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Abstract

This paper presents computationally simple estimators for the index coefficients in a binary choice
model with a binary endogenous regressor without relying on distributional assumptions or on large
support conditions and yields root-n consistent and asymptotically normal estimators. We develop
a multi-step method for estimating the parameters in a triangular, linear index, threshold-crossing
model with two equations. Such an econometric model might be used in testing for moral hazard
while allowing for asymmetric information in insurance markets. In outlining this new estimation
method two contributions are made. The first one is proposing a novel ”matching” estimator for the
coefficient on the binary endogenous variable in the outcome equation. Second, in order to establish
the asymptotic properties of the proposed estimators for the coefficients of the exogenous regressors
in the outcome equation, the results of Powell, Stock and Stoker (1989) are extended to cover the
case where the average derivative estimation requires a first step semi-parametric procedure.

1 Introduction:

The estimation of econometric models with binary outcomes and a binary endogenous regressor is of
considerable practical importance. Given the importance of such models, this paper focuses on the
linear index threshold crossing model and presents an easy-to-implement estimation method that does
not require knowledge of the parametric form of the distribution of the unobservables. In addition, the
proposed method does not rest on the existence of any regressors with unbounded support.

A popular method for dealing with an endogenous regressor when the outcome is continuous and
the unobservable variables enter the outcome equation additively involves estimating the parameters of
interest by ordinary instrumental regression analysis. But when the outcome is binary the unobserved
variables in the outcome equation cannot be additive, except within the context of the linear probability
model. Consequently, as is well known, we cannot rely on the standard instrumental variables methods
to get consistent estimates. Heckman (1978) and Amemiya (1978) propose a parametric solution to
the problem by specifying a joint distribution, typically joint normality, of the unobserved terms and
obtains estimates for the parameters of interest using maximum likelihood estimation. While this
method delivers consistent estimates when the joint distribution of the error terms is correctly specified,
the consistency of these estimators cannot be guaranteed when the error distribution is misspecified.1

∗I would like to thank Takeshi Amemiya, Aprajit Mahajan, Edward Vytlacil, James Powell, and Todd Elder for very
helpful comments and questions on this paper.

†Correspondence: University of Rochester, Department of Economics, Harkness Hall, Rochester, NY 14627; Email:
nyildiz@mail.rochester.edu; Phone: 585-275-5782.

1Bhattacharya, McCaffrey and Goldman (2004) presents Monte Carlo results suggesting that bivariate probit estimates
of the average effect of the binary endogenous variable on the outcome could be severely biased when the joint distribution
of the unobservables is not normal.
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Vytlacil and Yıldız (2007) shows that it is possible to identify and consistently estimate the average
effect of a binary endogenous variable on the outcome without imposing large support conditions and
without relying on parametric distributional or functional form assumptions. While the results devel-
oped there hold for a general class of models, the paper primarily focuses on one parameter, the average
treatment effect.

The average treatment effect is no doubt an important parameter of interest. In some contexts,
however, estimation of the joint distribution of the unobservables in outcome equation and those in the
first stage equation might also be of interest, as in analyzing insurance markets, which will be discussed
in Section 3 when the econometric model has been introduced. While the model in Vytlacil & Yıldız
(2007) is general, the joint distribution of unobservables cannot be estimated under such a general
model. This paper focuses on the case where both the outcome and endogenous regressor equation have
linear index threshold crossing form, but the distribution of the unobservables is left unspecified other
than some smoothness restrictions which are imposed for estimation. The paper presents a method of
estimating the coefficients on all the regressors as well as the joint distribution of the unobservables.

In a broad sense, our estimator for the coefficient of the binary endogenous regressor is akin to a
matching estimator. Matching is based on the idea of contrasting the outcomes of individuals for whom
the binary regressor is 1 with the outcomes of comparable individuals for whom the binary regressor is
0 where comparisons are constructed on the basis of observed characteristics of individuals. However,
when the binary regressor is endogenous, the basic assumption underlying matching may be untenable.
Our three stage estimator suggests an alternative method for comparing individuals across the two
groups. In a sense, we propose matching individuals using a different metric where the proposed metric
takes the endogeneity of the binary regressor into account.

2 Literature Review:

Lewbel (2000) proposes an estimation method which does not require that the distribution of the
unobservables is known and in which the endogenous variable could be either binary or continuous.
This method relies on the existence of a continuously distributed special regressor with large support
that influences the outcome variable (but not the endogenous regressor).2 Despite its simplicity, this
estimation procedure has the drawback of placing higher weights on observations that are from parts
of the population with low probability of being observed.

Chen and Vytlacil (2005) studies a nonlinear panel data models with lagged dependent variables.
The strategy for identifying the coefficient of the lagged dependent variable in their paper and the
coefficient of the binary endogenous regressor in this paper are both straightforward extensions of the
identification strategy in Vytlacil and Yıldız (2007). Both the motivation and estimation strategies of
the two papers, however, are different. The differences in the estimation method will be explained after
the discussion of the estimation method in Section 5.

An alternative approach to dealing with endogeneity, particularly when the unobservables in the
outcome equation are not additively separable from the regressors, is the control function approach.

2This feature of the estimation method of Lewbel (2000) is related to the estimation method proposed in this paper.
In particular, in our context we need some exogenous variation in the outcome equation even after conditioning on the
exogenous components in the equation for the binary endogenous variable, but here none of the regressors is required to
have large support. The precise nature of this relation will be made clear when the model and the identification assumptions
are introduced.
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Blundell and Powell (2004) uses this approach for semiparametric estimation in single index binary
response models with a continuous endogenous regressor. The control function approach, however, is
not applicable when the endogenous regressor is binary. Nevertheless, our estimation method bears
some similarity to their method. Under their exclusion restrictions, the outcome variable can be char-
acterized by a “multiple index regression” model, with conditional distribution of the outcome, given
the regressors and the error term from the equation for the endogenous regressors, depending on the
regressors only through a single index. In estimating the coefficients on the regressors in the outcome
equation, they exploit the invertibility of this distribution function with respect to its first argument.
In estimating the coefficient on the binary endogenous regressor, we exploit the invertibility of the
same conditional distribution; however, a crucial difference arises in recovering this conditional distri-
bution. Our analysis requires stronger assumptions than their analysis, but this is because recovering
this conditional distribution is harder in the current context of a binary endogenous regressor.

Imbens and Newey (2009) use the control function approach to develop identification results the
average and quantile effects of a continuous endogenous regressor in triangular simultaneous equations
models.

This paper is also related to the extensive literature that considers endogenous regressors in semi-
parametric or nonparametric models without additive separability. Altonji and Matzkin (2005) presents
methods for identifying and estimating the same effect holding the conditional distribution of the error
term conditional on the covariates fixed within the context of a panel data model with nonseparable er-
ror terms and endogenous regressors. One of their methods requires that the outcome variable is strictly
monotonic in the error term, while their other method assumes that the unobservable components and
the covariates that determine the outcome are independent conditional on the instruments, so that
conditional on the instruments there is no problem of endogeneity. Thus, neither of their estimation
methods is suitable for the model of interest in this paper. Chernozhukov and Hansen (2005) study the
identification of quantile treatment effects in the presence of endogeneity. Their analysis assumes that
the outcome of interest is strictly increasing in the unobserved component, rendering it inapplicable to
the binary outcome case. Chesher (2003) presents a method for the local identification of derivatives
and partial differences of structural quantile functions in the context of a nonseparable model where the
endogenous regressor is continuous.3 Chesher (2005) studies the same problem with a discrete endoge-
nous variable. But his results do not extend to the case in which the endogenous regressor takes only
two values. In addition, Blundell and Powell (2003) provides an excellent summary of nonparametric
or semiparametric estimation methods for regression models with continuous endogenous regressors.

3 The Model:

This paper examines the linear index, threshold crossing model with two equations:

D = 1{Z ′γ − U ≥ 0} (1)

Y = 1{αY +X ′β +Dδ − ε ≥ 0}, (2)

where D denotes the binary endogenous variable, Y represents the outcome variable, X = (W ′
1,W

′
2)

′ ∈
R1+d1+d2 , and Z = (W ′

2,W
′
3)

′ ∈ R1+d2+d3 are observed vectors of random variables, (ε, U) is an un-

3Ma and Koenker (2009) present estimation methods for the effects identified in Chesher (2003). Jun (2009) is a
semiparametric version of Ma and Koenker (2009).
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observed random vector, and (β, δ, γ) are the parameters of interest. Note that X and Z may have
common components, but the identification method presented below will require existence of a contin-
uous component of W3, with corresponding γ coefficient not equal 0. Thus, d3 ≥ 1. Without loss of
generality we assume that W3d3 is continuous, and we normalize the absolute value of γ3d3 to be 1.
Similarly, identification of β will require a continuous component of either W1 or W2, with a non-zero
β coefficient. Let βk∗ denote this coefficient. For these restrictions to hold d = d1 + d2 + d3 is assumed
to be greater than or equal to 2. The scale normalization we adopt for the outcome equation is that
the absolute value of βk∗ is set equal to 1. The location normalizations we adopt are E(U) = E(ε) = 0.
We should note, however, that identification of γ, β and δ, as well as testing whether ε and U are inde-
pendent of each other do not depend on the location normalizations imposed, that is, we can do these
things without knowing what αD and αY are. For completeness, we discuss how αD and αY can be
identified under symmetry assumption on FU and Fε, respectively, at the end of identification section.
1{} denotes the indicator function. Moreover, for υ : Rk → R, ∂υ(s)

∂s′ denotes the 1 × k dimensional
gradient vector of the function υ. This model has a form similar to a multivariate probit model, and is
referred to as a “multivariate probit model with structural shift” by Heckman (1978).

The econometric model given by equations (1) and (2) may be useful in studying insurance markets.
For example suppose we would like to estimate the probability of an accident during a policy period.
In this situation, the outcome of interest is a binary variable which takes value one if the driver is
involved in an accident during an insurance policy period, and the binary endogenous variable is the
indicator for whether the driver has purchased comprehensive insurance or not. In such a model if the
coefficient on the binary endogenous regressor is positive then we might suspect that moral hazard is
an issue, as in this case the probability that the driver has an accident is higher after controlling for
covariates if the driver has bought comprehensive insurance. The methods of this paper would allow
the researcher to estimate this coefficient and the coefficients on exogenous regressors without requiring
ε and U to be independent. If the driver knows his type, which neither the insurance company nor the
econometrician know, and if this type makes the driver more accident prone and knowing this the driver
is more likely to buy high coverage, then we would have adverse selection and U and ε would not be
independent. Since the estimators do not require U and ε to be independent. once we have estimators
for the coefficients we can also estimate the joint distribution of the unobservables and test whether U
and ε are independent.

The following assumptions will be imposed throughout the paper:

(A-0) {Yi, Di,W
′
1i,W

′
2i,W

′
3i} i = 1, ..., n is an i.i.d. sequence of random vectors.

(A-1) The distribution of (ε, U) is absolutely continuous with respect to Lebesgue measure with positive
density on R2;

(A-2) (U, ε) is independent of (W ′
1,W

′
2,W

′
3);

(A-3) Z has density with respect to Lebesgue measure on Rd2+d3 , (W ′
1,W

′
2,W

′
2γ2+W

′
3γ3)

′ has density
with respect to Lebesgue measure on Rd1+d2+1;

(A-4) Supp(Z ′γ,X ′β) ∩ Supp(Z ′γ,X ′β + δ) ̸= ∅.

Even though assumption (A-0) is not needed for identification, it will be used for all of our estimation
results. Assumptions (A-1)-(A-4) are needed for identification. Additional assumptions will be imposed
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in subsequent sections as they are needed for estimation. Assumption (A-1) is a regularity condition
sufficient to guarantee that the relevant conditional expectations are smooth functions. Assumption (A-
2) is critical for both identification and estimation. For identification, a weaker version of assumption
(A-3), namely that X ′β is continuous, as opposed to all of X, would suffice; the stronger version is
imposed for estimation. More specifically, this assumption implies that the exogenous regressors are
continuous.4 The second part of assumption (A-3) implies that there is an element inW3 with a non-zero
coefficient and is continuous. This part of the assumption will be used in estimating β. In addition, the
second part of this assumption implies that (X ′β, Z ′γ) has density with respect to Lebesgue measure on
R2 as long as there is at least one β that is different from 0. Our strategy for identifying δ depends on
our ability to find shifts in X ′β that exactly offset the effect of a change in D from 0 to 1. To guarantee
that pairs of X ′β that “undo” the effect of a shift in D exist we need the support condition stated in
assumption (A-4).5 In addition to guaranteeing that such X ′β pairs exist, we need a way to identify
such pairs. Thus, in estimating δ, it will be essential to be able to vary Z ′γ with positive probability
while holding X ′β constant. This requires that there is some variation in X ′β that is not perfectly
correlated with Z ′γ,6 and the second part of assumption (A-3) guarantees this as well.

4 Identification Analysis:

4.1 Identification of γ and β:

Identification of binary choice models of linear index threshold crossing form is well known. (See Manski
(1988) for example.) Here we include a brief discussion of how γ is identified for completeness. By (A-3),

Z is a continuous random vector, and ∂E[D|Z=z]
∂zj

= fU (αD + z′γ)γj for each j = 1, ..., d2 + d3. Thus,

the signs and the ratios of γj are identified, since W3,d3 is assumed to be a continuous random variable
with corresponding |γ3,d3 | = 1. If there are discrete regressors, under additional support restrictions
the coefficients of discrete regressors could be identified. To see how this can be done, suppose Z1 is
continuous and γ1 ̸= 0. Suppose there is only one other Z, Z2, which is discrete and takes values
z21, .., z2M . Then for each m, ∂E(D|Z1=z1,Z2=z2m)

∂z1
= fU (αD + z1γ1+ z2mγ2)γ1. We identify the sign of γ1

from this, and can normalize γ1 to be 1 if it is positive, or −1 if it is negative. Suppose γ1 is positive.
Note that E(D|Z1 = z1, Z2 = z2m) = E(D|Z1 = z̃1, Z2 = z2k) if and only if z1 + z2mγ2 = z̃1 + z2kγ2.
Therefore, γ2 = z1−z̃1

z2k−z2m
. Let rz := z2m∗ − z2k∗ where m∗ and k∗ attain min{|z2m − z2k| : m ∈

{1, ...,M}, k ∈ {1, ...,M} \ {m}}. Then if P (Supp(Z1) ∩ Supp(Z1 + rzγ2)) > 0, γ2 is also identified.
By (A-3) again, there is an element of X that is continuous and has a non-zero β coefficient. Then

∂E[Y |X = x,Z = z]

∂x
=

[
∂P (U ≤ αD + z′γ, ε ≤ αY + x′β + δ)

∂(x′β)
+
∂P (U > αD + z′γ, ε ≤ αY + x′β)

∂(x′β)

]
β.

Since the expression in square brackets is strictly positive by assumptions (A-1) and (A-2), we identify
the signs and ratios of coefficients of continuous X. In this paper, we assume all the X’s are continuous,

4Here, the estimation in the first two stages are done either using the methods developed by Powell, Stock and Stoker
(1989) directly or an extended version of them. This method requires that all the regressors are continuous. Using the
methods outlined in Härdle and Horowitz (1996), we can extend this analysis to the case where some of the regressors are
discrete. For this extension only one of the regressors must be continuous.

5Assumption (A-4) may look strange given that the coefficients are only identifiable up to scale; however if the assump-
tion holds for some

(
γ, (β, δ)

)
it will also hold for

(
a1γ, a2(β, δ)

)
for any pair of non zero constants (a1, a2).

6This feature of our estimation method is similar to Lewbel (2000).
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but if there are discrete regressors and if the supports of the continuous X’s are rich enough, we can
identify the coefficients on the discrete regressors in a way that is similar to the example given in the
discussion of identification of γ. The problem with the above equation is that it assumes we can vary
each component of X while holding Z constant. If X and Z have common components, we cannot do
that. Given that γ is identified, we could repeat the same argument by considering E[Y |X = x,Z ′γ = t]
instead.7 This would give us:

∂E[Y |Z ′γ = t,X = x]

∂x
=

[
∂P (U ≤ αD + t, ε ≤ αY + x′β + δ)

∂(x′β)
+
∂P (U > αD + t, ε ≤ αY + x′β)

∂(x′β)

]
β.

(3)
Under the second part of assumption (A-3), equation (3) is valid, and using this equation we can identify
signs and scales of components of β.

4.2 Identification of δ:

The strategy that we will use to identify δ is the same as in Vytlacil and Yıldız (2004,2007) and Chen
and Vytlacil (2005). This strategy is based on finding shifts in X ′β which directly compensate for a
shift in D to identify δ. Given our model and assumptions, we can use variations in Z ′γ to identify such
X ′β shifts.

Based on results presented in the previous subsection, in studying identification of δ, we are going
to assume that γ and β are known. If D and X were independent of ε, we could identify δ using
arguments similar to those given when identification of coefficients of discrete Z was discussed in the
previous section. In our problem W (and hence X) is independent of ε, but D is not. Even though
we can compute E(Y = 1|X ′β = x′β,D = 1) and E(Y = 1|X ′β = x̃′β,D = 0), when D is endogenous
these no longer give us the probabilities, P (ε ≤ αY + x′β + δ) and P (ε ≤ αY + x̃′β), that we need to
identify δ. Nevertheless, we can use exogenous variation in Z ′γ to identify different X ′β values that
compensate for the effect of a change in D from 0 to 1. To see how this can be done, note that since Y ,
D, X and Z are observed, and since γ and β are known, using the data we can compute

E[DY |X ′β = x′β, Z ′γ = z′γ] = P (U ≤ αD + z′γ, ε ≤ αY + x′β + δ)

and
E[(1−D)Y |X ′β = x′β, Z ′γ = z′γ] = P (U > αD + z′γ, ε ≤ αY + x′β).

Next, consider two observations, one with characteristics (x′β, z′γ) and the other with characteristics
(x̃′β, z′γ). Suppose Z ′γ is changed from an initial level of s1z to a new level, s2z, for both of these
observations. In the graph below, the increase in the probability that D = 1 and Y = 1 conditional on
the exogenous covariates for the first observation (the one with characteristics equal x) is represented
by the horizontally shaded region. Mathematically, this change equals

E[DY |X ′β = x′β, Z ′γ = s2z]− E[DY |X ′β = x′β, Z ′γ = s1z]

= P
(
U ∈ (s1z + αD, s

2
z + αD]

)
P
(
ε ≤ x′β + δ + αY |U ∈ (s1z + αD, s

2
z + αD]

)
. (4)

7Note that if γ̃ = cγ, for some c ∈ R \ {0}, the sigma algebra generated by (X ′, Z′γ) will be the same as the sigma
algebra generated by (X ′, Z′γ̃) so that E[Y |X,Z′γ] = E[Y |X,Z′γ̃].
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On the other hand, for the second observation, the change in the probability that D = 0 and Y = 1
conditional on the exogenous variables is represented by the vertically shaded region. We can express
the decrease in this probability as

E[(1−D)Y |X ′β = x̃′β, Z ′γ = s2z]− E[DY |X ′β = x̃′β, Z ′γ = s1z]

= −P
(
U ∈ (s1z + αD, s

2
z + αD]

)
P
(
ε ≤ x̃′β + αY |U ∈ (s1z + αD, s

2
z + αD]

)
. (5)

6
U + αD

- ε+ αY�

?

s1z

s2z

x̃′β x′β + δ

By assumption (A-2) these two changes exactly offset each other if and only if x̃′β = x′β + δ. Further-
more, since the left hand sides of equations (4) and (5) can be evaluated from the data a.e. with respect
to the joint distribution of (X ′β, Z ′γ), we can identify such pairs of observations.

Intuitively, if Z ′γ changes from s1z to s2z, and X
′β remains constant, this change effects Y through

a change in D only. Thus, if for two different covariate levels, x′β and x̃′β, it is the case that

E[DY |Z ′γ = s2z, X
′β = x′β]− E[DY |Z ′γ = s1z, X

′β = x′β]

+ E[(1−D)Y |Z ′γ = s2z, X
′β = x̃′β]−E[(1−D)Y |Z ′γ = s1z, X

′β = x̃′β] = 0,

then the change in covariate levels from x′β to x̃′β must exactly offset the effect of the change in D.
Finding such observations, however, requires that the intersection of the supports of (Z ′γ,X ′β) and
(Z ′γ,X ′β+ δ) is nonempty, and that X ′β can be varied exogenously while holding Z ′γ constant. These
are guaranteed by assumptions (A-3) and (A-4).

Conditional on knowing γ and β (or having a method to consistently estimate them) identification
of δ requires a weaker version of assumption (A-3). In particular, δ could be identified and estimated if
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Z ′γ is discrete.8 The stronger version of assumption (A-3) was made for the estimation of β.
We conclude this section with a remark on scale normalization on the parameters. Let a1 > 0, a2 > 0.

Then

Y = 1{αY +X ′β + δD − ε ≥ 0} = 1{αY a2 +X ′βa2 + δa2D − εa2 ≥ 0} = 1{αaY +X ′βa + δaD − εa ≥ 0},
D = 1{αD + Z ′γ − U ≥ 0} = 1{αDa1 + Z ′γa1 − Ua1 ≥ 0} = 1{αaD + Z ′γa − Ua ≥ 0}.

Moreover,

E[DY |Z ′γ = s2z, X
′β = x′β]− E[DY |Z ′γ = s1z, X

′β = x′β]

+ E[(1−D)Y |Z ′γ = s2z, X
′β = x̃′β]− E[(1−D)Y |Z ′γ = s1z, X

′β = x̃′β] = 0

⇔ E[DY |Z ′γa = s2za1, X
′βa = x′βa2]−

(
E[DY |Z ′γa = s1za1, X

′βa = x′βa2]

+ E[(1−D)Y |Z ′γa = s2za1, X
′βa = x̃′βa2]− E[(1−D)Y |Z ′γa = s1za1, X

′βa = x̃′βa2]
)
= 0,

and if one of these equations holds then δ = x̃′β − x′β ⇔ δa2 = x̃′βa2 − x′βa2. Thus, identification
of the coefficient of D is not affected by the scale normalization, and whatever scale normalization is
adopted for β is adopted for the outcome equation, and hence, for δ as well.

4.3 Identification of the remaining parameters:

If we assume FU is symmetric around 0, identification of αD follows from Chen (1999). If we assume
Fε is symmetric around 0 as well, then identification of αY follows from Chen (1999) once we note that
Fε(αY + t) = E[DY |Z ′γ = a,X ′β = t− δ] +E[(1−D)Y |Z ′γ = a,X ′β = t]. These arguments also show
that FU and Fε are identified. Finally, note that U and ε are independent if and only if

FU,ε(αD+a, αY +b) = E[DY |Z ′γ = a,X ′β = b−δ] = FU (αD+a)·Fε(αY +b) = E[D|Z ′γ = a]·Fε(αY +b)

= E[D|Z ′γ = a] ·
(
E[DY |Z ′γ = a,X ′β = b− δ] + E[(1−D)Y |Z ′γ = a,X ′β = b]

)
.

Thus, testing whether U and ε are independent can be done even if αD and αY are unknown.

5 Estimation:

5.1 Estimation of γ and β:

To estimate γ we could choose one of several methods available for estimation of the coefficients in
linear index models. Here we propose to use the method developed in Powell, Stock and Stoker (1989)
(PSS hereafter). The main reason for this is that this method delivers an easy-to-compute estimator

8For discrete X ′β, δ can be identified if there exist s1z, s
2
z, s

1
x, s

2
x values such that

E[DY |X ′β = s1x, Z
′γ = s2z]− E[DY |X ′β = s1x, Z

′γ = s1z]

+
(
E[(1−D)Y |X ′β = s2x, Z

′γ = s2z]− E[(1−D)Y |X ′β = s2x, Z
′γ = s1z]

)
= 0.

In that case, δ would be identified as s2x − s1x just as in the continuous X ′β case. However, this seems to be a very special
situation.
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whose properties can be analyzed in a straightforward fashion. An additional advantage of this method
is that it uses a weighting scheme which puts low weight on observations that are drawn from parts of
the underlying population which have low likelihood. Define:

ˆ̃γ :=
−2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(
1

h1n

)dz+1 ∂Kz

∂u

(
Zi − Zj

h1n

)
(Di −Dj),

where Kz(u) is a kernel function satisfying the assumptions of PSS. Theorems 3.3 and 3.4 of PSS tell
us that if the data generating process satisfies certain regularity conditions and if the kernel function
and the bandwidth are suitably chosen then

√
n(ˆ̃γ− γ̃) will have an approximately normal distribution,

where γ̃ = −2E
(
D ∂fz(Z)

∂z

)
= E [fz(Z)fU (αD + Z ′γ)] γ. Since |γ3,d3 | = 1,

γ̂ =
ˆ̃γ

|ˆ̃γ3,d3 |
.

Since the method developed in PSS yields straightforward estimators for index coefficients, and since
β’s are index coefficients themselves, a natural approach for estimating β is to try to extend this method
to develop a simple estimator for β. As in the previous section, we have

∂E[Y |Z ′γ̃ = t,X = x]

∂x
=

[
∂P (Ũ ≤ αD + t, ε ≤ αY + x′β + δ)

∂(x′β)
+
∂P (Ũ > αD + t, ε ≤ αY + x′β)

∂(x′β)

]
β,

where Ũ = E [fz(Z)fU (αD + Z ′γ)]U = γ̃3,d3U . The vector ∂E[Y |Z ′γ̃ = t,X = x]/∂x will remain to
be proportional to the vector β if we multiply it by a positive weight which may depend on the point
(x, t). The density, fx,zγ̃ , of (X,Z

′γ̃) will prove to be a convenient weighting function. These arguments
indicate that the methods of PSS are applicable to the estimation of β; however, there is one important
distinction here: since we do not know the value of γ̃, we need to replace it by an estimated value, and
when we construct our estimator of β we have to take this fact into account. Thus, in the following, we
follow the same steps as in PSS to derive an estimator. The estimator we get as a result of this process
will be infeasible. To make this estimator feasible, we then replace the unknown γ̃ parameter with its
estimated value from the first stage.

To proceed with the estimation of β, let ψ(x, t) := E[Y |X = x,Z ′γ̃ = t] and dx := d1 + d2. Lemma
2.1 of PSS implies that under assumptions (C-1)-(C-3) given in Appendix (B.1),

β̃ := E

(
fx,z′γ̃

∂ψ

∂x

)
= −2E

(
Y
∂fx,z′γ̃
∂x

)
.

We can use the sample version of the last expression to estimate β. Picking a symmetric kernel and
using the kernel density estimator to estimate fx,z′γ̃ , we propose the following as our estimator for β:

ˆ̃
β(F ) :=

−2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(
1

h2n

)dx+2 ∂Kx,t

∂x

(
(X ′

i, Z
′
iγ̂)

′ − (Xj , Z
′
j γ̂)

′

h2n

)
[Yi − Yj ], (6)

where

ˆ̃
β(Inf) :=

−2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

(
1

h2n

)dx+2 ∂Kx,t

∂x

(
(X ′

i, Z
′
iγ̃)

′ − (Xj , Z
′
j γ̃)

′

h2n

)
[Yi − Yj ]. (7)
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To analyze the asymptotic behavior of this estimator, consider

√
n
(
ˆ̃
β(F ) − β̃

)
=

√
n
(
ˆ̃
β(F ) − ˆ̃

β(Inf)
)
+

√
n
(
ˆ̃
β(Inf) − β̃

)
. (8)

From the analysis of PSS, we know that the second piece of the expression on the right hand side is
asymptotically normal at rate

√
n:

Lemma 5.1 Suppose assumptions (C-1)-(C-6) given in Appendix (B.1) hold. If h2n obeys nhdx+3
2n → ∞

and nh
2sx,t
n → 0 as n→ ∞, then

√
n(

ˆ̃
β(Inf) − β̃)

d⇒ N
(
0,Σβ̃

)
,

where Σβ̃ := 4E[rβ̃(Xi, Z
′
iγ̃)rβ̃(Xi, Z

′
iγ̃)

′]− 4β̃β̃′, and

rβ̃(Xi, Z
′
iγ̃) := fx,z′γ̃(Xi, Z

′
iγ̃)

∂ψ(Xi, Z
′
iγ̃)

∂x
− [Yi − ψ(Xi, Z

′
iγ̃)]

∂fx,z′γ̃(Xi, Z
′
iγ̃)

∂x
.

The above result is a restatement of Theorem 3.3 of Powell, Stock and Stoker (1989). This result,

however, gives us only part of the information that we need to analyze the asymptotic behavior of
ˆ̃
β(F ).

To understand the asymptotic behavior of
ˆ̃
β(F ) fully we also need to study the asymptotic behavior of

√
n
(
ˆ̃
β(F ) − ˆ̃

β(Inf)
)
. Using the definitions of

ˆ̃
β(F ) and

ˆ̃
β(Inf), we can write this term as

√
n
(
ˆ̃
β(F ) − ˆ̃

β(Inf)
)
=

n−1∑
i=1

n∑
j=i+1

−2(Yi − Yj)√
n(n− 1)hdx+2

2n

{
∂Kx,t

∂x

(
(X ′

i, Z
′
i
ˆ̃γ)′ − (Xj , Z

′
j
ˆ̃γ)′

h2n

)

− ∂Kx,t

∂x

(
(X ′

i, Z
′
iγ̃)

′ − (Xj , Z
′
j γ̃)

′

h2n

)}
.

Assuming that Kx,t(x, t) = Kx(x)Kt(t),

√
n
(
ˆ̃
β(F ) − ˆ̃

β(Inf)
)
=
∑

i,j ̸=i
−2Yi√

n(n−1)hdx+2
2n

∂Kx
∂x

(
Xi−Xj

h2n

){
Kt

(
Z′
i
ˆ̃γ−Z′

j
ˆ̃γ

h2n

)
−Kt

(
Z′
iγ̃−Z′

j γ̃

h2n

)}
.

If Kt is continuously differentiable the Mean Value Theorem implies that this last expression equals

dz∑
l=1

√
n
(
ˆ̃γl − γ̃l

)∑
i,j ̸=i

−2(Zil − Zjl)Yi

n(n− 1)hdx+3
2n

∂Kx

∂x

(
Xi −Xj

h2n

)
K ′

t

(
Z ′
iξ̂ − Z ′

j ξ̂

h2n

)
, (9)

for some ξ̂ between ˆ̃γ and γ̃.
In Appendix (B) we analyze the asymptotic behavior of

∑
i

∑
j ̸=i

−2(Zil − Zjl)Yi

n(n− 1)hdx+3
2n

∂Kx

∂x

(
Xi −Xj

h2n

)
K ′

t

(
Z ′
iξ̂ − Z ′

j ξ̂

h2n

)
.

That analysis is done under the following assumptions:
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(C-7) Kxt(x, z
′γ̃) = Kx(x)Kt(z

′γ̃). The first and second derivatives of Kxt are bounded.

(C-8) Define, s̃xt := max {5, sxt}. Replace sxt in assumptions [(C-5)] and [(C-6)] by s̃xt. Assume that
nh82n → ∞, and nh2s̃xt2n → 0.

(C-9) Define φ2(x, t) := E(||Z||2|X = x,Z ′γ̃ = t). There exists an integrable function m̃2(x, t) such
that, ∣∣∣∣φ2(x+ sx, t+ st)fxz′γ̃(x+ sx, t+ st)− φ2(x, t)fxz′γ̃(x, t)

∣∣∣∣ < m̃2(x, t)||s||.

Assumption (c-8) requires that nh82n → ∞ even when dx = 1, and this is stringent. This could be
relaxed to requiring nh52n → ∞ at the cost of assuming E∥Z∥3 <∞ and imposing a Lipschitz condition
on E(||Z||3|X = x,Z ′γ̃ = t).

Lemma 5.2 Under assumptions (C-1) through (C-9), for each l = {1, ..., dz}

∑
i

∑
j ̸=i

−2(Zil − Zjl)Yi

n(n− 1)hdx+3
2n

∂Kx

∂x

(
Xi −Xj

h2n

)
K ′

t

(
Z ′
iξ̂ − Z ′

j ξ̂

h2n

)

=
∑
i

∑
j ̸=i

−2(Zil − Zjl)Yi

n(n− 1)hdx+3
2n

∂Kx

∂x

(
Xi −Xj

h2n

)
K ′

t

(
Z ′
iγ̃ − Z ′

j γ̃

h2n

)
+ oP (1) =: Ĉl + oP (1). (10)

The proof of this theorem is given in Appendix (B). Next, we turn to the double summation on the
right hand side of (10). For the moment suppose that this term has finite expectation. To analyze this
term we will appeal to Lemma 3.1 of PSS. To make this application clearer it is helpful to first add and
subtract its expectation and define

pβγn (i, j) =
(Zil − Zjl)(Yi − Yj)

hdx+2
2n

∂Kx

∂x

(
Xi −Xj

h2n

)
K ′

t

(
Z ′
iγ̃ − Z ′

j γ̃

h2n

)
.

so that the last summation in (5.2) equals

− 2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

{pβγn (i, j)− E[pβγn (i, j)]} − 2E[pβγn (i, j)]. (11)

To verify that E[||pβn(i, j)||2] = o(n), recall that φ2(Xi, Z
′
iγ̃) := E(||Zi − Zj ||2|Xi, Z

′
iγ̃). Then

E

∣∣∣∣∣
∣∣∣∣∣(Zil − Zjl)(Yi − Yj)

hdx+2
2n

∂Kx

∂x

(
Xi −Xj

h2n

)
K ′

t

(
Z ′
iγ̃ − Z ′

j γ̃

h2n

)∣∣∣∣∣
∣∣∣∣∣
2

≤

∫ ∫ ∣∣∣∣∣∣∣∣∂Kx

∂x

(
Xi −Xj

h2n

)∣∣∣∣∣∣∣∣2 φ2(Xi, Z
′
iγ̃)

h2dx+4
2n

[
K ′

t

(
Z ′
iγ̃ − Z ′

j γ̃

h2n

)]2
× fxz′γ̃(Xi, Z

′
iγ̃)fxz′γ̃(Xj , Z

′
j γ̃)dXid(Z

′
iγ̃)dXjd(Z

′
j γ̃) = O(hdx+3

2n ). (12)
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Since nhdx+3
2n → ∞, the condition required for the application of the PSS lemma is satisfied. Thus, the

first term in (11) equals

− 2

n

n∑
i=1

{
E
[
pβγn (i, j)|Xi, Zi, Di, Yi

]
−E

[
pβγn (i, j)

]}
+ oP (1). (13)

To deal with this last summation, we appeal to Chebyshev’s Law of Large Numbers. To apply this
result, we need to verify that the sum of the variances of all the terms is o(n2). Each term of the
summation has mean 0. Inequality (12) implies that the variance of each term in the summation is
O(hdx+3

2n ). Therefore, the condition of the Chebyshev’s Law of Large Numbers is satisfied and (13) is
oP (1).

So far we assumed that

E

[
(Zil − Zjl)Yi

hdx+3
2n

∂Kx

∂x

(
Xi −Xj

h2n

)
K ′

t

(
Z ′
iγ̃ − Z ′

j γ̃

h2n

)]
(14)

exists and remains finite as n→ ∞. As shown in the Supplementary Appendix, the following assumption
guarantees this is indeed the case:

(C-10) Define κl(x1, t1) := E
(
Z1l|X1 = x1, Z

′
1γ̃ = t1

)
. We require that for each (q1, q2) ∈ Z2

+, such
that q1 + q2 = 2, the following Lipschitz conditions are satisfied: For some integrable function
m̃κl

(x, t), m̃f,2(x, t) ∣∣∣∣∣∣∣∣∂2κl(x+ sx, t+ st)

∂xq1∂(z′γ̃)q2
− ∂2κl(x, t)

∂xq1∂(z′γ̃)q2

∣∣∣∣∣∣∣∣ ≤ m̃κl
(x, t)||s||,∣∣∣∣∣∣∣∣∂2fxz′γ̃(x+ sx, t+ st)

∂xq1∂(z′γ̃)q2
−
∂2fxz′γ̃(x, t)

∂xq1∂(z′γ̃)q2

∣∣∣∣∣∣∣∣ ≤ m̃f,2(x, t)||s||,

with E
[(
1+|κl(X,Z ′γ̃)|+∥(∂κl(X,Z′γ̃)

∂x , ∂κl(X,Z′γ̃)
∂(z′γ̃) )∥+m̃κl

(X,Z ′γ̃)
)
m̃f,2(X,Z

′γ̃)
]
<∞. In addition,

each element of the 1 × dx vector Cl := E
[
ψ
{
2κl

∂2fxz′γ̃
∂t∂x + ∂κl

∂t

∂fxz′γ̃
∂x + ∂κl

∂x

∂fxz′γ̃
∂t + ∂2κl

∂t∂xfxz′γ̃

}]
is

finite.

Finally, because the product of an OP (1) random variable with a random variable that is oP (1) is oP (1),
is asymptotically equivalent to

√
n(

ˆ̃
β(F ) − ˆ̃

β(Inf)) = (−2)

dz∑
l=1

√
n(ˆ̃γl − γ̃l)Cl + oP (1).

Theorem 5.1 Under assumptions (C-1)-(C-10),

√
n(

ˆ̃
β(F ) − β̃)

d⇒ N
(
0,Σ ˆ̃

β(F )

)
with Σ ˆ̃

β(F )
=
(
4E[rβ̃(X,Z

′γ̃)′rβ̃(X,Z
′γ̃)]− 4β̃β̃′

)
+ 4C ′(4E[rγ̃(Z)

′rγ̃(Z)]− 4γ̃γ̃′
)
C

− 4
(
E[2rβ̃(X,Z

′γ̃)′2rγ̃(Z)]− 4β̃γ̃′
)
C = Σβ̃ +4C ′Σγ̃C− 4Σβ̃γ̃C, where Σβ̃γ̃ is the asymptotic covariance

of
√
n(

ˆ̃
β(Inf) − β̃) and

√
n(ˆ̃γ − γ̃), and C is the dz × dx matrix whose lth-row equals Cl, where Cl is as

above.
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The proof of this result is given in Appendix (B). The proof uses results developed in this section as well
as results from PSS. In the same Appendix, we also discuss how Σ ˆ̃

β(F )
can be consistently estimated.

Finally, define

β̂ :=
ˆ̃
βF

| ˆ̃βFk∗ |
.

5.2 Estimation of δ:

Having shown that we can identify δ under our assumptions, we move on to its estimation. We will
break this task into smaller steps by first considering an infeasible estimator for δ and later developing
an estimator which takes into account that γ, β and the conditional expectation functions that are part
of the infeasible estimator are not exactly known, but are estimated.

By assumption (A-3), Z ′γ is a continuous random variable. For the estimation of δ it will be more
convenient to work with the derivatives of E[DY |X ′β = sx, Z

′γ = sz] and E[(1−D)Y |X ′β = sx, Z
′γ =

sz]. Under assumptions (A-1)-(A-3) these conditional expectation functions are differentiable in (sx, sz),
and their derivatives are also identified a.e. with respect to the joint distribution of (X ′β, Z ′γ). Define

g1(sz, sx) :=
∂

∂sz
E[DY |Z ′γ = sz, X

′β = sx] =

∫ sx+δ

−∞
fU,ε(sz, e)de,

g0(sz, sx) :=
∂

∂sz
E[(1−D)Y |Z ′γ = sz, X

′β = sx] = −
∫ sx

−∞
fU,ε(sz, e)de.

Our analysis above tells us that for any two observations i, j such that Z ′
iγ = Z ′

jγ, and

∂

∂sz
E[DiYi|X ′

iβ, Z
′
iγ] +

∂

∂sz
E[(1−Dj)Yj |X ′

jβ, Z
′
jγ] = 0,

we haveX ′
jβ−X ′

iβ = δ. As long as P
(
(Z ′γ,X ′β) ∈ S

)
> 0, with S := Supp(Z ′γ,X ′β)∩Supp(Z ′γ,X ′β+

δ), we will find such pairs of observations in our data with positive probability.
This identification information cannot be directly implemented as an estimation procedure. In the

first place, the parameters γ, β, g1 and g0 are unknown, so even if pairs of observations for which
Z ′
iγ = Z ′

jγ and g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ) = 0 existed in the sample, we would not be able to

determine precisely which pairs these were. Nevertheless, since

g̃(u, a) :=

∫ a

−∞
fU,ε(u, s)ds

is continuous in u, and g̃−1(u, g) is continuous for each u in its second argument, where g̃−1 denotes the
inverse of the g̃(u, g) function with respect to its second argument9, X ′

jβ −X ′
iβ will approximately be

δ whenever Z ′
iγ approximately equals Z ′

jγ, and

∂

∂sz
E[DiYi|X ′

iβ, Z
′
iγ] +

∂

∂sz
E[(1−Dj)Yj |X ′

jβ, Z
′
jγ]

9In other words, g̃−1(u, g̃(u, a)) = a.
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is approximately 0. To operationalize this idea, we need to specify precisely which approximations
are satisfactory. On the other hand, once we consider the differences in linear indices, that is (X ′

jβ −
X ′

iβ)’s, for pairs of observations where Z
′
jγ approximately equals Z ′

iγ and g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

is approximately 0 as acceptable, the possibility of having multiple such pairs of observations arises.
We resolve this issue by taking a weighted average of X ′

jβ −X ′
iβ, where the average is taken over pairs

of observations for which Z ′
iγ ≈ Z ′

jγ and g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ) ≈ 0,10 and the weights decline

as the sample size or the distance between
(
Z ′
iγ, g1(Z

′
iγ,X

′
iβ)
)
and

(
Z ′
jγ,−g0(Z ′

jγ,X
′
jβ)
)
gets large. A

convenient algebraic form for such a weight function is a kernel weight. The analysis thus far suggests
the following infeasible estimator:

δ̂(Inf) :=

∑
i

∑
j

1
h2
3n
k
(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
(Xj −Xi)

′β∑
i

∑
j

1
h2
3n
k
(
(Zi−Zj)′γ,g1(Z′

iγ,X
′
iβ)+g0(Z′

jγX
′
jβ)

h3n

) , (15)

where k is a known smooth function that integrates to 1, and {h3n} is a sequence of bandwidths which
tends to 0 as the sample size increases.

The numerator of this expression is a weighted sum of the differences of linear indices of observations
for which

(
Z ′
iγ, g1(Z

′
iγ,X

′
iβ)
)
and

(
Z ′
jγ,−g0(Z ′

jγ,X
′
jβ)
)
are close. Since the kernel function k(·) neces-

sarily declines to 0 as either of its arguments tends to infinity in magnitude, any pair of observations
for which

(
Z ′
iγ, g1(Z

′
iγ,X

′
iβ)
)
̸=
(
Z ′
jγ,−g0(Z ′

jγ,X
′
jβ)
)
will necessarily receive declining weight as the

sample size grows and the bandwidth shrinks to 0. At the same time, as we noted earlier, there might be

multiple pairs of observations for which k
(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
̸= 0, and when this happens

the numerator does not estimate δ, but a multiple of it. The denominator of the proposed estimator is
there to solve this problem.

As we will show later, the probability limit of the denominator equals

E[fz′γ,x′β(Z
′γ,X ′β + δ)].

If S has measure 0, this expectation will be zero. Identification of δ is made possible by observations
coming from the set where the supports of (Z ′γ,X ′β) and (Z ′γ,X ′β + δ) overlap. If this set has low
probability, the likelihood of having observations from this set will be small, and consequently any
reasonable estimator of δ that is based on the identification result presented here will tend to have a
large variance. This fact is reflected in our estimator through the inverse relation between the asymptotic
variance of our estimator and the probability of this set. In particular, if this set has zero probability,
the variance of our estimator will be infinite.

An alternative way of looking at the proposed estimator is to note that it equals the kernel regres-
sion estimator of the conditional expectation of X ′

jβ − X ′
iβ given Z ′

jγ − Z ′
iγ = 0 and g1(Z

′
iγ,X

′
iβ) +

g0(Z
′
jγ,X

′
jβ) = 0. This interpretation of the estimator may help us better understand its asymptotic

behavior.
As we already noted, the estimator proposed above is infeasible, because in reality we do not know

the values of γ, β, g1 and g0. Thus, to have a feasible estimator, we need to replace these with their
estimated counterparts. In the previous subsection, we devised estimators for γ and β. In addition, in
the appendix, we state assumptions under which local polynomial regression estimators of g1 and g0

10We use ≈ to mean “approximately equal“.
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are consistent. Note that to make these estimated functions uniformly consistent we need to trim out
those observations of (Z ′γ,X ′β) for which the value of the density fz′γ,x′β is low. Thus, the feasible
estimator we propose is

δ̂(F ) :=

∑
i

∑
j

1
h2
3n
k

(
(Zi−Zj)

′γ̂,ĝ1(Z′
iγ̂,X

′
iβ̂)+ĝ0(Z′

j γ̂,X
′
j β̂)

h3n

)
(Xj −Xi)

′β̂ÎiÎj∑
i

∑
j

1
h2
3n
k

(
(Zi−Zj)′γ̂,ĝ1(Z′

iγ̂,X
′
iβ̂)+ĝ0(Z′

j γ̂X
′
j β̂)

h3n

)
ÎiÎj

, (16)

where
Î := 1{f̂z′γ̂,x′β̂(z

′γ̂, x′β̂) ≥ q0, & (w1, w2, w3) ∈ [−Tn, Tn]d},

q0 is a pre-specified positive number, {Tn}∞n=1 is a sequence of real numbers which goes to infinity at
a slow rate, and (w1, w2, w3) denotes the values of distinct components of (x, z) so that (X ′β, Z ′γ) =
(W ′

1β1 +W ′
2β2,W

′
2γ2 +W ′

3γ3).
11 In addition,

f̂z′γ̂,x′β̂(z
′γ̂, x′β̂) =

1

nh̃2n

n∑
l=1

K̃

(
Z ′
l γ̂ − z′γ̂, X ′

l β̂ − x′β̂

h̃n

)
,

an ĝ1 and ĝ0 denote local polynomial regression estimators of g1 and g0 using the Z ′γ̂ and X ′β̂ as
regressors.

When the density of (Z ′γ,X ′β) is uniformly continuous, the set, {(sz, sx) : fz′γ,x′β(Z
′γ,X ′β) ≥ q0}

is compact for each q0 ≥ 0. Compactness of this set eases the analysis of terms that involve estimation
errors associated with g1 and g0 functions. To capture the whole set S we would ideally let q0 ↓ 0, or
use smooth trimming functions, which is left for future research. In analyzing the asymptotic behavior
of δ̂(F ) we rely on Mean Value Theorem and the fact that γ̂ and β̂ are consistent for their population
counterparts and are

√
n-normal. When we use the Mean Value Theorem we end up with components

of Wi,Wj in our summations. Restricting W to lie in d dimensional rectangle of size Tn initially and
then letting Tn go to ∞ greatly simplifies the asymptotic analysis. If T1 is chosen to be a very large
number then this approach will have a negligible effect on our estimator even in small samples. In
addition, this way we can avoid assuming that W has bounded support.

To derive the asymptotic distribution of
√
n
(
δ̂(F ) − δ

)
we impose some regularity conditions in

addition to the identification assumptions we have imposed so far. For identification we had to assume
probability of the set S is larger than 0. For estimation we had to use trimming functions. Thus the
identification assumption has to be strengthened to

Assumption 5.1 P
(
(Z ′γ,X ′β) ∈ S ∩ T

)
> 0, where S is as previously defined, and

T = {(sz, sx) : fz′γ,x′β(sz, sx) ≥ q0, fz′γ,x′β(sz, sx + δ) ≥ q0}.

Analysis of the asymptotic behavior for the estimator for δ will be done assuming we have well behaved
estimators of γ and β in the following sense:

11Note that if (W1,W2,W3) have a joint density and the matrix

[
β′
1 β′

2 0
0 γ′

1 γ′
2

]
has rank 2, then (X ′β, Z′γ) will also

have a joint density. Moreover, if (β′
1, β

′
2, 0)

′ and (0, γ′
1, γ

′
2)

′ are linearly independent then so will (β̂′
1, β̂

′
2, 0) and (0, γ̂′

1, γ̂
′
2)

for sufficiently large n with probability close to 1.
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Assumption 5.2 We have estimators, γ̂ and β̂, of γ and β respectively, such that
√
n
(
γ̂ − γ

)
=

1√
n

∑n
i=1 ψ

γ
i + oP (1) and

√
n
(
β̂ − β

)
= 1√

n

∑n
i=1 ψ

γ
i + oP (1).

The analysis in the previous sections shows that this assumption holds under some mild regularity
conditions. The next assumption imposes regularity conditions on the density of (Z ′γ,X ′β), which we
use to ensure that using trimming functions based on f̂z′γ̂,x′β̂(z

′γ̂, x′β̂) as opposed to fz′γ,x′β(z
′γ, x′β)

has no effect on the asymptotic distribution of δ̂(F ).

Assumption 5.3

(a) fz′γ,x′β is uniformly continuous and bounded on R2.

(b) K̃ is a compactly supported differentiable function (w.l.o.g. its support can be assumed to be
contained in the unit cube of R2) with

∫
R2 K(u)du = 1. Moreover, K̃ is in the linear span of

functions υ ≥ 0 satisfying the following property: the subgraph of υ, {(u, t) : υ(u) ≥ t}, can be
represented as a finite number of Boolean operations among sets of the form {(u, t) : p(s, t) ≥ φ(t)},
where p is a polynomial on R2 × R and φ is an arbitrary real function.

(c) Partial derivatives of fz′γ,x′β up to order 3 exist, the third order partial derivatives are Hölder
continuous, and

∫
R2 u

p
zu

q
xK(u)du = 0 for p, q ≥ 0 and 1 ≤ p+ q ≤ 2.

(d) (i) h̃n ↓ 0, (ii) nh̃2
n

| log h̃n|
→ ∞, (iii) | log h̃n|

log logn → ∞, (iv) Tn ↑ ∞, (v) Tn√
nh̃3

n
→ 0 and (vi)

√
nh̃4n ↓ 0.

(e) q0 > 0, and for each (sz, sx) ∈ R := {(s′z, s′x) : fz′γ,x′β(s
′
z, s

′
x) = q0} ̸= ∅,∥∥∥(∂fz′γ,x′β(sz ,sx)

∂sz
,
∂fz′γ,x′β(sz ,sx)

∂sx

)∥∥∥ > 0.

Even though the condition that K̃ is in the linear span of certain functions “seems awkward it is quite
general.” For example it “is satisfied by K̃(u) = ϕ(p(u)), p being a polynomial and ϕ” a continuous,
compactly supported, real function, or “if the graph of K̃ is a pyramid (truncated or not), or if K̃ =
1{[−1, 1]2}.” (p. 911 of Gine and Guillou (2002).) Under assumptions 5.3a, b, d Theorem 3.3 of Gine
and Guillou (2002) implies that√

nh̃2n

2 log h̃−2
n

sup
(z′γ,x′β)∈R2

|f̂z′γ,x′β(z
′γ, x′β)− fz′γ,x′β(z

′γ, x′β)| = oP (1). (17)

Also under the same assumptions, by Mean Value Theorem we have

sup
(z′γ,x′β)∈A∗

∣∣∣∣∣ 1

nh̃2n

n∑
i=1

K̃

(
Z ′
iγ̂ − z′γ̂, X ′

iβ̂ − x′β̂

h̃n

)
− f̂z′γ,x′β(z

′γ, x′β)

∣∣∣∣∣ = oP (1), (18)

where A
∗
:= {(sz, sx) ∈ Rd : fZ′γ,X′β(sz, sx) ≥ q0 − ϵ∗f}, with ϵ∗f > 0 chosen such that for each (sz, sx)

with fz′γ,x′β(s
′
z, s

′
x) ∈ [q0 − ϵ∗f , q0 + ϵ∗f ],

∥∥∥(∂fz′γ,x′β(sz ,sx)

∂sz
,
∂fz′γ,x′β(sz ,sx)

∂sx

)∥∥∥ > 0.

Next, we impose regularity conditions that help us control the asymptotic behavior of ĝ1(Z
′γ̂, X ′β̂)

and ĝ0(Z
′γ̂, X ′β̂). Here we use local polynomial regression estimators for these functions, but obviously

other estimators for these functions could be used as well. Note that for r = 0, 1

ĝr(Z
′γ̂, X ′β̂)− ĝr(Z

′γ,X ′β) + ĝr(Z
′γ,X ′β)− gr(Z

′γ,X ′β).
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To control the behavior of the first term we are going to rely on Mean Value Theorem. To control the
asymptotic behavior of the second term above we need to impose conditions so that the local polynomial
estimators are well behaved.

Assumption 5.4 For r = 0, 1,

(a) {hgrn} satisfies nh3grn/ log n→ ∞ and nh
2(pgr−1)
grn → cgr <∞ for some cgr ≥ 0, and pgr > 3.

(b) Kernel function Kgr(·) is a symmetric, continuously differentiable and compactly supported func-
tion with Hölder continuous derivative. It has moments of order p + 1 through pgr − 1 that are
equal to zero.

(c) P (D = 1) ∈ (0, 1).

(d) The probability density function fU,ε is four times continuously differentiable. 12

Under these assumptions, following arguments similar to those used in the proof of Theorem 3 of
Heckman, Ichimura and Todd (1998), we can show that for r = 0, 1, ĝr(sz, sx) is asymptotically linear
with trimming:

[
ĝr(z

′γ, x′β)− gr(z
′γ, x′β)

]
I(z′γ, x′β) = n−1

n∑
j=1

ψngr(Dj , Yj , Z
′
jγ,X

′
jβ; z

′γ, x′β)

+ b̂ĝr(z
′γ, x′β) + R̂ĝr(z

′γ, x′β),

with plimn→∞
1√
n

∑n
j=1 b̂ĝr(Z

′
jγ,X

′
jβ) = bgr <∞, plimn→∞

1√
n

∑n
j=1 R̂ĝr(Z

′
jγ,X

′
jβ) = 0, and

E[ψngr(Dj , Yj , Z
′
jγ,X

′
jβ; z

′γ, x′β)|X ′β, Z ′γ] = 0. We analyze the asymptotic behavior of numerator

of δ̂(F ) in multiple steps by replacing estimated quantities with their population counterparts. For
example, in one of the steps, we study the asymptotic behavior of

∑
i

∑
j

(Xj−Xi)
′β̂ÎiÎj√

n(n−1)h23n

[
k

(
(Zi−Zj)

′γ̂,ĝ1(Z
′
iγ̂,X

′
iβ̂)+ĝ0(Z

′
j γ̂,X

′
j β̂)

h3n

)
−k

(
(Zi−Zj)

′γ,g1(Z
′
iγ,X

′
iβ)+ĝ0(Z

′
jγ,X

′
jβ)

h3n

)]
.

We assume that γ̂ and β̂ are asymptotically linear at rate
√
n. In addition, under Assumption (5.3)

we know the uniform convergence rate of the estimated density to the actual one. In addition, part (e)
of that assumption allows us to convert this convergence rate to the convergence rate of the estimated
trimming function to its population counterpart. To deal with the term above we also need to know
something about how fast ĝr(z

′γ, x′β) converges to gr(z
′γ, x′β). For this purpose we assume:

Assumption 5.5 {an}∞n=1 is an increasing sequence of numbers diverging to infinity and satisfies
√
n

a2nh
4
3n

→ c <∞,
nh4

grn

a2n logn
→ ∞, and Tnan√

n
→ 0.

12What we really need is that g̃−1 is p̃g times continuously differentiable with p̃g ≥ 5. But using the Implicit Function

Theorem, we can write ∂g̃−1(sz ,g)
∂g

= 1
fUε(sz,g̃

−1(sz ,g))
and ∂g̃−1(sz,g)

∂sz
=

∫ g̃−1(sz,g)
−∞

∂fUε(sz,t)
∂sz

dt

fUε(sz,g̃
−1(sz,g))

. Thus our assumption suffices

for the desired condition.
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Using the asymptotic linearity of ĝr and modifying the proof of Lemma 5 of Heckman, Ichimura and
Todd (1998), we have13

sup
(sz ,sx)∈A

∗
an|ĝr(sz, sx)− gr(sz, sx)|

P→ 0. (19)

Finally, we need to impose some conditions on the kernel k and on the relative convergence rates of h̃n,
h3n and Tn.

Assumption 5.6
√
nh53n → 0, Tnh3n → 0 and T 2

n

nh2
3nh̃

2
n
log
(

1
h̃2
n

)
→ 0.

Assumption 5.7 k is symmetric, has compact support and is five times continuously differentiable. In
addition,

∫
k(uz, ug)duzdug = 1, and for p ≥ 1, r ≥ 1, 1 ≤ p+ r ≤ 4,

∫
upzurgk(uz, ug)duzdug = 0.

Theorem 5.2 Under Assumptions (A-0)-(A-4) and (5.1)-(5.7)

√
n
(
δ̂(F ) − δ

)
=

1

E[fz′γ,x′β(Z ′γ,X ′β + δ)1{(Z ′γ,X ′β) ∈ S ∩ T }]

[
1√
n

n∑
i=1

ψδ(Z ′
iγ,X

′
iβ) + b

]
+ oP (1).

(20)

The proof of this result consists of multiple steps where at each step we analyze the effect of having
an estimated quantity, as opposed to its population counterpart. Appendix (A) gives the proof. This
proof heavily relies on results presented in Heckman, Ichimura and Todd (1998).

The bias, b, has two terms resulting from the fact that g1 and g0 are estimated by local polynomial
regression. Specifically, b can be estimated as

1√
n

n∑
i=1

[
ˆ̃
bg1(Z

′
iγ̂, X

′
iβ̂) +

ˆ̃
bg0(Z

′
iγ̂, X

′
iβ̂)]λ̂(Z

′
iγ̂, X

′
iβ̂),

where

λ̂n(sz, sx) :=

n−1∑
l=1

[X ′
l β̂ − sx − δ]Il
(n− 1)h33n

k2

(
sz − Z ′

lγ, g1(sz, sx) + g0(Z
′
l γ̂, X

′
l β̂)

h3n

)
,

and

ˆ̃
bgr (Z

′
iγ̂,X

′
iβ̂)=hp−1

gn e2[M̂pn(Z′
iγ̂,X

′
iβ̂)]

−1
∑p

k=p+1

[∫
uQ(0)·uQ(k)m̂

(k)
r (Z′

iγ̂,X
′
iβ̂)

′·uQ(p−k)Kg(u)du

,...,
∫
uQ(p)·uQ(k)m̂

(k)
r (Z′

iγ̂,X
′
iβ̂)

′·uQ(p−k)Kg(u)du

]
f̂
(p−k)

z′γ̂,x′β̂
(Z′

iγ̂,X
′
iβ̂)Î(Z

′
iγ̂,X

′
iβ̂),

with m̂
(k)
1 (sz, sx) and m̂

(k)
0 (sz, sx) denoting estimators for kth order partial derivatives of E[DY |Z ′γ =

sz, X
′β = sx] and E[(1−D)Y |Z ′γ = sz, X

′β = sx] evaluated at (sz, sx), respectively, and f̂
(p−k)

z′γ̂,x′β̂
(sz, sx)

denoting an estimator for the vector of (p − k)th order partial derivatives of the density of (Z ′γ,X ′β)
evaluated at (sz, sx), and M̂pn and uQ(s) are as on page 284 of Heckman, Ichimura and Todd (1998).

13This is shown in the supplementary appendix.
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The definition of ψδ is given in Appendix A.3. The same Appendix also outlines how the variance
of ψδ can be estimated. The fact that γ, β, g0 and g1 have to be estimated manifests itself in ψδ

and b. Specifically, γ̂ appears in three places in the numerator of our estimator, and there are three
terms multiplying 1√

n

∑
i ψ

γ
i reflecting these three sources of additional variability caused by having to

estimate γ. Similarly, β̂ appears in three places in the numerator of our estimator, and, as a result,
there are three terms multiplying 1√

n

∑
i ψ

β
i . Then there are two additional terms in ψδ representing

the additional variability caused by the fact that the g1 and g0 functions have to be estimated. The
infeasible estimator does not show up in ψδ at all. This seems surprising at first, but a closer look at
how δ is identified helps us understand this fact. Recall that δ = X ′

jβ −X ′
iβ if and only if Z ′

iγ = Z ′
iγ

and g1i + g0j = 0. As a reflection of this fact, our infeasible estimator can be thought of as a kernel
regression estimator of v, an n(n−1)×1 dimensional vector, on ω, an n(n−1)×2 dimensional vector, at
ω = 0, with each vl corresponding to some X ′

jβ−X ′
iβ and each ωl corresponding to (Z ′

iγ−Z ′
jγ, g1i+g0j)

(with the same i, j). Normally, when one takes the conditional expectation of a random variable given
some other random vector there is a residual which is not degenerate, i.e. normally one would have
v = m(ω) + r, where m(ω) = E(v|ω) and E(r|ω) = 0. In our case, however, E(v|ω = 0) = δ, which is
constant. Thus, there is no remaining variation once conditional expectation of v is taken conditional
on ω = 0. So when we kill the bias of the infeasible estimator we also kill its variance.

This paper used estimation procedures that rely on kernels which employ different bandwidths that
go to 0 as the sample size increases. The dependence of the estimators on these bandwidths raises
the issue of how to select these bandwidths. The existing results on optimal bandwidth selection are
not readily applicable to our problem. One reason is because the existing results are not for multiple
step estimation methods with this many steps. Second, when one tries to optimize some type of mean
squared error with respect to the bandwidth choices then the optimal bandwidth choice often depends
on quantities that are unknown. A common way of estimating such quantities is cross validation, which
involves replacing these unknown quantities with their corresponding leave-one-out estimators. Since
leave-one-out estimator is a random variable, the optimal bandwidth resulting from this procedure will
also be a random variable. The results given in our paper, however, are for fixed bandwidth sequences
and, as a result, do not exactly cover cross-validation procedure. The third problem we face is that the
existing results use some form of integrated squared error as their optimality criterion as these results are
often for an estimator of a conditional mean function or its derivatives. Consequently, one might try to
choose the bandwidth so that the estimator is close to its population value over the whole range of values
of the conditioning variables take in the sample. In our case, the estimator for δ, the main parameter
of interest, equals E[X ′

jβ − X ′
iβ|(X ′

iβ, Z
′
iγ) ∈ S], where S = Supp(Z ′γ,X ′β) ∩ Supp(Z ′γ,X ′β + δ) =

Supp(Z ′γ, g0) ∩ Supp(Z ′γ, g1). Thus, the criterion function for choosing the optimal bandwidth vector
in our case should also depend on the required support condition and will be more complicated than an
unconditional integrated square error.

Chen and Vytlacil (2005) studies a nonlinear panel data model with lagged dependent variables.
Their two period model with (their) δ2 = 0 is identical to the model studied here. The aim of their paper
is to provide sieve minimum distance and sieve maximum likelihood estimators that are

√
n-consistent,

asymptotically normal and efficient under regularity conditions. In its current form, that paper assumes
that there is a component in X with R as its support, so that the identification conditions are converted
into simple moment conditions. The paper then uses copula methods to derive an estimator which
exploits these moment conditions. We conjecture that the asymptotic variance of our estimator is
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larger than that of the efficient estimators as we only incorporated into our estimator two out of
the three moment conditions that Chen and Vytlacil will develop; our estimator does not use the
information contained in the observations for which Y = 0. One could modify our estimation method
by first considering an alternative estimator that is based on the changes in E[D(1− Y )|Z ′γ,X ′β] and
E[(1 − D)(1 − Y )|Z ′γ,X ′β] that occur as a result of a change in Z ′γ, and then take an optimally
weighted average of our estimator and this alternative estimator. This is left for future research.

6 Conclusion:

This paper proposed a new semiparametric estimation method for estimating binary response models
with dummy endogenous variables. In outlining this method, the paper made two contributions. First, it
presented an identification result for the problem of estimating binary choice models with an endogenous
dummy regressor and also proposed a novel “matching” estimator for the coefficient on the binary
endogenous variable in the outcome equation. Second, in order to establish the asymptotic properties
of the proposed estimators of the coefficients on the exogenous regressors in the outcome equation the
chapter extended the results of PSS to cover the case where the weighted average derivative estimation
requires a first step semiparametric procedure.

In studying the estimation of binary response models with binary endogenous variables, here we
focused on the case where the binary endogenous regressor has a constant effect in addition to the
effect of the exogenous characteristics. A natural extension to this paper would be allowing the binary
endogenous regressor to interact with the exogenous regressors, while keeping the linear index structure.
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A Asymptotic behavior of δ̂(F ):

In this appendix, we study the asymptotic behavior of δ̂(F ) and prove theorem 5.2. For notational
simplicity, we will omit the superscript (F ) from both β̂ and δ̂ since these are easily understood to be
feasible estimators of the corresponding population parameters. Also, throughout the Appendix we will
use Dρ to denote the gradient of the function ρ : Rm → R. In addition, throughout the Appendix ϵf
will be a strictly positive number smaller than of equal to ϵ∗f .

√
n
(
δ̂ − δ

)
=

1√
n(n−1)

∑
i

∑
j ̸=i

[(Xj−Xi)
′β̂−δ]ÎiÎj

h2
3n

k

(
(Zi−Zj)

′γ̂,ĝ1(Z′
iγ̂,X

′
iβ̂)+ĝ0(Z′

j γ̂,X
′
j β̂)

h3n

)
1

n(n−1)

∑
i

∑
j ̸=i

1
h2
3n
k

(
(Zi−Zj)′γ̂,ĝ1(Z′

iγ̂,X
′
iβ̂)+ĝ0(Z′

j γ̂,X
′
j β̂)

h3n

)
ÎiÎj

A.1 The Numerator:

First consider the numerator of this expression:

1√
n(n−1)

∑
i

∑
j ̸=i

1
h2
3n
k

(
(Zi−Zj)

′γ̂,ĝ1(Z′
iγ̂,X

′
iβ̂)+ĝ0(Z′

j γ̂,X
′
j β̂)

h3n

)
[(Xj −Xi)

′β̂ − δ]ÎiÎj

= 1√
n(n−1)

∑
i

∑
j ̸=i

1
h2
3n
k
(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
(Xj −Xi)

′(β̂ − β)ÎiÎj (21)

+ 1√
n(n−1)

∑
i

∑
j ̸=i

1
h2
3n
k
(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
[(Xj −Xi)

′β − δ]ÎiÎj (22)

+ 1√
n(n−1)

∑
i

∑
j ̸=i

1
h2
3n

[
k

(
(Zi−Zj)

′γ̂,ĝ1(Z′
iγ̂,X

′
iβ̂)+ĝ0(Z′

j γ̂,X
′
j β̂)

h3n

)
−k
(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)]
[(Xj −Xi)

′β̂ − δ]ÎiÎj (23)

We will analyze each expression on the right hand side separately.

A.1.1 Analysis of (21):

We first show that

∑
i

∑
j ̸=i

(Xjm −Xim)

n(n− 1)h23n
k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
ÎiÎj =

∑
i

∑
j ̸=i

(Xjm −Xim)

n(n− 1)h23n
k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
IiIj + oP (1). (24)

To do this we first note that∣∣∣∣∣∣
∑
i

∑
j ̸=i

(Xjm −Xim)

n(n− 1)h23n
k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
(ÎiÎj − IiIj)

∣∣∣∣∣∣ ≤∑
i

∑
j ̸=i

2Tn
n(n− 1)h23n

∣∣∣∣k( (Zi − Zj)
′γ, g1(Z

′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
[(Îi − Ii]Îj + Ii(Îj − Ij)]

∣∣∣∣ (25)
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To show that (25) is oP (1), for ϵfn ≤ ϵ∗f we define

Hn := {fn : sup{|fn(z′γ, x′β)− fz′γ,x′β(z
′γ, x′β)| ≤ ϵfn : w ∈ [−Tn, Tn]d}

In := {1{Ã}1{s ∈ [−Tn, Tn]d} : Ã = {(a, b) : f(a, b) ≥ q0}, f ∈ Hn}.

Let

A := {(a, b) : fz′γ,x′β(a, b) ≥ q0 − ϵfn},
A := {(a, b) : fz′γ,x′β(a, b) ≥ q0 + ϵfn}.

Next, let ρ > 0 and η ∈ (0, 1).

P

∑
i

∑
j ̸=i

2Tn
n(n− 1)h23n

∣∣∣∣k( (Zi − Zj)
′γ, g1(Z

′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
[Îj(Îi − Ii) + Ii(Îj − Ij)]

∣∣∣∣ > ρ

 ≤

P

∑
i

∑
j ̸=i

4Tn
n(n− 1)h23n

∣∣∣∣k( (Zi − Zj)
′γ, g1(Z

′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
(Ii(A)− Ii(A))

∣∣∣∣ > ρ, Î ∈ In

+ P (Î /∈ In).

By equations (17) and (18) there exists N1 such that the second probability is less than η
2 for all n ≥ N1.

Moreover,

P

∑
i

∑
j ̸=i

4Tn
n(n− 1)h23n

∣∣∣∣k( (Zi − Zj)
′γ, g1(Z

′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
(Ii(A)− Ii(A))

∣∣∣∣ > ρ, Î ∈ In


<

1

ρ
E

(
2Tn
h23n

∣∣∣∣k( (Zi − Zj)
′γ, g1(Z

′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
(Ii(A)− Ii(A))

∣∣∣∣)
=

2Tn
ρ
E

(∫
|k (u) |fZγ,−g0(Ziγ − uzh3n, g1i − ugh3n)duzdug|Ii(A)− Ii(A)|

)
.

Using continuous differentiability of fZγ,Xβ and fU,ϵ and compactness of A
∗
the last expression is bounded by

c1
2Tnh3n

ρ
+ c2

2Tn
ρ

∫ ∫
1{q0 > fZγ,Xβ(Z

′
iγ,X

′
iβ) ≥ q0 − ϵfn}d(Z ′

iγ)d(X
′
iβ). (26)

Since Tnh3n → 0, there exists N2 such that for all n ≥ N2 c1
2Tnh3n

ρ ≤ η
4 . By assumption q0 has an open

neighborhood O such that
∥∥∥(∂fz′γ,x′β(a)∂sz

,
∂fz′γ,x′β(a)

∂sx

)∥∥∥ ≥ θ for each a ∈ f−1
z′γ,x′β(O). This means that for each

such a, at least one of
∣∣∣∂fz′γ,x′β(a)∂(z′γ)

∣∣∣, ∣∣∣∂fz′γ,x′β(a)∂(x′β)

∣∣∣ is greater than or equal to θ/
√
2. If ϵf is sufficiently small

[q0 − ϵfn, q0 + ϵfn] will be contained in O. Consider the part of f−1
z′γ,x′β(O) where

∣∣∣∂fz′γ,x′β∂(x′β)

∣∣∣ ≥ θ√
2
. Let B

denote this set. Consider the mapping φ : (z′γ, fz′γ,x′β(z
′γ, x′β + δ)) → (z′γ, x′β). Let D := φ−1(B) and

D1 := {z′γ : (z′γ, x′β) ∈ D}. Then∫
D1

∫ q0+ϵfn

q0−ϵfn

1∣∣∣∂fz′γ,x′β∂(x′β) (s, φ2(s, f))
∣∣∣dsdf ≤ 2

√
2ϵfn
θ

.

By going through a very similar analysis for the subset of f−1
z′γ,x′β(O), where

∣∣∣∂fz′γ,x′β∂(x′β)

∣∣∣ ≥ θ√
2
, we would get the

same result for that set. This means that the second term in (26) is of the form C
Tnϵfn
ρ for some constant C.
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Since Tn√
nh̃3

n

→ 0 and 1
h̃2
n log (h̃−1

n )
→ ∞,

Tn

√
log
(

1
h̃n

)
√
nh̃n

→ 0. Since ϵfn is O

(√
1
nh̃2

n

log
(

1
h̃n

))
, this means that

there exists N3 such that for all n ≥ N3 the last expression in (26) is less than or equal to η
4 . Thus, for all

n ≥ max{N1, N2, N3} probability that (25) is larger than ρ is less than or equal to η.
Finally, using Lemma 3.1 of PSS and change of variables three times and defining ρxm(a, b) = E(Xm|Z ′γ =

a,X ′β = b) we can show that

∑
i

∑
j ̸=i

(Xjm −Xim)

n(n− 1)h23n
k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
IiIj =

E

[
(Xjm −Xim)

h23n
k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
IiIj

]
+ oP (1) =

E [(ρxm(Z ′γ,X ′β + δ)− ρxm(Z ′γ,X ′β))1{fz′γ,x′β(Z
′γ,X ′β + δ) ≥ q0}fz′γ,x′β(Z

′γ,X ′β + δ)] + oP (1).

A.1.2 Analysis of (22):

In this section we show that

∑
i

∑
j ̸=i

[(Xj −Xi)
′β − δ]√

n(n− 1)h23n
k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
(ÎiÎj − IiIj) = oP (1). (27)

To do this let ρ > 0 and η ∈ (0, 1) and choose N1 sufficiently large so that

P

∣∣∣∣∣∣
∑
i

∑
j ̸=i

[(Xj −Xi)
′β − δ]√

n(n− 1)h23n
k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
(ÎiÎj − IiIj)

∣∣∣∣∣∣ > ρ


≤ P

∑
i

∑
j ̸=i

∣∣∣∣ [(Xj −Xi)
′β − δ]√

n(n− 1)h23n
k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
(ÎiÎj − IiIj)

∣∣∣∣ > ρ, Î ∈ In

+
η

2

<
2
√
n

ρ
E

(∣∣∣∣ [(Xj −Xi)
′β − δ]

h23n
k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
Ii(A)(Ij(A)− Ij(A))

∣∣∣∣)+
η

2

=

√
n

ρ

∫ ∫ ∣∣∣∣ g̃−1(t, s)− g̃−1(r, v)

h23n
k

(
r − t, v + s

h3n

)
1{fz′γ,x′β(r, g̃

−1(r, v)− δ) ≥ q0 − ϵfn}

fz′γ,−g0(t, s)1{q0 + ϵfn ≥ fz′γ,x′β(t, g̃
−1(t, s)) ≥ q0 − ϵfn}fz′γ,g1(r, v)dtdsdrdv

∣∣∣∣.+ η

2

Using a change of variables, compactness of A
∗
and the support of k and the continuous differentiability of fz′γ,x′β

and fU,ε, and a Taylor expansion we can show that the last expression is bounded by

[O(
√
nh3n) +O(

√
nh23n)]

∫ ∫
1{q0 > fz′γ,x′β(z

′γ, x′β + δ) ≥ q0 − ϵf}drds

Using the same arguments as we used at the end of the previous section, we can argue that (27) is oP (1).
Next, we analyze

1√
n(n− 1)

∑
i

∑
j ̸=i

[(Xj −Xi)
′β − δ]IiIj

h23n
k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
. (28)
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Adding and subtracting the expectation of each term in the summation and get

1√
n(n− 1)

∑
i

∑
j ̸=i

{
[(Xj −Xi)

′β − δ]IiIj
h23n

k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)

−E
[
[(Xj −Xi)

′β − δ]IiIj
h23n

k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)]}
(29)

+
√
nE

[
[(Xj −Xi)

′β − δ]IiIj
h23n

k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)]
. (30)

We can apply Lemma (3.1) of PSS to the first of these terms. This lemma requires that

1

nh23n
E

[
1

h23n
k2
(
Z ′
iγ − Z ′

jγ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ

h3n

)
[(Xj −Xi)

′β − δ]2IiIj

]
→ 0.

By arguments similar to those given above, the expectation of the expression in the square brackets is finite.
Thus, the condition of the lemma holds if nh23n → ∞, and (29) is asymptotically equivalent to

2√
n

∑
i

{
E

[
[(Xj−Xi)′β−δ]IiIj

2h2
3n

k
(

(Zi−Zj)′γ,g1(Z′
iγ,X

′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

) ∣∣∣∣Z ′
iγ,X

′
iβ

]
+E

[
[(Xi−Xj)′β−δ]IiIj

2h2
3n

k
(

(Zj−Zi)′γ,g1(Z′
jγ,X

′
jβ)+g0(Z

′
iγ,X

′
iβ)

h3n

) ∣∣∣∣Z ′
iγ,X

′
iβ

]
−E
[
[(Xj−Xi)′β−δ]IiIj

h2
3n

k
(

(Zi−Zj)′γ,g1(Z′
iγ,X

′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

)]}
.

On the other hand, we have assumed that the kernel function, k, is chosen so that its moments of order one through
four are 0, and its fifth absolute moment is finite, that g̃−1 is at least five times continuously differentiable, the

density fz′γ,x′β is four times continuously differentiable, and that
√
nh53n → 0. Under these conditions (30) will

approach to 0 as n→ ∞. Thus, (28) equals

1√
n

∑
i

{
E

[
[(Xj−Xi)′β−δ]IiIj

h2
3n

k
(

(Zi−Zj)′γ,g1(Z′
iγ,X

′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

) ∣∣∣∣Z ′
iγ,X

′
iβ

]
+E

[
[(Xi−Xj)′β−δ]IiIj

h2
3n

k
(

(Zj−Zi)′γ,g1(Z′
jγ,X

′
jβ)+g0(Z

′
iγ,X

′
iβ)

h3n

) ∣∣∣∣Z ′
iγ,X

′
iβ

]}
+ oP (1) (31)

Moreover,

E

(
1√
n

∑
iE

[
[(Xj−Xi)′β−δ]IiIj

h2
3n

k
(

(Zi−Zj)′γ,g1(Z′
iγ,X

′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

) ∣∣∣∣Z ′
iγ,X

′
iβ

])2

= E

{
E

[
[(Xj−Xi)′β−δ]IiIj

h2
3n

k
(

(Zi−Zj)′γ,g1(Z′
iγ,X

′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

) ∣∣∣∣Z ′
iγ,X

′
iβ

]}2

= E

[
Ii
∫
[g̃−1(Z ′

iγ − uzh3n, g1i − ugh3n)− g̃−1(Z ′
iγ, g1i)]1{fz′γ,x′β(Z

′
iγ − uzh3n, g̃

−1(Z ′
iγ − uzh3n, g1i − ugh3n)) ≥ q0}

·k(u)fz′γ,−g0(Z ′
iγ − uzh3n, g1i − ugh3n)duzdug

]2
→ 0,

where we used continuity of g̃−1, compactness of the support of k and A and the Dominated Convergence Theorem
in getting the last result. Similar arguments would show that the L2 norm of the second sum in (31) converges
to 0. Then by Cauchy-Schwarz inequality (31) is oP (1).

25



A.1.3 Analysis of (23):

Recall for r = 0, 1, we have

sup
(z′γ,x′β)

an[ĝr(z
′γ, x′β)− gr(z

′γ, x′β)]I(z′γ, x′β)
P→ 0. (32)

Then as long as Tn
anh3

3n
= O(1) using arguments as in the analysis of (21) we can argue that (23) equals an oP (1)

term plus

∑
j ̸=i

[(Xj−Xi)
′β−δ]ÎiÎj√

n(n−1)h23n

[
k

(
(Zi−Zj)

′γ̂,ĝ1(Z′
iγ̂,X

′
iβ̂)+ĝ0(Z′

j γ̂,X
′
j β̂)

h3n

)
−k
(

(Zi−Zj)
′γ,g1(Z′

iγ,X
′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)]
. (33)

Moreover, by Assumptions (5.4) and (5.7) using second order Taylor expansion yields (23) as

∑
j ̸=i

[(Xj−Xi)
′β−δ]ÎiÎj√

n(n−1)h23n

[
k

(
(Zi−Zj)

′γ̂,ĝ1(Z′
iγ̂,X

′
iβ̂)+ĝ0(Z′

j γ̂,X
′
j β̂)

h3n

)
−k
(

(Zi−Zj)
′γ,g1(Z′

iγ,X
′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)]
=
∑dz
l=1

√
n(γ̂l−γl)

∑
j ̸=i

(Zil−Zjl)[(Xj−Xi)
′β−δ]ÎiÎj

n(n−1)h33n
k1

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
(34)

+
∑
j ̸=i

[ĝ1(Z′
iγ̂,X

′
iβ̂)−g1(Z′

iγ,X
′
iβ)]ÎiÎj√

n(n−1)h33n
k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
[(Xj−Xi)′β−δ] (35)

+
∑
j ̸=i

[ĝ0(Z′
j γ̂,X

′
j β̂)−g0(Z′

jγ,X
′
jβ)]ÎiÎj√

n(n−1)h33n
k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
[(Xj−Xi)′β−δ]+oP (1) (36)

where for l = 1, 2 kl denotes l
th partial derivative of k.

The analysis of (34) is very similar to the analysis of (21); this term has an extra h3n in the denominator, but
it also has the additional term [(Xj −Xi)

′β − δ] which is close to zero when g1 and g0 are close to one another,
and therefore absorbs the extra h3n in the denominator as n→ ∞. As a result, (34) equals∑dz

l=1

√
n (γ̂l − γl)

∑
j ̸=i

(Zil−Zjl)[(Xj−Xi)′β−δ]IiIj
n(n−1)h3

3n
k1

(
(Zi−Zj)′γ,g1(Z′

iγ,X
′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

)
+ oP (1).

Since nh43n → ∞, Lemma 3.1 of PSS implies that (34) equals∑dz
l=1

√
n (γ̂l − γl)E

[
(Zil−Zjl)[(Xj−Xi)′β−δ]IiIj

h3
3n

k1

(
(Zi−Zj)′γ,g1(Z′

iγ,X
′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

)]
+ oP (1).

Next, we provide the analysis of (35) in detail, but the analysis of (36) will be very similar.

∑
j ̸=i

ĝ1(Z′
iγ̂,X

′
iβ̂)−g1(Z′

iγ,X
′
iβ)√

n(n−1)h33n
k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
[(Xj−Xi)′β−δ]ÎiÎj

=
∑
j ̸=i

ĝ1(Z′
iγ̂,X

′
iβ̂)−ĝ1(Z′

iγ,X
′
iβ)√

n(n−1)h33n
k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
[(Xj−Xi)′β−δ]ÎiÎj (37)

+
∑
j ̸=i

ĝ1(Z′
iγ,X

′
iβ)−g1(Z′

iγ,X
′
iβ)√

n(n−1)h33n
k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
[(Xj−Xi)′β−δ]ÎiÎj (38)

Since
T 2
n√

nh4
3n

→ 014 and Tnh3n → 0, by Taylor’s Theorem the first of these expressions equals

∑dz
k=1

√
n[γ̂k−γk]

∑
ir

∂ĝ1(Z′
iγ,X

′
iβ)

∂(z′γ)
Zik[(Xj−Xi)

′β−δ]ÎiÎj
n(n−1)h33n

k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
+
∑dz
k=1

√
n[β̂m−βm]

∑
ir

∂ĝ1(Z′
iγ,X

′
iβ)

∂(x′β)
Xim[(Xj−Xi)

′β−δ]ÎiÎj
n(n−1)h33n

k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)
+oP (1).

14This follows from
√

n

a2
nh

4
3n

→ c < ∞ and Tnan√
n

→ 0.
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By replacing e1 with e2 or e3 in the proof of Theorem 4 of Heckman, Ichimura and Todd (1998) we can

show that ∂ĝr(sz,sx)
∂sz

(∂ĝr(sz,sx)∂sx
) is uniformly consistent for ∂gr(sz,sx)

∂sz
(∂gr(sz,sx)∂sx

). Let G1
1n := {ρ ∈ C1(R2) :

sup(z′γ,x′β)∈A

∣∣∣∣ρ(z′γ, x′β)− ∂g1(z
′γ,x′β)

∂(z′γ)

∣∣∣∣ ≤ ϵ1gn} with ϵ1gn → 0. Let ϖ > 0, η ∈ (0, 1). Then

P

(
∂ĝ1
∂(z′γ)

/∈ G1
1n, Î /∈ In

)
→ 0.

In addition,

P

(∣∣∣∣∑ir

[
∂ĝ1(Z′

iγ,X
′
iβ)

∂(z′γ) − ∂g1(Z′
iγ,X

′
iβ)

∂(z′γ)

]
Zik[(Xj−Xi)

′β−δ]ÎiÎj
n(n−1)h33n

k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)∣∣∣∣>ϖ, ∂ĝ1
∂(z′γ)∈G1

1n, Î∈In
)

≤ P

(∑
ir

∣∣∣∣ϵ1gn Tn[(Xj−Xi)
′β−δ]Ii(A)Ij(A)

n(n−1)h33n
k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)∣∣∣∣>ϖ)
≤ 1

ϖE

(∣∣∣∣ϵ1gn Tn[(Xj−Xi)
′β−δ]Ii(A)Ij(A)

h33n
k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)∣∣∣∣)→0.

Similarly,

P

(∣∣∣∣∑ir

∂g1(Z′
iγ,X

′
iβ)

∂(z′γ)
Zik[(Xj−Xi)

′β−δ](ÎiÎj−IiIj)

n(n−1)h33n
k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)∣∣∣∣>ϖ, ∂ĝ1
∂(z′γ)∈G1

1n, Î∈In
)

≤ 1
ϖE

(∣∣∣∣ ∂g1(Z′
iγ,X

′
iβ)

∂(z′γ)
Tn[(Xj−Xi)

′β−δ]Ii(A)[Ij(A)−Ij ]

h33n
k2

(
(Zi−Zj)

′γ,g1(Z′
iγ,X

′
iβ)+g0(Z′

jγ,X
′
jβ)

h3n

)∣∣∣∣)→0.

These arguments show that∑
i

∑
j ̸=i

∂ĝ1(Z
′
iγ,X

′
iβ)

∂(z′γ)
Zik[(Xj−Xi)′β−δ]ÎiÎj

n(n−1)h3
3n

k2

(
(Zi−Zj)′γ,g1(Z′

iγ,X
′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

)
=∑

i

∑
j ̸=i

∂g1(Z
′
iγ,X

′
iβ)

∂(z′γ)
Zik[(Xj−Xi)′β−δ]IiIj

n(n−1)h3
3n

k2

(
(Zi−Zj)′γ,g1(Z′

iγ,X
′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

)
+ oP (1),

and that ∑
i

∑
j ̸=i

∂ĝ1(Z
′
iγ,X

′
iβ)

∂(x′β)
Xim[(Xj−Xi)′β−δ]ÎiÎj

n(n−1)h3
3n

k2

(
(Zi−Zj)′γ,g1(Z′

iγ,X
′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

)
=∑

i

∑
j≠i

∂g1(Z
′
iγ,X

′
iβ)

∂(x′β)
Xim[(Xj−Xi)′β−δ]IiIj

n(n−1)h3
3n

k2

(
(Zi−Zj)′γ,g1(Z′

iγ,X
′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

)
+ oP (1).

Combining these arguments and using Lemma 3.1 of PSS once more, we can show that (37) equals

dz∑
k=1

√
n(γ̂k − γk)E

[
∂g1(Z

′
iγ,X

′
iβ)

∂(z′γ)

Zik[(Xj −Xi)
′β − δ)]IiIj

n(n− 1)h33n
k2

(
(Zi − Zj)

′γ, g1i + g0j
h3n

)]

+

dx∑
m=1

√
n(β̂m − βm)E

[
∂g1(Z

′
iγ,X

′
iβ)

∂(x′β)

Xim[(Xj −Xi)
′β − δ)]IiIj

n(n− 1)h33n
k2

(
(Zi − Zj)

′γ, g1i + g0j
h3n

)]
+ oP (1).

Next we analyze (38). As in the analysis of (22) in Appendix (A.1.2) we could show that this last expression is
asymptotically equivalent to∑

i

∑
j ̸=i

[ĝ1(Z
′
iγ,X

′
iβ)−g1(Z

′
iγ,X

′
iβ)]IiIj√

n(n−1)h3
3n

k2

(
(Zi−Zj)′γ,g1(Z′

iγ,X
′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

)
[(Xj −Xi)

′β − δ].

We will analyze this expression using results given in Heckman, Ichimura and Todd (1998) and in Vytlacil and
Yildiz (2005). For this purpose, define

λ̂n(sz, sx) :=
n−1∑
l=1

[X ′
lβ − sx − δ]Il
(n− 1)h33n

k2

(
sz − Z ′

lγ, g1(sz, sx) + g0(Z
′
lγ,X

′
lβ)

h3n

)
(39)
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In the supplementary appendix we prove the following result:

sup
(sz,sx)∈A

∣∣∣∣λ̂n(sz, sx)− λn0(sz.sx)

∣∣∣∣ a.s.→ 0, (40)

where

λ0(sz, sx) :=
fz′γ,x′β(sz, sx + δ)

fU,ε(sz, sx + δ)
1{fz′γ,x′β(sz, sx + δ) ≥ q0}. (41)

With this result at hand, we could modify the proof of Theorem 3 of Heckman, Ichimura and Todd (1998) to
analyze the asymptotic behavior of∑

i,j ̸=i
[ĝ1(Z

′
iγ,X

′
iβ)−g1(Z

′
iγ,X

′
iβ)]IiIj√

n(n−1)h3
3n

k2

(
(Zi−Zj)′γ,g1(Z′

iγ,X
′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

)
[(Xj −Xi)

′β − δ],

by rewriting it as ∑
i
[ĝ1(Z

′
iγ,X

′
iβ)−g1(Z

′
iγ,X

′
iβ)]Ii√

n
λ̂n(Z

′
iγ,X

′
iβ).

Now define

Λn := {λn(sz, sx) : sup
(sz,sx)∈A

|λn(sz, sx)− λ0(sz, sx)| ≤ ϵl}.

Note that our arguments above show that as n grows large λ̂n will belong to Λn with probability approaching
to 1, and sup(sz,sx)∈A |λ0(sz, sx)| <∞. In addition, the assumptions we have made so far imply by Kolmogorov-
Tihomirov Lemma that the covering number condition for the Equicontinuity Lemma is satisfied. As a result,
a slight modification of the arguments used in the proof of Theorem 3 of Heckman, Ichimura and Todd (1998)
yields that

∑
i

∑
j ̸=i

[ĝ1(Z
′
iγ,X

′
iβ)− g1(Z

′
iγ,X

′
iβ)]IiIj√

n(n− 1)h33n
k2

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
[(Xj −Xi)

′β − δ]

=
∑
i

∑
k

ψng1(Dk, Yk, Z
′
kγ,X

′
kβ;Z

′
iγ,X

′
iβ)

n3/2
λ0(Z

′
iγ,X

′
iβ) +

∑
i

b̃g1(Z
′
iγ,X

′
iβ)λ0(Z

′
iγ,X

′
iβ)√

n

+
∑
i

R̃g1(Z
′
iγ,X

′
iβ)λ0(Z

′
iγ,X

′
iβ)√

n
+ oP (1),

where, writing m1(z
′γ, x′β) := E[DY |Z ′γ = z′γ,X ′β = x′β], ϵg1 := DY −m1(Z

′γ,X ′β),15

ψng1 (DY,Z
′γ,X′β;z′γ,x′β)=

e2[Mpn(z′γ,x′β)]−1I(z′γ,x′β)εg1
h3gn

[(
(Z′γ,X′β)−(z′γ,x′β)

hgn

)Qp]′

Kg

(
(Z′γ,X′β)−(z′γ,x′β)

hgn

)
, (42)

b̃g1 (Z
′
iγ,X

′
iβ)=h

p−1
gn e2[Mp(Z

′
iγ,X

′
iβ)]

−1∑p
k=p+1

[∫
uQ(0)·uQ(k)m

(k)
1 (Z′

iγ,X
′
iβ)

′·uQ(p−k)Kg(u)du

,...,
∫
uQ(p)·uQ(k)m

(k)
1 (Z′

iγ,X
′
iβ)

′·uQ(p−k)Kg(u)du

]
f
(p−k)
z′γ,x′β(Z

′
iγ,X

′
iβ)Î(Z

′
iγ,X

′
iβ), (43)

and n−1/2
∑n
i=1 R̃g1(Z

′
iγ,X

′
iβ)λ0(Z

′
iγ,X

′
iβ) = oP (1). Note that m

(k)
1 (sz, sx), and f

(p−k)
z′γ,x′β(sz, sx) denote the

vectors of kth and (p−k)th order partial derivatives ofm1 and fz′γ,x′β evaluated at (sz, sx), respectively. Also,Mpn,

15Similarly, m0(z
′γ, x′β) := E[(1−D)Y |Z′γ = z′γ,X ′β = x′β], ϵg0 := (1−D)Y −m0(Z

′γ,X ′β).
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uQ(s), and

(
(Z′γ,X′β)−(z′γ,x′β)

hgn

)Qp
are as on page 283-284 of Heckman, Ichimura and Todd (1998). In addition,

by going through similar arguments as in the analysis of (21) and using the assumption that
√
nhp−1

ng → c < ∞
we can show that

1√
n

∑n
i=1 b̃g1 (Z

′
iγ,X

′
iβ)λ0(Z

′
iγ,X

′
iβ)=

1√
n

∑n
i=1 h

p−1
gn e2[Mp(Z

′
iγ,X

′
iβ)]

−1λ0(Z
′
iγ,X

′
iβ)×∑p

k=p+1

[∫
uQ(0)·uQ(k)m

(k)
1 (Z′

iγ,X
′
iβ)

′·uQ(p−k)Kg(u)du,...,
∫
uQ(p)·uQ(k)m

(k)
1 (Z′

iγ,X
′
iβ)

′·uQ(p−k)Kg(u)du
]
f
(p−k)
z′γ,x′β(Z

′
iγ,X

′
iβ)Ii+oP (1)

Next, define

ζ̃n(DkYk,Z
′
kγ,X

′
kβ;Z

′
iγ,X

′
iβ):=

e2[Mpn(Z′
iγ,X

′
iβ)]

−1Iiε
g1
k

h3gn

[(
(Z′
kγ,X

′
kβ)−(Z′

iγ,X
′
iβ)

hgn

)Qp]′

×Kg

(
(Z′
kγ,X

′
kβ)−(Z′

iγ,X
′
iβ)

hgn

)
λ0(Z

′
iγ,X

′
iβ).

and
ζn(DkYk,Z

′
kγ,X

′
kβ;DiYi,Z

′
iγ,X

′
iβ)=

1
2 [ζ̃n(DkYk,Z

′
kγ,X

′
kβ;Z

′
iγ,X

′
iβ)+ζ̃n(DiYi,Z

′
iγ,X

′
iβ;Z

′
kγ,X

′
kβ)].

Since Kg has compact support, A is compact, and λ0 is bounded, and nh6gn → ∞, all the conditions of Lemma
3.1 of PSS are satisfied and (38) is asymptotically equivalent to

1√
n

∑
i

E

[
ψng1(DiYi, Z

′
iγ,X

′
iβ;Z

′
kγ,X

′
kβ)λ0(Z

′
kγ,X

′
kβ)|Z ′

iγ,X
′
iβ

]
+ b1.

A.2 The denominator:

To analyze the denominator of
√
n
(
δ̂ − δ

)
, we break it into smaller pieces as well, so that

1
n(n−1)

∑
i

∑
j ̸=i

1
h2
3n
k

(
(Zi−Zj)′γ̂,ĝ1(Z′

iγ̂,X
′
iβ̂)+ĝ0(Z

′
j γ̂,X

′
j β̂)

h3n

)
ÎiÎj

= 1
n(n−1)

∑
i

∑
j ̸=i

1
h2
3n
k
(

(Zi−Zj)′γ,g1(Z′
iγ,X

′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

)
ÎiÎj+ (44)∑

i

∑
j ̸=i

ÎiÎj
n(n−1)h2

3n

[
k

(
(Zi−Zj)′γ̂,ĝ1(Z′

iγ̂,X
′
iβ̂)+ĝ0(Z

′
j γ̂,X

′
j β̂)

h3n

)
−k
(

(Zi−Zj)′γ,g1(Z′
iγ,X

′
iβ)+g0(Z

′
jγ,X

′
jβ)

h3n

)]
. (45)

Thus, the analysis of the denominator is similar to, but easier than, the analysis of the numerator. Under
the conditions we have imposed so far, (45) will vanish with probability approaching to 1, and (44) will be
asymptotically equivalent to

1

n(n− 1)

∑
i

∑
j ̸=i

1

h23n
k

(
(Zi − Zj)

′γ, g1(Z
′
iγ,X

′
iβ) + g0(Z

′
jγ,X

′
jβ)

h3n

)
IiIj .

Furthermore, again, arguments similar to those in the analysis of the numerator can be used to show that this
last expression is

E[fz′γ,x′β(Z
′γ,X ′β + δ)1{(Z ′γ,X ′β) ∈ S ∩ T }],

where

S := Supp(Z ′γ,X ′β) ∩ Supp(Z ′γ,X ′β + δ),

T := {(sz, sx) : fZ′γ,X′β(sz, sx) ≥ q0, fZ′γ,X′β(sz, sx + δ) ≥ q0}.
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A.3 Proof of Theorem 5.2:

Putting the arguments given in sections A.1 and A.2 together and using Change of Variables and Lebesgue Domi-
nated Convergence Theorems and the fact that when k is symmetric

∫ ∫
(−ug)k1(u)duzdug = 0 =

∫ ∫
(−uz)k2(u)duzdug

and
∫ ∫

(−uz)k1(u)duzdug = 1 =
∫ ∫

(−ug)k2(u)duzdug. we have

√
n
(
δ̂(F ) − δ

)
= 1

E[fz′γ,x′β(Z
′γ,X′β+δ)1{(Z′γ,X′β)∈S∩T }]×

√
n (γ̂ − γ)

′
(αγ + ν1γ + ν0γ) +

√
n
(
β̂ − β

)′
(αβ + ν1β + ν0β)

+
∑
i

1√
n
E [ψng1(Dk, Yk, Z

′
kγ,X

′
kβ;Z

′
iγ,X

′
iβ)|Z ′

iγ,X
′
iβ]λ0(Z

′
iγ,X

′
iβ) + b1

+
∑
i

1√
n
E [ψng0(Dk, Yk, Z

′
kγ,X

′
kβ;Z

′
iγ,X

′
iβ)|Z ′

iγ,X
′
iβ]λ0(Z

′
iγ,X

′
iβ) + b0

)
+ oP (1),

where for m = 1, . . . , dz, l = . . . dx, k = 0, 1, ρzm(a, b) = E(Zim|Z ′
iγ = a,X ′

iβ = b), ρxl (a, b) = E(Xil|Z ′
iγ =

a,X ′
iβ = b), and

αβl =E[(ρxl (Z
′γ,X′β+δ)−ρxl (Z

′γ,X′β))1{fz′γ,x′β(Z
′γ,X′β)≥q0}1{fz′γ,x′β(Z

′γ,X′β+δ)≥q0}fz′γ,x′β(Z
′γ,X′β+δ)],

αγm =E

[(
ρzm(Z′γ,X′β)−ρzm(Z′γ,X′β+δ)

)(−
∫X′β+δ
−∞

∂fU,ε(Z
′γ,e)de

∂u

)
fUε(Z

′γ,X′β+δ) 1{fz′γ,x′β(Z
′γ,X′β)≥q0}1{fz′γ,x′β(Z

′γ,X′β+δ)≥q0}fz′γ,x′β(Z
′γ,X′β+δ)

]
,

νkγm =E

[
ρzm(Z′γ,X′β)

∫X′β+δk
−∞

∂fU,ε(Z
′γ,e)de

∂u
fUε(Z

′γ,X′β+δ) 1{fz′γ,x′β(Z
′γ,X′β+)≥q0}1{fz′γ,x′β(Z

′γ,X′β+δ)≥q0}fz′γ,x′β(Z
′γ,X′β+δ)

]
,

νkβl =E

[
ρxl (Z

′γ,X′β)
fU,ε(Z

′γ,X′β)
fUε(Z

′γ,X′β+δ) (1−k)1{fz′γ,x′β(Z
′γ,X′β)≥q0}1{fz′γ,x′β(Z

′γ,X′β+δ)≥q0}fz′γ,x′β(Z
′γ,X′β+δ)

]
.

Since
√
n(γ̂ − γ) = 1√

n

∑
i ψ

γ(Di, Zi) + op(1) and
√
n(β̂ − β) = 1√

n

∑
i ψ

β(Yi, Z
′
iγ,Xi) + op(1),

√
n
(
δ̂(F ) − δ

)
=
∑
i

1√
n
ψδ(Yi, Di, Zi, Xi) +

b1+b0
E[fz′γ,x′β(Z

′γ,X′β+δ)1{(Z′γ,X′β)∈S∩T }] + oP (1),

where

ψδ(Yi,Di,Zi,Xi):=
[ψγ (Di,Zi)]

′(αγ+ν1γ+ν0γ )+[ψβ(Yi,Z
′
iγ,Xi)]

′(αβ+ν1β+ν0β)

E[f
z′γ,x′β(Z′γ,X′β+δ)1{(Z′γ,X′β)∈S∩T }]

+λ0(Z
′
iγ,X

′
iβ)

E[ψng1 (Dk,Yk,Z
′
kγ,X

′
kβ;Z

′
iγ,X

′
iβ)|Z

′
iγ,X

′
iβ]+E[ψng0 (Dk,Yk,Z

′
kγ,X

′
kβ;Z

′
iγ,X

′
iβ)|Z

′
iγ,X

′
iβ]

E[f
z′γ,x′β(Z′γ,X′β+δ)1{(Z′γ,X′β)∈S∩T }] .

Thus, the variance of the limiting distribution of
√
n
(
δ̂(F ) − δ

)
will be E[(ψδ(Yi, Di, Zi, Xi))

2]. This variance

could be estimated by
1

n

∑
i

(ψ̂δ(Yi, Di, Zi, Xi))
2

where

ψ̂δ(Yi,Di,Zi,Xi):=
[ψ̂γ (Di,Zi)]

′(α̂γ+ν̂1γ+ν̂0γ )+[ψ̂β(Yi,Z
′
iγ,Xi)]

′(α̂β+ν̂1β+ν̂0β)∑
i
∑
j

(Xj−Xi)′β̂ÎiÎj
n(n−1)h23n

k

(
(Zi−Zj)′γ̂,ĝ1(Z′

i
γ̂,X′

i
β̂)+ĝ0(Z′

i
γ̂,X′

i
β̂)

h3n

)

+λ̂(Z′
iγ̂,X

′
iβ̂)

∑
k ̸=i

ψ̂ng1 (Dk,Yk,Z
′
kγ̂,X

′
kβ̂;Z

′
iγ̂,X

′
iβ̂)+ψ̂ng0 (Dk,Yk,Z

′
kγ̂,X

′
kβ̂;Z

′
iγ̂,X

′
iβ̂)

(n−1)∑
i
∑
j

(Xj−Xi)′β̂ÎiÎj
n(n−1)h23n

k

(
(Zi−Zj)′γ̂,ĝ1(Z′

i
γ̂,X′

i
β̂)+ĝ0(Z′

i
γ̂,X′

i
β̂)

h3n

) .

We next discuss what the estimated quantities in the definition of ψ̂δ are. Section 5.1 gives estimators for ψγ (i.e.
r̂nγ̃(Zi, Di)) and ψ

β (i.e. r̂nβ̃(Xi, Zi, Di, Yi)− 2r̂nγ̃(Zi, Di)Ĉ). Moreover, we can estimate αγ , αβ , νrγ and νrβ for
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r = 0, 1 by

α̂γ =
∑
i

∑
j ̸=i

(Zi − Zj)[ĝ1(Z
′
iγ̂, X

′
iβ̂) + ĝ0(Z

′
j γ̂, X

′
j β̂)]ÎiÎj

n(n− 1)h33n
k1

(
(Zi − Zj)

′γ̂, ĝ1(Z
′
iγ̂, X

′
iβ̂) + ĝ0(Z

′
j γ̂, X

′
j β̂)

h3n

)

α̂β =
∑
i

∑
j ̸=i

(Xi −Xj)ÎiÎj
n(n− 1)h23n

k

(
(Zi − Zj)

′γ̂, ĝ1(Z
′
iγ̂, X

′
iβ̂) + ĝ0(Z

′
j γ̂, X

′
j β̂)

h3n

)

ν̂rγ =
∑
i

∑
j ̸=i

∂ĝr(Z
′
iγ̂, X

′
iβ̂)

∂(z′γ)

Zi[ĝ1(Z
′
iγ̂, X

′
iβ̂) + ĝ0(Z

′
j γ̂, X

′
j β̂)]ÎiÎj

n(n− 1)h33n
k2

(
(Zi − Zj)

′γ̂, ĝ1(Z
′
iγ̂, X

′
iβ̂) + ĝ0(Z

′
j γ̂, X

′
j β̂)

h3n

)

ν̂β =
∑
i

∑
j ̸=i

∂ĝr(Z
′
iγ̂, X

′
iβ̂)

∂(x′β)

Xi[ĝ1(Z
′
iγ̂, X

′
iβ̂) + ĝ0(Z

′
j γ̂, X

′
j β̂)]ÎiÎj

n(n− 1)h33n
k2

(
(Zi − Zj)

′γ̂, ĝ1(Z
′
iγ̂, X

′
iβ̂) + ĝ0(Z

′
j γ̂, X

′
j β̂)

h3n

)
.

Also λ0 could be estimated by λ̂ defined in Equation (39), and for r = 0, 1, ψngr (Dk, Yk, Z
′
kγ,X

′
kβ;Z

′
iγ,X

′
iβ) can

be estimated by

ψ̂ngr (D,Y,Z
′γ,X′β;Z′

iγ̂,X
′
iβ̂)=

e2[M̂pn(Z′
iγ̂,X

′
iβ̂)]

−1 Îiε̂
gr

h3gn

[(
(Z′γ,X′β)−(Z′

iγ̂,X
′
iβ̂)

hgn

)Qp]′

Kg

(
(Z′γ,X′β)−(Z′

iγ̂,X
′
iβ̂)

hgn

)
,

where ϵ̂g1 = DY−Ê(DY |Z ′
iγ̂, X

′
iβ̂] and ϵ̂

g0 = (1−D)Y−Ê((1−D)Y |Z ′
iγ̂, X

′
iβ̂], and M̂pn and

(
(Z′γ,X′β)−(Z′

iγ̂,X
′
iβ̂)

hgn

)Qp
are as on page 283, 284 of Heckman, Ichimura and Todd (1998).

B Asymptotic behavior of β̂(F ):

B.1 Assumptions needed for β̂(Inf):

Our Assumptions (C-1) through (C-6) are the same as Assumptions 1-6 of PSS adopted to our setting. 16

(C-1) The support Ω(x,z′γ̃) of (X ′, Z ′γ̃)′ is a convex subset of Rdx+1 with nonempty interior Ω
(x,z′γ̃)
0 .

(C-2) The density, fx,z′γ̃(x, t), of (X
′, Z ′γ̃)′ is continuous in (x′, t)′ for all (x′, t)′ ∈ Rdx+1, so that fx,z′γ̃(x, t) =

0 for all (x′, t) ∈ ∂Ω(x,z′γ̃), where ∂Ω(x,z′γ̃) denotes the boundary of Ω(x,z′γ̃). Furthermore, fx,z′γ̃ is

continuously differentiable for all (x′, t) ∈ Ω
(x,z′γ̃)
0 and ψ(x, t) is continuously differentiable in (x′, t)′ for all

(x′, t)′ ∈ Ω
(x,z′γ̃)

, where Ω
(x,z′γ̃)

differs from Ω
(x,z′γ̃)
0 by a set of measure 0.

(C-3) The components of the random vector ∂ψ(X,Z ′γ̃)/∂x and random matrix
[∂fx,z′γ̃/∂x][Y,X

′, Z ′γ̃] have finite second moments. Also, ∂fx,z′γ̃/∂x and
∂(ψfx,z′γ̃)/∂x satisfy the following Lipschitz conditions: For some m2(x, t),∣∣∣∣∣∣∂fx,z′γ̃(x+sx,t+st)∂x − ∂fx,z′γ̃(x,t)

∂x

∣∣∣∣∣∣ < m2(x, t)||s||,∣∣∣∣∣∣∂[fx,z′γ̃(x+sx,t+st)ψ(x+sx,t+st)]∂x − ∂[fx,z′γ̃(x,t)ψ(x,t)]

∂x

∣∣∣∣∣∣ < m2(x, t)||s||,

with E[(1 + Y + ||X,Z ′γ̃||)m2(X,Z
′γ̃)]2 <∞.

16These assumptions hold if and only if the corresponding assumptions for fx,z′γ hold.
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(C-4) The support Ωx,tK of Kx,t(u) is a convex subset of Rdx+1 with nonempty interior, with the origin as an
interior point. Kx,t(u) is a bounded differentiable function such that

∫
Kx,t(u)du = 1 and

∫
uKx,t(u)du = 0.

Kx,t(u) = 0 for all u ∈ ∂Ωx,tK , where ∂Ωx,tK denotes the boundary of Ωx,tK . Kx,t(u) is a symmetric function;

Kx,t(u) = Kx,t(−u) for all u ∈ Ωx,tK .

(C-5) Let sxt := (dx+5)/2 if dx is odd and sxt := (dx+4)/2 if dx is even.
17 All partial derivatives of fx,z′γ̃(x, t) of

order sxt+1 exist. The expectation E[Y (∂ρfx,z′γ̃(x, t)/∂zl1 ...∂zlρ)] exists for all ρ ≤ sx,t+1. All moments
of Kx,t(u) of order sx,t exist.

(C-6) The kernel function Kx,t(·) obeys∫
ul11 ...u

lρ′Kx,t(u)du = 0 for l1 + ...+ lρ′ < sx,t, and∫
ul11 ...u

lρ′Kx,t(u)du ̸= 0 for l1 + ...+ lρ′ = sx,t.

B.2 Proof of Lemma (5.2):

To analyze the difference in expectations, we use the Mean Value Theorem to write for some ξ̃ between ξ̂ and γ∣∣∣∣ 1
n(n−1)

∑
i

∑
j ̸=i

{[
−2

hdx+3
2n

∂Kx
∂xr

(
Xi−Xj
h2n

)
K ′
t

(
Z′
iξ̂−Z

′
j ξ̂

h2n

)
(Zil − Zjl)Yi

]
−
[

−2

hdx+3
2n

∂Kx
∂xr

(
Xi−Xj
h2n

)
K ′
t

(
Z′
iγ−Z

′
jγ

h2n

)
(Zil − Zjl)Yi

]}∣∣∣∣
=

∣∣∣∣∑i

∑
j ̸=i
∑dz
m=1

[
2Yi(Zim−Zjm)(ξ̂m−γm)(Zil−Zjl)

n(n−1)hdx+4
2n

∂Kx
∂xr

(
Xi−Xj
h2n

)
K ′′
t

(
Z′
iξ̃−Z

′
j ξ̃

h2n

)]∣∣∣∣
≤
∑dz
m=1

√
n|γ̂m − γm|

∑
i

∑
j ̸=i

2R2t√
nn(n−1)hdx+4

2n

[∣∣∣∂Kx∂xr

(
Xi−Xj
h2n

)∣∣∣ |Zim − Zjm||Zil − Zjl|
]

≤
(∑dz

m=1

√
n|γ̂m − γm|

)∑
i

∑
j ̸=i

2R2t√
nn(n−1)hdx+4

2n

[∣∣∣∂Kx∂xr

(
Xi−Xj
h2n

)∣∣∣ ∥Zi − Zj∥
]
,

where R2t denotes the bound on K ′′
t . To write this last inequality, we used |Y | ≤ 1, boundedness of K ′′

t and that

ξ̂ lies between γ̂ and γ. We know that
√
n|γ̂m− γm| = OP (1) for each m. Using change of variables, boundedness

of derivatives of Kxt, the Lipschitz condition on E(∥Zi∥2|Xi, Z
′
iγ) and nh82n → ∞, we can show that the other

term converges to 0 in L1, and thus, is oP (1). This completes the proof of Lemma (5.2). �

B.3 Proof of Theorem (5.1):

The analysis given in the text and the analysis on pages 1411-1412 of PSS applied to our setting tells us that

√
n
(
β̂(F ) − β

)′
=

2√
n

n∑
i=1

{
rβ(Xi, Z

′
iγ)− 2rγ(Zi)C −

[
Erβ(X,Z

′γ)− 2Erγ(Z)C
]}

+ oP (1),

where C is the dz × dx matrix whose lth-row equals Cl. Applying the Central Limit Theorem to this expression

we get that the limiting distribution of
√
n
(
β̂(F ) − β

)
is normal with mean 0 and variance equals

4E[rβ(X,Z
′γ)′rβ(X,Z

′γ)]−16E[rβ(X,Z
′γ)′rγ(Z)]C+16C ′Erγ(Z)

′rγ(Z)]C−4ββ′+16βγ′C−16C ′γγ′C. �
17We would like to make sure that nh

2sx,t
2n → 0 and that nhdx+3

2n → ∞. These two conditions will hold jointly only if
2sx,t > dx + 3. The sx,t given in this assumption is the smallest integer satisfying this last condition.
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Theorem B.1 Σ ˆ̃
β(F )

can be consistently estimated by Σ̂β̃ + 4Ĉ ′Σ̂γ̃Ĉ − 4Σ̂β̃γ̃Ĉ with

Σ̂γ̃ = 4
∑
i r̂nγ̃(Zi,Di)

′r̂nγ̃(Zi,Di)

n − 4ˆ̃γ ˆ̃γ′, Σ̂β̃ = 4
∑
i r̂nβ̃(Xi,Zi,Di,Yi)

′r̂nβ̃(Xi,Zi,Di,Yi)

n − 4
ˆ̃
β(F ) ˆ̃β(F )′ ,

Σ̂β̃γ̃ = 4
∑
i r̂nβ̃(Xi,Zi,Di,Yi)

′r̂nγ̃(Zi,Di)

n − 4
ˆ̃
β(F ) ˆ̃γ′, Ĉl is as defined in Theorem 5.2,

r̂nγ̃(Zi, Di) =
−1

(n−1)hdz+1
γn

∑
j ̸=i

∂Kγ
∂z

(
Zi−Zj
hγn

)
(Di −Dj), and

r̂nβ̃(Xi, Zi, Di, Yi) =
−1

(n−1)hdx+2
βn

∑
j ̸=i

∂K
∂t

(
(Xi,Z

′
i
ˆ̃γ)−(Xj ,Z

′
j
ˆ̃γ)

h2n

)
(Yi − Yj)

Proof B.1 The fact that Σ̂β̂ , Σ̂γ̂ are consistent for Σβ ,Σγ follows from the analysis of PSS. Consistency of Ĉ
for C is shown in the main text. �
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