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Abstract

One central issue tackled in epistemic game theory is whether for a general class of strategic

games the solution generated by iterated application of a choice rule gives exactly the strategy

profiles that might be realized by players who follow this choice rule and commonly believe they

follow this rule. For example, Brandenburger and Dekel (1987) and Tan and Werlang (1988) have

established that this coincidence holds for the choice rule of strict undominance in mixtures in the

class of finite strategic games, and Mariotti (2003) has established that this coincidence holds for

Bernheim’s (1984) choice rule of point rationality in the class of strategic games in which the strat-

egy sets are compact Hausdorff and the payoff functions are continuous. In this paper, we aim at

studying this coincidence in a general way. We seek to figure out general conditions of the choice

rules ensuring it for a general class of strategic games. We state four substantial assumptions on

choice rules. If the players’ choices rules satisfy - besides the technical assumption of regularity -

the properties of reflexivity, monotonicity, Aizerman’s property, and the independence of payoff

equivalent conditions, then this coincidence applies. This result proves to be strict in the following

sense. None of the four substantial properties can be omitted without eliminating the coincidence.
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1 Introduction

One central issue tackled in epistemic game theory is whether for a general class of strategic games

the solution generated by iterated application of choice rules gives exactly the strategy profiles that

might be realized by players who follow these choice rules and commonly believe they follow

them (i.e., all players believe that all players follow these rules, all players believe that all players

believe that all players follow these rules, and so on ad infinitum). If such coincidence holds,

the solution concept of iterated application of choice rules is said to be (epistemically) characterized

by choice-rule following behavior and common belief of it. The most prominent example of a choice

rule to which such an epistemic characterization applies is the strict undominance in mixtures. It

is known that this rule favors those available strategies that are not strictly dominated by some

mixed strategy.1 As shown by Brandenburger and Dekel (1987) and Tan and Werlang (1988) for

the class of finite strategic games (i.e., strategic games in that the players’ strategy sets are finite),

the strategy profiles surviving the iterated application of this choice rule are exactly the ones that

might be chosen if players are Bayesian rational and this is commonly believed among them.

Since according to Lemma 3 of Pearce (1984) being Bayesian rational means nothing else than

complying with the choice rule of strict undominance in mixtures, it follows that this iterative

deletion procedure is characterizable by choice-rule following behavior and common belief of it.

Meanwhile, other prominent choice rules have been identified that share this epistemic char-

acteristic, e.g., the choice rules of point rationality and strict undominance (in pure strategies).

The former choice rule has been put forward by Bernheim (1984). It favors any available strategy

yielding the highest payoff for at least one strategy combination chosen by the player’s oppo-

nents. This rule underlies Bernheim’s (1984) well-known game-theoretic solution concept of point

rationalizability, which gives all strategy profiles surviving the iterated application of this rule.

Mariotti (2003) proved that for the class of strategic games in which the strategy sets are compact

Hausdorff and the payoff functions are continuous point rationalizability is characterizable by

choice-rule following behavior and common belief of it. The choice rule of strict undominance fa-

vors any available strategy that is not strictly dominated by some other available strategy. As can

be easily inferred from Theorems 2 and 4 of Chen et al. (2007), the above epistemic characteristic

is also inherent in this choice rule whenever the same class of strategic games is considered as in

Mariotti (2003).2

Nevertheless, there are some prominent choice rules that do not imply such characterization,

even if only the class of finite strategic games is considered. We adduce as an instance the choice

1As usual, a strategy is said to be strictly dominated by some other strategy whenever the payoff of the former is less

than the payoff of the latter, whatever the player’s opponents decide to do. A mixed strategy represents a randomization

on the available strategies. A strategy is said to be strictly dominated by some mixed strategy whenever the payoff of the

strategy is less than the expected payoff of the mixed strategy, whatever the player’s opponents decide to do. We refer to

Appendix C of this paper for a formal definition of these choice rules.
2The focus of Chen et al. (2007) is on an alternative iterative deletion procedure that they call IESDS∗. Unlike the

standard procedure of the iterated deletion of strictly dominated strategies, their deletion procedure allows for transfinite

recursion and for deleting strategies strictly dominated by strategies that have previously been deleted. However, as

established in their Theorem 2, their procedure coincides with the standard procedure if the strategy sets are compact

Hausdorff and the payoff functions are continuous.

1
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rule of maximin, which has been proposed by Wald (1945) and ranks the available strategies ac-

cording to their security levels (i.e., their worst possible payoffs). Under this rule, the available

strategies having the highest security level are considered favorable. As is demonstrated next,

there exist finite strategic games in which the set of strategy profiles surviving the iterated ap-

plication of the maximin rule differs from the set of strategy profiles that might be chosen if all

players adhere to this choice rule and this is commonly believed among them. To establish this

claim, consider strategic game Γ1 depicted in Figure 1.

Player C

l r

Player R
u (1, 1) (2, 2)

d (0, 1) (1, 0)

Figure 1: Strategic game Γ1

To begin with, strategic game Γ1 is solved by iterated application of the maximin rule. Note

that, in our paper, the iterated application of a choice rule is defined as a maximal iterative deletion

procedure. For such procedures, it is required that in each round of deletion any strategy of each

player be eliminated that proves to be unfavorable according to this choice rule. Regarding the

iterated application of the maximin rule on strategic game Γ1, it turns out that strategy d of player

R and strategy r of player C must be deleted in the first round. Hence, strategy profile (u, l)

becomes the unique solution of this procedure. In the following, we compare this solution with

the set of strategy profiles that might be realized if both players comply with the maximin rule

and commonly believe this (i.e, both players believe that both players comply with this rule, both

players believe that both players believe that both players comply with this rule, and so on ad

infinitum). This analysis is split in two issues. First, we ask, whether the strategy profile (u, l)

(i.e., the solution of the iterated application of the maximin rule) might be chosen by such players.

Afterwards, we examine whether strategy profiles exist that might be chosen by such players but

do not survive the iterated application of the maximin rule.

Let us start with the first issue and suppose that strategy profile (u, l) is chosen, that both play-

ers follow the maximin rule, and that there is common belief among them that they follow this

rule. Because C is assumed to act according to the maximin rule, playing l can only result if he

considers it possible that R chooses d (otherwise, he would obviously choose r). Note that, regard-

less of which strategies of player C player R considers possible, R never chooses d if she complies

with the maximin rule. On the other hand, our assumption of common belief of maximin rule

following behavior implies that C believes R follows this rule. Hence, C’s attitude of considering

it possible that R will choose strategy d is at odds with his belief R follows the maximin rule. This

contradiction reveals that strategy profile (u, l), which has been obtained by iterated application

of the maximin rule, is incompatible with the assumption that both players follow this rule and

this is commonly believed.

Let us turn to the second issue and examine if strategic game Γ1 contains some strategy profile

that might be realized by players who follow the maximin rule and commonly believe this. As

just shown, strategy profile (u, l) is incompatible with this assumption. This also holds for strategy

2
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profiles (d, l) and (d, r) since choosing d is never favorable under the maximin rule. It remains to

check strategy profile (u, r). In order to model the players’ beliefs about the choices and the other

players’ beliefs, we resort to an idea of Harsanyi (1967/68) and represent them by types. For our

purpose, it will be sufficient to consider the state of a world in which player R chooses u and is of

type tR, and player C chooses r and is of type tC , and where these types are specified as follows.

Type tR represents R’s belief that C chooses r and is of type tC , whereas type tC represents C’s

belief that R chooses u and is of type tR. Obviously, it follows from these assumptions (and the

assumption implicit in type space models that all players know their own choices and beliefs)

that in this state (i) both players believe that R chooses u and C chooses r, that (ii) both players

believe (i), that (iii) both players believe (ii), and so on ad infinitum. By statement (i), it is justified

to conclude that both players act in this state as if they follow the maximin rule. Consequently,

we can infer from statement (ii) that, in this state, they also believe they follow the maximin rule

and from statement (iii) that, in this state, they also believe that they believe they follow this

rule. Since we can proceed in this way ad infinitum, we come to the following conclusion. In

this state, strategy profile (u, l) is realized, both players act according to the maximin rule, and

there is common belief among them that they act according to the maximin rule. Although this

strategy profile does not survive the iterated application of the maximin rule, it might be realized

by players applying this rule and commonly believe they apply this rule.

As just exemplified by the maximin rule, the solution originating from the iterated application

of a choice rule on a finite strategic game might differ from that realized by players who follow

this rule and commonly believe this. It is noteworthy that this divergence emerges under many

prominent choice rules besides that of maximin such as the choice rule of weak undominance, that

of weak undominance in mixtures, and that of minimax regret.3 The latter has been forcefully put

forward by Niehans (1948) and Savage (1951), and the solution concept of iterated regret mini-

mization originating from the iterated application of this choice rule has recently gained attention

among game theorists (see, e.g., Halpern and Pass, 2012).

In this paper, we aim at solving the issue of the coincidence between the solution concept of

iterated application of choices rules and the solution concept of choice-rule following behavior

and common belief of it in a general way. We seek to figure out general conditions of the choice

rules ensuring this coincidence for a general class of strategic games. This issue is not new. Articles

aiming to detect such conditions have already been published. To the best of our knowledge, there

3As usual, a strategy is said to be weakly dominated by some other strategy whenever (i) the payoff of the former does

not exceed the payoff of the latter, whatever the player’s opponents decide to do, and (ii) the payoff of the former is less

than the payoff of the latter for some decision of the player’s opponents. A strategy is said to be weakly dominated by some

mixed strategy whenever (i) the payoff of the strategy does not exceed the expected payoff of the mixed strategy, whatever

the player’s opponents decide to do and (ii) the payoff of the strategy is less than the payoff of the mixed strategy for some

decision of the player’s opponents. While the choice rule of weak undominance favors the strategies that are not weakly

dominated by some other strategy, the choice rule of weak undominance in mixtures favors only the strategies that are not

weakly dominated by some mixed strategy. The choice rule of minimax regret ranks the strategies according to their worst

possible regrets. The regret of a strategy at some strategy choice of the player’s opponents is defined as a deviation of the

payoff of this strategy from the highest possible payoff attainable by some available strategy with this strategy choice of the

opponents. Finally, this rule selects the strategies whose worst possible regret is the lowest among all available strategies.

A formal definition of these choice rules is provided in Appendix C.

3
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are two papers that have taking up this issue. However, both have limitations, which we address

to overcome.

The first article on this issue was published by Epstein (1997). In it, a preference-based ap-

proach is pursued. Its starting point is a preference model that assigns a set of possible preference

relations to each player. Based on this model, preference-based choice rules can be specified. A

player is said to follow a choice rule of preference-rationalizability if her chosen strategy belongs

to the best strategies according to some preference relation of this set of possible preference re-

lations. The article’s main achievement is that general assumptions on the preference model are

identified so that the solution obtained by the iterated application of choice rules of preference-

rationalizability is characterizable by behavior according to this choice rule and common belief of

it.4 However, we would like to point to two limitations of this result. First, as already outlined, the

basic notion of this result is that of a preference relation from which a choice rule is constructed.

Therefore, choice rules that could not be rationalized by some set of preference relations are not

considered in the analysis of Epstein (1997).5 Second, the above result has been proved only for

finite strategic games.

The second article is by Apt and Zvesper (2010). Unlike Epstein (1997), they start directly

with the notion of a choice rule and put no restrictions on the cardinality of the players’ strategy

sets.6 They show that if the choice rules satisfies their property of monotonicity, then the iterated

application of such choice rules proves to be characterizable by choice-rule following behavior

and common belief of it. However, their construction of the process of iterated application of

choice rules differs from that in standard game theory with respect to two aspects. First, while

standard game theory defines this process as a finite recursion, Apt and Zvesper (2010) make use

of transfinite ordinals. Second, while in iterative deletion procedures of standard game theory the

players’ choices rules are applied on the remaining strategies in each round of the procedure, in

their iterative deletion procedure the players’ choice rules are applied on the initial strategies in

each round of the process.

The task of this paper is to overcome the limitations of these two articles. Like Apt and Zvesper

(2010), our epistemic analysis starts with the notion of a choice rule and deals with strategic games

with arbitrary strategy sets. However, unlike them, we define the process of iterated applications

of choice rules in the standard way. In order to require only the use of finite ordinals, we endow

strategic games with a topological structure. Indeed, for this purpose we assume that the strategy

sets are compact Hausdorff and the players’ payoff functions are continuous as in Mariotti’s (2003)

analysis. Henceforth, such strategic games are referred to as regular strategic games.

To accomplish the aforementioned task, we proceed as follows. In the succeeding section, we

explain how strategic games are decomposed into decision problems under uncertainty. Further-

more, we introduce the notion of a choice rule, which is our basic device to solve these decision

4We remark that Epstein (1997) does not use the term choice rule is never used. Rather, Epstein calls a player P
∗
i -

rational whenever she chooses a strategy that belongs to the best strategies according to some preference relation of set

P
∗
i of possible preference relations. However, to remain consistent with our other statements, and without changing the

content, we have rephrased Epstein’s result in our terminology.
5In Section 2, we present a trivial example of a choice rule that cannot be induced by any preference model.
6Moreover, Apt and Zvesper (2010) do not use the term choice rule. Rather, they introduce the notion of an optimality

property. It can be easily shown, however, that this notion corresponds with our notion of a choice rule.

4
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problems. Section 3 deals with the solution concept IAC of iterated application of choice rules C.

Properties of choice rules are identified so that the solution concept IAC is non-empty and stable.

In this paper, stability refers to two aspects. First, it requires that the solution generated by iterated

application of choice rules be irreducible with respect to further applications of the choice rules (or

to put it differently, the use of finite ordinal numbers suffices to find the solution of the iterated ap-

plication of choice rules). Second, it requires that the solution have the best choice property, which

is a generalization of Pearce’s (1984) best response property. This demands that every strategy of

every player surviving the iterated application of choice rules must be favorable in the decision

problem, where (i) the player can choose among all her initial strategies but (ii) considers possible

only the strategies of her opponents that survive the process of iterated application of choice rules.

In Section 4, we introduce the solution concept of CBC , which gives the strategy profiles that might

be realized if players follow choice rules C and this is commonly believed. The construction of this

solution concept differs essentially from that of IAC . As described in detail in Section 3, the latter

concept follows the standard approach of game theory (we also refer to it as the ad hoc approach)

and is based only on the objective items of the strategic games (i.e., those listed in the forthcoming

definition of a strategic game, see Definition 2.1). In contrast, the solution concept of CBC is con-

structed on a broader basis. It is based not only on the objective items of the strategic game but

also on its subjective items like the reasoning of the players about the choices and the reasoning of

their opponents. To capture these items, we resort to an idea of Harsanyi (1967/68) and supple-

ment the strategic game with a type space. However, unlike standard epistemic game theory, in

which the players’ types are endowed with probability measures on the opponents’ strategies and

types, our type space model is of a qualitative nature. In this paper, each type of each player is

associated with a (closed) possibility set on the opponents’ strategy-type combinations. Such type

space models are known as possibility structures in epistemic game theory (cf. the terminology in

the survey of Siniscalchi, 2008). The main result of this paper is presented in Section 5. There we

list properties of choice rules ensuring that the solution of IAC coincides with the solution of CBC .

In Appendix A, it is established that this result is weak in the sense that none of these properties

can be canceled without eliminating this coincidence. The proofs of our remarks are relegated to

Appendix B. The formal specifications of the choice rules described verbally in the Introduction

and in the main text are provided in Appendix C.

2 Decomposing Strategic Games into Decision Problems

As outlined in the Introduction, this paper compares two solution concepts that are the result of

different perspectives on games. Despite their divergent geneses, their constructions share com-

mon characteristics. For both solution concepts, games are decomposed into decision problems to

which choice rules are applied. The objective of this section is to explain how this decomposition

is accomplished. For this purpose, we provide first the definitions of the three basic concepts of

this paper. These are strategic game, decision problem and choice rule. Subsequently, we link

them with each other.

Definition 2.1 A strategic game is a tuple Γ := (I, (Si, zi)i∈I) where

5

Jena Economic Research Papers 2014 - 032



• I denotes a non-empty, finite set of players,

• Si denotes the topological strategy space of player i

• zi : S → R denotes the payoff function of player i where S :=
∏

j∈I S
j is endowed with the product

topology.

A strategic game is called regular if, for each player i ∈ I , strategy space Si is compact Hausdorff and payoff

function zi is continuous.

Consider a group J ⊆ I of players who are taking part in strategic game Γ := (I, (Si, zi)i∈I).

The product set SJ :=
∏

j∈J Si consisting of all strategy combinations of the players belonging to

J is assumed to be endowed with the product topology. Obviously, if strategic game Γ is regular,

then product space SJ is compact Hausdorff. As usual, we write S and S−i instead of SI and

SI\{i}, respectively.

The product set R :=
∏

i∈N Ri where Ri ⊆ Si holds for any i ∈ I is termed a restriction of

strategic game Γ. We denote the set of all restrictions of strategic game Γ by RΓ. Let R ∈ RΓ be a

restriction of Γ, then Ri and R−i :=
∏

j∈I\{i} R
j are called restriction of player i and restriction of i’s

opponents, respectively. A restriction R ∈ RΓ being a closed (compact) subset of S is referred to as

a closed (resp. compact) restriction of Γ. A strategy si is said to belong to restriction R whenever

si ∈ Ri holds. Strategic game Γ|R = (I, (Ri, zi|Ri)i∈I) where R ∈ RΓ holds and zi|R denotes the

restriction of i’s payoff function zi on domain R is called reduction of game Γ on restriction R.

Let i ∈ I be some player of game Γ. Her payoff function zi specifies the payoff zi(s) (usually

interpreted as monetary payoff) she receives if strategy profile s ∈ S is realized. The set R of real

numbers is assumed to be endowed with the standard (i.e., Euclidean) topology. If the strategic

game is regular, the Closed Map Lemma implies that payoff function zi is closed.7 Given some

strategy si ∈ Si, then zi(si; .) : S−i → R denotes the mapping assigning payoff zi(si, s−i) to each

strategy combination s−i ∈ S−i. Given some strategy s−i ∈ S−i, then zi(.; s−i) : Si → R denotes

the mapping assigning payoff zi(si, s−i) to each strategy si ∈ Si. Obviously, if payoff function zi

is continuous, mappings zi(si; .) and zi(.; s−i) are continuous too. Moreover, both mappings are

also closed whenever a regular strategic game is presupposed.

A strategic game is termed finite whenever the strategy space of every player is finite. Without

difficulty, it can be proved that finite strategic games are regular if and only if the strategy space

of every player is endowed with the discrete topology (i.e., every subset of the strategy space

is an open set). Unlike our Definition 2.1, in game theory textbooks strategic games are usually

introduced without any topological assumptions. However, in case of finite strategic games the

regularity premise proves to be non-restrictive. Indeed, if the finite strategy spaces of the players

are supplemented with the discrete topology, they become compact Hausdorff and the payoff

functions become continuous. Hence, our regularity assumption is innocuous for strategic games

with finite strategy spaces.

As aforementioned, the two solution concepts that we analyze in the succeeding sections have

components in common. Both constructions are based on the decomposition of games into de-

7A mapping f : X → Y from topological space X on topological space Y is called closed if f(A) := {f(x) : x ∈ A} is

closed in Y for any set A closed in X . The Closed Map Lemma says that continuous functions whose domains are compact

and codomain Hausdorff are closed.

6
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cision problems. In this paper, a decision problem is defined by tuple Φ := (P,A)Θ and consists

of the three attributes condition space Θ, possibility set P , and constraint A. These attributes are

interpreted as follows.

Condition space Θ is a topological space that encompasses all conceivable conditions (or, syn-

onymously, circumstances) the decision maker might take into account in her decision making

process. Such space is called regular whenever it is compact Hausdorff. In general, we denote con-

dition spaces by Greek capital letters (e.g., by Θ) and their elements by Greek lower-case letters

(e.g., θ). For varied reasons, which are detailed in the succeeding sections, some of the conceivable

circumstances might be precluded by the decision maker. Possibility set P ⊆ Θ is the set that com-

prises all circumstances not precluded by her. A condition belonging to possibility set P is said to

be considered possible by the decision maker.

Constraint A is the set of alternatives available for the decision maker. Alternatives are repre-

sented by payoff profiles on condition space Θ. Such profiles are mappings assigning a real number

(i.e., a monetary payoff) to each conceivable condition. In Microeconomic Theory literature, pay-

off profiles are also known as condition contingent monetary payoffs. The set of all payoff profiles

on Θ is denoted by RΩ. Specific subsets of RΩ are represented by specific characters. The set of

all bounded payoff profiles on Θ is denoted by B(Θ) and set of all continuous payoff profiles on

Θ is denoted by C(Θ). Finally, the set of all bounded and continuous payoff profiles on Θ is rep-

resented by BC(Θ). Throughout the paper, we suppose that B(Θ) is endowed with the topology

induced by the sup norm ||.||∞. Usually, constraints are denoted by Fraktur capital letters (e.g.,

A, Ã, . . . ) and payoff profiles by Fraktur lower-case letters (e.g., a, b, . . . ). The θth component of

payoff profile a is denoted by aθ and indicates the payoff received by the decision maker when-

ever she has chosen payoff profile a and circumstance θ occurs. Avoiding notational overload, we

frequently make use of the following notational rule of simplification. If the condition space Θ is

unequivocally fixed, decision problem (P,A)Θ is expressed in the abbreviated form (P,A).

The system of all decision problems under basic condition space Θ is denoted by DΘ. We

refer to DΘ as the complete system of decision problems under condition space Θ. In the following, we

consider frequently subsystems D̃Θ ⊆ DΘ of decision problems. In particular, we pay attention

to those decision problems Φ of system DΘ that satisfy the following two properties. First, their

possibility sets must be closed in Θ and, second, their constraints must be compact subsets of

BC(Θ). Such decision problems are termed regular decision problems by us.

A choice rule is a device applied by a decision maker to solve decision problems. Formally, a

choice rule C is a mapping that assigns to each decision problem Φ := (P,A)Θ ∈ DΘ of every

condition space Θ a (possibly empty) set C(Φ) ⊆ A of payoff profiles. The set C(Φ) is called the

choice set for decision problem Φ under choice rule C, and the payoff profiles contained in this set

are called favorable (or best) payoff profiles in decision problem Φ under choice rule C. Available

payoff profiles that do not belong to the choice set are called unfavorable. To maintain clarity, we

simply write C(P,A)Θ instead of C ((P,A)Θ).

In Table C.1 of Appendix C several choice rules are specified. This list contains all choice rules

mentioned in the Introduction and main text of this paper. Most of them are well-known and often

applied in decision theory and game theory. In this section, we focus mainly on the choice rules

of strict undominance (in pure payoff profiles) SUp, strict undominance in mixed payoff profiles

7
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SUm, point rationality PR, strict dominance SD, modified strict dominance SD+ and maximin

MM. They are adduced to clarify our concepts.

In accordance with the explanations in the Introduction, the choice rule of strict undominance

of pure payoff favors the available payoff profiles for that no other available payoff profile exists

that yields a higher payoff in every condition considered possible by the decision maker. The

choice rule of strict undominance in mixed payoff profiles selects the available payoff profiles for

that no mixture of available payoff profiles exists that yields a higher payoff in every condition

considered possible. An available payoff profile is favorable under the choice rule of point ra-

tionality whenever, at some condition considered possible, it yields the highest possible payoff

among available payoff profiles. The choice rule of strict dominance favors the available payoff

profiles whose payoffs exceed the payoffs of any other available payoff profile in every condition

considered possible. Without difficulty, we recognize that

SD(P,A)Θ ⊆ PR(P,A)Θ ⊆ SUm(P,A)Θ ⊆ SUp(P,A)Θ

is satisfied for every decision problem (P,A)Θ ∈ DΘ of any condition space Θ. As its name sug-

gests, the choice rule of modified strict dominance rule is a variant of the strict dominance rule.

It corresponds with the strict dominance rule if the latter has a solution, and, otherwise, it views

as favorable every available payoff profile. The maximin rule selects the available payoff profiles

whose security level (i.e., the greatest payoff that is ensured at every condition considered possi-

ble) is higher or equal than the security level of any other available payoff profile. The following

definition lists technical properties of choice rules that will be crucial for solving the issues of

existence, closedness and stability addressed in the succeeding section.

Definition 2.2 Let Θ be some condition space and D̃Θ ⊆ DΘ be some system of decision problems. A

choice rule C is called

• non-empty in D̃Θ if C(Φ) is non-empty for any regular decision problem Φ ∈ D̃Θ with non-empty

possibility set and non-empty constraint.

• closed in D̃Θ if C(Φ) is closed in B(Θ) for any regular decision problem Φ ∈ D̃Θ.

• possibility set continuous from above in D̃Θ if

⋂

k∈K

C(Pk,A) ⊆ C(P,A)

is satisfied for any net (Pk,A)k∈K of regular decision problems of D̃Θ and for any regular decision

problem (P,A) ∈ D̃Θ where Pk ց P holds.8

• constraint continuous from above in D̃Θ if

⋂

k∈K

C(P,Ak) ⊆ C(P,A)

is satisfied for any net (P,Ak)k∈K of regular decision problems of D̃Θ and for any regular decision

problem (P,A) ∈ D̃Θ where Ak ց A holds.

8Let (Xk)k∈K be a net of sets directed by the index set K. It is called antitone whenever Xl ⊆ Xk is satisfied for any

k ≤ l. We write Xk ց X , if (Xk)k∈K is an antitone net and ∩k∈KXk = X holds.
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The property of non-emptiness postulates that every regular, non-degenerated decision prob-

lem of D̃Θ is solvable, i.e., contains at least one favorable payoff profile. The property of closedness

requires that the set of favorable payoff profiles of any regular decision problem of D̃Θ be a closed

subset of B(Θ). To understand the property of possibility set continuity from above, consider a

payoff profile favorable in any decision problem of a family of regular decision problems having

the same condition space and constraint, but whose possibility sets might be different. Then this

property says that this payoff profile is also favorable in the decision problem having the same

condition space and constraint, but whose possibility set corresponds to the intersection of the

possibility sets of those decision problems. To understand the property of constraint continuity

from above, consider a payoff profile favorable in any decision problem of a family of regular deci-

sion problems having the same condition space and possibility set, but whose constraints might be

different. Then this property means that this payoff profile is also favorable in the decision prob-

lem having the same condition space and possibility set, but whose constraint corresponds to the

intersection of the constraints of those decision problems. A choice rule is called continuous from

above in D̃Θ whenever it is possibility set as well as constraint continuous from above in D̃Θ and

is called regular in D̃Θ whenever it is non-empty, closed, and continuous from above. It turns out

that with the exception of the choice rule of strict dominance all choice rules discussed above are

regular in every system of decision problems. This result is summarized in the following remark.

Remark 2.3 Consider some compact condition space Θ. The choice rules MM, PR, SD+, SUm, and

SUp are regular in DΘ. Choice rule SD is closed and continuous in DΘ but not necessarily non-empty.

Next, we aim to decomposing strategic games into decision problems. As discussed in the

Introduction, the specification of the decision problems originating from a strategic game depends

on the chosen approach to solving the game, i.e., whether the standard approach or the epistemic

approach is selected. Nevertheless, with regard to certain aspects, these specifications are similar

in both approaches.

Consider a player i ∈ I participating in strategic game Γ := (I, (Si, zi)i∈I). Let Θ be her,

however specified, condition space and P ⊆ Θ her, however specified, possibility set. In order to

determine her constraint, strategies must be converted into payoff profiles. We do this by means

of two mappings. The first mapping is a so-called strategy function σ−i
Θ : Θ → S−i, which assigns

a strategy profile s−i
θ ∈ S−i of i’s opponents to any condition θ ∈ Θ. This mapping might be

understood as one that gives, for each condition θ, the strategies s−i
θ , which i’s opponents choose

in this condition. The second mapping, which is termed the payoff profile function, is given by

aiΘ : Si → B(Θ) where payoff profile aiΘ(s
i) := zi(si; .) ◦ σ−i

Θ ∈ B(Θ) is assigned to strategy

si ∈ Si. Payoff profile aiΘ(s
i) is called the payoff profile on Θ induced by strategy si. Obviously, if

condition space Θ is compact and strategy mapping σ−i
Θ as well as payoff function zi(si; .) are

continuous, then payoff profile aiΘ(s
i) is continuous and closed.

Remark 2.4 Consider a strategic game Γ := (I, (Si, zi)i∈I). If condition space Θ is compact and strategy

function σ−i
Θ as well as payoff function zi are continuous, then mapping aiΘ is continuous and closed.

With above specifications at hand, it is possible to set up the decision problem of above player i.

Her decision problem is representable by tuple
(

P, aiΘ(S
i)
)

Θ
. If for some reason the set of feasible

9
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strategies for player i is narrowed to subset Ri ⊆ Si, then her decision problem is given by tuple
(

P, aiΘ(R
i)
)

Θ
.

A strategy si is called favorable in decision problem Φi
Θ :=

(

P, aiΘ(R
i)
)

Θ
whenever aiΘ(s

i) ∈

Ci(P, aiΘ(R
i)) applies and unfavorable in decision problem Φi

Θ whenever aiΘ(s
i) ∈ ai(Ri) but aiΘ(s

i) /∈

Ci(P, aiΘ(R
i)) applies. Denote by (aiΘ)

−i the inverse of mapping aiΘ. Obviously, strategy si is

favorable if and only if si ∈
(

aiΘ

)−i (

Ci(P, aiΘ(R
i))
)

holds. To advance the readability of our for-

mal analysis, we slightly abuse our notation and write Ci(P,Ri) instead of (aiΘ)
−i
(

Ci(P, aiΘ(R
i))
)

.

Thus, whether the choice set is expressed as acts or as strategies is indicated by the constraint

argument. If this describes a set of acts, then the first case holds. If it represents a set of strategies,

the second case applies.

As mentioned in the Introduction, the above setup corresponds essentially to that of Apt and

Zvesper (2010). Like them, we have taken choice rules as the starting point of our decision the-

oretic analysis of strategic games. Nevertheless, other approaches are possible. Unlike our ap-

proach, the decision theoretic analysis carried out by Epstein (1997) is based on preference rela-

tions. We conclude this section by arguing that Epstein’s approach can be embedded into our

setup without difficulties. To accomplish this task, it suffices to express Epstein’s concept of pref-

erence rationalizability by some choice rule.

As before, let Θ be the condition space of a player i ∈ I , participating in strategic game Γ :=

(I, (Si, zi)i∈I). The basic premise of Epstein (1997) is that the player is endowed with a (weak)

preference relation % on the set RΘ of all payoff profiles on Θ. As usual, a preference relation %

on RΘ represents a binary complete and transitive relation on RΘ and is interpreted as follows.

Let a, b ∈ RΘ be some payoff profiles, then a % b is read as “the decision maker considers payoff

profile a at least as good as payoff profile b.” A subset E ⊆ Θ of the condition space is called a

proposition, and the complement of some proposition E is denoted by ¬E.9 A proposition E ⊆ Θ

is said to be (Savage-)null under preference relation % whenever (aE , a¬E) % (bE, a¬E) holds for

any payoff profiles a, b ∈ RΘ. That is, a proposition E is null whenever the decision maker is

indifferent between any two payoff profiles yielding identical payoffs in conditions outside of

proposition E.

In Epstein (1997), assumptions about the players’ preference relations are summarized in so-

called preference models. A preference model P is a correspondence assigning to every proposition

E ⊆ Θ of any condition spaceΘ a set P(E)Θ of preference relations onRΘ, where for each of them

proposition ¬E must be null. Armed with these models, the decision problems of the players are

solved as follows. Consider the decision problem
(

P, aiΘ(S
i)
)

Θ
of player i whose possibility set is

given by P ⊆ Θ and some preference model P . An available payoff profile a ∈ a
i
Θ(S

i) is said to be

rationalizable by preference model P whenever there exists a preference relation %∈ P(P )Θ so that

a % b holds for every payoff profile b ∈ a
i
Θ(S

i). The main issue addressed in Epstein (1997) is the

detection of a general preference model so that the solution obtained by the iterated application

of the concept of preference rationalizability on some strategic game coincides with the solution if

9We remark that this terminology is not standard. Generally, in decision theory subsets of the condition space are called

events. We deviate from the standard terminology since we use the term ‘event’ for subsets of state spaces (see Section

4). While a condition space describes only the uncertainty of one player, a state space summarizes the uncertainty of all

players.
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Condition space Θ

θ1 θ2

Payoff

profiles

a 1 1

b 1 0

c 0 0

Figure 2: Condition space Θ := {θ1, θ2} with payoff profiles a, b, c

the players of this game act rationally according to these preference models and this is commonly

believed among them.

To bring Epstein’s concept of preference rationalizability in line with our setup, we introduce

the choice rule CP specified by

CP(P,A)Θ := {a ∈ A : there exists %∈ P(P )θ so that a % b for every b ∈ A}

for every decision problem (P,A)Θ of any condition space Θ. This is called the choice rule induced

by preference model P . Obviously for every decision problem it gives the set of payoff profiles

rationalizable by possibility model P . Thus, we have transformed the concept of preference ra-

tionalizability into a choice rule as desired.

We note that not any choice rule can be induced by some preference model. A trivial example

supporting this claim is the modified strict dominance rule SD+ introduced above. To see this,

consider decision problems whose common condition space is given by Θ := {θ1, θ2}. To be

compact Hausdorff, this space must be endowed with the discrete topology. In Figure 2, payoff

profiles a, b, c on Θ are specified.

Obviously, we obtain two results, SD+(Θ, {a, b, c}) = {a, b, c} and SD+(Θ, {a, c}) = {a}. Ac-

cording to the latter result, every preference relation %∈ P(Θ)Θ of any preference model P ra-

tionalizing choice rule SD+ must satisfy a ≻ c. Consequently, c /∈ SD+(Θ, {a, b, c}) should hold.

However, this contradicts our former result. Remarkably, although the modified strict undomi-

nance rule is not rationalizable by any preference model, we are still able to provide a plausible

choice-rule based epistemic rationale for its iterated application on the class of regular strategic

games (see our Remark 5.7).

3 Iterated Application of Choice Rules

In this section, we study solution concepts originating from iterated applications of choice rules.

Two issues regarding these solution concepts are addressed. First, we tackle the problem of ex-

istence and search for properties of choice rules ensuring that these solution concepts provide a

solution at least for each regular strategic game. This problem is solved finally in Remark 3.2.

Second, we address the problem of stability. Stability is understood here in two ways. Our first

version of stability requires that the solution obtained by iterated applications of choice rules be

irreducible with respect to further applications of choice rules. This kind of stability is referred
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to as irreducibility. Our second version requires that the strategies of a player surviving the iter-

ated application of choice rules still be favorable in the decision problem where every strategy of

the player is feasible, but only those strategies of the opponents are considered possible that sur-

vive the iterated application of choice rules. If a solution concept exhibits such stability, it is said

to have the best choice property. The best choice property is a generalization of the best response

property, which has been introduced by Pearce (1984) with regard to his solution concept of ra-

tionalizability. Our task is to detect properties of choice rules so that the solution generated by

iterated applications of choice rules is stable in the above two senses. The answers to these issues

are summarized in Theorem 3.6 and 3.10, respectively.

As explained in the previous section, implementing choice rules on a strategic game requires

to decompose it into decision problems. According to our framework set out there, a decision

problem is described by the three attributes, namely, condition space, possibility space, and con-

straint. In this section, these attributes are specified as follows. Let Γ|R be a reduction of strategic

game Γ := (I, (Si, zi)i∈I), then the decision problem for player i is determined by

Φi
Γ|R

:= (R−i, aiΓ(R
i))S−i ∈ DS−i ,

where mapping aiΓ assigns to each strategy si of player i the payoff profile zi(si; .) on S−i. By

reviewing this specification, we recognize that its condition space contains all conceivable profiles

of strategies of i’s opponents, its possibility set contains all profiles of strategies of i’s opponents

available in the reduced game Γ|R, and its constraint contains all payoff profiles induced by i’s

strategies available in the reduced game Γ|R. Henceforth, decision problem Φi
Γ|R

is referred to as

the decision problem for player i in the reduced game Γ|R. The set of all decision problems for player i,

which are induced by some reduced game of Γ, is denoted by D i
Γ.

If choice rule Ci is applied to solving decision problem Φi
Γ|R

, then
(

a
i
Γ|R

)−1 (

Ci(Φi
Γ|R

)
)

rep-

resents the set of strategies of player i that are considered favorable according to choice rule Ci.

Resorting to the rule of simplification suggested in the previous section, the latter term can be

rewritten as Ci(R−i, Ri
k)S−i . With this simplified notation at our hands, the solution concept of

iterated deletion of choice rules is defined as follows.

Definition 3.1 Consider a strategic game Γ and let C := (Ci)i∈I be a family of choice rules. The deletion

process of iterated application of choice rules C on Γ is a sequence of (Rk)k∈N0 of sets of strategy profiles,

which is recursively determined by R0 := S and

Rk+1 :=
∏

i∈I

Ci(R−i
k , Ri

k)S−i

for all k ≥ 0. We say about strategy profile s ∈ Rk that it survives k rounds of deletion of C-unfavorable

strategy profiles. Intersection

R∞ :=
⋂

k∈N0

Rk

is referred to as the set of strategy profiles surviving the iterated application of choice rules C on Γ.

Reviewing Definition 3.1, we recognize that the deletion process of iterated application of

choice rules relies only on the objective features of a game (i.e., the features listed in Definition
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2.1). Accordingly, this construction of a solution concept is in line with what we called earlier the

standard approach for solving games.

Furthermore, we notice that, according to Definition 3.1, in each round of this process every

strategy considered unfavorable is deleted. Such deletion processes are known as processes of max-

imal deletion of unfavorable strategies. From now on, if family C := (Ci)i∈I of choice rules is fixed,

then the solution concept that assigns to each strategic game the set of strategy profiles surviving

the iterated application of C is denoted by IAC . The following remark states properties of choice

rules so that IAC provides a non-empty solution at least for every regular strategic game.

Remark 3.2 Consider a regular strategic game Γ and let (Rk)k∈N0 be the deletion process generated by

iterated application of choice rules C := (Ci)i∈I . If each choice rule Ci is non-empty and closed in D i
Γ, then

(a) Rk is a non-empty and closed restriction of S for every k ∈ N0.

(b) R∞ :=
⋂

k∈N0

Rk is a non-empty and closed restriction of S.

In order to tackle the two problems of stability we have mentioned at the outset of this section,

further properties of choice rules have to be imposed.

Definition 3.3 Let Θ be some condition space and D̃Θ ⊆ DΘ be some system of decision problems. A

choice rule C is

• called reflexive in D̃Θ if

C(Q, C(P,A)) ⊆ C(Q,A)

holds for any regular decision problems (P,A), (Q,A), (Q, C(P,A)) ∈ D̃Θ where Q ⊆ P applies.

• satisfies Aizerman’s property in D̃Θ if

C(P,A) ⊆ C(P, Ã)

holds for any regular decision problems (P,A), (P, Ã) ∈ D̃Θ where C(Φ) ⊆ Ã ⊆ A applies.

• called monotone in D̃Θ if

C(Q,A) ⊆ C(P,A)

holds for any regular decision problems (P,A), (Q,A) ∈ D̃Θ where Q ⊆ P applies.

To understand the property of reflexivity, consider two regular decision problems with the

same condition space and constraint, but where one has a smaller possibility set. Suppose there

is a payoff profile that is unfavorable in the decision problem with the smaller possibility set.

Then the property of reflexivity signifies that this payoff profile must be either unavailable or

unfavorable in the decision problem with the same condition space and possibility set, but with

a constraint consisting of all payoff profiles that are favorable in the decision problem with the

larger possibility set. Aizerman’s property requires that favorable payoff profiles remain favorable

even if unfavorable payoff profiles are omitted from constraint. The property of monotonicity

demands that a payoff profile viewed as favorable in some decision problem is also favorable

in every decision problem with the same condition space and constraint but a larger possibility
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set. Without difficulty, it can be shown that with the exception of the maximin rule all choice

rules discussed above satisfy the above three properties for any complete system DΘ of decision

problems. For the maximin rule, only Aizerman’s property is guaranteed for any complete system

DΘ of decision problems. As the two examples of decision problems in Figure 3 demonstrate, the

maximin rule satisfies neither reflexivity nor monotonicity in general.

Decision problem under ...

condition space Θ1

ω1 ω2

and payoff

profiles

t 0 3

m 2 1

d 1 2

condition space Θ2

ω1 ω2 ω3

and payoff

profiles

l 1 2 0

r 0 1 2

A := {t,m, d}, P := {ω1, ω2}, Q := {ω2}, A := {l, r}, P := {ω2, ω3}, Q := {ω2},

MM(Q,MM(P,A)) = {d} * {t} = MM(Q,A) MM(Q,A) = {l} * {r} = MM(P,A)

Figure 3: Maximin rule applied to decision problems under condition spaces Θ1 and Θ2

In the following remark, the properties of the choice rules considered in Section 2 are summa-

rized.

Remark 3.4 Consider some condition space Θ. Choice rules PR, SD+, SUm and SUp satisfy reflexivity,

Aizerman’s property and monotonicity in DΘ. Choice rule MM satisfies Aizerman’s property in DΘ but

not necessarily reflexivity and monotonicity.

In the succeeding paragraphs, we deal with the question under which conditions the solution

obtained by iterated application of choice rules is irreducible (or, synonymously, stable) with re-

spect to further applications of these rules. To resolve this issue, the following lemma turns out to

be helpful.

Lemma 3.5 Consider a regular strategic game Γ. Let (Rk)k∈N0 be the deletion process generated by iter-

ated application of choice rules C := (Ci)i∈I and R∞ be its solution. If each choice rule Ci is non-empty,

closed, possibility set continuous from above, and reflexive in D i
Γ, then Ri

∞ ⊆ Ci(R−i
∞ , Ri

k) holds for any

k ∈ N0 and for any i ∈ I .

Proof. Pick some player i ∈ I and fix some l ≥ 0. We show by induction on k that Ci(R−i
l , Ri

l) ⊆

Ci(R−i
l , Ri

k) holds for every 0 ≤ k ≤ l and every i ∈ I . Case k = l is trivial. Suppose that

Ci(R−i
l , Ri

l) ⊆ Ci(R−i
l , Ri

k) is satisfied for some 0 < k ≤ l. It follows from the definition of Ri
k and

the reflexivity of Ci that

Ci(R−i
l , Ri

k) = Ci(R−i
l , Ci(R−i

k−1, R
i
k−1)) ⊆ Ci(R−i

l , Ri
k−1)

holds. This result together with the induction premise implies Ci(R−i
l , Ri

l) ⊆ Ci(R−i
l , Ri

k−1), and

the above claim has been proven. By construction, Ri
∞ ⊆ Ci(R−i

l , Ri
l) applies to any l ∈ N0.

Due to the result just proven, we obtain Ri
∞ ⊆ Ci(R−i

l , Ri
k) for any l, k ∈ N0 satisfying k ≤ l.
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Hence, Ri
∞ ⊆ ∩∞

l=kC
i(R−i

l , Ri
k) holds for any k ∈ N0. By possibility set continuity from above,

Ri
∞ ⊆ Ci(∩∞

l=kR
−i
l , Ri

k) = Ci(R−i
∞ , Ri

k) is obtained for any k ∈ N0 as desired. �

Consider a strategic game Γ and a family C := (Ci)i∈I of choice rules. Dominance operator

DC
Γ : RΓ → RΓ is a mapping that associates with each restriction R ∈ RΓ restriction

DC
Γ(R) :=

∏

i∈I

Ci(R−i, Ri) .

Obviously, DC
Γ(R) is the set of all strategy profiles whose components are favorable strategies

under restriction R and choice rules C. A fixed point of dominance operator DC
Γ is a restriction

R ∈ RΓ having property DC
Γ(R) = R. If a restriction proves to be a fixed point of mapping DC

Γ(R),

this means nothing but that this solution is not further reducible with respect to choice rules C. The

following theorem states properties of choice rules ensuring that solution IAC(Γ) is a non-empty

fixed point of dominance operator DC
Γ.

Theorem 3.6 Consider a regular strategic game Γ and let R∞ be the solution generated by iterated ap-

plications of choice rules C := (Ci)i∈I . If each choice rule Ci is regular and reflexive in D i
Γ, then R∞ is a

non-empty fixed point of dominance operator DC
Γ.

Proof. It follows immediately from the definition of the dominance operator DC
Γ that DC

Γ(R∞) ⊆

R∞. It remains to show DC
Γ(R∞) ⊇ R∞. This statement is proved by the following line of argu-

mentation.

DC
Γ(R∞) =

∏

i∈I

Ci(R−i
∞ , Ri

∞) (by definition of DC
Γ)

=
∏

i∈I

Ci(R−i
∞ ,

⋂

k∈N0

Ri
k) (by definition of Ri

∞)

⊇
∏

i∈I

⋂

k∈N0

Ci(R−i
∞ , Ri

k) (by constraint continuity from above)

⊇
∏

i∈I

Ri
∞ (by Lemma 3.5)

= R∞ (by definition of R∞)

�

The remaining part of this section is devoted to the second variant of stability we discussed

at the outset of this section. This kind of stability is termed the best choice property and is a

generalization of the best response property of Pearce (1984).

Definition 3.7 Consider a strategic game Γ and family (Ci)i∈I of choice rules . A restriction R ∈ RΓ has

the best choice property if Ri ⊆ Ci(R−i, Si) is satisfied for any player i ∈ I .

In words, a restriction of a game satisfies the best choice property whenever, for each player,

each strategy of this restriction is favorable in the decision problem composed of the following

possibility set and constraint. The possibility set consists exactly of the opponents’ strategies being

available in the restriction, and the constraint contains all the player’s strategies being available in

this game. In the case that the players’ choice rules are those that select the strategies maximizing
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the expected payoff for some product measure on the opponents’ restriction (i.e., the product of

measures where each of them is defined on the restriction of one opponent), the best choice prop-

erty turns into the best response property of Pearce (1984). In the following, we state properties

of choice rules so that the solution generated by iterated application of choice rules has the best

choice property. To accomplish this, we resort to the following lemma.

Lemma 3.8 Consider a regular strategic game Γ := (I, (Si, zi)i∈I) and let (Rk)k∈N0 be the deletion

process generated by iterated application of choice rules C := (Ci)i∈I . If each choice rule Ci is non-empty,

closed, and satisfies Aizerman’s property in D i
Γ, then Ci(T−i, Si) ⊆ Ci(T−i, Ri

k) is satisfied for every

T−i ⊆ R−i
k closed in S−i, every k ∈ N0, and every i ∈ I .

Proof. This claim is proved by induction on the deletion rounds. In the case of k = 0, this assertion

follows directly from our stipulation Ri
0 := Si. Suppose this assertion holds for some k ∈ N0.

Consider some closed restriction T−i ⊆ R−i
k+1 and some player i ∈ I . We obtain

Ci(T−i, Ri
k+1) = Ci(T−i, Ci(R−i

k , Ri
k)) (by definition of Ri

k+1)

⊇ Ci(T−i, Ri
k) (by Aizerman’s property)

⊇ Ci(T−i, Si) , (by induction premise)

and thus the above assertion is also established for k + 1. �

Lemma 3.9 Consider a regular strategic game Γ and a family C := (Ci)i∈N of choice rules. If each choice

rule Ci of C is non-empty, closed, and monotone, and satisfies Aizerman’s property in D i
Γ, then every

restriction of Γ having the best choice property survives the iterated applications of choice rules C.

Proof. Let (Rk)k∈N0 be the deletion process generated by iterated applications of choice rules C,

and consider a restriction R ∈ RΓ having the best choice property. We show by induction that

R ⊆ Rk applies to any k ∈ N0. Obviously, Ri ⊆ Ri
0 := Si is satisfied for any i ∈ I . Suppose

Ri ⊆ Ri
k holds for some k ∈ N0. We obtain

Ri ⊆ Ci(R−i, Si) (by assumption R has the best choice property)

⊆ Ci(R−i
k , Si) (by induction premise and monotonicity)

⊆ Ci(R−i
k , Ri

k) (by Lemma 3.8)

= Ri
k+1 (by definition of Ri

k+1)

for every player i ∈ I . Since R ⊆ Rk holds for every k ∈ N0, our claim R ⊆ ∩k∈N0Rk = R∞ is

verified. �

By merging Lemmata 3.5 and 3.9, we are able to specify a set of choice rule properties guaran-

teeing that the solution generated by iterated application of choice rules is the largest restriction

having best response property. This result is summarized in the following theorem.

Theorem 3.10 Consider a regular strategic game Γ and let R∞ be the solution generated by iterated appli-

cations of choice rules C := (Ci)i∈N . If each choice rule Ci is non-empty, closed, possibility set continuous

from above, reflexive and monotone, and satisfies Aizerman’s property in D i
Γ, then R∞ is the largest restric-

tion satisfying the best choice property.
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Proof. Lemma 3.5 implies that Ri
∞ ⊆ Ci(R−i

∞ , Si) holds for every i ∈ I . That is to say, R∞ has

the best choice property. In order to establish that it is the largest restriction having this property,

consider an arbitrary restriction R with the best choice property. By Lemma 3.9, restriction R

survives the iterated applications of choice rules C. Hence, R ⊆ R∞ results. �

As established in Remarks 2.3 and 3.4, except for the minimax rule all choice rules analyzed

in Section 2 satisfy the assumptions of the theorems proved in the current section. Hence, the

solution obtained by the iterated application of these choice rules exhibits the following set of

properties.

Remark 3.11 Consider a regular strategic game Γ and a family C := (Ci)i∈I of choice rules where Ci ∈

{PR,SD+,SUp,SUm} holds for every i ∈ I . Then solution IAC(Γ) is

(a) non-empty and closed,

(b) irreducible with respect to further application of choice rules C,

(c) is the largest restriction satisfying the best choice property.

We note that our last remark comprises results already known in the game theory community.

For example, Bernheim (1984, Theorem 3.1) has already established that the solution obtained

by the iterated application of the choice rule of point rationality satisfies the above properties (a)

- (c) whenever the players’ strategy sets are compact subsets of some Euclidean space Rn and

their payoff functions are continuous.10 Moreover, it follows immediately from Bernheim (1984,

Theorem 3.2) and Pearce (1984, Lemma 3) that, for such strategic games and with two players, the

solution obtained by iterated application of the choice rule of strict undominance in mixtures has

the same properties.11 The iterated application of the choice rule of strict undominance has been

broadly analyzed in Dufwenberg and Stegeman (2002). Although their main goal is to establish

the order independence of this iterative deletion procedure in general strategic games, they prove

in their Theorem 1(b) that its solution satisfies the above properties, (a) and (b), in regular strategic

games.

10A generalization of this result that rests on assumptions even milder than the ones we postulate can be found in Ok

(2004). He shows in his Theorem 6.1 that properties (a) - (c) are already satisfied for strategic games in which the strategy

set Si of each player i ∈ I is a compact Hausdorff space and i’s payoff function zi is upper semicontinuous so that i’s value

function z∗i (s−i) := maxsi∈Si zi(si, s−i) is lower semicontinuous.
11The reason why their findings do not ensure these properties for any arbitrary finite number of players is their as-

sumption that each player has uncorrelated probabilistic beliefs about their opponents’ choices. That is, the probability

measure representing the player’s belief about the opponents’ choices is a product of probability measures, where each

of them represents the player’s belief about the choices of one opponent. However, a strategy turns out to be favorable

under the choice rule of strict undominance in mixtures if and only if this strategy maximizes the players’ expected payoff

for some (possibly correlated) probabilistic belief about the opponents’ choices. Therefore, in order to deduce that the

solution resulting from the iterated application of this choice rule satisfies the above properties, (a) - (c), in strategic games

with more than two players, arbitrary probabilistic beliefs must be considered. Fortunately, by slight modifications of the

arguments put forward in Bernheim (1984) and Pearce (1984) such generalization can be established.
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4 Common Belief of Applying Choice Rules

In the previous section, we have taken up the standard approach for solving strategic games. The

solution algorithms of iterated application of choice rules put forward there are based only on

the objective features of the game (i.e., those listed in Definition 2.1). In this section, we pursue

a different - an epistemic - approach for solving games. Instead of specifying a solution concept

ad hoc as above, this approach requires to view the game from the perspective of the players and

to reason their choices from their conjectures about the opponents’ choices and conjectures. Since

there is usually no objective device that assigns likelihoods to the latter choices, these conjectures

might be of subjective nature. Unlike the traditional ad hoc approach on games, the epistemic

approach takes into account this subjective feature of a game.

To put ourselves in the position of the players and to describe their decision problems, we

adopt an idea of Harsanyi (1967/68) and supplement strategic games with type space models. As

will be seen, this supplementation enables us to decompose strategic games into individual deci-

sion problems under subjective uncertainty and to scrutinize the decision makings of the players.

Definition 4.1 A type space model to strategic game Γ := (I, (Si, zi)i∈I) is a tuple T := (T i, P i)i∈I

where

• topological space T i denotes the type space of player i.

• correspondence P i : T i ։
∏

j∈I\{i}(S
j × T j) denotes the possibility correspondence of player i

where P i(ti) is non-empty for every ti ∈ Ti.

A type space model is called regular if, for each player i ∈ I , type space T i is compact Hausdorff and

possibility correspondence P i is continuous (i.e., upper as well as lower hemicontinuous) and closed-valued.

Different to the original setup of Harsanyi (1967/68), our type space model is only of qualita-

tive nature. In Harsanyi’s type space model, each type of a player is associated with a probability

measure on the opponents’ strategy-type combinations. Such measures quantify the types’ de-

grees of beliefs on the opponents’ strategy choices and types. Noteworthy, such quantification

of the types’ beliefs is not postulated in our above definition of a type space model. Rather, we

pursue a more general approach and just associate each type of a player with a possibility set

indicating the set of opponents’ strategy-type combinations considered possible by this type. In

the epistemic game theory literature, such qualitative type space models are known as possibility

structures. Mariotti et al. (2005) analyze such structures in depth. Among others, they establish

the existence of a universal regular type space model T∗ for any regular strategic game Γ. That is,

each regular type space model T to the strategic game Γ can be uniquely embedded into the type

space model T∗ in the sense that the beliefs of each type of type space model T is preserved by

this embedding.

Henceforth, pair TΓ := (Γ,T), consisting of strategic game Γ and type space model T of it,

is referred to as a strategic game framed by a type space or simply a framed strategic game. If the

framed strategic game TΓ := (Γ,T) consists of a regular strategic game and a regular type space

model, we call it a regular framed strategic game. As usual, we write T :=
∏

i∈I T
i for the set of
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profiles specifying the types of all players and T−i :=
∏

j∈I\{i} T
j for the set of profiles specifying

only the types of player i’s opponents.

Consider some framed strategic game TΓ. The product set Ω :=
∏

i∈I(S
i × T i), which is

endowed with the product topology, constitutes the state space of it. In the case that TΓ is regular,

the topology of Ω is Hausdorff and, by Tychonoff Product Theorem, also compact. An element of

state space Ω is called state of the world and represents a specific resolution of the players’ strategy-

type combinations. Hereafter, states of the world are represented by Greek lower case letters

(usually, by ω) and state spaces by Greek capital letters (usually, by Ω).

The players’ strategy spaces Si and type spaces T i are called factors of state space Ω. A sub-

space of Ω :=
∏

i∈I(S
i × T i) is a product set in which some or none of the factors of Ω are omitted.

Throughout this paper, we assume that any subspaces of Ω are endowed with the product topol-

ogy. Obviously, if a regular framed strategic game is considered, these subspaces turn out to be

compact Hausdorff. Let IS and IT be subsets of I where at least one of them is non-empty. Then

Ω(IS ,IT ) denotes the subspaces of Ω given by

Ω(IS ,IT ) :=
∏

i∈IR
R∈{S,T}

Ri .

Furthermore, suppose IS ⊆ JS ⊆ I and IT ⊆ JT ⊆ I hold. We denote by projΩ
(JS,JT )

Ω(IS ,IT ) : Ω(JS ,JT ) →

Ω(IS ,IT ) the projection of subspace Ω(JS,JT ) into subspace Ω(IS ,IT ). The following remark states

that these projections are closed if the framed strategic game is regular.

Remark 4.2 Consider a framed strategic game TΓ and sets IS ⊆ JS ⊆ I and IT ⊆ JT ⊆ I where IS or

IT is non-empty.

(a) Then projection projΩ
(JS,JT )

Ω(IS,IT ) is surjective and continuous.

(b) If TΓ is regular, then projΩ
(JS,JT )

Ω(IS ,IT ) is closed.

To simplify our notation, we omit superscript Ω(JS ,JT ) of a projection projΩ
(JS,JT )

Ω(IS,IT ) whenever

the domain of this projection corresponds to state space Ω. Some subspaces of Ω are specifically

marked. The subspace consisting of the strategy-type combinations of player i is denoted by

Ωi := Si × T i and the subspace consisting of the profiles of strategy-type combinations of i’s

opponents by Ω−i :=
∏

j∈I\{i}(S
j × T j). Let ω ∈ Ω, then ωi := projΩi(ω) gives the strategy-type

combination of player i at state ω, and ω−i := projΩ−i(ω) gives the strategy-type combinations of

i’s opponents at state ω. Moreover, we denote by tω := proj
T
(ω) the type profile at state ω, by

sω := proj
S
(ω) the strategy profile chosen at state ω, by tiω := proj

T i(ω) the type of player i at state

ω, and by siω := proj
Si(ω) the strategy chosen by player i at state ω.

As is standard in the theory of decision under uncertainty, any subset of state space Ω is termed

event. An event E ⊆ Ω is called closed (compact) if it is a closed (resp. compact) subset of Ω, and

rectangular if E =
∏

i∈I E
i holds where each Ei is a subset of subspace Ωi. Consider some state

ω ∈ Ω and some player i ∈ I . A profile ω̃−i ∈ Ω−i of strategy-type combinations of i’s opponents

is said to be compatible in event E with i’s strategy-type combination ωi whenever (ωi, ω̃−i) ∈ E holds.

Henceforth, the set of those profiles is denoted by Qi
E(ω

i) := {ω̃−i ∈ Ω−i : (ωi, ω̃−i) ∈ E}. This

set is also known as the ωi cross section of event E. Hereinafter, Qi
E : Ωi → 2Ω

−i

denotes the
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correspondence assigning to each strategy-type combination ωi ∈ Ωi of player i its cross section

Qi
E(ω

i) of event E.

Remark 4.3 Consider a regular framed strategic gameTΓ, a closed event E ⊆ Ω, and a player i ∈ I . Then

correspondence Qi
E is closed-valued and upper hemicontinuous.

According to Definition 4.1, a framed strategic game assigns to each player i ∈ I a possibility

correspondence P i that for each state ω ∈ Ω determines a subset P i(tiω) of Ω−i. The latter set is

termed the possibility set of player i at state ω. It is interpreted as the set of profiles of strategy-type

combinations of i’s opponents deemed possible by i. From this possibility set, player i’s beliefs

about events are deduced. A player i is said to believe event E at state ω whenever each profile

of the opponents’ strategy-type combinations deemed possible by her at state ω is compatible in

E with her actual strategy-type combination ωi. Or in formal terms, player i believes event E at

state ω whenever P i(tiω) ⊆ Qi
E(ω

i) is satisfied. From player i’s possibility correspondence, a belief

operator of player i is constructed. It is the mapping Bi : 2Ω → 2Ω satisfying

Bi(E) := {ω ∈ Ω : P i(tiω) ⊆ Qi
E(ω

i)}

for every event E ⊆ Ω. Due to this definition, player i believes event E at state ω if and only if

ω ∈ Bi(E) holds. The following remark states that in regular framed strategic games the set of

states in which the closed event E is believed is also a closed event.

Remark 4.4 Consider a regular framed strategic game TΓ and a player i ∈ I . If event E is closed, then

event Bi(E) is closed.

Let E ⊆ Ω be an event of framed strategic gameTΓ. We recursively define a sequence (Ek)k∈N0

of events where E0 := E and

Ek+1 := Ek ∩

(

⋂

i∈I

Bi(Ek)

)

holds for any k ∈ N0. Obviously, event E1 is the event in which event E holds and this is believed

by every player. In other words, E1 represents the event in which E is true and there is first

order (or mutual) belief of E. If there is first order belief of E and every player believes that there

is first order belief of E, then this is referred to as the second order belief of E. Obviously, event

E2 represents the event in which E is true and there is second order belief of E. In general, Ek

represents the event in which E is true and there is kth order belief of E. If, at some state, there is

belief of any order k ∈ N of event E, then E is said to be commonly believed at this state. That is to

say, at this state, every player believes E, every player believes that every player believes E, and

so on ad infinitum. Obviously, event E∗ specified by

E∗ :=
⋂

k∈N0

Ek

represents the event where E is true and commonly believed among all players.

Remark 4.5 Consider a framed strategic gameTΓ and let E ⊆ Ω be some event.

(a) If E :=
∏

i∈I E
i is rectangular, then Ek is rectangular for every k ∈ N0 and E∗ is rectangular.
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(b) If TΓ is regular and E is closed, then Ek is closed for every k ∈ N0 and E∗ is closed.

In accordance with our above definition, event E is said to be true and commonly believed at

state ω whenever ω ∈ E∗ holds. Two alternative formal characterizations of such a state are given

in the following remark. These characterizations are applied in the proofs of the next section.

Remark 4.6 Consider a framed strategic game TΓ and an event E ⊆ Ω. Then the following statements

are equivalent.

(i) Event E is true and commonly believed at state ω.

(ii) There is an event F ⊆ E having the properties ω ∈ F and P i(tiω̃) ⊆ Qi
F (ω̃

i) for every player i ∈ I

and every state ω̃ ∈ F .

(iii) It holds that ω ∈ E and P i(tiω) ⊆ Qi
E∗

(ωi) for every player i ∈ I ,.

The purpose of framing a strategic game with a type space model is to view the game from

the players’ perspectives and to model their decision makings. As argued at the outset of this

section, for those decision makers, games are decision problems under subjective uncertainty.

More precisely, each player is faced with the problem of choosing one of her available strategies,

given her subjective conjecture about the opponents’ choices and conjectures. In Section 2, we

introduced a general framework for describing decision problems. How the players’ decision

problems are contrived from a framed strategic game is addressed in the succeeding paragraphs.

According to our concepts put forward in Section 2, the configuration of a decision problem

consists of a specification of the three attributes, namely, condition space, possibility space, and

constraint. Let TΓ be a framed strategic game and i ∈ I be a player at state ω ∈ Ω, then the

attributes of player i’s decision problem are set up as follows. The condition space of player i at

this state is determined by Ω−i. It contains all conceivable profiles of strategy-type combinations

of i’s opponents. Hereafter, we refer to Ω−i as the basic uncertainty space of i.12 The possibility set

of player i at state ω is given by P i(tiω) and is interpreted as the set of opponents’ strategy-type

combinations deemed possible by i. In order to specify the constraint of player i at state ω, we

introduce mapping a
i
TΓ

(si) := zi(si; .) ◦ projΩ
−i

S−i , which converts each strategy si ∈ Si of player i

into a payoff profile on player i’s uncertainty space Ω−i. Payoff profiles on player i’s uncertainty

space are called acts of player i, and act ai
TΓ

(si) is termed the act induced by strategy si. Finally, the

constraint of player i at state ω is specified by ai
TΓ

(Si) := {ai
TΓ

(si) : si ∈ Si}.

Bringing together these specifications, the decision problem of some player i participating in

game Γ and being in state ω is summarized by the tuple

Φi
TΓ(ω) :=

(

P i(tiω), a
i
TΓ

(Si)
)

Ω−i ,

12This terminology deviates slightly from the one generally used in decision theory under subjective uncertainty and

dates back to Savage (1954). He terms the uncertainty space of a decision maker as state space and the elements of this

space as states of the world. The reason for this terminological deviation is that we study the decision problems of several

decision makers who interact with each other (i.e., who play a game). A condition space of such a decision maker describes

her uncertainty and lists the conceivable choices and beliefs of her opponents whereas, as defined earlier in this section, the

term state space is reserved for the collection of the conceivable choices and beliefs of all players. Our distinction between

uncertainty space and state space relies on our implicit assumption that each player knows her own choice and belief.
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where Ω−i constitutes her basic uncertainty, P i(tiω) the set of profiles of strategy-type combina-

tions of her opponents that she deems possible at state ω, and ai
TΓ

(Si) is the set of acts on her

basic uncertainty Ω−i available to her. We call tuple Φi
TΓ(ω) the strategic decision problem of player i

at state ω.

Suppose that the framed strategic game TΓ is regular and consider some player i ∈ I at some

state ω ∈ Ω. Then i’s possibility set P i(tiω) is closed in Ω−i. Furthermore, mappings projΩ
−i

S−i

and, for any arbitrary si ∈ Si, zi(si; .) are continuous. Hence, i’s constraint ai
TΓ

(Si) contains only

continuous acts. As argued in Remark 2.4, her constraint ai
TΓ

(Si) is also a compact in B(Ω−i).

To sum up, we have established that whenever a regular framed strategic game is assumed the

strategic decision problem of any player at any state shows up as a regular decision problem under

condition space Ω−i.

From now on, we denote by

D
i
TΓ

:= {Φi
TΓ(ω) : ω ∈ Ω}

the set of all strategic decision problems of player i in framed strategic game TΓ. Let Ci be some

choice rule, then

[Ci] :=
{

ω ∈ Ω : ai
TΓ

(si) ∈ Ci(Φi
TΓ(ω))

}

determines the set of states in which player i behaves as if she applies choice rule Ci to solve her

strategic decision problem at this state.

Remark 4.7 Consider a regular framed strategic game TΓ. If choice rule Ci is regular and monotone in

D i
TΓ

, then [Ci] is closed in Ω.

Whenever a family (Ci)i∈I of choice rules is supposed, we denote by C :=
⋂

i∈I [C
i] the state-

ment saying that each player i ∈ I applies choice rule Ci. Analogous to our above notation, we

stipulate C0 := C and denote by Ck the event in which C is true and there is kth order belief of

C. Event C∗ represents the event in which C is true and this is commonly believed. Due to Re-

mark 4.7, event C is closed in Ω whenever all players stick to regular and monotone choice rules.

Provided these assumptions on players’ choices, Remark 4.5 implies that C∗ is rectangular and

closed in Ω. Since the latter result is used in the proofs of the next section, it is summarized in the

following remark.

Remark 4.8 Consider a regular framed strategic game TΓ and a family C := (Ci)i∈I of choice rules. If

each choice rule Ci is regular and monotone in D i
TΓ

, then C∗ is rectangular and closed.

Consider a strategic game Γ and a family C := (Ci)i∈I of choice rules. A strategy profile s ∈ S

is said to be possible (or justifiable) under choice rule C following behavior and common belief of the choice

rule C following behavior if there is a regular type space model T to Γ so that its state space Ω

contains a state ω satisfying both sω = s and ω ∈ C∗. Hereafter, we denote by CBC the solution

concept assigning to each strategic game the set of strategy profiles possible if players apply choice

rules C and commonly believe it.
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5 The Equivalence Result

In this section, we compare the two solution concepts IAC and CBC , which have been introduced

in Section 3 and 4, respectively. We aim to identify properties of players’ choice rules C so that

these two solution concepts coincide. The benefit of such a coincidence would be that the process

of iterated application of choice rules obtains a pellucid epistemic underpinning. Obviously, it

would mean that the solution obtained by iterated application of choice rules would give exactly

the strategy profiles that are possible if players apply these choice rules and this is commonly

believed among them. To accomplish such epistemic foundation another choice rule property is

needed in addition to the properties rules already introduced in the previous sections.

Consider two regular decision problems, (E,A)Θ and (Ẽ, Ã)Θ̃. The second is called an exten-

sion of the first if there exists a surjective, continuous, and closed mapping κ : Θ̃ → Θ that satisfies

κ(Ẽ) = E and Ã = {a ◦ κ : a ∈ A}. Evidently, an extension of a regular decision problem is a

regular decision problem in which the conditions of the original decision problem are relabeled,

or payoff equivalent conditions (i.e., conditions yielding the same payoffs as some other condi-

tion) are removed or added. Whenever a choice rule is immune to such modifications of regular

decision problems, it is called independent of payoff equivalent states.

Definition 5.1 Consider a system D̃Θ ⊆ DΘ of decision problems under condition space Θ. A choice rule

C is called independent of payoff equivalent conditions in D̃Θ if

C(Ẽ, Ã)Θ̃ = {a ◦ κ : a ∈ C(E,A)Θ}

holds for every regular decision problem (E,A)Θ ∈ D̃Θ and for every extension (Ẽ, Ã)Θ̃ of it.

Without difficulty, the following remark can be verified.

Remark 5.2 Consider some condition space Θ. The choice rules MM, PR, SD, SD+, SUm, and SUp

are independent of payoff equivalent conditions in DΘ .

Our first lemma of this section states properties of choice rules implying that each strategy

profile possible under choice rule following behavior and common belief of it survives the deletion

process of iterated application of these choice rules.

Lemma 5.3 Consider a regular strategic game Γ and a family C := (Ci)i∈I of choice rules. If each choice

rule Ci is non-empty, closed, monotone, independent of payoff equivalent conditions, and satisfies Aizer-

man’s property in D i
Γ, then CBC(Γ) ⊆ IAC(Γ) holds.

Proof. Consider a regular strategic game Γ and assume s∗ ∈ CBC(Γ). Then there exists a regular

framed strategic game TΓ whose state space Ω =
∏

i∈I(S
i × T i) contains a state ω∗ that satisfies

sω∗
= s and ω∗ ∈ C∗. It is known from Remark 4.8 that C∗ is a rectangular and closed subset of

Ω. Furthermore, as stated in Remark 4.2, projection projS from Ω into S is surjective, continuous,

and closed. Consequently, S∗ := projSC∗ is a closed restriction of Γ. In the following, we establish

that restriction S∗ has the best choice property. For this purpose, pick an arbitrary player i ∈ I

and an arbitrary strategy s̃i ∈ Si
∗. It follows from our construction of S∗ that there is a state ω̃ ∈ Ω

where both s̃i = siω̃ and ω̃ ∈ C∗ are satisfied. Since C∗ ⊆ C holds, s̃i ∈ Ci(P i(tiω̃), S
i)Ω−i is
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valid. By Remark 4.2, projection projΩ
−i

S−i is surjective, continuous, and closed. Define S−i(tiω̃) :=

projΩ
−i

S−i (P i(tiω̃)) and recall that

a
i
TΓ

(si) := a
i
Γ(s

i) ◦ projΩ
−i

S−i

is given for every si ∈ Si where aiΓ(s
i) denotes the payoff profile induced by strategy si on

S−i and ai
TΓ

(si) the payoff profile induced by strategy si on Ω−i. Obviously, strategic decision

problem (P i(tiω̃), a
i
TΓ

(Si))Ω−i of player i at state ω̃ proves to be an extension of decision problem

(S−i(tiω̃), a
i
Γ(S

i))S−i . Since choice rule Ci is assumed to be independent of payoff equivalent states

in D i
Γ, we obtain s̃i ∈ Ci(S−i(tiω̃), S

i)S−i . Due to the equivalence of statements (i) and (iii) of

Remark 4.6, P i(tiω̃) ⊆ Qi
C∗

(ω̃i) = C−i
∗ applies and, thus,

S−i(tiω̃) := projΩ
−i

S−i

(

P i(tiω̃)
)

⊆ projΩ
−i

S−i (C−i
∗ ) = S−i

∗

is satisfied. Since S−i
∗ is closed in S−i, monotonicity implies s̃i ∈ Ci(S−i

∗ , Si)S−i . Clearly, the

latter result holds for every i ∈ I and for every s̃i ∈ Si
∗ and thus the best choice property of S∗

is established. Because players’ choice rules C are assumed to satisfy non-emptiness, closedness,

monotonicity and Aizerman’s property, the assumptions of Lemma 3.9 are fulfilled. Consequently,

each strategy profile of S∗ survives the iterated application of choice rules C on Γ. To complete our

proof, we must return strategy profile s∗, which is chosen at state ω∗. Because s∗ ∈ S∗ has been

assumed, s∗ ∈ IAC(Γ) must hold. �

The next lemma deals with the converse of the previous lemma. More precisely, it identifies

properties of choice rules so that each strategy profile surviving the iterated application of these

choice rules is possible if players follow these choice rules and commonly believe it.

Lemma 5.4 Consider a regular strategic game Γ and a family C := (Ci)i∈I of choice rules. If every choice

rule Ci is regular, reflexive, and independent of payoff equivalent conditions in D i
Γ, then CBC(Γ) ⊇ IAC(Γ)

holds.

Proof. Consider a strategic game Γ and assume s ∈ R∞ := IAC(Γ). Demonstrating s ∈ CBC(Γ)

requires to specify a regular framed strategic game TΓ whose state space Ω :=
∏

i∈I(S
i × T i)

contains a state ω where sω = s and ω ∈ C∗ hold. The type space model T := (T i, P i)i∈I to Γ is

constructed as follows. For every player i ∈ I , her type space is given by singleton T i := {ti} and

her possibility set by P i(tiω) :=
∏

j∈I\{i}(R
j
∞ × {tj}). Obviously, for every i ∈ I , possibility corre-

spondence P i is non-empty and continuous. Moreover, due to Remark 3.2, it is also closed-valued.

Consider the closed event F :=
∏

i∈I R
i
∞ × {ti} and pick some state ω̃ := (s̃i, ti)i∈I ∈ F . By our

construction, s̃iω̃ ∈ Ri
∞ holds. Furthermore, Lemma 3.5 implies s̃iω̃ ∈ Ci(R−i

∞ , Si)S−i . Without diffi-

culty, it can be shown that the strategic decision problem (P i(tiω̃), S
i)Ω−i of player i at state ω̃ is an

extension of decision problem (R−i
∞ , Si)S−i . By the independence of payoff equivalent conditions,

siω̃ ∈ Ci(P i(tiω̃), S
i)Ω−i results. Because the latter statement holds for every state ω̃ ∈ F and every

player i ∈ I , we have established F ⊆ C. Furthermore, P i(tiω̃) ⊆ Qi
F (ω̃

i) = F−i is satisfied for ev-

ery state ω̃ ∈ F and every player i ∈ I . Hence, due to Remark 4.6, players act according to choice

rules C and this is commonly believed at every state belonging to F . In formal terms, F ⊆ C∗

has been proved. Finally, consider state ω := (si, ti)i∈I , in which the strategy profile s = sω is
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realized. Since s ∈ R∞ has been presupposed, ω ∈ F holds and, hence, ω ∈ C∗ results. Sum-

ming up our findings, it can be stated that our regular framed strategic game TΓ contains a state

ω in which both s = sω and ω ∈ C∗ are satisfied. Briefly stated, s ∈ CBC(Γ) is verified as desired. �

Putting the previous two lemmata together, we obtain following equivalence result regarding

the solutions of IAC and CBC .

Theorem 5.5 Consider a regular strategic game Γ and a family C := (Ci)i∈I of choice rules. If each choice

rule Ci is regular, reflexive, monotone, independent of payoff equivalent conditions, and satisfies Aizerman’s

property in D i
Γ, then CBC(Γ) = IAC(Γ) holds.

Theorem 5.5 is the central result of this paper and strict in the following sense. None of its

conditions an be omitted without undermining the equivalence between the solution obtained by

iterated application of choice rules and the solution resulting from choice rule following behavior

and common belief of it. In Appendix A, we present four examples of choice rules - admittedly,

some of them are very contrived - that confirm the strictness of Theorem 5.5.

Corollary 5.6 Consider a family C := (Ci)i∈I of choice rules. If each choice rule Ci is regular, reflexive,

monotone, independent of payoff equivalent conditions, and satisfies Aizerman’s property in every system

D i
Γ of every regular strategic game Γ, then CBC(Γ) = IAC(Γ) holds for every regular strategic game Γ.

In order to concretize this corollary, let us return to the choice rules discussed in Secion 2.

As demonstrated in our Remarks 2.3, 3.4 and 5.2, with the exception of the rules MM and SD

these choice rules are regular, reflexive, and monotone, and satisfy both Aizerman’s property and

the independence of payoff equivalent conditions in the complete system of decision problems.

Hence, by Corollary 5.6, we obtain the following result.

Remark 5.7 Consider a family C := (Ci)i∈I of choice rules where Ci ∈ {PR,SD+,SUp,SUm} holds for

every i ∈ I . Then CBC(Γ) = IAC(Γ) holds for every regular strategic game Γ.

Remark 5.7 contains well-known results of epistemic game theory e.g., the epistemic character-

ization results of Mariotti (2003) and Chen et al. (2007). While the former author has demonstrated

that the solution concept of iterated application of the point rationality rule is epistemically charac-

terizable by choice-rule following behavior and common belief of it, the latter have demonstrated

that such epistemic characterization is also valid for the solution concept of iterated application of

the strict undominance rule.

Moreover, the above remark includes results that are not detectable in the preference-based

framework of Epstein (1997). As argued at the end of Section 2, the modified strict dominance

rule cannot be rationalized by any class of preference relations, and the characterizations results

of Epstein (1997) are not applicable to this rule. In contrast, our framework provides an epistemic

justification for the iterated application of this rule, namely, that according to the above remark, it

is epistemically justifiable by the players’ compliance with this rule and the common belief of it.

By means of Remark 5.7 and of the proposition of Zimper (2005), we are also able to substan-

tially generalize the well-known epistemic characterization result by Brandenburger and Dekel

(1987) and Tan and Werlang (1988). As already mentioned they have demonstrated that for the
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class of finite strategic games the solution concept of iterated strict undominance in mixed payoff

profiles is characterizable by Bayesian rationality (i.e., maximizing expected payoff) and common

belief of it. In order to show that this characterization also applies to metrizable regular strate-

gic games, i.e., regular strategic games in which the players’ strategy sets are metrizable, we first

make use of Zimper’s proposition. This generalizes Lemma 3 of Pearce (1984) and states that the

equivalence between being Bayesian rational and following the choice rule of strict undominance

in mixed payoff profiles holds even for the class of metrizable regular strategic games. Since ac-

cording to Remark 5.7, the iterated application of this choice rule is characterizable by choice-rule

following behavior and common belief of it for this class of strategic games, the desired general-

ization of the result by Brandenburger and Dekel (1987) and Tan and Werlang (1988) follows.13

As demonstrated in the decision problem of Figure 3 in Section 2, the maximin rule MM

does not generally satisfy the property of reflexivity nor that of monotonicity. The consequences

of these failures can be seen in our introductory example of strategic game Γ1. For this the set

of strategy profiles possible under maximin rule following behavior and common belief of it is

neither a subset nor a superset of the set of strategy profiles surviving the iterated application of

the maximin rule.

6 Discussion

This paper has dealt with the issue whether the solution of a strategic game originating from it-

erated application of choice rules coincides with the set of strategy profiles realized by players

who follow these rules and commonly believe this. We have provided meaningful and general

conditions on choice rules ensuring this coincidence. The issue of this paper is not new and has

already been addressed by Epstein (1997) and Apt and Zvesper (2010). We have aimed to over-

come the limitations of these papers. While Epstein (1997) considers only finite strategic games

13It is noteworthy that, whenever the strategic game is also concave-like, worthwhile alternative epistemic interpreta-

tions of the solution concept of iterated strict undominance in mixtures could be inferred. Such alternative interpreta-

tions result from the indistinguishability theorem by Chen and Luo (2012). A strategic game is said to be concave-like

if for every player i ∈ I , for every strategies si∗, s
i
∗∗ ∈ Si, and for every λ ∈ [0, 1] there is a strategy si ∈ Si so that

zi(si, s−i) ≥ λzi(si∗, s
−i) + (1− λ)zi(si∗∗, s

−i) holds for every s−i ∈ S−i. A prominent example of a concave-like strategic

game is the mixed extension of a finite strategic game. The indistinguishability theorem states that for concave-like and

metrizable regular strategic games the solutions originating from iterated application of choice rules are identical whenever

these rules are rationalizable by some preference model containing at least all preferences representable by some expected

payoff function. To exemplify its substance, consider the following two preference-based choice rules. The first is induced

by the preference model consisting of the preference relations representable by some expected payoff function, and the

second is induced by the preference model consisting of the preference relations representable by some maximin expected

payoff function (see Gilboa and Schmeidler, 1989). The indistinguishability theorem ensures that for every concave-like

and metrizable regular strategic game the solutions obtained by the iterated application of the former rule correspond with

those obtained by the iterated application of the latter rule. Finally, from this theorem we can infer alternative epistemic

characterizations of the solution concept of iterated strict undominance in mixed payoff profiles for this class of strategic

games. Indeed, this concept can be characterized by the compliance of any choice rule induced by some preference model

containing at least all preference relations representable by some expected payoff function and the common belief of this

compliance.
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and preference-based choice rules, Apt and Zvesper (2010) define the process of iterated applica-

tion of choice rules in a nonstandard way. Indeed, Apt and Zvesper (2010) make use of transfinite

ordinals and apply the choice rules on the initial set of strategies (rather than on the remaining

strategies as standard game theory does) in each round of the process.

Our approach has been, instead, to choose the following setup. Like Apt and Zvesper (2010),

we have considered arbitrary strategic games and choice rules. However, in order to avoid the

use of transfinite ordinals, we have endowed strategic games with a topological structure. More

precisely, we have assumed that the player’s strategy sets are compact Hausdorff and that their

payoff functions are continuous on the set of possible strategy profiles, which, in turn, is endowed

with the product topology. Since this kind of strategic games constituted our scope of application,

we have given them a specific name and termed them regular.

Theorem 5.5 summarizes our work. It states four substantial assumptions on choice rules en-

suring that the solution obtained by iterated application of these rules coincides with the set of

strategy profiles realized by players who follow these rules and commonly believe this. More

precisely, if the players’ choices rules satisfy - besides the technical assumption of regularity -

the properties of reflexivity, monotonicity, Aizerman’s property, and the independence of payoff

equivalent conditions, then this coincidence applies. This result proves to be strict in the follow-

ing sense. As established in Appendix A, none of the four substantial properties can be omitted

without eliminating the coincidence. We point out that the latter finding does not mean that the

restrictions imposed in Theorem 5.5 are the weakest possible to ensure coincidence. It might be

a worthwhile topic of future research to determine whether less demanding assumptions on the

strategic game or the choice rules could be imposed without ruining its conclusion.

Even if the assumptions of Theorem 5.5 could be considerably weakened, it is in its current

form nevertheless applicable to a wide range of strategic games and choice rules. Remark 5.7 lists

prominent choice rules that satisfy the conditions presupposed in Theorem 5.5 in every regular

strategic game. Hence, any solution concept originating from iterated application of such choice

rules gives for every regular strategic game the strategy profiles that might be chosen by players

who follow these rules and commonly believe this. Or put differently, such solution concepts are

epistemically characterizable by choice-rule following behavior and common belief of it. We note

that the list of choice rules compiled in Remark 5.7 is by no means exhaustive. It can be shown

that other prominent choice rules like Börgers’ inherent undominance rule (see Börgers, 1993) also

satisfy the required properties in every regular strategic game.

Moreover, our findings are not only suitable for inferring general statements such as that in Re-

mark 5.7. By means of the intermediate results leading to Theorem 5.5, we are also able to disclose

significant relationships between the process of iterated application of choice rules and the epis-

temic assumption of choice-rule following behavior and common belief of it even for choice rules

that do not satisfy all properties required in Theorem 5.5. Take, for example, the choice rule of

weak undominance in pure payoff profiles or that of weak undominance in mixed payoff profiles.

It turns out that both rules are not regular in general. More precisely, while they are non-empty

and constraint continuous from above in every regular strategic game, they fail to be closed and

possibility continuous from above in some (non-finite) regular strategic games. Furthermore, it

could be established that both choice rules satisfy reflexivity, Aizerman’s property, and indepen-
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dence of irrelevant conditions for every regular game but not necessarily monotonicity. Since the

regularity assumption is trivially fulfilled for every finite strategic game, Lemma 5.4 is applicable

to both choice rules at least in this subclass of strategic games. Hence, we infer that for every finite

strategic game each strategy profile surviving the iterated application of one of these choice rules

might be realized by players who follow this rule and commonly believe this. However, the con-

verse of the latter statement is not generally true. As demonstrated in Example A.2 of Appendix

A, there are finite strategic games in which these choice rules fail to be monotone and strategy

profiles exist that do not survive the iterated application of one of these rules but nevertheless

might be realized by players who follow this rule and commonly believe this.

Finally, it might be promising to study the converse of the issue addressed by us in this paper.

Instead of examining which properties of choice rules ensure that the solution obtained by iterated

application of choice rules is justifiable by choice-rule following behavior and common belief of it,

one could also take this justification as given and ask what properties of choice rules are implied

by it. We have not confronted this question in this paper, but it might be worthwhile to address it

in future research.
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Appendix A - Examples regarding the Strictness of Theorem 5.5

In the following examples, choice rules are considered that satisfy all but one of the properties

listed in Theorem 5.5. The property of reflexivity is violated in the first example, that of mono-

tonicity in the second example, Aizerman’s property in the third example, and that of indepen-

dence of payoff-equivalent conditions in the fourth example.

Example A.1 Let ND2 be the choice rule that considers unfavorable any available act that is

strictly dominated on the possibility set by some close available act. The closeness between two

acts is measured by the uniform metric where, however, only the conditions of the possibility set

are considered. Two acts are said to be close whenever the closeness between them is less than 2.

In formal terms, choice rule ND2 is specified by

ND2(P,A)Θ := {a ∈ A : there is no b ∈ A so that bθ > aθ holds for every θ ∈ P

and ||bP − aP ||∞ < 2}

for every decision problem (P,A)Θ of any condition space Θ where ||.||∞ denotes the uniform

norm onRP . Suppose the regular and finite strategic game Γ depicted below is solved by iterated

application of choice rule ND2. Obviously, in the first round strategy d is deleted and in the second

round strategy r is deleted. After that the deletion process stops and, thus, strategy profiles (u, l)

and (m, l) constitute the solution of this process.

Player C

l r

Player R

u (2, 1) (3, 0)

m (0, 1) (0, 0)

d (1, 0) (2, 2)

Figure 4: Strategic game Γ2

Without difficulty, it can be seen that choice rule ND2 violates the property of reflexivity in

system DR
Γ2

of possible decision problems of player R in strategic game Γ2. However, for each

system D i
Γ2

of each player i ∈ {C,R}, this choice rule satisfies the other properties stated in The-

orem 5.5. In the following, we establish that some of the strategy profiles surviving the iterated

application of choice rule ND2 would not be chosen by C and R if both follow this choice rule and

commonly believe it.

To this end, frame strategic game Γ2 by some regular type space model T := (T i, P i)i∈{C,R}

which contains a state ω where both players follow choice rule ND2 and commonly believe it.

In the following we show by contradiction that strategy profile (m, l) is not chosen at state ω.

Suppose on the contrary that R chooses strategy m at state ω. Let S̃C := projΩ
C

SCPR(tRω ) be the

set of C’s strategies that R considers possible at state ω. Obviously, if S̃C = {l}, then R’s choice

is inconsistent in following choice rule ND2. let us turn to the remaining case r ∈ S̃C . Because

player R believes at state ω that player C follows choice rule ND2, player R must also believe at

state ω that player C considers it possible that she could choose d. However, this belief conflicts
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with her belief that he believes that she follows choice rule ND2 and, thus, that he believes that

she does not choose d. Thereby we have established that strategy profile (m, l), which survives

the iterated application of choice rule ND2, is not chosen by players who comply with choice rule

ND2 and commonly believe it. By Lemma 5.3, strategy profile (u, l) proves to be the only strategy

profile of Γ2, which could be realized by such players.

Example A.2 Consider the choice rule WUp of weak undominance, which favors for every deci-

sion problem the available acts which are weakly undominated on the possibility set. The formal

specification of this choice is provided in Appendix Appendix C. Suppose the regular and finite

strategic game Γ3 depicted below is solved by iterated application of the weak undominance rule.

Obviously, only strategy profile (u, l) survives this deletion process.

Player C

l r

Player R
u (1, 1) (0, 0)

d (0, 0) (0, 0)

Figure 5: Strategic game Γ3

It turns out that choice rule WU satisfies all properties listed in Theorem 5.5 for every system

D i
Γ3

of strategic decision problems of every player i ∈ {C,R} with the exception of the property

of monotonicity. Consequently, Lemma 5.4 implies that every strategy profile of Γ3 surviving the

iterated application of the weak undominance rules could be chosen by players who follow this

choice rules and commonly believe this. However, as shown next, strategy profile (d, l) is not the

only one that could be realized by such players.

To see this, supplement strategic game Γ3 with the regular type space model (T i, P i)i∈{C,R}

where T i := {ti} for each player i ∈ {C,R}, PC(tC) := {d}×TR and PR(tR) := {r}×TC are given.

Obviously, both players act at state ω := (d, tR, r, tC) as if they apply the weak undominance rule

and, by Remark 4.6, there is also common belief of such choice rule following behavior at this

state. Hence, although strategy profile (d, r) does not survive the iterated application of the weak

undominance choice rule, it could be realized by players who follow this rule and commonly

believe it.

Example A.3 Consider the choice rule AV that favors the available acts yielding at least, at one

condition considered possible, a payoff equal or larger than the average of the highest and lowest

payoff realizable at this condition. In the case that, at some condition considered possible, a high-

est or a lowest payoff does not exist, every available act is approved by this rule. Formally, this

choice rule is specified

AV(P,A)Θ :=

{

a ∈ A : there exists some θ ∈ P so that, if sup
b∈A

bθ < +∞ and

inf
b∈A

bθ > −∞, then aθ ≥
1

2

(

sup
b∈A

bθ + inf
b∈A

bθ holds

)}

for every decision problem (P,A)Θ of any condition space Θ. Suppose the regular and finite

strategic game Γ4 depicted below is solved by iterated application of this choice rule. Obviously,
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in the first round strategy d is deleted, in the second round strategy m and, finally, in the third

round strategy r. Hence, the iterated application of this choice rule results in strategy profile

(u, l).

Player C

l r

Player R

u (3, 1) (3, 0)

m (2, 0) (2, 1)

d (0, 1) (0, 1)

Figure 6: Strategic game Γ4

Without difficulty, it can be established that choice rule AV violates Aizerman’s property in

system DR
Γ4

but satisfies all other properties stated in Theorem 5.5 for each system D i
Γ4

of each

player i ∈ {C,R}. Consequently, by Lemma 5.4, strategy profile (u, l) could be realized by players

who follow this choice rule and commonly believe it. However, as demonstrated next, a strategy

profile different to (u, l) could also be chosen by such players.

To see this, frame game Γ by the regular type space model (T i, P i)i∈{C,R}, where T i := {ti}

for each player i ∈ {C,R}, PC(tC) := {m} × TR and PR(tR) := {r} × TC are given. Obviously,

both players act at state ω := (m, tR, r, tC) as if they follow choice rule AV . Since P i(tiω) = {ωi}

holds for every i ∈ {C,R}, Remark 4.6 implies that this choice rule following behavior is also

commonly believed among them at state ω. Hence, we have found a strategy profile of Γ, namely

(m, r), which does not survive the iterated application of choice rule AV , but which could occur if

both players follow this choice rule and commonly believe it.

Example A.4 Consider choice rule LU13, which selects the available acts which are strictly un-

dominated on the possibility set or which yield the number 13 at two or more conditions consid-

ered possible. Such choice rule could be interpreted as decision maker’s delight in lucky number

13. In formal terms, this rule is specified by

LU13(P,A)Θ := SU(P,A)Θ ∪ {a ∈ A : #{θ ∈ P : aθ = 13} > 1}

for every decision problem (P,A)Θ of every condition space Θ. Suppose the regular and finite

strategic game Γ5 depicted below is solved by iterated application of choice rule LU13. Obviously,

in the first round strategy d is deleted and in the second round strategy r is deleted. Then the

deletion process stops and, thus, only strategy profile (u, l) survives.

Player C

l r

Player R
u (14, 1) (1, 0)

d (13, 1) (0, 1)

Figure 7: Strategic game Γ5
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As can be easily checked, choice rule LU13 satisfies all properties listed in Theorem 5.5 for every

system D i
Γ5

of every player i ∈ N with the exception of the independence of payoff-equivalent

condition. The violation of the latter property entails that, although strategy profile (d, l) is deleted

in the first deletion round, it could be nevertheless chosen by players who follow this rule and

commonly believe such choice rule following behavior.

To see this, consider the regular type space model (T i, P i)i∈{C,R} to Γ5 whose type spaces are

specified by TC := {t̃C , t̂C} and TR = {tR} and whose possibility correspondences are specified

by PC(t̃C) := {u} × TR, PC(t̂C) := {d} × TR and PR(tR) := {l} × TC . Consider state ω :=

(d, tR, l, t̃C) and event E := {u, d} × TR × {l} × TC . Obviously, PC(tRω̃ ) ⊆ QR
E(ω̃

R) and PC(tCω̃ ) ⊆

QR
E(ω̃

R) hold for every ω̃ ∈ E. It follows from Remark 4.6 that event E is true and commonly

believed at state ω. From the latter result, we infer that, although strategy profile (d, l) does not

survive the iterated application of choice rule LU13, it could occur if both players follow this choice

rule and commonly believe it.

Appendix B - Proofs of Remarks

Proof of Remark 2.3

Before checking the choice rules for regularity, we make two helpful remarks. Consider a decision

problem (P,A) ∈ DΘ. From now on, we suppose that subspaces A ⊆ B(Θ) and P ⊆ Θ are

endowed with the relative topologies and space A × P is endowed with the product topology.

Furthermore, z represents the mapping assigning to every pair (a, θ) ∈ A × P the real number

z(a, θ) := aθ .

Remark B.1 Consider a decision problem (P,A) ∈ DΘ where Θ is compact Hausdorff and A is a subset of

CB(Θ). Then mapping z is continuous.

Proof. Consider a net (ak, θk)k∈K in A × P converging to some point (a, θ) ∈ A × P . Because

A×Θ is endowed with the product topology, (ak)k∈K converges (uniformly) in A to a and (θk)k∈K

converges in P to θ. Pick some arbitrary ǫ > 0. Then there exists a k1 ∈ K so that |ak(θ̃)−a(θ̃)| < ǫ
2

is satisfied for every θ̃ ∈ P and for every k ≥ k1. Furthermore, by the continuity of payoff profile a,

there exists k2 ∈ K so that |a(θk)−a(θ)| < ǫ
2 is satisfied for every k ≥ k2. Define k0 := max{k1, k2}.

Putting the last two inequalities together, we obtain

|z(ak, θk)− z(a, θ)| = |ak(θk)− a(θ)| ≤ |ak(θk)− a(θk)|+ |a(θk)− a(θ)| <
ǫ

2
+

ǫ

2
= ǫ,

for every k ≥ k0. Thus, the continuity of z is established. �

Remark B.2 Consider a decision problem (P,A) ∈ DΘ where Θ is compact Hausdorff, P is closed in Θ,

and A is compact in B(Θ). If mapping e : A× P → R is continuous, then

A
P
e := projA×P

A
{(a, θ) ∈ A× P : e(a, θ) ≥ 0}

is closed in B(Θ).

Proof. Since mapping e is assumed to be continuous, {(a, θ) ∈ A × P : e(a, θ) ≥ 0} is a closed

subset of the topological space A× P . Since Θ is assumed to be compact, P is also compact. Then
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Tychonoff’s Theorem implies the compactness of A× P . Hence, {(a, θ) ∈ A× P : e(a, θ) ≥ 0} is a

compact subset of A × P . Since A× P is endowed with the product topology, projection projA×P
A

proves to be a continuous mapping. Thus, AP
e is a compact subset of A. Because A is Hausdorff,

AP
e is closed in A. Since constraint A is closed in B(Θ), AP

e is also closed in topological space B(Θ).

�

Remark B.3 Consider some net (Pk,A)k∈K of regular decision problems in DΘ and some regular decision

problem (P,A) ∈ DΘ where Θ is compact Hausdorff and Pk ց P holds. If a net (θk)k∈K in Θ satisfies

θk ∈ Pk for every k ∈ K , then ∅ 6= Lim{θk : k ∈ K} ⊆ P holds.14

Proof. Since Θ is assumed to be compact, net (θk)k∈K has a limit point. Pick some θ ∈ Lim{θk : k ∈

K}. This means, net (θk)k∈K contains a subnet which converges to θ. Without loss of generality,

assume that (θk)k∈K itself converges to this point. In the following, we prove that θ ∈ P must

hold. Suppose the contrary is be true. Then there exists k0 ∈ K so that θ /∈ Pk is satisfied for every

k ≥ k0. Because Θ is compact (thus, Pk0 is compact) and Hausdorff, there are disjoint open subsets

E and F of Θ having properties Pk0 ⊆ E and θ ∈ F . Note that, by assumption, θk ∈ Pk0 holds for

every k ≥ k0. Hence, θ is not a limit point of net (θk)k∈K . However, this result is at odds with our

above assumption about θ. Thus, we conclude that θ ∈ P holds. �

With the help of the three remarks above, we check the choice rules - one after the other - for

the properties listed in Definition 2.2.

• Strict undominance in pure payoff profiles

(Non-emptiness) Pick some θ ∈ P . According to Remark B.1, mapping z is continuous. Since

constraint A is assumed to be compact, the Weierstrass Theorem guarantees the existence of a

payoff profile a ∈ A so that z(a, θ) = supb∈A z(b, θ) holds. Consequently, a ∈ SUp(P,A)Θ is

established.

(Closedness) For every b ∈ A, define mapping eb : A× P → R where eb(a, θ) := z(a, θ)− z(b, θ) is

given for every θ ∈ P and a ∈ A. Due to Remark B.1, mapping eb is continuous for every b ∈ A.

Note that

SUp(P,A)Θ = {a ∈ A : for every b ∈ A, there is some θ ∈ P so that aθ ≥ bθ}

=
⋂

b∈A

{a ∈ A : there is some θ ∈ P so that z(a, θ) ≥ z(b, θ)}

=
⋂

b∈A

{a ∈ A : there is some θ ∈ P so that eb(a, θ) ≥ 0}

=
⋂

b∈A

projA×P
A

{(a, θ) ∈ A× P : eb(a, θ) ≥ 0}

=
⋂

b∈A

A
P
eb

holds. Due to Remark B.2, Aeb is closed in B(Θ) for every b ∈ A. Thus, their intersection is also

closed in B(Θ).

14Let X be a topological space and Y ⊆ X . As usual, LimY denotes the set of all limit points of Y in X .
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(Continuity from above) Consider some act a ∈ A satisfying a ∈ ∩k∈KSUp(Pk,A)Θ. Pick some

arbitrary payoff profile b ∈ A. Then, for every k ∈ K there exists θk ∈ Pk so that z(a, θk) ≥ z(b, θk)

holds. Due to Remark B.3, net (θk)k∈K contains a subnet converging to some θ ∈ P . Without loss

of generality, we assume that (θk)k∈K converges to this point. As stated in Remark B.1, mapping

z is continuous and thus, from z(a, θk) ≥ z(b, θk) for every k ∈ K , it follows

aθ = lim
k

z(a, θk) ≥ lim
k

z(b, θk) = bθ .

Since b has been arbitrarily chosen, a ∈ SUp(P,A)Θ results. Thus, we have shown that choice

rule SUp is possibility set continuous from above. The proof that this choice rule is also constraint

continuous from above is trivial.

• Strict undominance in mixed payoff profiles

(Non-emptiness) As can be easily verified, payoff profile a of the above non-emptiness proof of

choice rule SUp is also favorable according to choice rule SUm.

(Closedness) Pick some probability measure µ ∈ ∆(A) and define mapping zµ : Θ → R by zµ(θ) :=
∫

A
z(b, θ)dµ. Obviously, zµ is the expected payoff at state ω if the available strategies are randomly

selected according to probability measure µ. Next, we establish that expected value mapping zµ

is continuous. For this purpose, consider net (θk)k∈K in Θ converging to some θ ∈ Θ. Recall that

constraint A is assumed to be compact. By the Theorem of Arzela-Ascoli A is equicontinuous.

That means, there exists an open set Uθ containing point θ so that |bθ̃ − bθ| < ǫ holds for every

θ̃ ∈ Θ and for every b ∈ A. Hence, there exists k0 ∈ K so that

|z(b, θk)− z(b, θ)| < ǫ

holds for every k ≥ k0 and for every b ∈ A. Consequently, we obtain for every k ≥ k0

|zµ(θk)− zµ(θ)| =

∣

∣

∣

∣

∫

A

z(b, θk)dµ−

∫

A

z(b, θ)dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

A

(z(b, θk)− z(b, θ))dµ

∣

∣

∣

∣

≤

∫

A

|z(b, θk)− z(b, θ)| dµ

<

∫

A

ǫ dµ = ǫ .

Thus, it is shown that expected value mapping zµ is continuous. Consequently, the mapping

eµ : A× P defined by

eµ(a, θ) := z(a, θ)− zµ(θ)

for every a ∈ A and for every θ ∈ P is continuous. Note that

SUm(P,A)Θ =

{

a ∈ A : for every µ ∈ ∆(A) there is some θ ∈ P so that aθ ≥

∫

A

bθdµ

}

=
⋂

µ∈∆A

{a ∈ A : there is some θ ∈ P so that z(a, θ) ≥ zµ(θ)}

=
⋂

µ∈∆A

projP×A

A
{(a, θ) ∈ A× P : there is some θ ∈ P so that eµ(a, θ) ≥ 0}

=
⋂

µ∈∆A

A
p
eµ

35

Jena Economic Research Papers 2014 - 032



holds. By Remark B.2, Ap
eµ

is closed in B(Θ) for every µ ∈ ∆(A). Hence, their intersection is also

closed in B(Θ).

(Continuity from above) For every µ ∈ ∆(A), let eµ be the mapping introduced in the preceding

proof of closedness (i.e., eµ(a, θ) := z(a, θ) −
∫

A
z(b, θ)dµ is given for every θ ∈ P and for every

a ∈ A). As argued there, eµ is continuous for every µ ∈ ∆(A). Consider payoff profile a ∈ A which

satisfies a ∈ ∩k∈KSUm(Pk,A)Θ. Pick some µ ∈ ∆(A). Obviously, for every k ∈ K there exists

θk ∈ Pk so that eµ(a, θk) ≥ 0 holds. By Remark B.3 net (θk)k∈K contains a subnet converging to

some θ ∈ P . Without loss of generality, we assume that (θk)k∈K converges to this point. Due to the

continuity of eµ we obtain eµ(a, θ) ≥ 0. Note that the latter result says nothing but aθ ≥
∫

A
bθdµ.

Because the latter inequality holds for every µ ∈ ∆(A), we attain a ∈ SUm(P,A)Θ. The proof that

choice rule SUm is also constraint continuous from above is trivial.

• Point rationality

(Non-emptiness) As can be easily verified, payoff profile a in the above non-emptiness proof of

choice rule SUp is also favorable according to choice rule PR.

(Closedness) Let zsup : Θ → R be the mapping where zsup(θ) := supa∈A z(a, θ) holds for every

θ ∈ Θ. By assumption A is compact in B(Θ), and by Remark B.1 mapping z is continuous. Thus,

standard arguments imply that mapping zsup is continuous. Next, define mapping e : A×P → R

by e(a, θ) := z(a, θ)−zsup(θ) for every θ ∈ P and for every a ∈ A. By Remark B.1 and the continuity

of zsup , mapping e turns out to be continuous. Because

PR(P,A)Θ = {a ∈ A : there is some θ ∈ P so that aθ ≥ bθ holds for every b ∈ A}

= {a ∈ A : there is some θ ∈ P so that z(a, θ) ≥ sup
b∈A

z(b, θ)}

= {a ∈ A : there is some θ ∈ P so that z(a, θ) ≥ zsup(θ)}

= {a ∈ A : there is some θ ∈ P so that e(a, θ) ≥ 0}

= projA×Θ
A

{(a, θ) ∈ A× P : e(a, θ) ≥ 0}

= A
P
e

holds, we conclude from Remark B.2 that AP
e is closed in B(Θ).

(Continuity from above) Let e be the mapping introduced in the preceding proof (i.e., e(a, θ) :=

z(a, θ) − supb∈A z(b, θ) is given for every θ ∈ P and for every a ∈ A). As argued there, e is

continuous. Consider payoff profile a ∈ A which satisfies a ∈ ∩k∈KPR(Pk,A)Θ. This means that

for every k ∈ K there exists θk ∈ Pk so that e(a, θk) ≥ 0 holds. By Remark B.3 net (θk)k∈K contains

a subnet converging to some θ ∈ P . Without loss of generality, we assume that (θk)k∈K converges

to this point. The continuity of e guarantees that e(a, θ) ≥ 0 is satisfied. Note that the latter result

says nothing but that aθ ≥ bθ holds for every b ∈ A. Therefore, a ∈ PR(P,A)Θ is established. The

proof that choice rule PR is also constraint continuous from above is trivial.

• Strict dominance

(Non-emptiness) The choice rule SD violates the property of non-emptiness as can be easily seen

by following trivial finite and regular strategic game Γ which is known as the matching pennies

game.
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Player C

l r

Player R
u (1, 0) (0, 1)

d (0, 1) (1, 0)

Figure 8: Strategic game Γ6

(Closedness) There are two mutually exclusive cases. Either is choice set SD(P,A)Θ empty or

choice set SD(P,A)Θ is a singleton. Note that any singleton of a Hausdorff space is closed. There-

fore choice set SD(P,A)Θ is closed in both cases.

(Continuity from above) Suppose a ∈ ∩k∈KSD(Pk,A)Θ hold. Pick some k ∈ K . By assumption,

aθ > bθ holds for every θ ∈ P ⊆ Pk . Consequently, a ∈ ∩k∈KSD(P,A)Θ applies. To show that

choice rule SD+ is also constraint continuous from above is trivial.

• Modified strict dominance

(Non-emptiness) Non-emptiness follows immediately from the definition of this choice rule.

(Closedness) There are two mutually exclusive cases. Either is set SD(P,A)Θ empty or SD(P,A)Θ

is non-empty. In the former case SD+(P,A)Θ corresponds to A and, since A is assumed to be

a compact subset of Hausdorff space B(Θ), is closed in B(Θ). In the other case SD(P,A)Θ is a

singleton. Because any singleton of a Hausdorff space is closed, we also obtain the desired result

even for this case.

(Continuity from above) Suppose a ∈ ∩k∈KSD+(Pk,A)Θ hold. If there is k0 ∈ K so that a ∈

SD(Pk,A)Θ applies (i.e., a strictly dominates every other available payoff of constraint A on pos-

sibility set Pk), then a ∈ SD+(P,A)Θ follows immediately. Consider the remaining case that

a /∈ SD(Pk,A)Θ for every k ∈ K . Since a ∈ SD+(Pk,A)Θ is assumed for every k ∈ K , we obtain

SD(Pk,A)Θ = ∅ and thus SD+(Pk,A)Θ = A for every k ∈ K . Consequently, our exercise is to

establish SD+(P,A)Θ = A. Pick some arbitrary a ∈ A and define mapping ea : A × P → R

where ea(b, θ) := z(b, θ) − z(a, θ) for every θ ∈ P and b ∈ A. Obviously, for every k ∈ K there

exist θk ∈ Θ and bk ∈ A so that ea(bk, θk) ≥ 0. According to Remark B.3 net (θ)k∈K contains

a subnet (θ)k∈L converging to some θ ∈ P . Since A is assumed to be compact, subnet (ak)k∈L

contains a subnet (bk)k∈M converging to some a ∈ A. It follows that subnet (θk, ak)k∈M converges

in Θ×A to (θ, a) ∈ Θ×A. To avoid a notational overload, we suppose - without loss of generality

- that net (θk, ak)k∈K converges already to this point. By Remark B.1, mapping ea is continuous,

and thus ea(b, θ) ≥ 0 holds. The latter means that aθ ≤ bθ applies. Therefore a is not a payoff

profile that strictly dominates on P every other available payoff profile. Because payoff profile

a has been arbitrarily selected, constraint A does not contain a payoff profile strictly dominating

every other available payoff profile. According to our specification of choice rule SD+, we obtain

SD+(P,A)Θ = A as desired. Without difficulty, it can be demonstrated that choice rule SD+ is

also constraint continuous from above.

• Maximin

(Non-emptiness) By Remark B.1, mapping z is continuous. Define mapping zinf : A → R by

zinf(b) := infθ∈P z(b, θ) for every b ∈ A. Since P is assumed to be compact, standard arguments
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imply that zinf is continuous. Since A is assumed to be compact, the Weierstrass Theorem implies

the existence of payoff profile a satisfying zinf(a) = supb∈A zinf(b). The latter result means that

there exists θ ∈ P so that aθ ≥ bθ̃ holds for every θ̃ ∈ P and for every b ∈ A. Hence, we have

established that MM(P,A)Θ is non-empty.

(Closedness) Let zinf : A → R be the mapping introduced in the above non-emptiness proof.

Define, for every a ∈ A, mapping ea : A × Θ → R where ea(b, θ) := zinf(a) − z(b, θ) holds for

every θ ∈ P and for every b ∈ A. Since mapping z is continuous, mapping ea : A× Θ → R is also

continuous for every a ∈ A. Note that

MM(P,A)Θ = {a ∈ A : and for every b ∈ A, there is some θ ∈ P so that inf
θ∈P

aθ ≥ bθ.}

=
⋂

b∈A

{a ∈ A : there is some θ ∈ P so that inf
θ∈P

aθ ≥ bθ.}

=
⋂

b∈A

{a ∈ A : there is some θ ∈ P so that ea(b, θ) ≥ 0}

=
⋂

b∈A

projA×P
A

{(a, θ) ∈ A× P : ea(b, θ) ≥ 0}

=
⋂

b∈A

A
P
ea

holds. Remark B.2 implies that AP
ea

is closed in B(Θ) for every b ∈ A. Hence, the intersection of

these sets is a closed subset of B(Θ).

(Continuity from above) Consider payoff profile a ∈ A which satisfies a ∈ ∩k∈KMM(Pk,A)Θ, and

let ea be the mapping introduced in the preceding proof (i.e., ea(b, θ) := infθ∈P z(a, θ) − z(b, θ)

is given for every θ ∈ P and for every b ∈ A). As argued there, ea is a continuous mapping.

Pick some b ∈ A. Note that, for every k ∈ K there exists θk ∈ Pk so that ea(b, θk) ≥ 0 holds for

every b ∈ A. By Remark B.3 net (θk)k∈K contains a subnet converging to some θ ∈ P . Without

loss of generality, we assume that (θk)k∈K converges to this point. Since ea is continuous, we

obtain ea(b, θ) ≥ 0. The latter result implies that infθ∈P aθ ≥ bθ is satisfied. Because payoff profile

b ∈ A has been arbitrarily selected, a ∈ MM(P,A)Θ is established. Without difficulty, it can be

demonstrated that choice rule MM is also constraint continuous from above.

Proof of Remark 2.4

Let Bǫ(a) := {b ∈ RΩ : ||b − a||∞ ≤ ǫ} denote the ǫ-neighborhood of payoff profile a ∈ RΩ and

radius ǫ > 0 according to the sup norm ||.||∞. Obviously,

(aiΘ)
−1 (Bǫ(a)) =

{

si ∈ Si : zi(si; .) ◦ σ−i
Θ ∈ Bǫ(a)

}

=
{

si ∈ Si : ||zi(si; .) ◦ σ−i
Θ − a||∞ ≤ ǫ

}

=
{

si ∈ Si :
∣

∣

(

zi(si; .) ◦ σ−i
Θ

)

(θ) − aθ

∣

∣ ≤ ǫ for every θ ∈ Θ
}

=
⋂

θ∈Θ

{

si ∈ Si :
∣

∣

(

zi(si; .) ◦ σ−i
Θ

)

(θ) − aθ

∣

∣ ≤ ǫ
}

=
⋂

θ∈Θ

{

si ∈ Si :
∣

∣

(

zi(si, σ−i
Θ (θ))

)

− aθ

∣

∣ ≤ ǫ
}

=
⋂

θ∈Θ

zi
(

.;σ−i
Θ (θ)

)−1
([aθ − ǫ, aθ + ǫ])
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is satisfied for every a ∈ RΩ and for every ǫ > 0. Since [aθ−ǫ, aθ+ǫ] is closed inR and zi(., σ−i
Θ (θ))

is continuous on Si for every θ ∈ Θ, set zi
(

.;σ−i
Θ (θ)

)−1
([aθ − ǫ, aθ + ǫ]) is closed in Si for every

θ ∈ Θ. Hence, the intersection of these sets is also closed in Si. Thereby, we have established that

mapping aiΘ is continuous on Θ. Because its domain is assumed to be compact and its codomain

is Hausdorff, it follows from the Closed Map Lemma that mapping aiΘ is also closed. �

Proof of Remark 3.2.

(a) This claim can be easily proved by induction on k. (b) Remark (a) signifies that each component

of deletion process (Rk)k∈N0 is closed in S. Since R∞ is the intersection of these components, it is

closed in S too. Furthermore, since each component of this process is a restriction of Γ, it is also a

restriction of Γ. It remains to show that R∞ is non-empty. Let R := {Rk : k ∈ N0} be the family

consisting of the components of deletion process (Rk)k∈N0 and consider some finite subfamily R̃

of R. By construction, (Rk)k∈N0 is an antitone sequence. Therefore, there exists a Rk∗ ∈ R̃ having

the property that Rk∗ ⊆ R holds for any R ∈ R̃. Consequently, Rk∗ = ∩
R∈R̃

R holds. By remark

(a), Rk∗ is non-empty and, thus, subfamily R̃ has a non-empty intersection. Since subfamily R̃

has been arbitrarily selected, the finite intersection property of family R is established. Finally,

from the compactness of S it follows that ∩k∈N0Rk is non-empty. �

Proof of Remark 4.2

(a) Surjectivity follows immediately from the definition of the projection mapping. To prove con-

tinuity, consider the system

B :=

{

∏

i∈IR
R∈{S,T}

Qi
R : Qi

R is open in Ri

}

of products of open sets. To improve the readability of the following arguments, fix X := Ω(JS ,JT )

and Y := Ω(IS ,IT ). Since subspace Y is supposed to be endowed with the product topology,

system B constitutes a basis of Y . Pick some Q ∈ B, i.e.,

Q :=
∏

i∈IR
R∈{S,T}

Qi
R ,

where Qi
R is open in Ri for every R ∈ {S, T } and every i ∈ IR. Because subspace X is also

endowed with the product topology, the mapping projX
Ri from subspace X into factor Ri is con-

tinuous for every R ∈ {S, T } and every i ∈ IR. Hence, (projX
Ri)−1(Qi

R) is open in X for every

R ∈ {S, T } and every i ∈ IR. Thus, the finite intersection

⋂

i∈IR
R∈{S,T}

(projX
Ri)

−1(Qi
R) = (projX

Y
)−1(Q)

is open in X , and we have shown that mapping projX
Y

is continuous. (b) Since both domain and

codomain of the continuous mapping projX
Y

are compact Hausdorff, the Closed Map Lemma im-

plies that projX
Y

is closed. �

39

Jena Economic Research Papers 2014 - 032



Proof of Remark 4.3

It is known (see for e.g. Theorem 17.16 of Aliprantis and Border, 2006) that correspondence

Qi
E is compact-valued and upper hemicontinuous if and only if for every net (ωi

k, ω
−i
k )k∈K with

ω−i
k ∈ Qi

E(ω
i
k) for every k ∈ K and for every limit point ωi

∗ of net (ωi
k)k∈K net (ω−i

k )k∈K has a limit

point in Qi
E(ω

i
∗). Therefore, to prove this remark, we begin by considering a net (ωi

k, ω
−i
k )k∈K in Ω

for which ω−i
k ∈ Q−i

E (ωi
k) is satisfied for every k ∈ K . Let ωi

∗ ∈ Ωi be a limit point of net (ωi
k)k∈K .

By assumption, (ωi
k, ω

−i
k ) ∈ E applies to every k ∈ K . Since state space Ω is compact, event E is

a compact subset of Ω. For this reason, net (ωi
k, ω

−i
k )k∈K has a limit point (ωi, ω−i) in E. Hence,

(ωi
k)k∈K converges to ωi and, since Ωi is Hausdorff, this limit point is unique. Therefore, ωi = ωi

∗

holds. It follows ω−i ∈ Qi
E(ω

i
∗). We see from this that (ω−i

k )k∈K has a limit point in Qi
E(ω

i
∗). �

Proof of Remark 4.4

First, we define correspondences P̃ i : Ω → 2Ω
−i

by P̃ i := P i ◦ projT i and Q̃i
E : Ω → 2Ω

−i

by

Q̃i
E := Qi

E ◦ projΩi . Note that since correspondence P i is assumed to be lower hemicontinuous

and mapping projT i is continuous, correspondence P̃ i is also lower hemicontinuous. Since cor-

respondence Qi
E is compact-valued and upper hemicontinuous (see Remark 4.3) and projΩi as

a continuous mapping carries compact sets to compact sets, correspondence Q̃i is also compact

valued and upper hemicontinuous. Without difficulty, identity

Bi(E) = {ω ∈ Ω : P̃ i(ω) ⊆ Q̃i
E(ω)}

can be verified. In the following, we show that event Bi(E) is closed. For this purpose, consider a

limit point ω∗ of Bi(E) and some ω̃−i
∗ ∈ P̃ i(ω∗). It remains to show that ω̃−i

∗ also belongs to Q̃i(ω∗).

By assumption, there exists a net (ωk)k∈K in Bi(E) converging to ω∗. Since P̃ i is lower hemicon-

tinuous, there exists a subnet (ωkl
)l∈L of (ωk)k∈K and a net (ω̃−i

l )l∈L in Ω−i so that ω̃−i
l ∈ P̃ i(ωkl

)

holds for every l ∈ L and (ω̃−i
l )l∈L converges to ω̃−i

∗ (see Theorem 17.19 of Aliprantis and Border,

2006). Because each member of subnet (ωkl
)l∈L belongs to event Bi(E), we obtain ω̃−i

l ∈ Q̃i
E(ωkl

)

for every l ∈ L. Since Q̃−i
E is compact-valued and upper hemicontinuous, subnet (ω̃−i

l )l∈L has a

limit point in Q̃i
E(ω∗) (see Theorem 17.16 of Aliprantis and Border, 2006). Subspace Ω−i is Haus-

dorff and, hence, this limit point is unique. From above, we know that ω̃−i
∗ is a limit point of

(ω̃−i
l )l∈L. Consequently, ω̃−i

∗ ∈ Q̃i
E(ω∗) must hold. �

Proof of Remark 4.5

(a) We prove this claim by induction on k. The case k = 0 corresponds to our assumption. Suppose,

for some k ∈ N0, event Ek is rectangular. Note that for every i ∈ I event Bi(Ek) is of type
∏

j∈I F
j ⊆ Ω where F j = Ωj holds for every j ∈ I \ {i}. Since for every i ∈ I event Bi(Ek) is

rectangular, the intersection
⋂

i∈I B
i(Ek) is also rectangular. Together with our induction premise

this implies that Ek+1 := Ek ∩
(
⋂

i∈I B
i(Ek)

)

is rectangular. Define Ei
k := projΩi(Ek) for every

i ∈ I and for every k ∈ N0. We have just shown that Ek =
∏

i∈I E
i
k holds for every k ∈ N0.

Therefore, intersection

E∗ =
⋂

k∈N0

Ek =
⋂

k∈N0

(

∏

i∈I

Ei
k

)

=
∏

i∈I

(

⋂

k∈N0

Ei
k

)
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is also rectangular. (b) Again, we prove this claim by induction on k. The case k = 0 corresponds to

our assumption. Suppose, for some k ∈ N0, event Ek is closed. Due to Remark 4.4, event Bi(Ek)

is closed for every i ∈ I . Hence, intersection Ek+1 := Ek ∩
(
⋂

i∈I B
i(Ek)

)

is closed too. Since for

any k ∈ N0 event Ek is closed, intersection E∗ :=
⋂

k∈N0
Ek is closed too. �

Proof of Remark 4.6

“(i) ⇒ (ii)” Set F := E∗. By assumption, ω ∈ F . Consider some ω̃ ∈ E∗ and some player i ∈ I .

By definition, ω̃ ∈ Ek+1 holds for every k ∈ N0. Hence, ω̃ ∈ Bi(Ek) holds for every k ∈ N

and, thus, P i(tiω̃) ⊆ Qi
Ek

(ω̃i) is satisfies for every k ∈ N0. Without difficulty, we can establish

Qi
E∗

(ω̃i) = ∩k∈N0Q
i
Ek

(ω̃i). Hence, P i(tiω̃) ⊆ Qi
E∗

(ω̃i) results. “(ii) ⇒ (i)” First, we show by induc-

tion that F ⊆ Ek holds for any k ∈ N0. By assumption, F ⊆ E0 holds. Suppose F ⊆ Ek holds for

some k ∈ N0 and pick some state ω̃ ∈ F . Our induction premise implies that Qi
F (ω̃

i) ⊆ Qi
Ek

(ω̃i) is

satisfied for every player i ∈ I . Consequently, P i(tiω̃) ⊆ Qi
Ek

(ω̃i) applies to every i ∈ I . The latter

means nothing but ω̃ ∈ Bi(Ek) for every i ∈ I . Hence, ω̃ ∈ Ek+1 is obtained. Since ω̃ has been

arbitrarily chosen, F ⊆ ∩k∈N0Ek = E∗ is established. Because ω ∈ F is assumed, ω ∈ E∗ results.

“(i) ⇒ (iii)” Suppose, at state ω, event E is true and also commonly believed. Obviously, ω ∈ E0

holds. Pick some k ∈ N0. Because ω ∈ Ek+1 is supposed, ω ∈ Bi(Ek) and, thus, P i(tiω) ⊆ Qi
Ek

(ωi)

hold for every i ∈ I . Since k has been arbitrarily chosen, P i(tiω) ⊆ ∩k∈N0Q
i
Ek

(ω) = Qi
E∗

(ω) is

satisfied. “(iii) ⇒ (i)” Let ω be a state satisfying both ω ∈ E and P i(tiω) ⊆ Qi
E∗

(ωi) for every

player i ∈ I . By definition, ω ∈ E0 holds. Suppose that ω ∈ Ek holds for some k ∈ N0. Since

P i(tiω) ⊆ Qi
E∞

(ωi) ⊆ Qi
Ek

(ωi) is satisfied for every i ∈ I , we obtain ω ∈ Bi(Ek) for every i ∈ I .

Hence, ω ∈ Ek ∩
(
⋂

i∈I B
i(Ek)

)

applies and, thus, ω ∈ Ek+1 results. Since ω ∈ Ek is satisfied for

every k ∈ N0, we obtain ω ∈ E∗. �

Proof of Remark 4.7

We remark that [Ci] is a rectangular event of type [Ci] = Ci × Ω−i where Ci is a subset of Ωi. For

this reason, it suffices to establish the closedness of Ci in Ωi. Let ωi
∗ := (si∗, t

i
∗) be a limit point of

Ci. Denote by Nωi
∗

the system of all open neighborhoods of ωi
∗ in Ωi. Thus,

(V \ {ωi
∗}) ∩ [Ci] 6= ∅

holds for any V ∈ Nωi
∗

. Pick, for each V ∈ Nωi
∗

, some ωi
V := (siV , t

i
V ) ∈ Ωi for which

siV ∈ Ci(P i(tiV ), S
i)

is satisfied. Note that (ωi
V )V ∈N

ωi
∗

is a net directed by inclusion. We specify

P i
V :=

⋃

U⊆V,
U∈N

ωi
∗

P i(tiU ) ∪ P i(ti∗)

for each V ∈ Nωi
∗

where the upper bar about the set union is the topological closure operator.

Thus, P i(V ) is closed in Ω−i for any V ∈ Nωi
∗

.

First, we establish
⋂

V ∈Nωi
∗

P i
V = P i(ti∗). Obviously, by construction,

⋂

V ∈Nωi
∗

P i
V ⊇ P i(ti∗)

holds. Consider some ω−i ∈ Ω−i \ P i(ti∗). Because Ω−i is compact Hausdorff, there exists some
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open set Z so that P i(tiω∗) ⊆ Z and ω−i /∈ Z are satisfied. Furthermore, there exists an open set Y

having the property P i(ti∗) ⊆ Y ⊆ Y ⊆ Z . Because correspondence P i is upper hemicontinuous,

there is some open neighborhood T i
Y of tiω∗ so that ti ∈ T i

Y implies P i(tiY ) ⊆ Y . Hence, P i
V ⊆ Y ⊆

Z holds for any V ∈ Nωi
∗

satisfying V ⊆ Si × T i
Y . It follows that ω−i /∈ P i

V is satisfied for any

V ∈ Nωi
∗

with V ⊆ Si × T i
Y . Thus, ω−i /∈ ∩V ∈N

ωi
∗

P i
V results. Since the latter result holds for any

ω−i ∈ Ω−i \ P i(ti∗), we obtain
⋂

V ∈Nωi
∗

P i
V = P i(ti∗).

Next, we show that si∗ ∈ Ci(P i
V , S

i) holds for any V ∈ Nωi
∗

. Obviously, (P i
V )V ∈N

ωi
∗

is an anti-

tone net directed by inclusion. By monotonicity, we have Ci(P i(tiU ), S
i) ⊆ Ci(P i

U , S
i) ⊆ Ci(P i

V , S
i)

for any U ∈ Nωi
∗

with U ⊆ V . Therefore, siU ∈ Ci(P i
V , S

i) holds for any U ∈ Nωi
∗

with U ⊆ V .

Because net (siU )U∈N
ωi
∗

,U⊆V converges to si∗ and choice rule Ci is assumed to be closed, si∗ ∈

Ci(P i
V , S

i) is satisfied for any V ∈ Nωi
∗

.

Finally, since choice rule Ci is continuous from above and
⋂

V ∈Nωi
∗

P i
V = P i(ti∗) applies,

⋂

V ∈N
ωi
∗

Ci(P i
V , S

i) ⊆ Ci(P i(ti∗), S
i)

is true. Recall that si∗ ∈ Ci(P i
V , S

i) holds for any V ∈ Nωi
∗

and, thus, si∗ ∈ Ci(P i(ti∗), S
i) results.

That means (si∗, t
i
∗) ∈ Ci as desired. �
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Appendix C - Choice rules

The following table provides the formal specifications of all choice rules mentioned in the Intro-

duction and in the main text of this paper.

Choice rule Symbol Definition

Inherent undominance IU IU(P,A)Θ := {a ∈ A: for some non-empty E ⊆ P , there

is no b ∈ A so that bθ ≥ aθ for every

θ ∈ E and bθ > aθ for some θ ∈ E}

Maximin MM MM(P,A)Θ := {a ∈ A: for every b ∈ A there is some θ ∈ P

so that inf θ̃∈P aθ̃ ≥ bθ}

Minimax regret MR MR(P,A)Θ := {a ∈ A: for every b ∈ A, max{c∗ω − aω : ω ∈

Ω} ≤ max{c∗ω − bω : ω ∈ Ω}, where

c∗ω := max{cω : c ∈ A} for every

ω ∈ Ω}

Point rationality PR PR(P,A)Θ := {a ∈ A: there is some θ ∈ P so that aθ ≥ bθ

for every b ∈ A}.

Strict dominance SD SD(P,A)Θ := {a ∈ A: aθ > bθ for every θ ∈ P and every

b ∈ A \ {a}}.

Modified strict domi-

nance

SD+
SD+(P,A)Θ :=

{

SD(P,A)Θ if SD(P,A)Θ 6= ∅,

A if SD(P,A)Θ = ∅.

Strict undominance (in

pure payoff profiles)

SUp SUp(P,A)Θ := {a ∈ A: for every b ∈ A there is some θ ∈ P

so that aθ ≥ bθ}.

Strict undominance in

mixed payoff profiles

SUm SUm(P,A)Θ := {a ∈ A: for every µ ∈ ∆(A) there is some

θ ∈ P so that aθ ≥
∫

A
bθdµ}.

Weak undominance (in

pure payoff profiles)

WUp WUp(P,A)Θ := {a ∈ A: there is no b ∈ A so that bθ ≥ aθ for

every θ ∈ P and bθ > aθ for some

θ ∈ P}

Weak undominance in

mixed payoff profiles

WUm WUm(P,A)Θ := {a ∈ A: there is no probability measure µ ∈

∆(A) so that
∫

A
bθdµ ≥ aθ for every

θ ∈ P and
∫

A
bθdµ > aθ for some

θ ∈ P}

Table C.1: Specifications of choice rules
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