the largest possible a2. Again, such a punishment is

not renegotiation-proof and the renegotiation-proof strategy that delivers the harshest punishment is

to make the smallest type best respond and the other types play the largest a2, denoted a2. More pre-

cisely, for any a1 ∈ A1 and letting b̂2(a1) ∈ argmina2∈BR2(a1,θ1) u1(a1, a2,θ1), the harshest renegotiation-

proof punishment strategy is defined as

b−
2 (a1,θ) =







b̂2(a1), θ = θ1

a2, θ > θ1
(11)

The result for negative externality is as in Theorem 3 except the condition (2) becomesU1 (a∗
1 , a∗

2 ) ≥

U−
1 , where U−

1 is defined as

U−
1 (b2) = max

a1
U1(a1,b−

2 ). (12)

We should also note that a result similar to Theorem 3 holds even if player 1’s payoff function

is decreasing in a2 at some a1 while it is increasing at other a1. Condition (2) would then become

U1(a∗
1 , a∗

2 ) ≥ max{U+
1 ,U−

1 }.

5 Applications

In this section, we illustrate the results of our paper, in particular Theorem 1 and Theorem 3, within

the context of two commonly used models. The first one is a (Stackelberg) quantity competition

model with private information and the second, a standard monopolistic screening model.

In both of these games, player 2’s payoff function has increasing differences in (a2,θ) and player

1’s payoff function is increasing in a2, which imply that we can apply Theorem 1 and 3. As we will

show shortly, in all these models, renegotiation-proof third-party contracts can change the outccome

of the game, but the extent to which player 2 can benefit from this is limited and depends on the

specifics of the environment.

APPLICATION I: QUANTITY COMPETITION AND ENTRY-DETERRENCE

Consider a Stackelberg game in which firm 1 moves first by choosing an output level q1 ∈Q1 and

firm 2, after observing q1, chooses its own output level q2 ∈Q2. Inverse demand function is given by

P(q1, q2) = max{0,α−q1−q2}, where α> 0, and we assume Qi a rich enough finite subset of R+ whose

largest element is α.14 Cost function of firm 1 is C1(q1) = cq1, where c is common knowledge, whereas

the cost function of firm 2 is C2(q2) = θq2. We assume that θ ∈ {θ1,θ2, . . . ,θn} is private information of

firm 2 and θ1 < θ2 < ·· · < θn . Firm 1 believes that the probability of θi is given by p(θi ) and for ease of

exposition we assume that expected value of θ is equal to c . The profit function of firm i is given by

πi (q1, q2,θ) = P(q1, q2)qi −Ci (qi ) and we assume that both firms are profit maximizers.

ported when θ is contractible.
14We introduce this assumption so that player 2 can choose a high enough output level to drive the price to zero.
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To ensure positive output levels in equilibrium we assume that α > 2θn − c , in which case the

(Stackelberg) equilibrium outcome of this game is given by

(

q s
1, q s

2(θ)
)

=

(

α−c

2
,
α−2θ+c

4

)

Define the game G as follows: Let A1 = Q1 and A2 = {−q2 : q2 ∈ Q2} and define %i on Ai as ai %i

a′
i
⇔ ai ≥ a′

i
and %θ as θ%θ θ

′ ⇔ θ ≥ θ′. Let the payoff function of player i be given by ui (a1, a2,θ) =

πi (a1,−a2,θ), for any (a1, a2) ∈ A1×A2. The game G is strategically equivalent to the Stackelberg game

defined in the previous paragraph.

It is easy to show that u2 has strictly increasing differences in (a2,θ) and u1 is increasing in a2,

and hence we can apply Theorem 1 and 3 to characterize all the outcomes that can be supported with

non-renegotiable as well as renegotiation-proof third-party contracts. In order to apply Theorem 1,

we need to calculate the individually rational payoff of player 1, i.e., U 1 as defined in equation (1).

The harshest punishment firm 2 can inflict is to drive the price down to zero by producing α for any

type θ. Since this is a constant (and hence an increasing) strategy, it follows that U 1 = 0. In other

words, any outcome (a∗
1 , a∗

2 (θ)) such that firm 2 best responds to a∗
1 and firm 1 gets at least zero

profit can be supported with non-renegotiable contracts. In particular, entry can be deterred with

non-renegotiable contracts.

Can entry be deterred with renegotiation-proof contracts? In order to apply Theorem 3, we need

to first calculate player 1’s payoff when the highest type of player 2 best responds while the other types

choose the lowest a2, i.e., a2 = −α. This is given by 1
2 p(θn)(α+θn −a1) a1 − ca1, and its maximum,

i.e., player 1’s individually rational payoff, is equal to

U+
1 =







0, p(θn)(α+θn )−2c ≤ 0

(p(θn )(α+θn )−2c)2

8p(θn ) , p(θn)(α+θn )−2c > 0

Condition (1) of Theorem 3 requires that a∗
2 (θ) =

a∗
1 +θ−c

2 for all θ, and hence U1(a∗
1 , a∗

2 ) = 1
2 (α− c −

a∗
1 )a∗

1 . Therefore, by condition (2), any outcome such that 1
2 (α−c −a∗

1 )a∗
1 ≥U+

1 can be supported.

Also note that if p(θn)(α+θn )−2c > 0, then U+
1 is strictly positive. This implies that entry cannot

be deterred if p(θn)(α+θn )−2c > 0. Therefore, we have the following result:

Corollary 1. Entry can be deterred with non-renegotiable contracts. It can be deterred with renegotia-

tion-proof contracts if and only if p(θn)(α+θn )−2c ≤ 0.

Dewatripont (1988) has also analyzed a similar entry game and showed that entry can be deterred

with renegotiation-proof contracts under certain conditions. His conditions are stronger than ours

because he uses a different renegotiation-proofness concept, namely durability, first introduced by

Holmstrom and Myerson (1983). We comment on durability in general and in the context of the entry

game in more detail in Section 6.2.

APPLICATION II: ADVERSE SELECTION

We will analyze a simple but standard adverse selection model. For the sake of concreteness we

will phrase the model as a monopolistic screening model in which a seller (player 1) offers the same

product in two different qualities: high (H ) and low (L), at possibly different prices. For simplicity we

assume that the cost of producing either quality is zero and hence the seller maximizes his expected
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revenue. A buyer (player 2) observes the prices and chooses to purchase H or L or does not buy at all.

Her willingness to pay, θ, is private information and if she buys quality q at price t her payoff is θq−t ,

while if she does not buy at all her payoff is zero.

Define the original game G as follows: Θ = {θl ,θh}, θh > θl > 0, prob(θl ) = p ∈ (0,1), A1 is a finite

but rich enough subset of {(tl , th) ∈ R
2
+ : th ≥ tl }, A2 = {0,L, H }, H > L > 0, the orders on A2 and Θ are

the natural orders and the payoff functions are given as follows:

u1(a1, a2,θ) =



















0, a2 = 0

tl , a2 = L

th , a2 = H

, u2(a1, a2,θ) =



















0, a2 = 0

θL− tl , a2 = L

θH − th , a2 = H

We assume that θl > (1−p)θh , in which case the standard analysis shows that the optimal prices

are tl = θl L, th = θh H − (θh −θl )L and the high type buys the high quality whereas the low type buys

the low quality good. Expected payoff of the seller is pθl L + (1−p)[θh H − (θh −θl )L] and that of the

buyer is (1−p)(θh −θl )L.

An interesting question is whether the buyer can do better by signing a contract with a third-party,

e.g., a financial contract with a bank. To answer this question first note that u2 has strictly increasing

differences in (a2,θ) and u1 is increasing in a2.15 Therefore, we can apply Theorem 1 and 3 and

identify the best equilibria for the buyer.

The harshest punishment player 2 can inflict upon player 1 after some a1 is not to buy, i.e., choose

zero for any θ. Since this is increasing in θ, the individually rational payoff of player 1 is zero, i.e., in

Theorem 1 we have U 1 = 0. This implies that any offer (t1, th) can be supported with non-renegotiable

contracts. The best equilibrium for the buyer therefore is the one with (t1, th) = (0,0), which gives the

full surplus (pθl + (1−p)θh )H to the buyer.

How about if the contracts are renegotiable? In order to apply Theorem 3, we have to calculate

the best payoff that the seller can get when the high type is best responding while the low type buys

nothing. This implies that the best offer for the seller is to set th = θh H , which yields him an expected

payoff of (1−p)θh H . Condition (2) of Theorem 3 implies that this is the worst the seller can get in any

equilibrium. In other words, and in contrast to the non-renegotiable contracts case, the buyer cannot

get the full surplus with renegotiation-proof contracts.

What is the best that the buyer can obtain? If in equilibrium both types buy the high qual-

ity, then the previous paragraph implies that the price of the high quality good must be at least

(1−p)θh H . The following outcome satisfies the conditions of Theorem 3 at the smallest such price:

(t∗
l

, t∗
h

) = (θh H , (1−p)θh H ) and a∗
2 (θ) = H for all θ. Therefore, the best payoff the buyer can get in any

equilibrium in which both types buy high quality is pθl H .

Similarly, we can show that the best payoff of the buyer in any equilibrium in which both types

buy low quality is (pθl + (1− p)θh )L − (1− p)θh H , which is smaller than pθl H . Lastly we need to

consider equilibria in which low type buys low quality and the high type buys high quality. Condition

(2) of Theorem 3 implies that ptl +(1−p)th ≥ (1−p)θh H . In other words, the best expected payoff for

the buyer in any such equilibrium is pθl L +pθh H − (1−p)θh H = pθl L, which is, again, smaller than

15Definition of A1 is the only non-standard part of the model and ensures that u1 is increasing in a2. However, this is
otherwise inconsequential since in equilibrium the seller never offers to sell the high quality at a lower price than the low
quality product.
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pθl H .

Therefore, the highest expected payoff of the buyer with renegotiation-proof contracts is pθl H ,

which is strictly smaller than what she can get with non-renegotiable contracts: (pθl + (1−p)θh)H .

The difference is (1−p)θh H , which is exactly the expected surplus from the high type.

6 Alternative Definitions of Renegotiation-Proofness

As Proposition 3 shows, our definition of renegotiation-proofness follows directly from the assumed

game form for the renegotiation procedure, i.e., player 2, who is the the informed party, makes a new

contract offer and the third-party, who is uninformed, accepts or rejects. In a renegotiation-proof

equilibrium, the contract is never renegotiated, and therefore any renegotiation offer is an out-of-

equilibrium event. This allows us to specify the beliefs of the third-party freely after a new contract

offer. This may be found unreasonable and a more plausible alternative could be to require beliefs

satisfy the conditions specified in the intuitive criterion as defined by Cho and Kreps (1987). The next

section provides an analysis of the implications of intuitive criterion and the section after that pro-

vides a discussion of another definition of renegotiation-proofness, namely durability, introduced by

Holmstrom and Myerson (1983). Since durability is also the renegotiation-proofness concept used by

Dewatripont (1988), this will allow us to compare the implications of alternative concepts of renego-

tiation-proofness within the context of the entry-deterrence game.

6.1 Strong Renegotiation-Proofness

In our setting, intuitive criterion requires that, given an equilibrium contract strategy pair ( f ,b∗
2 ) and

following a renegotiation offer (g ,b2), beliefs put positive probability only on types for which (g ,b2) is

not equilibrium-dominated, i.e., only on those typesθ′ for which u2(a1,b2(a1,θ′),θ′)−g (a1,b2(a1,θ′)) ≥

u2(a1,b∗
2 (a1,θ′),θ′)− f (a1,b∗

2 (a1,θ′)). This leads to the following definition.

Definition 8 (Strong Renegotiation-Proofness). We say that ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 is strongly renegoti-

ation-proof if for all a1 ∈ A1 and θ ∈ Θ for which there exists an incentive compatible (g ,b2) such

that

u2(a1,b2(a1,θ),θ)− g (a1,b2(a1,θ)) > u2(a1,b∗
2 (a1,θ),θ)− f (b∗

2 (a1,θ)) (13)

there exists a θ′ ∈Θ such that

f (a1,b∗
2 (a1,θ′)) ≥ g (a1,b2(a1,θ′)) (14)

and

u2(a1,b2(a1,θ′),θ′)− g (a1,b2(a1,θ′)) ≥ u2(a1,b∗
2 (a1,θ′),θ′)− f (a1,b∗

2 (a1,θ′)) (15)

This is exactly the same as renegotiation-proofness except that it adds condition (15), which al-

lows us to construct beliefs that satisfy intuitive criterion after any renegotiation offer. It can be shown

that when we work with this definition, Theorem 2 needs to be modified as follows.

Theorem 4. ( f ,b∗
2 ) is strongly renegotiation-proof if and only if for any a1 ∈ A1, i ∈ {1,2, . . . ,n}, and
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b2 ∈B(a1, i ,b∗
2 ) there exists a k ∈ {1,2, . . . , i −1} such that

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

i−1
∑

j=k

U (a1,b2)2 j−1

−min{0,u2(a1,b2(a1,θk ),θk )−u2(a1,b∗
2 (a1,θk ),θk )} ≤ f (a1)k − f (a1)i (16)

or there exists an l ∈ {i +1, i +2, . . . ,n} such that

u2(a1,b2(a1,θi ),θi )−u2(a1b∗
2 (a1,θi ),θi )+

l
∑

j=i+1

U (a1,b2)2( j−1)

−min{0,u2(a1,b2(a1,θl ),θl )−u2(a1,b∗
2 (a1,θl ),θl )} ≤ f (a1)l − f (a1)i (17)

It is also easy to show that Proposition 3 goes through with strongly renegotiation-proof contracts

whereas Propositions 4 and 5 go through with a minor modification similar to the one made in The-

orem 4. Perhaps of more interest, Theorem 3 goes through without any modification with strongly

renegotiation-proof contracts.16

6.2 Durability

Holmstrom and Myerson (1983) introduced “durability” as a notion of renegotiation proofness. A

decision rule is durable if and only if the parties involved would never unanimously approve a change

from this decision rule to any other decision rule. They also show that this is equivalent to interim

incentive efficiency when there is only one player with private information. In our context, only player

2 has private information and hence a contract-strategy pair ( f ,b∗
2 ) is interim incentive efficient (and

therefore durable) if and only if there is no a1 ∈ A1 and an incentive compatible (g ,b2) such that after

a1 every type of player 2 and the third-party do better under (g ,b2), with at least one doing strictly

better. More formally:

Definition 9 (Durability). We say that ( f ,b∗
2 ) ∈C ×A

A1×Θ

2 is durable if there is no a1 ∈ A1 and incentive

compatible (g ,b2) ∈C × A
A1×Θ

2 such that

u2(a1,b2(a1,θ),θ)− g (a1,b2(a1,θ)) ≥ u2(a1,b∗
2 (a1,θ),θ)− f (a1,b∗

2 (a1,θ)), for all θ ∈Θ (18)

and

G(a1,b2) ≥ F (a1,b∗
2 ) (19)

with at least one inequality holding strictly.

As we have mentioned before, this is also the renegotiation-proofness concept used in Dewa-

tripont (1988). Therefore, it would be interesting to understand the implications of durability in a

general model of third-party contracts as well as its relationship with our notion of renegotiation-

proofness. Characterizing durable strategies for arbitrary games turns out to be quite difficult. How-

ever, we have a characterization for the two-type case, i.e., when Θ= {θ1,θ2}.

16Proofs of Theorem 4 as well as these claims are available upon request.
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Let us define a strategy b2 ∈ A
A1×Θ

2 as durable if there exists a contract f such that ( f ,b2) is incen-

tive compatible and durable. Also, remember that for any a1 ∈ A1 and b2 ∈ A
A1×Θ

2

U (a1,b2)1 =u2(a1,b2(a1,θ1),θ1)−u2(a1,b2(a1,θ2),θ1)

U (a1,b2)2 =u2(a1,b2(a1,θ2),θ2)−u2(a1,b2(a1,θ1),θ2)

We have the following result:

Proposition 6. A strategy b∗
2 ∈ A

A1×Θ

2 is durable if and only if it is increasing and for any a1 ∈ A1 and

increasing b2 ∈ A
A1×Θ

2 such that

2
∑

i=1

p(θi )
[

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )

]

> 0 (20)

one of the following is true:

u2(a1,b2(a1,θ1),θ1)−u2(a1,b∗
2 (a1,θ1),θ1) < p(θ2)

[

U (a1,b∗
2 )2 −U (a1,b2)2

]

(21)

u2(a1,b2(a1,θ2),θ2)−u2(a1,b∗
2 (a1,θ2),θ2) < p(θ1)

[

U (a1,b∗
2 )1 −U (a1,b2)1

]

(22)

Note that condition (20) states that the alternative strategy b2 yields a higher expected surplus

than does the candidate strategy b∗
2 . Durability requires that, whenever this is the case, the extra

surplus that comes from at least one type must be smaller than the bounds given in conditions (21)

and (22).

The relationship between our concept of renegotiation-proofness and durability is quite subtle

even in the two-type case. Remember that with two types Proposition 4 is a complete characterization

of renegotiation-proofness, which we rewrite below in a form that facilitates comparison:

Proposition 7. A strategy b∗
2 ∈ A

A1×Θ

2 is renegotiation-proof if and only if it is increasing and for any

a1 ∈ A1 and increasing b2 ∈ A
A1×Θ

2 the following is true:

u2(a1,b2(a1,θ1),θ1)−u2(a1,b∗
2 (a1,θ1),θ1) > 0 ⇒

u2(a1,b2(a1,θ1),θ1)−u2(a1,b∗
2 (a1,θ1),θ1) <U (a1,b∗

2 )2 −U (a1,b2)2 (23)

and

u2(a1,b2(a1,θ2),θ2)−u2(a1,b∗
2 (a1,θ2),θ2) > 0 ⇒

u2(a1,b2(a1,θ2),θ2)−u2(a1,b∗
2 (a1,θ2),θ2) <U (a1,b∗

2 )1 −U (a1,b2)1 (24)

Comparing Proposition 6 and 7, one can see that neither renegotiation-proofness nor durability

immediately implies the other one. In fact, it is not difficult to find games and construct strategies

that are durable but not renegotiation-proof and vice versa.

However, in games with externalities it can be shown that durability implies renegotiation-proof-

ness (See Lemma 11 in Section 8). The entry-deterrence game is a game with externalities, and there-

fore, if entry can be deterred with durable contracts, it can also be deterred with renegotiation-proof
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contracts. In fact, in the entry-deterrence game player 2’s payoff function is single-peaked and for

such environments we have a complete characterization of durable outcomes that is particularly easy

to apply (See Proposition 10 in Section 8). Using this characterization, we can show that the relation-

ship between durability and renegotiation-proofness is strict.

Proposition 8. In the entry-deterrence game with two types, if p1(θ2 +α) > (θ2 −θ1), then entry can be

deterred with renegotiation-proof contracts but not with durable contracts.

Remember that the harshest renegotiation-proof punishment strategy of the incumbent is to

flood the market if entry occurs, except for the highest type (type θ2), who has to best respond. Dura-

bility still requires that the highest type best responds. The difference is that flooding the market for

type θ1 is not a durable strategy: There is a restriction on how much the incumbent can produce in

response to entry, which is given by condition (72) in Proposition 10 of Section 8. When applied to

the entry game studied by Dewatripont (1988), this becomes condition (d) of his Proposition 1.

7 Conclusion

This paper characterizes equilibrium outcomes of two-stage games in which the second mover (player

2) has private information and can sign renegotiable contracts with a third-party. Our aim is to under-

stand whether renegotiation-proof third-party contracts have any effect on the equilibrium outcomes

of a game. In particular, in games where there is a first mover advantage, such as the Stackelberg and

buyer-seller games, can the second mover undo this advantage using renegotiation-proof contracts?

Our analysis starts with non-renegotiable contracts and shows that any outcome in which the

second mover best responds to the first mover’s action and the first mover obtains his individually

rational payoff can be supported. In other words, some kind of a “folk theorem” is true with non-

renegotiable contracts. Renegotiation-proofness imposes some restrictions on the outcomes that

can be supported. This is most transparent in games with externalities, i.e., games in which player

1’s payoff increases (or decreases) in player 2’s action. In such games, it is still true that any outcome

in which the second mover best responds to the first mover’s action and the first mover obtains his

individually rational payoff can be supported. However, the individually rational payoff for player

1 would in general be higher in this case. This is because, in the minimization of player 1’s payoff,

renegotiation-proofness restricts player 2 to strategies where the highest (or lowest, for the case of

negative externality) type best responds to every action of player 1. Still, even with renegotiation-

proof contracts, one can support outcomes that are not perfect Bayesian equilibrium outcomes of

the original game, and this may benefit the second mover in many games, such as the entry game.

8 Proofs

In the game with non-renegotiable contracts Γ(G), player 2 has an information set at the beginning

of the game, which we identify with the null history ;, and an information set for each ( f ,θ, a1) ∈

C ×Θ× A1, where C =R
A1×A2 . Player 1 has only one information set, given by C , and player 3 has an

information set for each f ∈C . In the game with renegotiable contracts ΓR (G), player 2 has additional

information sets corresponding to each history ( f ,θ, a1, g , y) and ( f ,θ, a1, g ,n) and player 3 has an

additional information set of each ( f , a1, g ), which we denote by I3( f , a1, g ).
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Proof of Proposition 1. [If] Let (b∗
1 ,b∗

2 ) be a Bayesian Nash equilibrium of G and f ′ satisfy the condi-

tions of the proposition. For any b2 ∈ A
A1×Θ

2 and a1 ∈ A1, let b2(a1,Θ) be the image of Θ under b2(a1, .).

Define

f ∗(a1, a2) =







f ′(a1, a2), if a2 ∈ b∗
2 (a1,Θ)

maxθ{u2(a1, a2,θ)−u2(a1,b∗
2 (a1,θ),θ)+ f ′(a1,b∗

2 (a1,θ))}, otherwise

for any (a1, a2) ∈ A1 × A2, and

b∗
2, f (a1,θ) =







b∗
2 (a1,θ), f = f ∗

∈ argmaxa2
u2(a1, a2,θ)− f (a1, a2), f 6= f ∗

for any f ∈ C , a1 ∈ A1, and θ ∈ Θ. Consider the assessment (β∗,µ∗) of Γ(G), where β∗
2 [;] = f ∗,

β3[ f ] = y iff F (b∗
1 ,b∗

2, f
) ≥ δ, β∗

1 [C ] = b∗
1 , β∗

2 [ f ,θ, a1] = b∗
2, f

(a1,θ) for all f ∈ C , a1 ∈ A1, and θ ∈ Θ,

and µ∗[C ]( f ∗) = 1. It is easy to check that this assessment induces (b∗
1 ,b∗

2 ) and is a perfect Bayesian

equilibrium of Γ(G).

[Only if] Now, suppose that (b∗
1 ,b∗

2 ) can be supported. Then, there exists a perfect Bayesian equilib-

rium (β∗,µ∗) that induces (b∗
1 ,b∗

2 ), i.e., β∗
2 [;] = f ∗, β3[ f ∗] = y , β∗

1 [C ]= b∗
1 , β∗

2 [ f ∗,θ, a1] = b∗
2 (a1,θ) for

all a1 ∈ A1 and θ ∈Θ. The fact that (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G is a direct consequence

of sequential rationality of players 1 and 2. We now show that f ∗ satisfies conditions 2 of Proposition

1. If F∗(b∗
1 ,b∗

2 ) < δ, then player 3 rejects the equilibrium contract, which is a contradiction. Suppose,

for contradiction, that F∗(b∗
1 ,b∗

2 ) = α > δ, and consider the contract f ′(a1, a2) = δ+ (α−δ)/2 for all

(a1, a2). This contract is accepted by player 3 and yields player 2 a strictly higher expected payoff than

f ∗, a contradiction. Finally, sequential rationality of player 2 immediately implies condition 3.

Before we turn to the proof of Proposition 2 we introduce some notation and prove a supple-

mentary lemma. Let the number of elements in Θ be equal to n and order its elements so that

θn %θ θn−1 %θ · · ·θ2 %θ θ1. Let ei be the i th standard basis row vector for R
n and define the row

vector di = ei − ei+1, i = 1,2, . . . ,n −1. Let D be the 2(n −1)×n matrix whose row 2i −1 is di and row

2i is −di , i = 1, . . . ,n − 1. For any a1 ∈ A1 and b2 ∈ A
A1×Θ

2 define U (a1,b2) as a column vector with

2(n−1) components, where component 2i −1 is given by u2(a1,b2(a1,θi ),θi )−u2(a1,b2(a1,θi+1),θi )

and component 2i is given by u2(a1,b2(a1,θi+1),θi+1)−u2(a1,b2(a1,θi ),θi+1), i = 1,2, . . . ,n −1.

Notation 1. Given two vectors x, y ∈ Rn

1. x ≥ y if and only if xi ≥ yi , for all i = 1,2, . . . ,n;

2. x > y if and only if xi ≥ yi , for all i = 1,2, . . . ,n and x 6= y ;

3. x ≫ y if and only if xi > yi , for all i = 1,2, . . . ,n.

Similarly for ≤, <, and ≪.

For any a1 ∈ A1, b2 ∈ A
A1×Θ

2 and f ∈ C , let f (a1,b2) be the column vector with n components,

where i th component is given by f (a1,b2(a1,θi )), i = 1,2, . . . ,n.

It is well-known that if b2 is increasing, then, under increasing differences, incentive compatibility

reduces to local incentive compatibility.17 We state it as a lemma for future reference.

17See, for example, Bolton and Dewatripont (2005), p. 78.
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Lemma 1. If u2 has increasing differences in (%θ,%2) and b2 ∈ A
A1×Θ

2 is increasing in (%θ,%2), then for

any f ∈C

u2(a1,b2(a1,θi ),θi )− f (a1,b2(a1,θi )) ≥ u2(a1,b2(a1,θ j ),θi )− f (a1,b2(a1,θ j )), for all i , j = 1,2, . . . ,n

holds if and only if

u2(a1,b2(a1,θi ),θi )− f (a1,b2(a1,θi )) ≥u2(a1,b2(a1,θi−1),θi )− f (a1,b2(a1,θi−1)), for all i = 2, . . . ,n,

and

u2(a1,b2(a1,θi ),θi )− f (a1,b2(a1,θi )) ≥ u2(a1,b2(a1,θi+1),θi )− f (a1,b2(a1,θi+1)), for all i = 1,2, . . . ,n−1.

Proof of Proposition 2. [Only if] Suppose that (b∗
1 ,b∗

2 ) can be supported with non-renegotiable con-

tracts. Then, there exists a perfect Bayesian equilibrium (β∗,µ∗) that induces (b∗
1 ,b∗

2 ), i.e., β∗
2 [;] = f ∗,

β3[ f ∗] = y , β∗
1 [C ]= b∗

1 , β∗
2 [ f ∗,θ, a1] = b∗

2 (a1,θ) for all a1 ∈ A1 and θ ∈Θ. Given Proposition 1 we only

need to prove that b∗
2 is increasing. Fix orders (%θ,%2) in which u2 has strictly increasing differences.

Take any a1 ∈ A1 and θ,θ′ ∈Θ and assume without loss of generality, that θ %θ θ
′. Suppose, for con-

tradiction, that b∗
2 (a1,θ′)≻2 b∗

2 (a1,θ). Sequential rationality of player 2 implies

u2(a1,b∗
2 (a1,θ),θ)− f ∗(a1,b∗

2 (a1,θ)) ≥u2(a1,b∗
2 (a1,θ′),θ)− f ∗(a1,b∗

2 (a1,θ′))

u2(a1,b∗
2 (a1,θ′),θ′)− f ∗(a1,b∗

2 (a1,θ′)) ≥u2(a1,b∗
2 (a1,θ),θ′)− f ∗(a1,b∗

2 (a1,θ))

and hence

u2(a1,b∗
2 (a1,θ′),θ)−u2(a1,b∗

2 (a1,θ),θ) ≤ u2(a1,b∗
2 (a1,θ′),θ′)−u2(a1,b∗

2 (a1,θ),θ′),

contradicting that u2 has strictly increasing differences in (%θ ,%2). Therefore, b∗
2 must be increasing

in (%θ ,%2).

[If] Let (b∗
1 ,b∗

2 ) be a Bayesian Nash equilibrium of G such that b∗
2 is increasing. Given Proposition 1,

all we need to prove is the existence of a contract f ∈C such that F (b∗
1 ,b∗

2 ) =δ and for all a1 ∈ A1

u2(a1,b∗
2 (a1,θi ),θi )− f (a1,b∗

2 (a1,θi )) ≥u2(a1,b∗
2 (a1,θ j ),θi )− f (a1,b∗

2 (a1,θ j )), for all i , j = 1,2, ...,n.

(25)

By Lemma 1, (25) holds if and only if D f (a1,b∗
2 ) ≤ U (a1,b∗

2 ). Therefore, we need to show that for

any a1 ∈ A1 there exists f (a1,b∗
2 ) ∈ R

n such that D f (a1,b∗
2 ) ≤ U (a1,b∗

2 ). By Gale’s theorem for lin-

ear inequalities (Mangasarian (1994), p. 33), there exists such an f (a1,b∗
2 ) ∈ R

n if and only if for

any y ∈ R
2(n−1)
+ , D ′y = 0 implies y ′U (a1,b∗

2 ) ≥ 0. It is easy to show that D ′y = 0 if and only if y1 =

y2, y3 = y4, · · · , y2(n−1)−1 = y2(n−1). Let U (a1,b∗
2 )i denote the i t h row of U (a1,b∗

2 ) and note that since

b∗
2 is increasing and u2 has strictly increasing differences, U (a1,b∗

2 )2i−1 +U (a1,b∗
2 )2i ≥ 0, for any

i = 1,2, . . . ,n −1. Therefore,

y ′U (a1,b∗
2 ) =

n−1
∑

i=1

(U (a1,b∗
2 )2i−1 +U (a1,b∗

2 )2i )y2i−1 ≥ 0
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This proves the existence of a f ∈C such that (25) is satisfied for all a1 ∈ A1. Now define

f̃ (a1, a2) =







f (a1, a2), if a1 6= b∗
1

f (a1, a2)+δ−F (b∗
1 ,b∗

2 ), if a1 = b∗
1

It is easy to verify that f̃ satisfies (25) for all a1 ∈ A1 and F̃ (b∗
1 ,b∗

2 ) = δ, and this completes the proof.

Proof of Proposition 3. [If] Let (b∗
1 ,b∗

2 ) be a Bayesian Nash equilibrium of G such that b∗
2 is increasing

and renegotiation-proof. This implies that there exists f ′ ∈ C such that ( f ′,b∗
2 ) is incentive compat-

ible and renegotiation-proof. Let f ∗(a1, a2) = f ′(a1, a2)−F ′(b∗
1 ,b∗

2 )+δ for all (a1, a2) and note that

F∗(b∗
1 ,b∗

2 ) = δ. Furthermore, using Theorem 2, it can be easily checked that ( f ∗,b∗
2 ) is incentive com-

patible and renegotiation-proof. For any f 6= f ∗, a1, and θ, let b2, f (a1,θ) ∈ argmaxa2
u2(a1, a2,θ)−

f (a1, a2) and g( f ,θ,a1) ∈ argmaxg u2(a1,b2,g (a1,θ),θ)− g (a1,b2,g (a1,θ)) subject to g (a1,b2,g (a1,θ′)) ≥

f (a1,b2, f (a1,θ′)) for all θ′.

Consider the following assessment (β∗,µ∗) of ΓR (G): β∗
2 [;] = f ∗; β3[ f ] = y iff F (b∗

1 ,b∗
2, f

) ≥ δ,

β∗
1 [C ]= b∗

1 , β∗
2 [ f ∗,θ, a1] = b∗

2 (a1,θ) for all (a1,θ);

β∗
2 [ f ,θ, a1] =















g( f ,θ,a1), if
u2(a1,b2,g( f ,θ,a1) (a1,θ),θ)− g( f ,θ,a1)(a1,b2,g( f ,θ,a1 ) (a1,θ))

>u2(a1,b2, f (a1,θ),θ)− f (a1,b2, f (a1,θ))

b2, f (a1,θ), otherwise

for any f 6= f ∗ and (θ, a1); β∗
2 [ f ,θ, a1, g , y] = b2,g (a1,θ) and β2[ f ,θ, a1, g ,n] = b2, f (a1,θ) for all f 6= f ∗

and (a1,θ, g ); β2[ f ∗,θ, a1, g ,n] = b∗
2 (a1,θ) for all (a1,θ, g );

β∗
3 [I3( f ∗, a1, g )] =







y, g (a1,b2,g (a1,θ)) > f ∗(a1,b∗
2 (a1,θ)) ∀θ

n, otherwise

and

β∗
3 [I3( f , a1, g )] =







y, if g (a1,b2,g (a1,θ)) ≥ f (a1,b2, f (a1,θ)) ∀θ

n, otherwise

for any a1, g and f 6= f ∗; µ∗[C ]( f ∗)= 1; µ∗[I3( f ∗, a1, g )](θ) = p(θ) if g (a1,b2,g (a1,θ)) > f ∗(a1,b∗
2 (a1,θ))

for all θ and µ∗[I3( f ∗, a1, g )](θ′) = 1 if there exists θ′ such that f ∗(a1,b∗
2 (a1,θ′)) ≥ g (a1,b2,g (a1,θ′));

For any f 6= f ∗ and (a1, g ), µ∗[I3( f , a1, g )](θ) = p(θ) if g (a1,b2,g (a1,θ)) ≥ f (a1,b2, f (a1,θ)) for all θ and

µ∗[I3( f , a1, g )](θ′) = 1 if there exists θ′ such that f (a1,b2, f (a1,θ′)) > g (a1,b2,g (a1,θ′)). This assess-

ment induces (b∗
1 ,b∗

2 ) and is a renegotiation-proof perfect Bayesian equilibrium.

[Only if] Suppose that ΓR (G) has a renegotiation-proof perfect Bayesian equilibrium (β∗,µ∗) that

induces (b∗
1 ,b∗

2 ). Letting β∗
2 [;] = f ∗, we have β∗

1 [C ] = b∗
1 , β2[ f ∗,θ, a1] = b∗

2 (a1,θ) for all (a1,θ), and

µ∗[C ]( f ∗)= 1. Sequential rationality of player 1 implies that

b∗
1 ∈ argmax

a1

U1(a1,b∗
2 ) (26)

whereas that of player 2 implies u2(a1,b∗
2 (a1,θ),θ)− f ∗(a1,b∗

2 (a1,θ)) ≥ u2(a1,b∗
2 (a1,θ′),θ)− f ∗(a1,b∗

2 (a1,θ′))

for all a1 and θ,θ′, which, together with increasing differences, implies that b∗
2 is increasing.
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We also claim that

b∗
2 (b∗

1 ,θ) ∈ argmax
a2

u2(b∗
1 , a2,θ) ∀θ. (27)

Suppose, for contradiction, that this is not the case for θ′ and let â2 ∈ argmaxa2
u2(b∗

1 , a2,θ′) and define

ε= u2(b∗
1 , â2,θ′)−u2(b∗

1 ,b∗
2 (b∗

1 ,θ′),θ′) > 0. Define f ′(a1, a2) = F∗(b∗
1 ,b∗

2 )+ε/2 and note that the third-

party accepts f ′. Assume first that f ′ is not renegotiated after b∗
1 and note that sequential rationality

of player 2 implies that β∗
2 [ f ′,θ,b∗

1 ] ∈ argmaxa2
u2(b∗

1 , a2,θ). Let b2, f ′(a1,θ) = β∗
2 [ f ′,θ, a1]. Player 2’s

expected payoff under f ′ is

U2(b∗
1 ,b2, f ′)−F∗(b∗

1 ,b∗
2 )−ε/2 >U2(b∗

1 ,b∗
2 )−F∗(b∗

1 ,b∗
2 )

contradicting that (β∗,µ∗) is a PBE. A similar argument goes through if f ′ is renegotiated after b∗
1 .

Therefore, by (26) and (27), (b∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G and b∗
2 is increasing. Fi-

nally, suppose that b∗
2 is not renegotiation-proof. This implies that for any contract f such that ( f ,b∗

2 )

is incentive compatible, there exist a′
1, θ′, and an incentive compatible (g ,b2) such that u2(a′

1,b2(a′
1,θ′),θ′)−

g (a′
1,b2(a′

1,θ′)) > u2(a′
1,b∗

2 (a′
1,θ′),θ′)− f (a′

1,b∗
2 (a′

1,θ′)) and g (a′
1,b2(a′

1,θ)) > f (a′
1,b∗

2 (a′
1,θ)) for all θ.

This implies that, in any perfect Bayesian equilibrium, after history ( f ,θ′, a′
1) player 2 strictly prefers

to renegotiate and offer g and the third-party accepts it. In other words, there exists no renegotiation-

proof perfect Bayesian equilibrium which induces (b∗
1 ,b∗

2 ), completing the proof.

Proof of Theorem 2. By definition ( f ,b∗
2 ) ∈C ×A

A1×Θ

2 is not renegotiation-proof if and only if there ex-

ist a1 ∈ A1, i = 1,2, . . . ,n and an incentive compatible (g ,b2) ∈C×A
A1×Θ

2 such that u2(a1,b2(a1,θi ),θi )−

g (a1,b2(a1,θi )) > u2(a1,b∗
2 (a1,θi ),θi )− f (a1,b∗

2 (a1,θi )) and g (a1,b2(a1,θ j )) > f (a1,b∗
2 (a1,θ j )) for all

j = 1,2, . . . ,n. For any ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 , let f (a1,b∗
2 ) ∈ R

n be a vector whose j -th component, j =

1,2, . . . ,n, is given by f (a1,b∗
2 (a1,θ j )). Note that incentive compatibility of (g ,b2) ∈C ×A

A1×Θ

2 is equiv-

alent to Dg (a1,b2) ≤U (a1,b2) for all a1 ∈ A1. Therefore, ( f ,b∗
2 ) ∈C ×A

A1×Θ

2 is not renegotiation-proof

if and only if there exist a1 ∈ A1, i = 1,2, . . . ,n and (g (a1,b2),b2) ∈ R
n × A

A1×Θ

2 such that Dg (a1,b2) ≤

U (a1,b2), u2(a1,b2(a1,θi ),θi )−g (a1,b2(a1,θi )) > u2(a1,b∗
2 (a1,θi ),θi )− f (a1,b∗

2 (a1,θi )), and g (a1,b2) ≫

f (a1,b∗
2 ). Also note that g (a1,b2) ≫ f (a1,b∗

2 ) if and only if there exists an ε≫ 0 such that g (a1,b2) =

f (a1,b∗
2 )+ε. Therefore, we have the following

Lemma 2. ( f ,b∗
2 ) ∈C ×A

A1×Θ

2 is not renegotiation-proof if and only if there exist a1 ∈ A1, i = 1,2, . . . ,n,

b2 ∈ A
A1×Θ

2 , and ε ∈R
n such that D( f (a1,b∗

2 )+ε) ≤U (a1,b2), εi < u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (ai

1,θi ),θi ),

and ε≫ 0.

We first state a theorem of the alternative, which we will use in the sequel.

Lemma 3 (Motzkin’s Theorem). Let A and C be given matrices, with A being non-vacuous. Then either

1. Ax ≫ 0 and C x ≥ 0 has a solution x

or

2. A′y1 +C ′y2 = 0, y1 > 0, y2 ≥ 0 has a solution y1, y2

but not both.

Proof of Lemma 3. See Mangasarian (1994), p. 28.
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For any ( f ,b∗
2 )∈C×A

A1×Θ

2 , a1 ∈ A1, b2 ∈ A
A1,×Θ
2 , and i = 1,2, . . . ,n, define V =U (a1,b2)−D f (a1,b∗

2 ),C =
(

V −D
)

, and

A =

(

In+1

li

)

where li = (u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ))e1 − ei+1. Note that C and A depend on and

are uniquely defined by ( f ,b∗
2 ), a1 and (i ,b2) but we suppress this dependency for notational con-

venience. The following lemma uses Motzkin’s Theorem to express renegotiation-proofness as an

alternative.

Lemma 4. ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 is renegotiation-proof if and only if for any a1 ∈ A1, i = 1,2, . . . ,n and

b2 ∈ A
A1×Θ

2 there exist y ∈R
n+2 and z ∈R

2(n−1) such that A′y +C ′z = 0, y > 0, z ≥ 0.

Proof of Lemma 4. By Lemma 2, ( f ,b∗
2 ) is not renegotiation-proof if and only if there exist a1 ∈ A1,

i = 1,2, . . . ,n, b2 ∈ A
A1×Θ

2 , and ε ∈ R
n such that D( f (a1,b∗

2 )+ε) ≤U (a1,b2), εi < u2(a1,b2(a1,θi ),θi )−

u2(a1,b∗
2 (a1,θi ),θi ), and ε≫ 0. This is true if and only if for some a1, i and b2 there exists an x ∈R

n+1

such that Ax ≫ 0 and C x ≥ 0. To see this let ξ> 0 and define

x =

(

ξ

ξε

)

Then D( f (a1,b∗
2 )+ ε) ≤ U (a1,b2) if and only if C x ≥ 0. Also, ε ≫ 0 and εi < u2(a1,b2(a1,θi ),θi )−

u2(a1,b∗
2 (a1,θi ),θi ) if and only if Ax ≫ 0. The lemma then follows from Motzkin’s Theorem.

For any ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 , b2 ∈ A
A1×Θ

2 , a1 ∈ A1, and i = 1,2, . . . ,n, let U (a1,b2) j denote the j -th

component of vector U (a1,b2) and define α1 = 1, αi+1 = u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ),

and

αk+1 =

i−1
∑

j=k

U (a1,b2)2 j−1 +αi+1 − f (a1,b∗
2 (a1,θk ))+ f (a1,b∗

2 (a1,θi )), for k = 1,2, . . . , i −1,

αl+1 =

l
∑

j=i+1

U (a1,b2)2( j−1)+αi+1 − f (a1,b∗
2 (a1,θl ))+ f (a1,b∗

2 (a1,θi )), for l = i +1, i +2, . . . ,n,

β j =U (a1,b2)2 j +U (a1,b2)2 j−1, for j = 1,2, . . . ,n −1.

Again, note that α j and β j depend on and are uniquely defined by ( f ,b∗
2 ), a1 and (i ,b2) but we sup-

press this dependency in the notation. We have the following lemma.

Lemma 5. For any ( f ,b∗
2 ) ∈C × A

A1×Θ

2 , b2 ∈ A
A1×Θ

2 , a1 ∈ A1 and i = 1,2, . . . ,n, there exist y ∈R
n+2 and

z ∈R
2(n−1) such that A′y+C ′z = 0, y > 0, and z ≥ 0 if and only if there exist ŷ ∈R

n+1 and ẑ ∈R
(n−1) such

that ŷ > 0, ẑ ≥ 0, and
n+1
∑

j=1

α j ŷ j +

n−1
∑

j=1

β j ẑ j = 0 (28)

Proof of Lemma 5. Fix ( f ,b∗
2 ) ∈ C × A

A1×Θ

2 , b2 ∈ A
A1×Θ

2 , a1 ∈ A1 and i = 1,2, . . . ,n. First note that for
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any y and z, A′y +C ′z = 0 if and only if

y1 + (u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ))yn+2 +V ′z =0 (29)

D ′z =
[

A′y
]

−1 (30)

where
[

A′y
]

−1 is the n-dimensional vector obtained from A′y by eliminating the first row. Recursively

adding row 1 to row 2, row 2 to row 3, and so on, we can reduce
(

D ′
[

A′y
]

−1

)

to a row echelon form

and show that (30) holds if and only if

z2 j−1 =z2 j +

j
∑

k=1

yk+1, j = 1,2, . . . , i −1 (31)

z2 j =z2 j−1 +

n
∑

k= j+1

yk+1, j = i , i +1, . . . ,n −1 (32)

yn+2 =

n
∑

k=1

yk+1 (33)

Substituting (31)-(33) into (29) we get

y1+αi+1

n
∑

k=1

yk+1+

i−1
∑

j=1

U (a1,b2)2 j−1

j
∑

k=1

yk+1+

n−1
∑

j=i

U (a1,b2)2 j

n
∑

k= j+1

yk+1+

i−1
∑

j=1

(U (a1,b2)2 j−1+U (a1,b2)2 j )z2 j

+

n−1
∑

j=i

(U (a1,b2)2 j−1 +U (a1,b2)2 j )z2 j−1 −

n
∑

k=1

( f (a1,b∗
2 (a1,θk ))− f (a1,b∗

2 (a1,θi )))yk+1 = 0 (34)

Therefore, A′y +C ′z = 0 if and only if equations (31) through (34) hold. Now suppose that there exist

y ∈ R
n+2 and z ∈ R

2(n−1) such that y > 0, z ≥ 0, and (31) through (34) hold. Define ŷ j = y j , for j =

1, . . . ,n +1 and

ẑ j =







z2 j , j = 1, . . . , i −1

z2 j−1, j = i , . . . ,n −1

It is easy to verify that ŷ > 0, ẑ ≥ 0, and
∑n+1

j=1 α j ŷ j +
∑n−1

j=1 β j ẑ j = 0.

Conversely, suppose that there exist ŷ ∈R
n+1 and ẑ ∈R

(n−1) such that ŷ > 0, ẑ ≥ 0, and (28) holds.

Define y j = ŷ j for j = 1, . . . ,n +1 and yn+2 =
∑n+1

i=1 ŷ j . For any j = 1, . . . , i −1, let z2 j−1 = ẑ j +
∑ j

k=1
ŷk+1

and z2 j = ẑ j , and for any j = i , . . . ,n −1, let z2 j−1 = ẑ j and z2 j = ẑ j +
∑n

k= j+1 ŷk+1. It is straightforward

to show that y > 0, z ≥ 0, and (31) through (34) hold. This completes the proof of Lemma 5.

Lemma 4 and 5 imply that ( f ,b∗
2 )∈C ×A

A1×Θ

2 is renegotiation-proof if and only if for any a1 ∈ A1,

i ∈ {1,2, . . . ,n} and b2 ∈ A
A1×Θ

2 , there exist ŷ ∈ R
n+1 and ẑ ∈ R

(n−1) such that ŷ > 0, ẑ ≥ 0, and equation

(28) holds. We can now complete the proof of Theorem 2.

[Only if] Suppose, for contradiction, that there exist a1 ∈ A1, i = 1,2, . . . ,n and an increasing b2 ∈

A
A1×Θ

2 such that u2(a1,b2(a1,θi ),θi ) > u2(a1,b∗
2 (a1,θi ),θi ), but there is no k = 1,2, . . . , i −1 such that

(5) holds and no l = i + 1, . . . ,n such that (6) holds. This implies that α j > 0 for all j = 1, . . . ,n + 1.

Since u2 has increasing differences, β j ≥ 0 for all j = 1, . . . ,n −1. Therefore, ŷ > 0 and ẑ ≥ 0 imply that
∑n+1

j=1 α j ŷ j +
∑n−1

j=1 β j ẑ j > 0, which, by Lemma 5, contradicts that ( f ,b∗
2 ) is renegotiation-proof.

[If] Fix arbitrary a1 ∈ A1, i = 1,2, . . . ,n and increasing b2 ∈ A
A1×Θ

2 such that u2(a1,b2(a1,θi ),θi ) >

u2(a1,b∗
2 (a1,θi ),θi ). Suppose first that there exists a k ∈ {1, . . . , i − 1} such that (5) holds. This im-
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plies that αi+1 > 0 and αk+1 ≤ 0. Let ŷk+1 = 1, ŷi+1 =
−αk+1

αi+1
≥ 0, and all the other ŷ j = 0 and ẑ j = 0. This

implies that equation (28) holds and, by Lemma 4 and 5, that ( f ,b∗
2 ) is renegotiation-proof. Suppose

now that there exists an l ∈ {i +1, . . . ,n} such that (6) holds. Then, αi+1 > 0 and αl+1 ≤ 0. Let ŷl+1 = 1,

ŷi+1 =
−αl+1

αi+1
≥ 0 and all the other ŷ j = 0 and ẑ j = 0. This, again, implies that (28) holds and that ( f ,b∗

2 )

is renegotiation-proof.

Proof of Proposition 4. Suppose that b∗
2 is renegotiation-proof and fix a1, i = 1, . . . ,n and a b2(a1,θi )∈

B(a1, i ,b∗
2 ). For any j = 1, . . . ,n, let c j = ei − e j , where e j is the j t h standard basis row vector for Rn ,

and define

E j =

(

D

c j

)

Also let

wk = u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

i−1
∑

j=k

U (a1,b2)2 j−1

wl = u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+

l
∑

j=i+1

U (a1,b2)2( j−1)

for any k ∈ {1, . . . , i −1} and l ∈ {i +1, . . . ,n} and define

V j =

(

U (a1,b∗
2 )

−w j

)

Incentive compatibility of ( f ,b∗
2 ) implies that D f (a1,b∗

2 ) ≤ U (a1,b∗
2 ). Renegotiation proofness, by

Theorem 2, implies that ck f (a1,b∗
2 ) ≤ −wk for some k ∈ {1, . . . , i − 1} or cl f (a1,b∗

2 ) ≤ −wl for some

l ∈ {i +1, . . . ,n}. Suppose first that there exists a k ∈ {1, . . . , i −1} such that ck f (a1,b∗
2 ) ≤ −wk . Then

we must have Ek f (a1,b∗
2 ) ≤ Vk . By Gale’s theorem of linear inequalities, this implies that x ≥ 0 and

E ′
k

x = 0 implies x ′Vk ≥ 0. Denote the first 2(n − 1) elements of x by y and the last element by z. It

is easy to show that E ′
k

x = 0 implies that y2 j−1 = y2 j + z for j ∈ {k ,k +1, . . . , i −1} and y2 j−1 = y2 j for

j ∉ {k ,k +1, . . . , i −1}. Therefore,

x ′Vk =

n−1
∑

j=1

U (a1,b∗
2 )2 j y2 j +

n−1
∑

j=1

U (a1,b∗
2 )2 j−1 y2 j−1− zwk

=

n−1
∑

j=1

(U (a1,b∗
2 )2 j +U (a1,b∗

2 )2 j−1)y2 j + z(−wk +

i−1
∑

j=k

U (a1,b∗
2 )2 j−1)

≥ 0

This implies that −wk +
∑i−1

j=k
U (a1,b∗

2 )2 j−1 ≥ 0 and hence k is a blocking type.

Similarly, we can show that, if there exists an l ∈ {i +1, . . . ,n} such that cl f (a1,b∗
2 ) ≤−wl , then l is

a blocking type, and this completes the proof.

Proof of Proposition 5. Let b∗
2 ∈ A

A1×Θ

2 be an increasing strategy satisfying the conditions of the propo-

sition. We will show that there exist an f ∈ C such that ( f ,b∗
2 ) is incentive-compatible and renegoti-

ation-proof. Fix an a1 ∈ A1 and for each i = 1, · · ·,n and bi
2 ∈B(a1, i ,b∗

2 ) pick a blocking type m(bi
2) =

1, ···,n that satisfies the conditions given in the proposition. For each i = 1 and bi
2 ∈B(a1, i ,b∗

2 ) define
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the n-dimensional row vector cbi
2
= ei − em(bi

2), where e j is the j t h standard basis row vector for Rn ,

and the scalar wbi
2

as

wbi
2
= u2(a1,bi

2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )+1{m(bi

2)≤i−1}

i−1
∑

j=m(bi
2)

U (a1,bi
2)2 j−1+1{i≤m(bi

2−1}

m(bi
2)

∑

j=i+1

U (a1,bi
2)2( j−1).

Note that for a given a1 ∈ A1 and i = 1, ···,n, B(a1, i ,b∗
2 ) is finite and let

∑n
i=1 |B(a1, i ,b∗

2 )| = p . Denote

with C (a1), the p ×n matrix composed of all the rows cbi
2

and with W (a1)the p dimensional vector

with component wbi
2

corresponding to each bi
2. Let E (a1) be the matrix

E (a1) =

(

D

C (a1)

)

and V (a1) the column vector

V (a1) =

(

U (a1,b∗
2 )

−W (a1)

)

Now, if for each a1 ∈ A1, we can find an f (a1,b∗
2 ) such that E (a1) f (a1,b∗

2 ) ≤V (a1) the proof would

be completed. In fact, if E (a1) f (a1,b∗
2 ) ≤ V (a1), then D f (a1,b∗

2 ) ≤ U (a1,b∗
2 ), which implies that

( f ,b∗
2 ) incentive compatible. Furthermore, E (a1) f (a1,b∗

2 ) ≤ V (a1) implies W (a1) ≤ −C (a1) f (a1,b∗
2 )

and, by Theorem 2, that ( f ,b∗
2 ) is renegotiation-proof. Gale’s theorem of linear inequalities implies

that there exist f (a1,b∗
2 ) ∈ R

n such that E (a1) f (a1,b∗
2 ) ≤ V (a1) if and only if x ∈ R

p+2(n−1), x ≥ 0

and E (a1)′x = 0 implies x ′V (a1) ≥ 0. Decompose x into two vectors so that the first 2(n − 1) ele-

ments constitute y and the remaining p components constitute z. Notice that for any i = 1, . . . ,n and

bi
2 ∈B(a1, i ,b∗

2 ) there is a corresponding element of z, which we will denote zbi
2
.

Recursively adding row 1 to row 2, row 2 to row 3, and so on, we can reduce E (a1)′ to a row echelon

form and show that E (a1)′x = 0 if and only if

y2 j−1 = y2 j +
∑

bi
2

zbi
2
[1{m(bi

2)≤ j≤i−1}−1{i≤ j≤m(bi
2)−1}] (35)

for j = 1, . . . ,n −1.

Let J− = { j ∈ {1, . . . ,n−1} : ∃bi
2 such that i ≤ j ≤ m(bi

2)−1} and J+ = { j ∈ {1, . . . ,n−1} : ∃bi
2 such that m(bi

2) ≤

j ≤ i−1} and note that J−∩J+ =;. To see this, suppose, for contradiction, that there exists a j ∈ J−∩J+.

Therefore, there exists a bi
2 such that i ≤ j ≤ m(bi

2)−1 and bi ′

2 such that m(bi ′

2 )≤ j ≤ i ′−1. This implies

that i < i ′, m(bi
2) > i , m(bi ′

2 ) < i ′, but m(bi
2) > m(bi ′

2 ), contradicting the conditions of the proposition.

We can therefore write (35) as

y2 j = y2 j−1 +
∑

bi
2

zbi
2
1{i≤ j≤m(bi

2)−1} (36)

for j ∈ J− and

y2 j−1 = y2 j +
∑

bi
2

zbi
2
1{m(bi

2)≤ j≤i−1} (37)

for j ∈ J+.
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Finally note that

x ′V (a1) =
n−1
∑

j=1

U (a1,b∗
2 )2 j y2 j +

n−1
∑

j=1

U (a1,b∗
2 )2 j−1 y2 j−1−

∑

bi
2

zbi
2
wbi

2

Substituting from (36) and (37) we obtain

x ′V (a1) =
∑

j∈J−

[

U (a1,b∗
2 )2 j +U (a1,b∗

2 )2 j−1
]

y2 j−1+
∑

j∈J+

[

U (a1,b∗
2 )2 j +U (a1,b∗

2 )2 j−1
]

y2 j

+
∑

bi
2

zbi
2



−wbi
2
+1{m(bi

2)≤i−1}

i−1
∑

j=m(bi
2)

U (a1,b∗
2 )2 j−1 +1{i≤m(bi

2)−1}

m(bi
2)−1

∑

j=i

U (a1,b∗
2 )2 j





Increasing differences, the definition of m(bi
2), and y, z ≥ 0 imply that x ′V ≥ 0, and the proof is com-

pleted.

Proof of Theorem 3. We need the following definition

Definition 10. For any b2 ∈ A
A1×Θ

2 we say that (a1, i ), i ∈ {1,2, . . . ,n} has right deviation (left devia-

tion) at b2 if there exists an a2 ∈ A2 such that a2 %2 b2(a1,θi ) (b2(a1,θi ) %2 a2) and u2(a1, a2,θi ) >

u2(a1,b2(a1,θi )θi ). Otherwise, we say that i has no right deviation (no left deviation)at b2.

For any b2 ∈ A
A1×Θ

2 and (a1, i ), i ∈ {1, · · ·,n}, that has right deviation at b2, define

R(a1, i ) = {k > i : b2(a1,θk )∈ BR2(a1,θk ) and i < j < k implies that (a1, j ) has no left deviation at b2}

Similarly, for any (a1, i ) with i ∈ {1, · · ·,n}, that has a left deviation at b2, define

L(a1, i ) = {k < i : b2(a1,θk ) ∈ BR2(a1,θk ) and k < j < i implies that (a1, j ) has no right deviation at b2},

We need the following lemma:

Lemma 6. b∗
2 is renegotiation-proof if for any (a1, i1) that has right deviation and any (a1, i2) that has

left deviation at b∗
2 , R(a1, i1) 6= ;, L(a1, i2) 6= ;, and i1 < i2 implies R(a1, i1)∩L(a1, i2) 6= ;.

Proof of Lemma 6. Fix a1 ∈ A1, i ∈ {1, · · ·,n}, and bi
2 ∈ B(a1, i ,b∗

2 ). Since A2 is linearly ordered, we

have bi
2(a1,θi ) %2 b∗

2 (a1,θi ) or b∗
2 (a1,θi ) %2 bi

2(a1,θi ). First, assume that bi
2(a1,θi ) %2 b∗

2 (a1,θi ), i.e.,

(a1, i ) has right deviation at b∗
2 , and note that R(a1, i ) 6= ; by assumption. Let J = { j ∈ N : i + 1 ≤

j ≤ minR(a1, i )− 1 and b∗
2 (a1,θ j ) ≻2 bi

2(a1,θ j )}. If J = ;, let m(bi
2) = minR(a1, i ) and if J 6= ;, let

m(bi
2) =min J . It is simple to show that

m(bi
2)

∑

j=i+1

(

u2(a1,bi
2(a1,θ j−1),θ j )−u2(a1,b∗

2 (a1,θ j−1),θ j )− [u2(a1,bi
2(a1,θ j−1),θ j−1)−u2(a1,b∗

2 (a1,θ j−1),θ j−1)]
)

+u2(a1,b∗
2 (a1,θm(bi

2)),θm(bi
2))−u2(a1,bi

2(a1,θm(bi
2)),θm(bi

2)) ≥ 0 (38)

Inequality (38) implies that m(bi
2) is a blocking type.

Now assume that b∗
2 (a1,θi )%2 bi

2(a1,θi ), i.e., (a1, i ) has left deviation at b∗
2 , and note that L(a1, i ) 6=

;. Let J = { j ∈ N : maxL(i )+1 ≤ j ≤ i −1 and bi
2(a1,θ j ) ≻2 b∗

2 (a1,θ j )}. If J = ;, let m(bi
2) = maxL(i )
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and if J 6= ;, let m(bi
2) = max J and note that

i−1
∑

j=m(bi
2)

(

u2(a1,b∗
2 (a1,θ j+1),θ j+1)−u2(a1,bi

2(a1,θ j+1),θ j+1)− [u2(a1,b∗
2 (a1,θ j+1),θ j )−u2(a1,bi

2(a1,θ j+1),θ j )]
)

+u2(a1,b∗
2 (a1,θm(bi

2)),θm(bi
2))−u2(a1,bi

2(a1,θm(bi
2)),θm(bi

2)) ≥ 0 (39)

Inequality (39) implies that m(bi
2) is a blocking type.

Finally assume that there exist (a1, i1) and (a1, i2) with i1 < i2 such that m(b
i1
2 )> i1 and m(b

i2
2 ) < i2.

This implies that (a1, i1) has right deviation and (a1, i2) has left deviation at b∗
2 , which imply that

R(a1, i1) 6= ;, L(a1, i2) 6= ; and R(a1, i1)∩L(a1, i2) 6= ;. But this implies that m(b
i1
2 ) ≤ m(b

i2
2 ) and the

proof is completed by applying Proposition 5.

We can now proceed to the proof of Theorem 3.

[If] Assume that (a∗
1 , a∗

2 ) satisfies conditions (1) and (2) of the theorem. Let b̂2(a1)∈ argmina2∈BR2(a1,θn ) u1(a1, a2,θn)

and define b∗
2 ∈ A

A1×Θ

2 as follows: b∗
2 (a∗

1 ,θi )= a∗
2 (θi ) for all i = 1, · · · ,n and

b∗
2 (a1,θ) =







a2, θ < θn

b̂2(a1), θ = θn
(40)

for a1 6= a∗
1 .

First, note that (a∗
1 , a∗

2 ) is the outcome induced by the strategy profile
(

a∗
1 ,b∗

2

)

because by con-

struction b∗
2 (a∗

1 ,θi ) = a∗
2 (θi ) for all i = 1, · · · ,n. We now prove that the strategy profile

(

a∗
1 ,b∗

2

)

can be

supported with renegotiation-proof contracts. By Proposition 3, we need to prove that
(

a∗
1 ,b∗

2

)

is a

Bayesian Nash equilibrium of G and b∗
2 is increasing and renegotiation proof.

Condition (1) of the theorem implies that b∗
2 (a∗

1 ,θi ) ∈ BR2(a∗
1 ,θ) for all θ, whereas condition (2)

implies

U1(a∗
1 ,b∗

2 ) =U1(a∗
1 , a∗

2 ) ≥U+
1 ≥U1(a1,b∗

2 ), ∀a1 6= a∗
1

Therefore, a∗
1 ∈ BR1(b∗

2 ) and
(

a∗
1 ,b∗

2

)

is a Bayesian Nash equilibrium of G .

For any a1 6= a∗
1 , b∗

2 (a1,θ) is increasing in θ by construction, and b∗
2 (a∗

1 ,θ) is increasing because

a∗
2 (θ) ∈ BR2(a∗

1 ,θ) for all θ and u2 has strictly increasing differences in
(

%θ,%2
)

.

Finally, we prove that b∗
2 is renegotiation proof. For any i , B(a∗

1 , i ,b∗
2 ) is empty. For any a1 6= a∗

1 ,

there is no (a1, i ) with left deviation by construction of b∗
2 , and for any (a1, i ) with right deviation, we

have n ∈ R(i ). Lemma 6, therefore, implies that b∗
2 is renegotiation-proof.

[Only if] We will use the following lemma

Lemma 7. If b2 ∈ A
A1×Θ

2 is renegotiation-proof, then (a1,θn) has no right deviation at b2 for any a1 ∈ A1

Proof of Lemma 7. Suppose, for contradiction, that there exists an a′
1 ∈ A1 such that (a′

1,θn) has right

deviation at b2, i.e., there exists an a′
2 ∈ A2 such that a′

2 %2 b2(a′
1,θn) and u2(a′

1, a′
2,θn) > u2(a′

1,b2(a′
1,θn),θn ).

Define

b′
2(a′

1,θ) =







a′
2, θ = θn

b2(a′
1,θn), θ ≺θ θ

n
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Note that b′
2 is increasing and therefore b′

2 ∈B(a′
1,n,b2). It is easy to show that for (a′

1,n,b′
2) there is

no blocking type and therefore, by Proposition 4, b2 is not renegotiation proof.

Proposition 3 implies that (a∗
1 , a∗

2 ) can be supported with renegotiation-proof contracts only if

there exists an increasing and renegotation-proof b∗
2 ∈ A

A1×Θ

2 such that (a∗
1 ,b∗

2 ) is a Bayesian Nash

equilibrium of G and b∗
2 (a∗

1 ,θ) = a∗
2 (θ) for all θ. This immediately implies that a∗

2 (θ) ∈ BR2(a∗
1 ,θ)

for all θ, i.e., condition (1) of the theorem holds. Suppose, for contradiction, that condition (2) does

not hold, i.e., there exists an a′
1 such that U1(a∗

1 , a∗
2 ) < U1(a′

1,b+
2 ). Note that Lemma 7 and the fact

that u1 is increasing in a2 imply that U1(a1,b2) ≥ U1(a1,b+
2 ) for any a1 and and any increasing and

renegotiation-proof b2 ∈ A
A1×Θ

2 , which, in turn, implies that U1(a′
1,b∗

2 ) ≥ U1(a′
1,b+

2 ) for any a1. But

then,

U1(a∗
1 ,b∗

1 ) =U1(a∗
1 , a∗

2 ) <U1(a′
1,b+

2 ) ≤U1(a′
1,b∗

2 ),

which contradicts that (a∗
1 ,b∗

2 ) is a Bayesian Nash equilibrium of G .

Before we continue towards the proof of Proposition 8, remember that for any a1 ∈ A1 and b2 ∈

A
A1×Θ

2

U (a1,b2)1 =u2(a1,b2(a1,θ1),θ1)−u2(a1,b2(a1,θ2),θ1)

U (a1,b2)2 =u2(a1,b2(a1,θ2),θ2)−u2(a1,b2(a1,θ1),θ2)

We first characterize durable strategy-contract pairs:

Proposition 9. ( f ,b∗
2 ) ∈ R

A1×A2 × A
A1×Θ

2 is durable if and only if for any a1 ∈ A1 and increasing b2 ∈

A
A1×Θ

2 such that

2
∑

i=1

p(θi )
[

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )

]

> 0

one of the following is true:

u2(a1,b2(a1,θ1),θ1)−u2(a1,b∗
2 (a1,θ1),θ1)+p(θ2)U (a1,b2)2 < p(θ2)

[

f (a1,b∗
2 (a1,θ2))− f (a1,b∗

2 (a1,θ1))
]

(41)

or

u2(a1,b2(a1,θ2),θ2)−u2(a1,b∗
2 (a1,θ2),θ2)+p(θ1)U (a1,b2)1 < p(θ1)

[

f (a1,b∗
2 (a1,θ1))− f (a1,b∗

2 (a1,θ2))
]

(42)

Proof of Proposition 9. Fix ( f ,b∗
2 ) ∈ R

A1×A2 × A
A1×Θ

2 and take any a1 ∈ A1 and b2 ∈ A
A1×Θ

2 . We say that

( f ,b∗
2 ) is not durable against (a1,b2) if there exists g ∈R

A1×A2 such that (g ,b2) is incentive compatible

and (18) and (19) hold (with at least one inequality being strict). Otherwise, we say that ( f ,b∗
2 ) is

durable against (a1,b2). Obviously, ( f ,b∗
2 ) is not durable if and only if it is not durable against some

(a1,b2).

Fix a1, b2 and define the matrices U (b2), D, f as before (this time omitting the reference to a1).
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Also define an n-vector k , whose i th row is given by

ki =u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi ), i = 1, . . . ,n

and

V =U −D f , C =

[

V −D
]

, A =

(

1 01×n

)

, B =

(

k −In×n

0 p1×n

)

where pi = p(θi ).

Using these definitions we can show that ( f ,b∗
2 ) is not durable against (a1,b2) if and only if there

exists an x ∈ Rn+1 such that Ax ≫ 0, B x > 0, and C x ≥ 0. It then follows from Slater’s theorem of the

alternative (see Mangasarian (1994), p. 27) that ( f ,b∗
2 ) is durable against (a1,b2) if and only if there

exist y, t , z such that A′y +B ′t +C ′z = 0 and y > 0, t ≥ 0, and z ≥ 0 or y ≥ 0, t ≫ 0, and z ≥ 0. We first

prove the following claim:

Lemma 8. ( f ,b∗
2 ) is durable against (a1,b2) such that b2 is increasing and p1k1 +p2k2 > 0 if and only

if p1v1 +k2 < 0 or p2v2 +k1 < 0.

Proof. As shown above, ( f ,b∗
2 ) is durable against (a1,b2) if and only if there exist y, t , z such that A′y+

B ′t +C ′z = 0 and y > 0, t ≥ 0, and z ≥ 0 or y ≥ 0, t ≫ 0, and z ≥ 0. Simple algebra shows that A′y +

B ′t +C ′z = 0 if and only if

y + t1 +k1t2 +k2t3 +v1z1 +v2z2 = 0 (43)

−t2 +p1t4 − z1 + z2 = 0 (44)

−t3 +p2t4 + z1 − z2 = 0 (45)

Solve for t2 and t3 from (44) and (45) and substitute into (43) so that (43) becomes

H ≡ y + t1 + (p1k1 +p2k2)t4 + (v1 +k2 −k1)z1 + (v2 +k1 −k2)z2 = 0. (46)

Therefore, ( f ,b∗
2 ) is durable against (a1,b2) if and only if there exist y, t , z such that (44), (45), (46) hold

and y > 0, t ≥ 0, and z ≥ 0 or y ≥ 0, t ≫ 0, and z ≥ 0.

To prove the lemma, suppose that ( f ,b∗
2 ) is durable against (a1,b2) such that b2 is increasing and

p1k1 +p2k2 > 0. Then, as shown above, (44), (45), (46) hold and y > 0, t ≥ 0, and z ≥ 0 or y ≥ 0, t ≫ 0,

and z ≥ 0. Assume first that y > 0, t ≥ 0, and z ≥ 0. Equation (46), p1k1 +p2k2 > 0, y > 0, t ≥ 0, and

z ≥ 0 imply that v1 +k2 −k1 < 0 or v2 +k1 −k2 < 0.

Assume first that v1 +k2 −k1 < 0. Then, t2 ≥ 0 and (44) imply that z1 ≤ p1t4 + z2 and hence (v1 +

k2 −k1)z1 ≥ (v1 +k2 −k1)(p1t4 + z2). Therefore,

H ≥ y + t1 + (p1k1 +p2k2)t4 + (v1 +k2 −k1)(p1t4 + z2)+ (v2 +k1 −k2)z2

= y + t1 + (p1v1 +k2)t4 + (v1 +v2)z2

≥ y + (p1v1 +k2)t4

since t1 ≥ 0, z2 ≥ 0, and v1+v2 ≥ 0 because b2 is increasing and u2 has increasing differences in (a2,θ).

H = 0, y > 0, and t4 ≥ 0 imply that p1v1 +k2 < 0.
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Assume now that v2 + k1 − k2 < 0. Then, t3 ≥ 0 and (45) imply that z2 ≤ p2t4 + z1 and hence

(v2 +k1 −k2)z2 ≥ (v2 +k1 −k2)(p2t4 + z1). Therefore,

H ≥ y + t1 + (p1k1 +p2k2)t4 + (v1 +k2 −k1)z1 + (v2 +k1 −k2)(p2t4 + z1)

= y + t1 + (p2v2 +k1)t4 + (v1 +v2)z1

≥ y + (p2v2 +k1)t4

since t1 ≥ 0, z1 ≥ 0, and v1+v2 ≥ 0 because b2 is increasing and u2 has increasing differences in (a2,θ).

H = 0, y > 0, and t4 ≥ 0 imply that p2v2 +k1 < 0.

Assume now that y ≥ 0, t ≫ 0, and z ≥ 0. Equation (46), p1k1 +p2k2 > 0, y ≥ 0, t ≫ 0, and z ≥ 0

imply that v1 +k2 −k1 < 0 or v2 +k1 −k2 < 0.

Assume first that v1 +k2 −k1 < 0. Then, t2 > 0 and (44) imply that z1 < p1t4 + z2 and hence (v1 +

k2 −k1)z1 > (v1 +k2 −k1)(p1t4 + z2). Therefore,

H > y + t1 + (p1k1 +p2k2)t4 + (v1 +k2 −k1)(p1t4 + z2)+ (v2 +k1 −k2)z2

= y + t1 + (p1v1 +k2)t4 + (v1 +v2)z2

> (p1v1 +k2)t4

since y ≥ 0, t1 > 0, z2 ≥ 0, and v1+v2 ≥ 0 because b2 is increasing and u2 has increasing differences in

(a2,θ). H = 0 and t4 > 0 imply that p1v1+k2 < 0.

Similarly, one can show that v2 +k1 −k2 < 0 implies that p2v2 +k1 < 0. Therefore, we have shown

that durability implies p1v1 +k2 < 0 or p2v2 +k1 < 0.

Conversely, suppose that p1v1 + k2 < 0. Let y = −(p1v1 + k2), t1 = t2 = 0, t3 = t4 = 1, z1 = p1,

z2 = 0. It is easy to check that (44), (45), (46) hold and y > 0, t ≥ 0, and z ≥ 0. Similarly, suppose that

p2v2 +k1 < 0, and let y = −(p2v2 +k1), t1 = t3 = 0, t2 = t4 = 1, z1 = 0, z2 = p2. One can easily show

that (44), (45), (46) are satisfied and y > 0, t ≥ 0, and z ≥ 0. We have shown that if p1v1 +k2 < 0 or

p2v2 +k1 < 0, then ( f ,b∗
2 ) is durable against (a1,b2).

Lemma 9. ( f ,b∗
2 ) is durable against (a1,b2) if p1k1 +p2k2 ≤ 0.

Proof. Fix any (a1,b2) and assume p1k1 + p2k2 ≤ 0. Suppose, for contradiction, that ( f ,b∗
2 ) is not

durable against (a1,b2). This implies that there exists a contract g ∈ R
A1×A2 such that (g ,b2) is in-

centive compatible and (18) and (19) hold (with at least one inequality being strict). Define U (θ) =

u2(a1,b2(a1,θ),θ) and U∗(θ) = u2(a1,b∗
2 (a1,θ),θ), g (θ) = g (a1,b2(a1,θ)), f (θ) = f (b∗

2 (a1,θ)). Then,

we have

U (θ1)−U∗(θ1)≥ g (θ1)− f (θ1) (47)

U (θ2)−U∗(θ2)≥ g (θ2)− f (θ2) (48)

p1(g (θ1)− f (θ1))+p2(g (θ2)− f (θ2)) ≥ 0 (49)

with at least one strict inequality. Now, p1(U (θ1)−U∗(θ1))+p2(U (θ2)−U∗(θ2)) = p1k1 +p2k2 =≤ 0

implies that

0 ≤ p1(g (θ1)− f (θ1))+p2(g (θ2)− f (θ2)) ≤ p1(U (θ1)−U∗(θ1))+p2(U (θ2)−U∗(θ2)) ≤ 0
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which, in turn, implies that

p1(g (θ1)− f (θ1))+p2(g (θ2)− f (θ2)) = 0

Therefore, (47) or (48) must hold with strict inequality. Suppose (47) holds strictly. Then,

0 = p1(g (θ1)− f (θ1))+p2(g (θ2)− f (θ2)) < p1(U (θ1)−U∗(θ1))+p2(U (θ2)−U∗(θ2)) ≤ 0

a contradiction. Similarly, assuming that (48) holds strictly leads to a contradiction. This proves the

lemma.

We are now ready to finish the proof of Proposition 9.

[Only If] Suppose, for contradiction, that there exist an a1 ∈ A1 and an increasing b2 ∈ A
A1×Θ

2 such

that p1k1 +p2k2 > 0 and p1v1 +k2 ≥ 0 and p2v2 +k1 ≥ 0. Lemma 8 implies that ( f ,b∗
2 ) is not durable

against (a1,b2), a contradiction.

[If] Suppose now that the conditions of the proposition hold. Fix any a1 ∈ A1 and incentive com-

patible (g ,b2) ∈ R
A1×A2 × A

A1×Θ

2 . If p1k1 +p2k2 ≤ 0, then Lemma 9 implies that ( f ,b∗
2 ) is durable. So,

suppose that p1k1+p2k2 > 0 and note that incentive compatibility of (g ,b2) implies that b2 is increas-

ing. Therefore, Lemma 8 implies that ( f ,b∗
2 ) is durable.

Proof of Proposition 6. [Only if] Assume that b∗
2 is durable. Fix any a1 ∈ A1 and an increasing b2 such

that p1k1+p2k2 > 0. Definition of durability and Proposition 9 imply that there exist a contract f such

that ( f ,b∗
2 ) is incentive compatible and k2 +p1v1 < 0 or k1 +p2v2 < 0. Assume first that k2+p1v1 < 0,

that is [u2(a1,b2(a1,θ2),θ2)−u2(a1,b∗
2 (a1,θ2),θ2)] + p1[u2(a1,b2(a1,θ1),θ1)−u2(a1,b2(a1,θ2),θ1)] <

p1[ f (a1,b∗
2 (a1,θ1))− f (a1,b∗

2 (a1,θ2))]. Since ( f ,b∗
2 ) is incentive compatible, then f (a1,b∗

2 (a1,θ1))−

f (a1,b∗
2 (a1,θ2) ≤ u2(a1,b∗

2 (a1θ1),θ1)−u2(a1,b∗
2 (a1,θ2),θ1), which implies (22). Similarly, assuming

k1 +p2v2 < 0 implies (21).

[If] Suppose that all the conditions of the proposition are satisfied and fix any a1 ∈ A1 and in-

centive compatible (g ,b2). If p1k1 +p2k2 ≤ 0, then Lemma 9 implies that ( f ,b∗
2 ) is durable. So, sup-

pose that p1k1+p2k2 > 0 and note that incentive compatibility of (g ,b2) implies that b2 is increasing.

First assume that (22) is satisfied; define f (a1, a2) such that u2(a1,b∗
2 (a1,θ1),θ1)− f (a1,b∗

2 (a1,θ1)) =

u2(a1,b∗
2 (a1,θ2),θ1)− f (a1,b∗

2 (a1,θ2)) and f (a1, a2) =∞ if a2 6= b∗
2 (a1,θ1) or a2 6= b∗

2 (a1,θ2). Such an f

is incentive compatible because, first, u2(a1,b∗
2 (a1,θ1),θ1)− f (a1,b∗

2 (a1,θ1)) ≥ u2(a1,b∗
2 (a1,θ2),θ1)−

f (a1,b∗
2 (a1,θ2)) by construction. Secondly, since u2 has increasing differences in (%2,%θ) and b∗

2 is

increasing in θ the following is true:

u2(a1,b∗
2 (a1,θ2),θ2)−u2(a1,b∗

2 (a1,θ1),θ2) ≥ u2(a1,b∗
2 (a1,θ2),θ1)−u2(a1,b∗

2 (a1,θ1),θ1)

= f (a1,b∗
2 (a1,θ2))− f (a1,b∗

2 (a1,θ1))

This implies u2(a1,b∗
2 (a1,θ2)θ2)− f (a1,b∗

2 (a1,θ2)) ≥ u2(a1,b∗
2 (a1,θ1)θ2)− f (a1,b∗

2 (a1,θ1)). Finally ( f ,b∗
2 )

is durable because

u2(a1,b2(a1,θ2),θ2)−u2(a1,b∗
2 (a1,θ2),θ2)+p1[u2(a1,b2(a1,θ1),θ1)−u2(a1,b2(a1,θ2),θ1)]

< p1[u2(a1,b∗
2 (a1,θ1),θ1)−u2(a1,b∗

2 (a1,θ2),θ1)] = p1[ f1(a1,b∗
2 (a1,θ1))− f (a1,b∗

2 (a1,θ2))]
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Finally assume that (21) is satisfied. By setting f such that u2(a1,b∗
2 (a1,θ2),θ2)− f (a1,b∗

2 (a1,θ2)) =

u2(a1,b∗
2 (a1,θ1),θ2) − f (a1,b∗

2 (a1,θ1)), we similarly obtain that ( f ,b∗
2 ) is incentive compatible and

durable.

We will now prove results that will help prove Proposition 8 but might also be of interest on their

own.

Definition 11. For any b2 ∈ A
A1×Θ

2 we say that type i = 1,2 has right deviation at b2 if there exist a1 ∈ A1

and a2 ∈ A2 such that a2 %2 b2(a1,θi ) and u2(a1, a2,θi ) > u2(a1,b2(a1,θi )θi ). Otherwise, we say that i

has no right deviation at b2. Definition of left deviation is similar.

Lemma 10. A strategy b∗
2 ∈ A

A1×Θ

2 is durable only if type 1 has no left deviation and type 2 has no right

deviation at b∗
2 .

Proof of Lemma 10. Suppose, for contradiction, that type 1 has left deviation at b∗
2 . This implies that

there exist a1 and â2 -2 b∗
2 (a1,θ1) such that u2(a1, â2,θ1) > u2(a1,b∗

2 (a1,θ1),θ1). Define

b2(a1,θ) =







â2, θ = θ1

b∗
2 (a1,θ2), θ = θ2

and note that

2
∑

i=1

p(θi )
[

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )

]

= p(θ1)
[

u2(a1,b2(a1,θ1),θ1)−u2(a1,b∗
2 (a1,θ1),θ1)

]

> 0

Also note that

U (a1,b∗
2 )1 −U (a1,b2)1 =U (a1,b∗

2 (a1,θ1),θ1)−U (a1,b2(a1,θ1),θ1) < 0 = u2(a1,b2(a1,θ2),θ2)−u2(a1,b∗
2 (a1,θ2),θ2)

contradicting, (22). We will first show that

u2(a1,b2(a1,θ1),θ1)−u2(a1,b∗
2 (a1,θ1),θ1)+p(θ2)

[

u2(a1,b∗
2 (a1,θ1),θ2)−u2(a1,b2(a1,θ1),θ2)

]

≥ 0

(50)

If, u2(a1,b∗
2 (a1,θ1),θ2) − u2(a1,b2(a1,θ1),θ2) ≥ 0, then (50) holds trivially. Suppose therefore that

u2(a1,b∗
2 (a1,θ1),θ2)−u2(a1,b2(a1,θ1),θ2) < 0. In this case, (50) holds if

u2(a1,b2(a1,θ1),θ1)−u2(a1,b∗
2 (a1,θ1),θ1)+u2(a1,b∗

2 (a1,θ1),θ2)−u2(a1,b2(a1,θ1),θ2) ≥ 0,

which follows from b2(a1,θ1)= â2 -2 b∗
2 (a1,θ1) and increasing differences. But

u2(a1,b∗
2 (a1,θ1),θ2)−u2(a1,b2(a1,θ1),θ2) =U (a1,b2)2 −U (a1,b∗

2 )2

which, together with (50), contradicts (21). The case of right deviation is proved similarly.

Lemma 11. Suppose that u1 is increasing in a2. If an outcome (a∗
1 , a∗

2 (θ)) can be supported with

durable contracts, it can also be supported with renegotiation-proof contracts.
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Proof. Suppose (a∗
1 , a∗

2 (θ)) can be supported with a durable strategy b∗
2 . Lemma 10 implies that

b∗
2 (a1,θ1) -2 br2(a1,θ1) and b∗

2 (a1,θ2) %2 br2(a1,θ2) for any best response selection br2. Also, we

must have b∗
2 (a∗

1 ,θ) ∈ BR2(a∗
1 ,θ), ∀θ and U1(a∗

1 ,b∗
2 ) ≥U1(a1,b∗

2 ), ∀a1. Consider

b̂2(a1,θ) =







b∗
2 (a1,θ1), θ= θ1

br2(a1,θ2), θ= θ2

and note that this strategy is increasing and renegotiation-proof (RP). Now,

U1(a∗
1 ,b∗

2 ) ≥U1(a1,b∗
2 )≥U1(a1, b̂2), ∀a1,

where the last inequality follows from the fact that u2 is increasing in a2. We also have b2(a∗
1 ,θ) ∈

BR(a∗
1 ,θ)∀θ, which implies that (a∗

1 , b̂2) supports (a∗
1 , a∗

2 (θ)).

Definition 12. u2 is single-peaked in %2 if for all br2 ∈ BR2 and (a1,θ) ∈ A1 ×Θ, br2(a1,θ)%1 a′
2 %2 a2

implies u2(a1, a′
2,θ) ≥ u2(a1, a2,θ) and a2 %2 a′

2 %2 br2(a1,θ) implies u2(a1, a′
2,θ) ≥u1(a1, a2,θ).

Lemma 12. Assume that u2 is single-peaked and let b∗
2 ∈ A

A1×Θ

2 be such that b∗
2 (a1,θ1) -2 br2(a1,θ1)

and b∗
2 (a1,θ2)%2 br2(a1,θ2) for any best response selection br2. Fix br2 ∈ BR2 and define

b̂2(a1,θ) =







b∗
2 (a1,θ1), θ = θ1

br2(a1,θ2), θ = θ2

If b∗
2 is durable, then b̂2 is durable.

Proof of Lemma 12. Suppose, for contradiction, that b∗
2 is durable but b̂2 is not. Proposition 6 implies

that there exist a1 and increasing b2 such that

p1[u(1,1)− û(1,1)]+p2[u(2,2)− û(2,2)] > 0 (51)

u(2,2)− û(2,2)+p1[u(1,1)−u(2,1)] ≥ p1[û(1,1)− û(2,1)] (52)

u(1,1)− û(1,1)+p2[u(2,2)−u(1,2)] ≥ p2[û(2,2)− û(1,2)] (53)

where u(i , j )= u2(a1,b2(a1,θi ),θ j ) and û(i , j )= u2(a1, b̂2(a1,θi ),θ j ). Assume that b2(a1,θ1)-2 b∗
2 (a1,θ2).

We first show that this assumption is without loss of generality since if it does not hold, then there is

an increasing b′
2 such that b′

2(a1,θ1) -2 b∗
2 (a1,θ2) for which (51) - (53) hold when u(i , j ) is replaced

with u′(i , j )= u2(a1,b′
2(a1,θi ),θ j ). To this end define

b′
2(a1,θ) =







b∗
2 (a1,θ2), θ = θ1

b2(a1,θ2), θ = θ2

We first note that b′
2 is increasing since b2 is increasing and b′

2(a1,θ1) = b∗
2 (a1,θ2) ≺2 b2(a1,θ1) -2

b2(a1,θ2) = b′
2(a1,θ2).

Note that u′(2,2) =u(2,2) and u′(2,1) =u(2,1). Furthermore, u′(1,1) ≥u(1,1) and u′(1,2) ≥u(1,2)

because u2 is single-peaked and br2(a1,θ1) -2 br2(a1,θ2) -2 b∗
2 (a1,θ2) = b′

2(a1,θ1) ≺2 b2(a1,θ1). It

immediately follows that (51) and (52) hold when u is replaced with u′. Finally, since u2 exhibits
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increasing differences and b′
2(a1,θ1) ≺2 b2(a1,θ1), we have u(1,2)−u′(1,2) ≥ u(1,1)−u′(1,1). This

implies that u′(1,1)−u(1,1) ≥ u′(1,2)−u(1,2) ≥ p2[u′(1,2)−u(1,2)], where the last inequality follows

from u′(1,2) ≥ u(1,2). Rearranging we have u′(1,1)− p2u′(1,2) ≥ u(1,1)− p2u(1,2). Since u(2,2) =

u′(2,2), this is equivalent to u′(1,1)+p2[u′(2,2)−u′(1,2)] ≥u(1,1)+p2[u(2,2)−u(1,2)], which implies

that (53) holds when u is replaced with u′.

So, we can assume b2(a1,θ1)-2 b∗
2 (a1,θ2), which implies that b̃2 defined below is increasing.

b̃2(a1,θ1) =







b2(a1,θ1), θ = θ1

b∗
2 (a1,θ2), θ = θ2

We will now show that b∗
2 is not durable. First note that û(2,2) ≥ u(2,2) and (51) imply that ũ(1,1) =

u(1,1) > û(1,1) =u∗(1,1). Together with ũ(2,2) = u∗(2,2), this implies that

p1[ũ(1,1)−u∗(1,1)]+p2[ũ(2,2)−u∗(2,2)] > 0. (54)

Secondly, ũ(2,2) = u∗(2,2), ũ(2,1) = u∗(2,1), and ũ(1,1) > u∗(1,1) imply that

ũ(2,2)−u∗(2,2)+p1[ũ(1,1)− ũ(2,1)] ≥ p1[u∗(1,1)−u∗(2,1)]. (55)

Suppose, for contradiction, that

ũ(1,1)−u∗(1,1)+p2[ũ(2,2)− ũ(1,2)] < p2[u∗(2,2)−u∗(1,2)] (56)

Now, ũ(1,1) = u(1,1), û(1,1) =u∗(1,1), and (53) imply that

u∗(2,2)− ũ(2,2)−u∗(1,2)+ ũ(1,2) > û(2,2)−u(2,2)− û(1,2)+u(1,2). (57)

Since u∗(1,2) = û(1,2), ũ(1,2) = u(1,2), and ũ(2,2) = u∗(2,2), (57) implies that û(2,2) < u(2,2), which

is a contradiction because b̂2(a1,θ2) ∈ BR2(a1,θ2).

The following result follows from Lemma 10 and 12.

Lemma 13. Assume that u2 is single-peaked and fix b∗
2 ∈ A

A1×Θ

2 and br2 ∈ BR2. Define

b̂2(a1,θ) =







b∗
2 (a1,θ1), θ = θ1

br2(a1,θ2), θ = θ2

If b∗
2 is durable, then b̂2 is durable.

We next prove

Lemma 14. Assume that u1 is increasing in a2 and u2 is single-peaked. An outcome (a∗
1 , a∗

2 (θ)) can be

supported with durable contracts if and only if it can be supported with a durable strategy b̂2 such that

b̂2(a1,θ2) ∈ BR(a1,θ2) for all a1 ∈ A1.

Proof. [If] Obvious.
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[Only If] Suppose that (a∗
1 , a∗

2 (θ)) can be supported with durable contracts. This implies that there

exists a durable strategy b∗
2 such that

b∗
2 (a∗

1 ,θ) = a∗
2 (θ), ∀θ (58)

a∗
2 (θ) ∈ BR2(a∗

1 ,θ), ∀θ (59)

U1(a∗
1 ,b∗

2 ) ≥U1(a1,b∗
2 ) (60)

Also, Lemma 10 implies that

b∗
2 (a1,θ2)%2 br2(a1,θ2), ∀br2 ∈ BR2, a1 ∈ A1. (61)

Fix br2 ∈ BR2 and define b̂2(a∗
1 ,θ) = b∗

2 (a∗
1 ,θ) for all θ and for any a1 6= a∗

1

b̂2(a1,θ) =







b∗
2 (a1,θ1), θ = θ1

br2(a1,θ2), θ = θ2

Note that b̂2 is durable by Lemma 13. Furthermore, b̂2(a∗
1 ,θ) = a∗

2 (θ) ∈ BR2(a∗
1 ,θ) for all θ and

U1(a∗
1 , b̂2) =U1(a∗

1 ,b∗
2 ) ≥U1(a1,b∗

2 ) ≥U1(a1, b̂2)

where the last inequality follows from b̂2(a1,θ1)= b∗
2 (a1,θ1), b̂2(a1,θ2)= br2(a1,θ2)-2 b∗

2 (a1,θ2), and

the fact that u1 is increasing in a2. Finally, note that Lemma 10 implies that b̂2(a1,θ1) = b∗
2 (a1,θ1) -2

br2(a1,θ1)-2 br2(a1,θ2) = b̂2(a1,θ2) for any a1, which implies that b̂2 is increasing. We conclude that

b̂2 is durable and increasing and supports (a∗
1 , a∗

2 (θ)).

This result implies that, when u1 is increasing and u2 is single-peaked, in order to characterize

outcomes that can be supported by durable contracts we may limit ourselves to durable and increas-

ing strategies that plays a best response for any a1 after θ2. A similar result is true when u1 is decreas-

ing: We can limit ourselves to strategies that play a best response after θ1.

Lemma 15. Suppose that u2 is single-peaked, b∗
2 ∈ A

A1×Θ

2 is increasing and b∗
2 (a1,θ2) ∈ BR2(a1,θ2) for

all a1. Then, b∗
2 is durable if and only if it is durable against all increasing strategies b2 such that

2
∑

i=1

p(θi )
[

u2(a1,b2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )

]

> 0

and b2(a1,θ2) = b∗
2 (a1,θ2) for all a1.

Proof of Lemma 15. [Only If] Obvious.

[If] Suppose the conditions on b∗
2 stated in the lemma hold but, for contradiction, it is not durable.

This implies that there exists an a1 and increasing b2 such that the following hold:

p1[u(1,1)−u∗(1,1)]+p2[u(2,2)−u∗(2,2)] > 0 (62)

u(2,2)−u∗(2,2)+p1[u(1,1)−u(2,1)] ≥ p1[u∗(1,1)−u∗(2,1)] (63)

u(1,1)−u∗(1,1)+p2[u(2,2)−u(1,2)] ≥ p2[u∗(2,2)−u∗(1,2)] (64)
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Define

b̂2(a1,θ1) =







b2(a1,θ1), θ = θ1

b∗
2 (a1,θ2), θ = θ2

As it has been shown in the proof of Lemma 12, we may assume without loss of generality that

b2(a1,θ1)-2 b∗
2 (a1,θ1), which implies that b̂2 is increasing. Furthermore,

p1û(1,1)+p2û(2,2) = p1u(1,1)+p2u∗(2,2) ≥ p1u(1,1)+p2u(2,2) > p1u∗(1,1)+p2u∗(2,2)

where the first inequality follows from b∗
2 (a1,θ2) ∈ BR2(a1,θ2) and the second from (62). Therefore,

p1[û(1,1)−u∗(1,1)]+p2[û(2,2)−u∗(2,2)] > 0. (65)

Also, u∗(2,2) ≥ u(2,2) and (62) imply that u(1,1) > u∗(1,1), which in turn implies that

û(2,2)−u∗(2,2)+p1[û(1,1)− û(2,1)]−p1[u∗(1,1)−u∗(2,1)] = p1[u(1,1)−u∗(1,1)] > 0 (66)

Lastly, definition of b̂2, û(2,2) ≥ u(2,2), and (64) imply

û(1,1)−u∗(1,1)+p2[û(2,2)− û(1,2)]−p2[u∗(2,2)−u∗(1,2)]

≥ u(1,1)−u∗(1,1)+p2[u(2,2)−u(1,2)] ≥ p2[u∗(2,2)−u∗(1,2)] ≥ 0 (67)

Therefore, by (65), (66), and (67) imply that b∗
2 is not durable against b̂2, which is increasing

2
∑

i=1

p(θi )
[

u2(a1, b̂2(a1,θi ),θi )−u2(a1,b∗
2 (a1,θi ),θi )

]

> 0

and b̂2(a1,θ2)= b∗
2 (a1,θ2) for all a1. This completes the proof.

Lemma 14 and 15 imply that if u1 is increasing in a2 and u2 is single-peaked, then an outcome

can be supported with durable contracts if and only if it can be supported by an increasing strategy

b∗
2 which has b∗

2 (a1,θ2) ∈ BR2(a1,θ2) for all a1 and which is durable against any increasing b2 with

b2(a1,θ2) = b∗
2 (a1,θ2) for all a1 and u2(a1,b2(a1,θ1),θ1) > u2(a1,b∗

2 (a1,θ1),θ1) for some a1. In other

words, durability condition becomes the following: For each a1

a2 -2 b∗
2 (a1,θ2) and u2(a1, a2,θ1) > u2(a1,b∗

2 (a1,θ1),θ1) ⇒ (68)

u2(a1, a2,θ1)−u2(a1,b∗
2 (a1,θ1),θ1) < p2[u2(a1, a2,θ2)−u2(a1,b∗

2 (a1,θ1),θ2)] (69)

We have a2 -2 b∗
2 (a1,θ2) because the strategy we are testing against is the same as b∗

2 at θ2 and it has

to be increasing. We have u2(a1, a2,θ1) > u2(a1,b∗
2 (a1,θ1),θ1) since the strategy we are testing against

is the same as b∗
2 at θ2. These also imply that (22) cannot hold and hence (21) must hold, which is

equivalent to (69). Finally, since a durable strategy cannot have a left deviation at θ1 we have the

following result.

Proposition 10. Assume that u1 is increasing in a2 and u2 is single-peaked. Then, an outcome (a∗
1 , a∗

2 (θ))

can be supported with durable contracts if and only if for any a1 ∈ A1, there exist (a′
2(a1), a′′

2 (a1)) such
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that

a′
2(a1)-2 br2(a1,θ1) for any br2 ∈ BR2 (70)

a′′
2 (a1) ∈ BR2(a1,θ2) (71)

a2 -2 a′′
2 (a1) and u2(a1, a2,θ1)−u2(a1, a′

2(a1),θ1) > 0 ⇒

u2(a1, a2,θ1)−u2(a1, a′
2(a1),θ1) < p2[u2(a1, a2,θ2)−u2(a1, a′

2(a1),θ2)] (72)

a∗
2 (θ) ∈ BR2(a∗

1 ,θ) for all θ (73)

p1u1(a∗
1 , a∗

2 (θ1),θ1)+p2u1(a∗
1 , a∗

2 (θ2),θ2) ≥ p1u1(a1, a′
2(a1),θ1)+p2u1(a1, a′′

2 (a1),θ2) (74)

Proof of Proposition 8. Follows from Proposition 10.
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