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Are you on the right track?

The effect of educational tracks on student achievement

in upper-secondary education in Hungary

Zoltán Hermann

Abstract

The paper attempts to identify causal effects of being enrolled in different educational tracks 

on student achievement in upper-secondary education in Hungary. Rejected and admitted 

students are compared who applied to the same school and performed similarly in the 

previous grade. Average treatment effects on the treated are estimated with a matching 

method. Results indicate that higher track significantly raises student achievement. Beside 

the effect of tracks, the schools preferred by students within the tracks also provide better 

educational quality. Comparing the effects of tracks and differences within the tracks reveals 

that the advantage of the academic track does not differ from that of better schools in 

general. At the same time, the vocational track incurs substantial losses that are in part 

specific to that track. 

Keywords: education, tracking, matching, equality of opportunity

JEL classification: I20, I21, I24
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Az iskolatípus hatása a tanulói teljesítményekre

Eredmények a magyarországi középfokú oktatásról

Hermann Zoltán

Összefoglaló

A tanulmány célja az iskolatípusok tanulói teljesítményekre gyakoroltoksági hatásának 

elemzése a magyar középfokú oktatásban. Az elemzés olyan elutasított és felvett diákok 

összehasonlítására épül, akik ugyanabba a középiskolába jelentkeztek és a korábbi 

tanulmányi eredményeik is hasonlóak. A kezelt csoportra gyakorolt átlagos hatásokat 

(average treatment effects on the treated) matching módszerrel becsüljük. Az eredmények azt 

mutatják, hogy a magasabb iskolatípusok javítják a diákok teljesítményét. Az iskolatípusokon 

belül a népszerűbb iskolák hatása szintén pozitív. A gimnázium hatása nem tér el az 

iskolatípuson belülijobb iskolák hatásától, míg a szakiskola negatív hatása erősebb ezeknél.

Tárgyszavak: oktatás, iskolatípus, matching, esélyegyenlőség

JEL kódok: I20, I21, I24

Köszönetnyilvánítás

Értékes megjegyzéseikért köszöntettel tartozom Kézdi Gábornak és Varga Júliának.
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INTRODUCTION

Looking for institutional determinants of inequality of educational systems early tracking of 

students is often blamed. However, the impact of tracking is still far from unambiguous and 

causal evidence is scarce. This paper attempts to identify causal effects of being enrolled in 

different tracks1 on student achievement in upper-secondary education in Hungary. The 

effect of preferred schools within tracks are also estimated and compared with track effects.

Tracking can reduce equality of opportunity if (1) poor students have a higher probability 

to enroll in a less prestigious track and (2) this track has a detrimental effect on them. The 

first condition is straightforward to confirm in most cases. In a cross-country comparison the 

highest segregation is found in countries with extensive tracking (Jenkins-Micklewright-

Schnepf, 2008). At the same time, the second condition can not be judged easily due to 

overwhelming selection problems (Manning-Pischke, 2006). Since the selection into 

different tracks is most often merit based, academic tracks enroll students who will perform 

better in part because they are more able and motivated, and learn faster. The key question 

here is whether differences in student achievement across tracks later on are explained solely 

by this selection or the quality of education is different, as well. If the educational tracks do 

not exert an effect on achievement we can hardly expect that abandoning selection into 

different tracks would improve equality of opportunity. This way track effects on achievement 

provide indirect evidence on the overall impact of a tracking system, as a necessary condition 

for tracking to hinder equality of opportunity. The main research question of this paper is 

whether educational tracks do have a causal impact on student achievement. 

However, other educational institutions may also produce similar outcomes than 

tracking, by sorting students with respect to family background and providing them 

education of different quality. Both theoretical models and empirical evidence suggest that 

free school choice may result in sorting of students across schools (Epple-Romano, 1998; 

MacLeod-Urquiola, 2012; Epple-Newlon-Romano, 2002). Ability sorting within schools 

(often referred as tracking in the US literature) may have similar effects. Again, as far as 

sorting is not independent of family background and more selective schools provide better 

educational quality, inequality of opportunity is endangered, as the opponents of school 

choice often argue (Ladd, 2002). At the other hand, a positive causal effect on achievement in 

the more popular schools seems indispensable for school choice to raise productivity. If 

schools can maintain high reputation and attract many students without true better quality, 

                                                
1 The term tracking is used differently in the US and European literature. In Europe tracking refers to streaming 
students into educational programs defined and regulated by the central government, usually with a more 
academic or vocational orientation, and sometimes providing different degrees. In the US it means various forms 
of ability sorting within schools. In this paper tracking refers to the former.
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the incentives are not appropriate to improve productivity. Hence, exploring the effect of 

better schools provides evidence on the potential advantages of school choice for improving 

average quality and its side effects on equality of opportunity. The second research question 

of this paper addresses the impact of more popular and prestigious schools on student 

achievement.

 Better school effects are also important for assessing track effects. Contrasting these 

reveals whether track effects are something special or similar to better school effects. If the 

latter is the case, ability sorting and stratification in a school choice regime may offset any 

improvement of equality of educational opportunity that can be expected from de-tracking.

The main contribution of the paper is to add causal evidence to the literature on tracking. 

Note that most of the analyses about tracking effects are flawed by serious methodological 

problems (see Betts, 2011 for a review). School-level cross-sectional analyses, asking 

questions similar to this paper, usually struggle with the endogeneity of tracking and 

selection issues. The results of US studies on ability sorting and tracking are mixed, both 

regarding the effect on tracking on equality of opportunity and on mean student achievement 

(Argy-Rees-Brewer, 1996; Betts-Shkolnik, 2000; Figlio-Page, 2002). Evidence from 

European countries is scarce and mixed. Dustmann-Puhani-Schönberg (2012) has analyzed 

the effect of tracks on long-term outcomes in Germany, identifying these from a school entry 

age rule, but found no significant track effects. Horn (2013) found a positive effect for a 

small, very selective elite tack in Hungary.

Cross-country analyses (Ammermueller, 2005; Brunello-Checchi, 2007; Schuetz-

Ursprung-Woessmann, 2008) suggest that early tracking strengthens the impact of family 

background on student achievement, and hence it hinders equality of opportunity. Other 

studies, though using similar data, cast some doubt at this conclusion (Waldinger, 2006). 

However, cross-country comparison is difficult due to the small number of observations and 

many possible omitted country characteristics confounding the analysis. 

More reliable causal evidence on tracking effects comes from analyses of educational 

reforms of tracking regimes. For Sweden and Finland respectively Meghir-Palme (2005) and 

Pekkarinen-Uusitalo-Kerr (2009) provide evidence on a positive effect of de-tracking on 

equality. However, it is not clear whether the conclusions from reforms several decades ago 

would still apply in the present context of education, and to what extent were the estimated 

impacts driven by other elements of the reforms. Guyon-Maurin-McNally (2010) reported 

that an expansion of enrollment in the academic track increased student achievement in 

Northern Ireland. At the same time, Malamud-Pop-Eleches (2010) analyzing long-term effect 

of a policy reform in Romania found that labor market outcomes are hardly affected by 

attending the general instead of the vocational track, thus observable differences in the 

outcomes between the graduates are probably mostly driven by selection. 
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Experimental evidence on tracking is scarce. Duflo-Dupas-Kremer (2011) has found a 

positive effect of tracking on low achievers in Kenya. However, in an experimental setting 

behavioral responses (most importantly school choices of students and teachers) are 

constrained, limiting the generalizability of these results. Altogether, the effect of tracking is 

still far from unambiguous and causal evidence is limited. 

The other strand of related literature is that about the effect of more selective schools or 

in general better schools. Recently several studies employed innovative strategies to identify 

causal effects of better schools. Some use lottery-based access to these schools to eliminate 

selection problems (Cullen-Jacob-Levitt, 2006), but identification is most often built on the 

comparison of students just below and above the admission threshold in a merit-based 

selection regime. This strategy provides an estimate of the true causal impact of a certain 

school on student achievement. This approach has been mainly used in the recent literature 

to analyze the effect of elite schools. Overall, the findings of the better school literature are 

even more ambiguous than those of tracking. Cullen-Jacob-Levitt (2006), Abdulkadiroglu-

Angrist-Pathak (2011) and Dobbie-Fryer (2011) for the US and Clark (2010) in the UK have 

found no elite school effect. At the same time, a positive effect of better schools was found by 

Jackson (2010) for Trinidad and Tobago, Pop-Eleches-Urquiola (2011) for Romania and 

Janvry-Dustan-Sadoulet (2012) for Mexico.  

This paper attempts to provide causal evidence on the effect of educational tracks and 

better schools within the tracks. In order to avoid problems of selection on unobservable 

traits I use an empirical strategy similar to most papers in the better school literature. I 

compare rejected and admitted students who applied to the same school and are similar in 

terms of prior achievement. Identification mostly relies on students on the margin, assuming 

that these students, as they made similar application decisions, are also similar in 

unobserved characteristics like motivation, aspirations and self-confidence. However, as no 

rankings of students by the schools or admission test results are observed, the regression 

discontinuity method can not be applied. I estimate average treatment effects on the treated 

using a matching method. With matching based on prior student achievement essentially the 

same approach is employed, though using a different statistical method. Beside the effect of 

educational tracks I also estimate the impact of the preferred schools of the students within 

tracks.

Upper-secondary education in Hungary provides rich opportunities to analyze these 

questions. A rigid formal tracking regime with three tracks (academic, mixed, vocational) and 

widespread sorting both across tracks and schools within the tracks are present at the same 

time. School choice is limited only by capacity constraints, and the allocation of students into 

tracks and schools is mainly merit based, generating strong ability sorting at both levels. In 
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order to compete for students and distinguish themselves from each other schools offer 

various educational programs within the three formal tracks. 

In Hungary student achievement is exceptionally strongly related to family background, 

equality of educational opportunity is extremely weak in an international comparison (see the 

data in Schuetz-Ursprung-Woessmann, 2008). Figure 1 depicts the differences in student 

achievement over the deciles of students in terms of family socio-economic status. The test 

score gap between the poor and rich is substantial, exceeding one standard deviation of the 

test scores in grade 10 (Figure 1, left panel). These differences are already present before 

entering upper-secondary education, but poor students on average seem to suffer some 

further losses, as well, as suggested by the estimated family background effect on grade 10 

test scores when grade 8 achievement is controlled for (Figure 1, right panel). At the same 

time, family background is strongly related to track placement in upper-secondary education, 

students with more disadvantaged family background concentrated in the lower tracks 

(Figure 2, left panel). Within track sorting is also apparent, as poor students on average 

attend classes with lower peer quality (Figure 2, right panel). However, sorting within tracks 

seems to be weaker than between track differences. Altogether this strong sorting implies 

that if educational tracks and school quality do matter for achievement, poor students can be 

expected to be disproportionately hurt.

Figure 1

Test scores and family background
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The analysis uses a large sample covering about one third of a student cohort in Hungary. 

Compared to the majority of the better school literature, this sample features huge variation 

in terms of both school quality and the ability level of marginal students, providing an 

opportunity for analyzing the heterogeneity in track and better school effects. 

The results of the analysis reveal that higher tracks do indeed have a positive effect on 

student achievement in Hungary. Better schools within tracks also seem to matter. The test 

score gain associated with these is similar in magnitude to that of the academic vs. the mixed 
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track (between 0.5 and 0.17 standard deviations). At the same time, attending the vocational 

instead of the mixed track conveys a 0.21-0.28 standard deviation loss in test scores. Most of 

this effect persists even if individual heterogeneity of rejected applications is controlled for.

Figure 2

Sorting of students with different family background across and within tracks
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The large detrimental effect of the vocational track, together with a relative concentration 

of poor students in it, suggests that eliminating this track altogether could improve equality 

of opportunity to some extent. However, part of the track effect would probably be replaced 

by within track ability sorting. Estimated better school effects imply that the gain of de-

tracking would be only about half of that derived solely from the vocational track effect.

Finally, the results reveal substantial heterogeneity in better school and track effects. The 

less close substitute is the actual school of the student for the preferred one, the larger is the 

magnitude of the effect. Moreover, the effect diminidhies when the student is farther below 

the peer mean of the preferred class in terms of prior achievement. Weak students may not 

benefit from highr standards when these are too demanding. Note that this may explain why 

no consistent positive effect for elite schools is found in the literature: if the admission cut-off 

is set far below the mean of admitted students, no significant effects around the cut-off can be 

expected. 

Note that by matching rejected applicants to similar enrolled students the analysis 

focuses on students on the margin between school tracks. Though these margins prove to be 

broad, covering a wide range of the ability distribution, marginal students still represent a 

special group, thus the results can not be assumed to hold for the whole student population. 

However, the results for the marginal students can be used to assess the effect of small 

changes in the share of the tracks. There is much less empirical evidence on this than on the 

existence of tracking (see Brunello-Checchi, 2007; Guyon-Maurin-McNally, 2010), though 

this seems to be a more accessible policy option than replacing tracking with a 

comprehensive school system as a whole.

The paper is structured as follows. In the second section the relevant features of 

secondary education in Hungary are reviewed. The next section introduces the data and 

presents descriptive analysis. The fourth section covers the empirical strategy. Then the 

results are summarized and discussed, with a special focus on equality of opportunity. This is 

followed by robustness and sensitivity analysis and concluding remarks.

UPPER-SECONDARY EDUCATION IN HUNGARY

Primary and secondary education in Hungary is traditionally organized in a two-tier system. 

Primary and lower-secondary education is provided in general schools, covering 1st-8th grade. 

At the end of grade 8 students apply for an upper-secondary school. They can choose from 

three tracks, the academic track, a mixed academic-vocational track and a vocational track. 
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Enrollment shares in the tracks are similar in magnitude, with the academic and mixed 

tracks above one third and the vocational track somewhat below that. 

The academic and mixed tracks are rather similar. In both cases at the end of grade 12 

students take the final maturity exam, which qualifies for higher education. The two tracks 

follow similar curricula, with only a minor share related to vocational training in the mixed 

track. After the final exam in grade 12 students can opt for higher education, enter the labor 

market with their general upper-secondary degree or continue in the mixed track for one or 

two additional years to receive a vocational qualification.

At the other hand, general curricula in the vocational track are less demanding that in the 

other two tracks. Vocational training starts after grade 10, either in school workshops or at 

firms. Students can not take a maturity exam, thus the vocational degree they get does not 

qualify for higher education. In this respect the vocational track is a dead-end.

There are apparent differences in the prestige of the three tracks. Students almost 

exclusively rank the academic track before the mixed track and the mixed before the 

vocational track. Opposite ranking occurs only as an exception in student applications, e.g. 

when placing a class in the mixed track specialized for arts before one in the academic track. 

Preferring a class in the vocational track to the mixed track is even more exceptional. 

Within the tracks there is significant sorting across schools. Also, schools stream students 

into different programs, usually organized as separate classes. E.g. within the academic track 

one class may have a specialization for extra foreign language education, while the other is 

dedicated to science at a more advanced level. Classes with no specialization are also offered. 

In the mixed or the vocational track usually the type of occupations defines the program, e.g. 

technical occupations in agriculture, health care services etc. Though an educational program 

in a school may include more than one class, for the sake of simplicity I use the term class for 

a program within a school henceforward.   

The application and admission to upper-secondary education and the allocation of 

students is a centralized process. First, students apply for as many school as they wish, 

ranking their applications from the most to the least preferred one. An application consists of 

a given class in a given school in a given track. Thus it is also possible to apply for several 

classes of the same school, or to apply for classes in different schools but in the same track. 

Second, schools rank the applicants for each different class from the most to the least 

preferred, but potentially accepted one or strictly reject some of the applicants (the latter 

implies that the school is not willing to accept the student even if the class will end up with 

only few students). Schools are relatively free to establish their admittance criteria and to 

rank the applicants. They can rely on the results from a central entrance exam and the marks 

received in grade 8 in the general school. Some very popular and selective schools also 

arrange an oral entrance exam, while others do not require even taking the central entrance 
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exam test, but rank the applications solely based on their marks. Schools may also consider 

other student characteristics, e.g. religious affiliation when the school is owned by a church 

or a sibling already attending the school. Finally, students and classes of schools are matched 

using a centralized allocation algorithm. This is a Gale-Shapely type of algorithm (Kóczy,

2010), providing no incentives for rational students to deviate from their true preferences in 

the ranking of classes.

Two other features of the institutional setup deserve to be mentioned. First, compulsory 

education ends at age 18. Thus the vast majority of the cohort analyzed here is in school, 

selection problems related to dropping out are not considerable. Second, there are few very 

selective classes within the academic track that start in grade 5 or 7. About 6-8% of students 

are enrolled in this type of classes and these are not included in the analysis here.

DATA AND DESCRIPTIVE ANALYSIS

The analysis covers a single cohort of students, who finished the general school and started 

upper-secondary education in 2006. Data comes from the National Assessment of Basic 

Competences (NABC) and the Upper-Secondary Education Application and Admission 

(USEAA) data files. NABC files include math and reading literacy scores from standardized 

tests, average marks in general school and several variables on students’ family background. 

The USEAA file reports the class, school and track for each application, students’ preference 

ranking and the application where the student has been finally admitted as the result of the 

admission algorithm. However, ranking of applicant students by the schools is not available 

in the 2006 USEAA file.

Both the NABC and USEAA files are administrative data, covering the full student 

population with only a few exceptions (e.g. students absent on the day of the test or students 

with no application). However, the final sample consists only of the set of students whose 

data can be linked from both of the NABC 2006, the NABC 2008 and the USEAA 2006 files. 

The final sample covers about one third of the student cohort. The number of students in the 

original data files exceeds 100000, while the final sample includes 34084 students. The 

major source of missing data is a random fail to link data for students. The NABC 2006 and 

NABC 2008 files were linked by general schools on a voluntary basis. Though only about half 

of the schools were willing to do that, this non-response can be regarded as more or less 

random. At the same time, even for these schools some of the 8th grader students in 2006 do 

not appear in the 10th grade NABC 2008 file. Students who drop out or repeat a grade at 

grade 9 are not observed either. This can be a problem at the lower tail of the ability 
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distribution. Moreover, in grade 8 some students with special education needs were also 

tested, while in grade 10 they were excluded. 

Comparing the sample and the population test score distributions suggests that sample 

represents well both the 8th and 10th grade student populations. Figure A1 of the Appendix 

compares the distribution of test scores in the population and the sample. Regarding grade 

10 the sample reproduces the population distribution fairly closely. In case of grade 8 the 

lower tail of the population distribution is somewhat thicker,  mainly due to the fact that 

students with special education needs were included in the grade 8 population, but excluded 

from grade 10 testing and hence not present in the sample. Altogether the sample represents 

well the student population with no special education needs.

The information on students’ track and school comes from the USEAA file, thus it is 

measured at the entrance to upper-secondary education. Student movements between tracks 

and schools in the following years are not considered. 

In the estimation of track and school effects student achievement is measured by math 

and reading literacy test scores, standardized to have a mean of 0 and standard deviation of 1 

for the total student population. Table A1 of the Appendix summarizes student achievement 

in grade 8 and 10 by educational track. Descriptive statistics reveal substantial differences 

between the tracks. The average student of the academic track has an advantage compared to 

the mixed track of about one half of a standard deviation, while the average student in the 

vocational track lags behind that in the mixed track by close to a full standard deviation. 

These differences are similar for grade 8 and 10.

As the admission to upper-secondary classes is essentially merit-based a strong sorting of 

students across and within tracks emerges with respect to prior achievement. The variation 

between the three tracks in grade 9 exceeds the between school variation in grade 8 

(Appendix Table A2).

Table 1 presents OLS estimates for track and school quality effects. In these simple 

specifications test scores in grade 10 are regressed on track dummies, gender and the two 

prior test scores. The results suggest substantial tracking effects. The expected gain in the 

academic compared to the vocational track amounts to about one third and one half of a 

standard deviation in math and reading respectively. The major part of this gap is between 

the vocational and the mixed track. 

Note that these naïve estimates do not account for self-selection of students related to 

unobserved characteristics. Specifications 2 and 3, including dummies for students rejected 

from a higher track provide some indirect evidence indicating that selection on 

unobservables is indeed present. Rejected students tend to outperform both their track- and 

class-mates with similar prior achievement, who have not applied for a higher track, 
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suggesting that applicants and non-applicants are indeed different in terms of some 

unobserved characteristics. 

Table 1

OLS estimates of test scores in grade 10

math reading

(1) (2) (3) (1) (2) (3)

track (ref.: mixed)

academic 0.103*** 0.106*** 0.147*** 0.156***

(0.010) (0.010) (0.009) (0.010)

vocational -0.242*** -0.253*** -0.366*** -0.390***

(0.012) (0.014) (0.013) (0.014)

rejected students (track of preferred – actual class)

mixed – vocational 0.049*** 0.046** 0.115*** 0.067***

(0.018) (0.021) (0.021) (0.022)

academic – mixed 0.017 0.012 0.060*** 0.042***

(0.013) (0.015) (0.014) (0.016)

controls: prior math and reading score, gender yes yes yes yes yes yes

class fixed effects no no yes no no yes

N 33,459 33,459 33,459 33,462 33,462 33,462

R2 0.687 0.687 0.761 0.670 0.670 0.742
Standard errors clustered for classes are in parentheses. *** p<0.01, ** p<0.05, * p<0.1

EMPIRICAL STRATEGY

A. IDENTIFICATION

The identification of track and better school effects here starts from the fact that if there is 

some kind of merit-based selection of students into schools, students just below and above 

the admission threshold are similar to each other. The comparison of these two groups 

provides an estimate of the true causal impact of a certain school on student achievement. 

This approach has been used in the recent literature to analyze the effect of elite schools 

(Abdulkadiroglu-Angrist-Pathak, 2011; Dobbie-Fryer, 2011; Clark, 2010; Jackson, 2010; Pop-

Eleches-Urquiola, 2011; de Janvry-Dustan-Sadoulet, 2012). The most straightforward and 

often applied estimation strategy in this setting is regression discontinuity.

Identification in this paper also relies on the similarity of students close to the admittance 

cut-off, but the estimation is built on a matching method. Successful applicants are matched 

with unsuccessful ones with similar prior achievement. Note that here unsuccessful 

application does not imply that the school definitely rejected the student; instead it simply 

means that the student were not allocated to her preferred school as a result of the admission 
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algorithm. In fact the schools might have accepted these students, as well, but happened to be 

able to enroll enough students that they preferred even more. However, for the sake of 

simplicity I will use the term ‘rejected’ for these students throughout the paper. The matching 

method is a substitute for regression discontinuity estimation here, since the rankings of 

students by schools and admission cut-offs are not observed. However, prior student 

achievement provides a proxy for the unobserved rankings. Therefore the approach 

underlying regression discontinuity can be implemented by matching. The fact that schools 

apply various criteria to rank the applicants and the ranking may not reflect exclusively prior 

achievement, makes using the matching method even more warranted.

The outcome variable is student achievement in grade 10, measured by standardized test 

results. Rejected students are considered the treatment group, while similar, but successful 

applicants form the control group. Thus the effect of lower tracks and dispreferred schools 

within tracks are estimated. The effects are calculated for the rejected students, i.e. average 

treatment effects for the treated (ATT) are reported. 

Formally the effect of being rejected as opposed to being admitted to a given type of 

school is estimated as the difference of the outcome between the treated student and the 

mean of its matched control pairs: 
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where A denotes test score, S the type of school. The upper index is grade, lower indices T 

and C are the treated or control status of the student and k is the number of control students. 

The average treatment effect for the treated is calculated as the mean of this counterfactual 

difference for the group of rejected students.

Identification by the matching method is possible if two conditions are met. First, 

sufficient number of control students should be found who are fairly similar to the treated 

students in terms of the major determinants of later student achievement. Second, there 

should be no such differences in unobserved characteristics between the treated and the 

control group that might affect achievement later on. 

Possibly confounding unobserved student characteristics evidently emerge as a major 

problem when school effects are to be estimated. Even if prior achievement is similar, 

students in different tracks can be also different regarding their aspirations, motivation and

self-confidence. At he same time, these characteristics can evidently affect later achievement 

(see Christofides et al., 2012; Hastings-Neilson-Zimmerman, 2012; Brunello – Schlotter, 

2011). E.g. more motivated students can be expected to take more ambitious choices and 
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perform better in part due to their motivation, which confound the estimation of the true 

school or track effect. For this reason controlling for prior achievement solely can not 

eliminate selection bias (Manning-Pischke, 2006).

By matching rejected and admitted students these confounding factors can be eliminated. 

It is assumed, that both students applying to the same school are similarly motivated, self-

confident etc. However, this assumption need not hold for a heterogeneous group of schools. 

Students applying for different schools within the academic track can well differ: those 

choosing the elite schools are usually more motivated, confident etc. than those opting for a 

less prestigious school within the same track. For this reason, treated and control students 

are matched exactly with respect to school and class. I.e. for each treated case (a rejected 

application) control students are chosen from those enrolled to the very same class where the 

treated student applied and was not admitted to.

Do students vary with respect to further unobservable cognitive or non-cognitive traits 

that do not affect their application decisions but affect achievement later on? I assume that 

these factors are random comparing the treated and control groups. Since the schools rank 

the applicants mainly based on entrance exam scores and marks in the general school, 

further unobservable cognitive or non-cognitive traits are unobservable not only for the 

researcher but for the schools, as well, thus selection can hardly be based on these. As an 

exemption, this assumption may not hold for the few elite schools arranging oral entrance 

exams.

Regarding the overlap condition, identification relies on three features of the application 

and admission process. First, for each secondary school, some of the rejected students do not 

meet, but are close to the admission threshold, while few enrolled students are just above 

this. Prior achievement of students on the margin can be expected to be similar. Second, 

admission tests and schools measure student achievement and aptitude with error, thus it is 

possible, that a smart student performs poorly on the day and ends up being rejected, while 

an even weaker student is admitted. Third, schools may apply somewhat different criteria 

when ranking applicants, e.g. evaluating the same grade points from the 8th grade differently 

or giving different weight to non-academic factors (sibling in the school, religious affiliation). 

The importance of the last two features can be clearly seen from school rankings in other 

years; it is quite common that schools rank the same applicants differently2. 

When interpreting the results of the matching estimates here, three caveats have to be 

kept in mind. First, estimates are mainly based on students on the margin. Even though there 

is no well-defined cut-off between the tracks and thus the margin is a wide band, the students 
                                                
2No school ranking data are available for the cohort analyzed here, but in the next year, 2007 hundreds of 
thousands of pairs of students can be identified, who applied to the same two schools and both schools ranked 
each student (i.e. neither school definitely rejected either student). In 29% of these pairs the two schools ranked 
the two students differently relative to each other. This kind of inconsistency can be observed for each track 
roughly to the same extent, i.e. it is not a particular feature of a special group of schools.
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considered here do not represent the entire population. Second, applicants maximizing their 

utility can be assumed to pick close substitutes for their preferred schools as second, third 

etc. options. Thus the estimated effects are not the difference between the average classes of 

two tracks. Third, the estimated effect of educational tracks can be interpreted as a weighted 

average of individual class effects, weighted by the number of unsuccessful applicants.

B. CORRECTING FOR UNBALANCED COVARIATES AND ESTIMATING AVERAGE 
TREATMENT EFFECTS

Though treated and control students are similar with respect to prior achievement, they are 

not identical, especially due to students below and above the margin. Rejected students in 

general tend to somewhat lag behind the admitted ones. This kind of unbalance may lead to 

biased estimates (Abadie-Imbens, 2002). In order to control for this bias, I use two 

alternative methods. 

On the one hand, I use the bias-correction proposed by Abadie and Imbens (2002). When 

the treatment effect is estimated for the treated, first the effect of individual characteristics 

on the outcome should be estimated parametrically for the control group:

(2) jCjCj XA  10

where X denotes the vector of individual characteristics, β is the estimated vector of 

parameters and μ is the error term. In the present case I use prior student achievement; math 

and reading test scores and the average marks score for the correction (see the calculation of 

the marks score below). Equation (2) is estimated separately by gender.

Then the outcome for the control students is corrected as if their observable 

characteristics were identical to those of the treated students. The corrected version of eq. 1 

is:
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The value of this correction depends on whether the specification of the parametric 

achievement model is correct. Unfortunately, regarding student achievement this proves to 

be a rather strong assumption when prior achievement is included on the left hand side 

(Todd-Wolpin, 2003). If the lagged outcome is correlated with the error term, β will be 
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biased, introducing a bias into the treatment effect, as well. The direction of this potential 

bias is not straightforward in the current case.

On the other hand, a difference-in-difference approach can be employed as an alternative 

method. Here I measure the effect of being rejected by the difference in the growth of test 

scores from grade 8 to 10, i.e. whether the achievement growth of the treated student lags 

behind that of the control students:
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This second approach assumes that small differences in prior achievement do not affect 

achievement growth. However, it may be slightly biased by regression to the mean, related to 

measurement error in the prior test score. Regression to the mean implies that students with 

lower prior test scores tend to produce larger growth. Since test scores for the treated are 

typically lower than that of the controls, the difference measure can be expected to slightly 

underestimate the magnitude of the true effect. If it is biased, the bias is towards zero.

Average treatment effects for the treated are estimated as the mean of differences 

between treated and control students, calculated for the treated students. For the 

achievement level and growth models respectively:
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where index i and j denotes treated and control students respectively, n is the number of 

treated students and ki is the number of control students belonging to treated student i.

C. MATCHING METHOD

The matching method applied here is radius matching with respect to prior achievement 

within class and gender. For each rejected applicant control students are matched, who (1) 

are enrolled in exactly the preferred class, where the treated student was rejected from, (2) 
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the difference between the two students in grade 8 achievement is below a given threshold, 

and (3) belong to the same gender. 

Matching is exact with respect to gender and the class and school the students applied to. 

In other words, unsuccessful applicants are matched with students enrolled in the very same 

class in the same school. Exact matching by gender is necessary, since boys and girls may 

differ not only in achievement level, but also in achievement growth (see e.g. Leahey - Guo, 

2001, for the development of math skills). Moreover, since the gender of the teacher may 

have a different effect on boys’ and girls’ achievement (Dee, 2005), matching students by 

gender can reduce measurement error in estimated treatment effects. 

When estimating the track and school effects below, student achievement is measured by 

math and reading literacy test scores. However, when matching treated and control students 

I use a different achievement measure, the average of marks in grade 8. The reason for this is 

the presumably substantial measurement error in test scores. Even if the measurement error 

is distributed randomly across students, it may bias matching estimates. As students scatter 

around the admission cut-off, measurement error may create false matches, where prior 

achievement is overestimated for the rejected student and/or underestimated for the control 

student. Since there is a prior achievement gap within these matched pairs, disguised by the 

measurement error, their performance later will diverge more than that of true matched 

students. The problem is that this positive error is not offset by measurement error of the 

opposite sign, as when the difference in measured prior scores is larger than its true value, no 

match occurs. To see this assume that the true score of student A is relatively far below the 

admission cut-off in her preferred school, thus if there is no measurement error, student A

will be not matched with any control students. If measurement error is negative there is still 

no match, but a positive measurement error may result in finding a seemingly similar control 

student, B. However, the difference between student A and B in grade 10 can be expected to 

be quite large, since A is in fact a much less able student than B, resulting in an upward bias 

in the effect of the school. The problem is that positive error is not offset by negative 

measurement error, since in the latter case the student does not appear in the matched 

sample. Note that, as expected, matching by test scores do indeed tend to provide somewhat 

larger treatment effects than the preferred matching method, especially for test score growth 

(see the section on sensitivity analysis below).

In order to avoid this bias, matching is based on average marks in grade 8, which 

measure student performance on a longer time period. However, average marks may also 

contain some measurement error, due to different grading standards in different schools or 

other, unobservable factors. To eliminate the potential bias from this I calculate an average 

marks score that is adjusted for grading standard differences across schools (see Appendix 

section A.2 for details).
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Following Betts-Grogger (2003) and Figlio-Lucas (2004) grading standards of schools 

can be empirically estimated by a model including school fixed effects: 

(7) icssscsicsicsicsicsics SZXMMMA   54
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where A 8 denotes the mean of the math and reading test scores in grade 8, M is average 

marks in grade 8, S stands for the school dummies, and X and Z are vectors of student and 

class level control variables for student i in class c in school s. The estimated fixed effects 

represent the grading standard of schools. Control variables are gender, special education 

needs status, classes specialized for advanced education of foreign languages or other 

subjects and share of special education needs students in the class3. The predicted values 

from this model provide a prior achievement score measured by average marks and corrected 

for differences in grading standards:
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Â 8 is the expected value of the mean test score given the actual average marks of the student 

and the grading standard in her school (and the value of the control variables). Note that the 

grading standard is estimated from all students’ test scores in a school, and is not affected by 

student level measurement error within the school.

Treated and control students are matched with respect to this adjusted average marks 

measure. The marks score is measured on a scale similar to that of the test scores. The value 

of the radius is set to 0.25 standard deviation of test scores4. Two students can be matched 

only if the difference between their corrected average marks scores are less than or equal to 

0.25.

Additionally, in order to mitigate the problem of potential measurement error in average 

marks within schools, control students with an 8th grade test score that is statistically 

significantly different (at the 5% level) from that of the treated student are dropped. That is, 

even if two students are similar with respect to average marks, if either their math or reading 

test scores in grade 8 is almost certainly different, they are not matched. The significance of 

the difference in the test scores is evaluated using the analytical standard errors provided for 

each score in the NABC file.

                                                
3 The control variables may modify the grading standard within the school or regarding the individual student. See 
e.g. Bonesronning (2008) on gender related differences in grading practices. In fact, including or excluding these 
variables makes no real difference neither in the predicted achievment nor in the estimated fixed effects. The 
correlations of these from the two specifications are 0.99.
4 The results are quite insensitive to the radius value (see the section on sensitivity analysis below.
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Note that matching would be more reliable if test scores and average marks were taken 

into account simultaneously. However, increasing the number of covariates decreases the 

number of matched observations substantially, though it produces similar results (see the 

section on sensitivity analysis below).

When using the radius matching the number of controls belonging to one treated student 

varies. At the same time, matching with replacement implies that one control student may be 

matched to several treated students. Standard errors of the ATTs are calculated taking into 

account these features, following the method in Abadie et al. (2004).

D. RESULTS OF MATCHING AND ASSESSING THE IDENTIFICATION ASSUMPTIONS

In order to produce reasonable estimates of treatment effects a matching method requires a 

non-negligible overlap of treatment and control cases. In this case about half of the treated 

observations; 8718 rejected applications of 5971 students were successfully matched to 

control students, given the preferred parameters of matching. Students in the treatment 

group cover 17.5% of the total sample. The matched applications were rejected from 1941 

classes of 691 schools, representing 40% of the total classes in the sample.

The shares of successful matches are similar across and within tracks (Appendix Table 

A3). Five groups of rejected applications are considered: students rejected from the mixed 

track and enrolled in a vocational class, students in the mixed track who aspired to the 

academic track, and students who preferred another class within each of the three tracks5. 

Table 2 provides descriptive data on the matched sample. As expected, rejected

applicants on average performed somewhat better than their actual class-mates but lagged 

behind those in the preferred class. Similarly, students who ended up in a lower track than 

they preferred perform on average between the averages of the two tracks, but closer to the 

track they finally enrolled in. Comparing the peer means of the preferred and actual classes 

reveals a significant jump in peer quality. This suggests that there is large enough variation 

within the matched pairs of applicants to identify the effect of school quality. This is 

important, as in a stratified school system with strong sorting across schools students can be 

expected to relatively easily find close substitutes to their preferred choices. This is a threat 

for the identification strategy applied here, since if rejected students were enrolled in schools 

that offer only slightly inferior educational quality, no effect on later achievement could be 

expected to be detected. However, the diversity of supply at local school markets is always 

                                                
5 Note that a minor share of students in the first group in fact applied to an academic track class, but for sake of 
simplicity this group is considered to have chosen and been rejected from the mixed track. An even smaller 
number of students made a reverse ranking of tracks. These exceptional cases are treated as if the two applications 
were within the same track.
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limited and students probably include safe options on their preference list, as well. Moreover, 

the peer mean difference between preferred and actual classes is on average smaller than the 

peer mean difference between the tracks. This suggests that students rejected from a higher 

track do indeed end up in above average classes of the lower track.

Table 2

Prior test scores of matched rejected applicants and the peer mean in the 

preferred and actual classes and tracks

track of preferred - actual class

rejected 
applicant 

test 
score

peer mean
in preferred

class

peer mean
in actual

class

difference
between
classes

peer mean
in preferred

track

peer mean
in actual

track

difference
between

tracks

math

mixed – vocational -0.56 -0.19 -0.80 0.61 -0.03 -0.86 0.83
academic – mixed 0.20 0.55 0.06 0.48 0.53 -0.03 0.56

academic – academic 0.46 0.82 0.39 0.43 0.53 -
mixed - mixed -0.15 0.14 -0.19 0.34 -0.03 -

vocational – vocational -0.95 -0.76 -0.97 0.21 -0.86 -

reading
mixed – vocational -0.47 -0.14 -0.77 0.63 -0.02 -0.87 0.85

academic – mixed 0.35 0.65 0.11 0.53 0.63 -0.02 0.64
academic – academic 0.64 0.84 0.52 0.32 0.63 -

mixed - mixed -0.11 0.13 -0.19 0.31 -0.02 -
vocational – vocational -0.92 -0.73 -0.97 0.24 -0.87 -

Figure A2 of the Appendix represents rejected students prior achievement in more detail. 

It depicts the distribution of test scores for the entire student population and rejected 

applicants by educational track for grade 8. In terms of prior achievement applicants rejected 

within each track closely represent the entire student population of the track, on average 

these students hardly differ from the representative student of the track. At the same time, 

the distribution of applicants who preferred a higher track is somewhat skewed as these 

students performed better than the typical student of their actual track, however, test scores 

in this group of students are still very diverse, representing each part of the distribution of 

the track except the lower tail. This confirms the observation that there is no sharp cut-off 

between the tracks. First, the cut-off in the least popular school in the higher track may be 

different at each local school market. Second, some students do not apply to the least popular 

school in the higher track, but choose instead a school in the lower track as their second or 

third option, thus facing a different cut-off.

Identification from rejected applicants assumes that these students are close to the 

margin. If they were scattered evenly over the prior achievement distribution of their 

preferred class, that measured test scores were only very weakly related to the unobservable 

selection criteria of schools. Comparing their prior test scores to the peer mean and 

distribution of the preferred class confirm that rejected applicants are typically not far from 
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the margin. Prior test scores are on average 0.2-0.35 standard deviation below the peer mean 

of the preferred class (Table 2), and half of them would be landed in the bottom third of the 

prior achievement distribution in that class if admitted (Appendix Table A4). 

The crucial assumption of the matching approach is that the treated and control groups 

do not differ in unobserved characteristics that may have an impact on the outcome analyzed. 

Naturally, this assumption can not be tested directly. Comparing means of prior achievement 

and family background variables for the treated and control groups shows no major 

differences between the two groups, which is reassuring regarding unobserved characteristics 

(Appendix Table A5). However, since rejected applicants tend to be below the margin while 

control students are above that, prior scores of the latter group are slightly higher and family 

background is somewhat more favorable. There are minor differences in the average number 

of books and years of parental education between the two groups. This can also reflect being 

at the other side of the margin, since prior achievement and family background are strongly 

correlated. Altogether, the matched sample is to some extent unbalanced in terms of student 

characteristics, which makes a correction for this necessary.

RESULTS

A. MAIN RESULTS

The estimated average treatment effects of being enrolled in a less preferred class as opposed 

to a more preferred one are summarized in Table 3. The first two columns of the table 

presents the estimated effect on the test score level in grade 10, the next two is the same 

estimator with parametric bias correction (see in the section on empirical strategy). Here the 

bias correction is based on prior achievement solely (see sensitivity analysis for other 

specifications). Column 5 and 6 presents results on the test score difference, i.e. achievement 

growth from grade 8 to grade 10.

In each panel the first two rows indicate the effect of educational tracks. The results 

suggest that being rejected from the mixed track and enrolled in a vocational class conveys a 

huge disadvantage. Disregarding the level estimates without bias correction, on average 

students suffer a 0.21-0.26 and 0.27-0.29 standard deviation loss in 10th grade test scores in 

math and reading respectively. Another way to asses the size of the effect is to see how the 

position of the typical student in the test score distribution could have changed. The average 

rejected applicant is located at the 25th percentile of the math distribution in grade 10 and at 

the 23rd of reading. If she had been enrolled in a mixed track class, she could have reached 

the 32 th-34th percentile for both subjects. 
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The estimated negative impact of the mixed track relative to the academic track is 

smaller, but still statistically significant. Here the loss is about one tenth – one fifth of a 

standard deviation.

Note that the negative treatment effects for being rejected from a higher track are 

surprisingly similar to the track effects estimated by OLS; the size of the treatment effect is 

almost identical to thatt for math and only somewhat smaller for reading (Table 1). 

Table 3

Estimated effect of being rejected from the preferred class on student 

achievement

level, 
no bias correction

level, 
with bias correction difference N

track of preferred - actual class ATT se ATT se ATT se rejected appl. control

math
mixed – vocational -0.288 0.020 -0.262 0.017 -0.210 0.022 1203 1623
academic – mixed -0.215 0.019 -0.158 0.016 -0.112 0.021 1234 1534

within any track -0.178 0.009 -0.148 0.008 -0.097 0.011 6050 7047
academic – academic -0.218 0.015 -0.166 0.013 -0.113 0.017 2161 2447

mixed - mixed -0.172 0.014 -0.149 0.012 -0.105 0.016 2568 3275
vocational – vocational -0.096 0.024 -0.115 0.022 -0.051* 0.028 911 1207

reading
mixed – vocational -0.337 0.022 -0.285 0.019 -0.266 0.025 1255 1706
academic – mixed -0.227 0.020 -0.171 0.017 -0.139 0.023 1245 1557

within any track -0.160 0.010 -0.123 0.009 -0.101 0.011 6216 7270

academic – academic -0.157 0.016 -0.111 0.014 -0.078 0.018 2182 2465
mixed - mixed -0.169 0.015 -0.138 0.013 -0.120 0.017 2627 3344

vocational – vocational -0.176 0.027 -0.139 0.024 -0.126 0.029 987 1344
*: significant at 10%, all other treatment effects significant at the 1% level

The next four rows display the effect of a less preferred class compared to a more 

preferred one within the same educational track. Overall, the impact is negative, implying 

that students indeed choose better schools and classes first. The effect is similar within the 

three tracks, except for math in within the vocational track where the preferred class makes 

smaller difference, and for math score growth it is statistically significant only at the 10% 

level.

Regarding the three estimation methods the results are rather similar. Parametric bias 

correction of test score level estimates moderates somewhat the average treatment effects, 

but for most cases the change is insignificant. As expected, estimates for test score growth

tend to produce smaller treatment effects, in accordance with the assumed bias toward zero 

due to regression to the mean. The growth estimates seem to provide conservative results.

How do the effects of educational tacks and preferred classes within tracks compare? 

Within track effects are smaller in magnitude than the effect of the vocational track, but 

similar to that of the mixed relative to the academic track. This suggests that the academic 
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track conveys no more advantage than a better school in general, while the losses associated 

with the vocational classes are in part specific. 

However, comparing the average treatment effects is not the best way to assess the 

difference between track and better school effects. One reason for this is that individual 

heterogeneity may make the picture more complex. Being rejected can affect individual 

students heterogeneously. First, more or less able students may profit more or less from a 

better class. Note that not only the absolute, but also the relative level of ability may matter. 

If a student’s ability is far below that typical in the class, the standards and expectations of 

teachers may prove to be too difficult for her to meet. Comparing the location of rejected 

applicants in the prior achievement distribution of the preferred class suggests that there are 

indeed some differences across the preferred-actual track types (see Table 2 and Appendix 

Table A4). Within the vocational track rejected students appear to be less far from the typical 

student in the preferred class than in the other cases.

Second, and more importantly, the difference in the quality of the preferred and the 

actual classes may also affect the loss incurred by being rejected. If a student is enrolled in a 

class nearly as good as her preferred one her achievement may not drop too much. At the 

other hand, if she faces a much worse class than her first choice, she can be expected to suffer 

severe losses. It seems plausible, that it is easier to find close substitutes within tracks. Thus, 

when a student gets into a lower track this might imply a larger difference between the 

quality of the preferred and the actual class than enrolling in a less preferred class within the 

preferred track. If this is the case, comparing the size of the estimated treatment effects 

directly may tell only half of the story. The vocational track versus the mixed track overall has 

a stronger negative effect than being rejected from a better school within any track or the 

mixed track compared to academic one. But is this merely due to the fact that vocational 

track classes are usually not as close substitutes for the preferred choice as the less preferred 

options within the same track? If yes, the effect of higher tracks and preferred schools is 

essentially similar. Or is there any track specific element in the large negative effect of the 

vocational track? 

In order to answer these questions one should compare across and within track effects 

with a similar degree of substitutability of the actual for the preferred class. This requires 

controlling for the distance between the preferred and the actual class in terms of expected 

educational quality. Unfortunately, the expected quality of the classes can not be observed. 

However, differences in peer means (i.e. the student composition with respect to prior 

achievement) provide a proxy for quality differences. The two are closely related for several 

reasons. First, the presence of more able class-mates may generate positive peer-effects (see 

e.g. Hoxby, 2000; Hanushek et al, 2001; Lavy et al, 2009). Second, if there is positive 

matching between students and teachers, better students on average also implies better 
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teachers (see e.g. Lankford et al, 2002; Clotfelter et al 2005, 2006). Third, classes with more 

able students are generally more popular, that is why they can pick the best applicants, thus, 

these classes are deemed by the public to provide above average quality. Comparing the peer 

means confirms that the distance is larger when the two classes are not of the same track, 

especially for students rejected from the mixed and enrolled in the vocational track (Table 2).

In order to take these factors into account I estimate regression models for the treatment 

effects at the individual level. The dependent variable is the difference in the outcome 

between the treated and the control students calculated in terms of test score growth from 

grade 8 to 10, as defined in eq. 46. The observations are the rejected applications. On the left-

hand side dummy variables stand for the combinations of the track of the preferred and 

actual classes. Observations with extreme values of the individual treatment effect; below the 

1st and above the 99th percentiles are excluded7. Standard errors are clustered for the 

preferred class.

The model is first estimated with no controls, representing the average treatment effects 

in this restricted sample (specification 1). Then three controls are included in order to take 

individual heterogeneity into account: gender; the difference between the peer mean of the 

preferred and actual class; and prior student achievement relative to the preferred class 

(specification 2). The latter is measured as the distance of the student’s prior test score from 

the peer mean of the preferred class. As the effect of this relative ability measure turned out 

to be slightly non-linear, a squared term is also added. Note that as opposed to this relative 

measure the test score level turned out to be insignificant in preliminary estimates and hence 

not included. Finally, micro-region fixed-effects are also added to control for differences in 

the local supply of and demand for schools, especially the diversity of the available options on 

the local school market (specification 3). The difference of peer means and distance from the 

preferred class is measured according to the dependent variable, i.e. in math for the math 

equation, and reading for reading. 

Note that since the equations are estimated with no constant term, the coefficients of the 

track combinations directly represent the estimated average treatment effects when the value 

of the control variables is set to zero. The control variables are centered to have zero mean for 

the within track rejected applications. This way comparing the second and third 

specifications to the first one directly presents how track effects do change when the control 

variables shifts to values that are typical within track.

Results are summarized in Table 4. Including the micro-region fixed effects does not 

change the results, thus the second and third specifications are not discussed separately.

                                                
6 Estimates for the bias-corrected level effects are not shown here, but provide similar results.
7 Estimates for the full sample or that restricted to the 5th - 95th percentiles produce qualitatively similar results.
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The results confirm that the difference between the preferred and actual classes does 

indeed matter. As expected, if the student manages to find a close substitute for her preferred 

choice, being rejected makes less harm. A higher difference, i.e. being enrolled in a class 

farther below the preferred one in terms of peer mean is associated with a larger negative 

effect. For a rejected student a 0.33 s.d. weaker second choice (the average case within 

tracks) compared to a close substitute in terms of peer mean increases the negative impact of 

being rejected by about 0.04 s.d., regarding both math and reading achievement. 

The distance of the student from the preferred class seems to matter, as well. Being 

rejected has stronger negative effect when the student is not far below the peer mean of the 

preferred class. At the same time, a larger distance mitigates the negative effect. In other 

words, if the student had lagged far behind most of her classmates in the preferred class, she 

would have benefitted much less or nothing from being admitted. Note that the effect is 

slightly non-linear for math, resulting in some flattening when the distance from the 

preferred class is quite large. This implies that beyond some point being far below the level of 

the preferred class or even farther makes less difference. 

Table 4

Regression estimates for the effect of being rejected from the preferred class

math reading
(1) (2) (3) (1) (2) (3)

track of preferred - actual class 

mixed / vocational -20.133*** -18.130*** -18.414*** -24.142*** -22.157*** -21.960***
(1.998) (2.025) (2.044) (2.330) (2.432) (2.399)

academic / mixed -10.511*** -9.359*** -9.833*** -15.258*** -13.774*** -13.614***
(1.828) (1.814) (1.821) (2.063) (2.096) (2.115)

academic / academic -10.307*** -9.777*** -9.284*** -7.389*** -6.895*** -7.122***
(1.492) (1.468) (1.507) (1.556) (1.557) (1.556)

mixed / mixed -11.463*** -11.751*** -11.929*** -12.069*** -12.370*** -12.467***
(1.408) (1.433) (1.386) (1.589) (1.601) (1.618)

vocational / vocational -5.005** -5.705** -5.663** -13.033*** -13.545*** -12.913***
(2.494) (2.531) (2.554) (2.393) (2.388) (2.482)

difference in peer mean -0.136*** -0.135*** -0.129*** -0.132***
(0.020) (0.020) (0.023) (0.023)

distance from peer mean in preferred class 0.193*** 0.195*** 0.192*** 0.194***
(0.017) (0.017) (0.015) (0.015)

distance from preferred class squared -0.00032** -0.00031** -0.00021 -0.00023
(0.00016) (0.00016) (0.00016) (0.00016)

gender: female -3.826** -3.596** -0.477 0.524
(1.763) (1.744) (1.873) (1.889)

micro-region FE no no yes no no yes
N (rejected applications) 8,319 8,319 8,319 8,542 8,542 8,542

R2 0.038 0.063 0.064 0.044 0.068 0.069
Standard errors clustered for preferred classes are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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These results suggest that too ambitious choices, even if realized, do not necessarily pay 

off. This is probably related to standards and the level of required effort set by teachers with 

respect to the capabilities of the typical students in the class (see Moen-Tjelta, 2010 for 

evidence on setting grading standards this way in Norway). A student who fits well into the 

class in terms of her skills, abilities and prior knowledge may benefit from higher standards. 

At the same time, if these are far too demanding for the student, little benefits can be 

expected. This is also consistent with grading standards heterogeneously affecting the 

performance of students, as shown by Figlio-Lucas (2004). This raises concern, that higher 

tracks and better schools may not benefit everyone and could have even negative side effects. 

For elite schools in Mexico City de Janvry, Dustan and Sadoulet (2012) found that admission 

increased student achievement, but also increased the probability of dropping out of school. 

Note that in Hungary this sort of side effect is not plausible, since it is relatively easy for 

students to move into a lower track or a less demanding school within a track. Hence 

dropping out from education altogether typically occurs at the low end, in the vocational 

track, from schools with very poor reputation.

Note that the effects of the distance from the preferred class and of the preferred-actual 

class difference holds for each preferred-actual track combinations, when estimated

separately for the five types (Appendix Table A6).

Gender appears to be related to the size of the treatment effect for math. Girls on average 

loose more with being rejected in terms of later math achievement, but for reading there are 

no significant gender differences. 

Most interesting is the pattern of differences between the track and better school effects. 

Altogether the regression results seem to confirm the picture suggested by the average 

treatment effects in Table 3. When effects are made comparable, being rejected from the 

mixed track still has much larger negative impact than being rejected within track or from the 

academic track. The higher track effects shrink only mildly as the controls are set to the 

average values within track; by about 0.02 standard deviations for being rejected from the 

mixed track, and even less for the academic track.  

In order to assess the differences in the estimated treatment effects of being rejected from 

a higher track or from a preferred class within tracks, pair wise comparisons of the 

coefficients of the track combination variables are tested (Appendix Table A7). The effect of 

being rejected from the mixed track is always statistically significant from any of the within 

track effects or the average of those or from being rejected from the academic track. At the 

same time, the negative impact of a less preferred class within the same track is not 

consistently statistically different for the three tracks. Being rejected from the academic track 

also implies similar disadvantage as a less preferred class within the same track (except 

compared to the within academic track effect for reading). 



29

The fact, that when the difference in peer mean and the relative student ability is 

controlled for, the difference between the vocational track effect and the other effects 

decreases somewhat confirms that the large negative average treatment effect estimated for 

the vocational track is indeed in part due to vocational classes being less close substitutes for 

the preferred choices than alternatives within the same track. However, the small change in 

the vocational track effect implies that this explains only a minor part of the story. Being 

rejected from the mixed and enrolled in the vocational track incurs a marked track specific

negative effect. 

Altogether, the results above indicate a significant negative effect of being rejected in 

general, and an additional negative vocational track effect. For education policy the next 

question is what makes better schools better? The patterns of the effect of the difference in 

peer means and the distance of the student from the preferred class are tempting to invoke a 

pure peer group effect explanation (on peer group effects see e.g. Hoxby, 2000; Hanushek et 

al, 2001; Lavy et al, 2009). Differences in teacher quality together with positive student-

teacher matching are another natural candidate (see e.g. Lankford et al, 2002; Clotfelter et al 

2005, 2006 and Varga, 2009 for Hungary). Unfortunately, the available data do not allow for 

distinguishing the mechanisms behind the effect of better schools and tracks.

A larger gap in peer mean producing a larger negative treatment effect is in accordance 

with peer composition affecting the performance of students. Also, the finding that the 

distance of the student from the peer mean does matter is in line with heterogeneous peer 

effects (Lavy et al, 2009). However, the estimated effects in the regressions above can not be 

regarded as direct evidence for peer effects, but reflects at best upper bounds for these. First, 

teacher quality is omitted from the estimates, though it can be correlated with peer quality as 

far as students and teachers are non-randomly matched. Positive student-teacher matching 

can be expected when teacher wages are not compensating for student composition and is 

often observed in the US, see e.g. Lankford et al, 2002; Clotfelter et al 2005, 2006. Varga 

(2009) provides similar evidence for Hungary, as well. If better students indeed attract better 

teachers, the peer mean may in part represent teacher quality. Second, it is possible that not 

the better peer group has a positive effect, but schools providing better education for any 

reason attract more students and can select the best ones. Again, the incidence of teacher 

quality is a natural candidate for explaining school quality. In this case the endogenously 

formed peer mean is simply an indicator for school quality, but not the cause of it. Overall not 

too much can be said about the mechanisms driving the track and better school effects. The 

presence of peer effects can not be ruled out, but the available data do not allow for 

identifying these.

However, peer effects and teacher-student matching can be assumed to be equally at 

work regarding educational tracks and better schools within tracks. Hence, the outstanding 
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vocational track effect should be triggered by other factors, specific for this track. Differences 

in curricula and the lower standards required to successfully finish the school are natural 

candidates.

B. THE IMPACT ON EQUALITY OF OPPORTUNITY

As argued above, track and better school effects are important for educational policy since 

both have an impact on equality of opportunity. However, the estimated track and better 

school effects are not enough to assess this impact, as equality of opportunity also depends on 

who does gain or is hurt by these effects. Tracking is often argued to hinder equality of 

opportunity, i.e. strengthening the effect of family background on student achievement. As 

shown above (Figure 2) poor students are sorted into the lower tracks disproportionately and 

these tracks do have a negative impact on achievement. But how large is the impact on 

equality of opportunity?

The estimated average treatment effects makes it possible to assess the impact of a 

marginal change in the shares of the tracks or better schools within tracks, under the 

assumption that only marginal students are affected and indirect effects on the other 

students are negligible. In order to explore the implications on equality of opportunity, I 

simulated the distribution of the gains of a marginal increase in enrollment in higher tracks 

and better schools. Five cases are analyzed separately: allowing more students into the higher 

tracks at the expense of the vocational track, expanding the academic track with decreasing 

enrollment in the mixed track, and increasing the supply of better schools within each of the 

three tracks. In each case 2 percent of the total student population is assigned to the 

treatment, chosen random among the rejected applicants. 

For drawing the 2 percent subsets two scenarios are considered. First, the affected 

students are chosen random from the rejected applicants. In a second scenario students are 

chosen with no respect to their actual applications, but with some restrictions with respect to 

prior achievement. Students assigned to a higher track are chosen from the top third of the 

prior score distribution of their actual track, in accordance with meritocratic selection among 

tracks. Students assigned to a better school within a track are chosen from the middle and 

bottom third of the prior achievement distribution of the track, assuming that there is less 

room for increasing the supply of better schools in the top third, as those students already 

attend the best schools of the track. 

Counterfactual improvement in test scores is predicted using the estimated average

treatment effects. Students assigned to a higher track or better school are assumed to 

experience a gain in grade 10 test scores equal to the average treatment effects on the treated 
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from the difference model (Table 3). Finally, the average test score gain is calculated for the 

deciles of students with respect to family socio-economic status.

Figure 3 depicts the results of these simple back-of-the-envelope calculations about the 

effect of admitting additional marginal students into their preferred classes on inequality of 

opportunity. The results reveal that decreasing the share of the vocational track has the 

strongest positive impact on equality of opportunity. Students from poor families would 

benefit most, while the rich remains unaffected. The magnitude of the gain from a marginal 

change is of course modest in absolute terms, when compared to the overall level of 

inequality (see Figure 1). Nevertheless, it is much larger than the impact of other changes in 

enrollment shares.
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Figure 3a

The estimated average gain in 10th grade test scores from a 2% expansion of higher tracks and better schools within tracks for 

deciles of family background, math
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Figure 3b

The estimated average gain in 10th grade test scores from a 2% expansion of higher tracks and better schools within tracks for 

deciles of family background, reading
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Admitting more students to the academic track has a more ambiguous and weak impact. 

Students with a middle class background gain most, and the poor benefit the least. The 

impact of expanding better schools within tracks is mixed. Increasing enrollment in better 

schools in the academic track impedes, while in the vocational track it improves equality of 

opportunity. In the mixed track there is no impact, since the gain is almost evenly distributed 

with respect to social status, except the poorest and richest who are less affected. Altogether, 

if enrollment in better schools were expanded within all the three tracks at the same, equality 

of opportunity would remain unaffected.

Finally, note that the two scenarios of selecting the students for the expanded enrollment 

provide almost identical results.

Overall, the simulated impact of marginal changes suggests, that tracking, and more 

specifically tracking at the low end is more closely related to inequality of opportunity than 

ability sorting within tracks. The reason for this is twofold. First, the estimated vocational 

track effect is larger than better school or academic track effects, and second, family 

background is much more different between the vocational and the mixed track than in the 

other cases. However, the improvement in equality of opportunity from a marginal change in 

enrollment shares is still small. This is not only due to the small change in the share of tracks, 

but also because within the vocational track students who applied to the mixed track (or 

those located in the top third of the prior achievement distribution in the second scenario)

tend to have a more favorable family background than those who settle for vocational 

education when making their application decisions.

Beside the effect of marginal changes in enrollment the more general question is ‘what 

would happen with no tracking at all?’. The large detrimental effect of the vocational track, 

together with a relative concentration of poor students in it, suggests that eliminating this 

track altogether could significantly improve equality of opportunity. Figure 4 compares the 

actual family background related component in test score growth between grade 8 and 10 to 

that simulated for no vocational track, assuming again that only vocational track students 

would be affected. If the gains in test scores are calculated solely from the estimated 

vocational track effect, improvement of equality of opportunity is non-negligible indeed 

(dashed line). However, the track effect would probably be replaced by within track ability 

sorting. When this is taken into account and the estimated gains are attenuated by within 

track better school effects (long dashed line), the improvement from de-tracking would be 

only about half of that derived from the vocational track effect solely.
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Figure 4

The estimated SES component of test score growth from grade 8 to 10 with the 

vocational track eliminated
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ROBUSTNESS AND SENSITIVITY ANALYSIS

A. ROBUSTNESS TO ALTERNATIVE EXPLANATIONS

A possible argument against the causal interpretation of the track and preferred class effects 

reported above could refer to the special effect of being rejected on student motivation. Being 

rejected can cause frustration and hence diminish student effort. This explanation is difficult 

to test directly. However, one would expect frustration to grow with the number of rejections: 

being admitted to the class ranked as a 4th or 6th choice is probably more frustrating than

getting a place in the 2nd one. This hypothesis can be tested by including dummy variables in 

the regression models for the treatment effect representing the preference rank given by the 

student to her actual class. If a frustration effect were at work, enrollment in higher ranked 

classes should aggravate the negative effect of being rejected, i.e. the coefficients of higher 

ranked classes should be negative and increasing in size. Results in Table A8 of the Appendix 

do not appear to support the frustration hypothesis, as ending up in a lower ranked class does 

not consistently increase the magnitude of the negative treatment effect.

When comparing track and better school effects, some omitted school characteristics can 

bias the results. It is possible, that student preferences depend on other factors than 

academic quality, as well, and these preferences may play a larger role in within track choices 

than track placement. Two candidates are the geographical distance from the school and the 

owner of the school. Some students may rank higher a weaker school that is closer than a 
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somewhat better one located farther away. Also, church or foundational schools may be 

preferred for non-academic reasons. However, it is less plausible that these factors would 

similarly affect track choice. In order to mitigate the bias due to non-academic elements in 

preferences, I repeat the regression estimates for the sample excluding applications when the 

preferred and actual class is located in distinct towns or the type of the owner (government, 

church, non-church private) is different. Then the estimation sample is further restricted to 

government-run schools, preferred and actual classes located in the same town. Results 

basically remain unchanged, suggesting that not these preferences make the within track 

effects smaller than the vocational track effect (Appendix Table A9).

B. SENSITIVITY TO MATCHING METHOD AND PARAMETERS

The sensitivity of the results is examined with respect to the matching method, the 

parameters of matching and the covariates used in the matching and for the bias correction. 

Table A10 of the Appendix summarizes the estimation results with alternative matching 

methods for achievement level with no parametric bias correction and achievement growth. 

Three alternative methods are used. First, nearest neighbor matching with replacement is 

used instead of radius matching. Second the set of rejected applications is restricted to one 

application per student (that with the highest rank), as opposed to the baseline model, where 

all rejected applications of each student are included. Third, the set of control students is 

restricted to those with a more similar application profile than in the baseline estimation. E.g. 

a treated student who applied for a class in a mixed school but enrolled in a vocational class is 

matched to control students who managed to enroll in the mixed track but also applied to a 

vocational class. The first and second alternatives produce virtually identical results to the 

baseline method. In the third case the treatment effects for students enrolled in the 

vocational track are somewhat smaller compared to the baseline, but the results are 

qualitatively similar.

Table A11 exhibits the results for matching by other covariates; first by prior test score of 

the subject (math or reading), then by average marks and the two prior test scores together. 

Matching by the prior score provides similar treatment effects, which tend to exceed the 

baseline estimates, as expected, due the bias related to measurement error in test scores. In 

the second case control students are selected to have similar marks, prior math test scores 

and prior reading test scores at the same time to the rejected applicant. A matched pair is 

constructed if the distance between students is below the radius for each of the three 

covariates. Since this approach implies more stringent criteria for matching, it provides a 

lower number of observations with the same radius value. Compared to the baseline 
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estimates the number of successful matches drops by about a factor of five, however, the 

estimated treatment effects remain similar in qualitative terms. The only exception is the 

effect of better schools within the vocational track for math, which falls to zero and 

insignificant.

Furthermore, the results appear to be not sensitive to the values of the matching 

parameters (the radius between 0.1 and 0.4) and the set of covariates used for the parametric 

bias correction. Figure A3-A7 of the Appendix depicts the estimated treatment effects, 

standard errors and the number of observations for different values of the matching 

parameters. The radius is allowed to take on values between 0.10 and 0.40 standard 

deviations, while the difference of test scores is judged both at the 5 and 10 percent 

significance levels. Overall, the results seem to be robust with respect to these parameters. 

Changing the radius causes a difference in the estimated treatment effect of at most 0.02 

points compared to the baseline. The number of treated and control observations increases in 

the radius, while the standard error decreases. The significance level makes not much 

difference either.

Table A12 of the Appendix shows the effect of an alternative specification for the bias 

correction. In the baseline estimates only prior achievement is used in the bias correction 

regression. In the alternative specification family background variables; i.e. dummies for 

mother’s and father’s educational attainment and the number of books at home are also 

included. This modification does not have any considerable effect on the estimated treatment 

effects.

Altogether the results do not appear to be sensitive to the matching method, the set of 

covariates and the parameter values.

CONCLUSIONS

In this paper I estimated the causal impact of educational tracks and preferred schools of 

students within tracks on student achievement in upper-secondary education in Hungary. 

Identification relies on comparing similar students who applied to a given school but 

happened to be finally rejected with otherwise similar students who were enrolled in the 

same school. Average treatment effects on the treated were estimated using a matching 

method.

The results reveal that the higher tracks have a positive impact on student achievement. 

The negative impact of the vocational track on basic skills is considerable. It amounts to 0.21-

0.28 standard deviation of test scores. The benefit provided by the academic over the mixed 

track is smaller, about half of the vocational track effect, but still substantial. Better schools 
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within the tracks, i.e. those preferred by the applicants also seem to improve student 

achievement. The magnitude is similar to the academic track effect.

Raw comparison of the estimated effects can not reveal whether track effects are 

particular to a tracking regime or the tracks simply works as labels for schools of especially 

good or poor quality. In order to distinguish pure track effects I compared the estimated 

higher track and better school effects while controlling for the difference between the 

preferred and actual school of the rejected applicant in terms of peer quality and the distance 

of the rejected applicant from the peers of the preferred school. Although the track effects 

slightly diminish when these factors are taken into account, altogether the regression results 

are in line with the conclusions drawn from the average treatment effects. The outstanding 

negative effect of the vocational track persists.

Comparing track and better school effects provides a mixed picture. On the one hand, the 

positive impact of the academic track does not differ consistently from better school effects 

within tracks. This suggest that if the academic and mixed tracks were replaced by a single 

general track, the average achievement level and equality of opportunity would probably do 

not change, as school choice and the selection of students would reproduce the present 

stratified school system with similar outcomes. At the same time, the vocational track does 

have a specific negative effect, additional to that of less preferred schools in general. This 

implies that in some cases tracking may have more severe impact than school choice, 

especially if one of the tracks provides much more inferior opportunities and prospects for its 

students than the others. However, tracking does not necessarily matter when school choice 

is present, as results for the academic track suggests.

The available data do not allow for distinguishing among the mechanisms behind the  

track and better schools effects. Peer effects and better teachers, due to positive student-

teacher matching are likely explanations for the advantage of better schools in general. These 

may be equally at work regarding educational tracks and better schools. Hence, the 

outstanding vocational track effect should be triggered by other factors, specific for this track. 

Differences in curricula and the lower standards required to successfully finish the school are 

natural candidates. These factors are not only track-specific, but differ from peer effects and 

teacher quality in another way, as well. If the share of good and bad teachers is given and 

peer effects are not strongly asymmetric, then admitting more students into the preferred 

tracks or schools may result in some redistribution, but will not raise average achievement. 

At the same time, eliminating or mitigating disadvantages of the vocational track by changing 

the curricula and the standards set for students or reducing its share in upper-secondary 

education may improve equality of opportunity and average achievement at the same time. 

To assess implications for equality of opportunity I calculated the distribution of the gains 

of a marginal increase in enrollment in higher tracks and better schools within tracks over 
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groups of students with different family background. The simulated distribution of gains 

shows that equality of opportunity can be improved mostly by shrinking the vocational track. 

Considering marginal changes in enrollment, the academic track and ability sorting within 

tracks harm equality much less, if at all.

The large negative effect of the vocational track, together with a relative concentration of 

poor students in it, suggests that eliminating this track altogether could indeed improve 

equality of opportunity to some extent. However, about half of the track effect eradicated in 

this case can be expected to be replaced by within track ability sorting. This would attenuate 

the possible gains of de-tracking.

An important question for policy is whether the better school or track effects are specific 

for a particular group of students, being on the margin or can apply for others, as well. In 

other words, can the benefits of higher tracks or better schools be easily extended to other 

students? First note here that rejected students are not restricted to be a special group in 

terms of prior achievement located close to a sharp cut-off, but represent the greater part of 

the achievement distribution. At the same time, applicants far below the peer mean of a class 

appear to benefit little when admitted to a better school, suggesting that the gains of 

expanding higher tracks might be decreasing.  

However, regarding their unobserved characteristics like motivation and self-confidence, 

the group of rejected applicants can be assumed to be quite different from those students who 

settled with less ambitious options. Hence the treatment effects for the treated group can not 

be simply assumed to hold for everyone.  On the other hand, non-cognitive skills are more 

prone to be improved in schools compared to cognitive skills, as evidence on remediation 

programs targeting disadvantaged adolescents suggests (see Brunello – Schlotter, 2011 and 

Cunha et al., 2006 for a review). This implies that there is some room for education policy to 

make even less motivated, ambitious or confident students benefit from higher tracks and 

better schools. 

It is important to note though, that the estimated effects are probably can not be 

replicated indefinitely by extending enrollment in higher tracks or the schools preferred by 

most students. Admitting more and more weak students would affect directly or indirectly 

the school quality faced by every student, via peer group effects and the access to the limited 

set of good teachers, and would trigger complex behavioral responses.

Finally note that the results above do not necessarily holds for every tracking and school 

choice regime, of course. A crucial feature of upper-secondary education in Hungary is the 

strong merit-based selection of students into schools. This is not an indispensible component 

of school choice, and even tracking regimes may differ in this respect (see e.g. Checchi-

Flabbi, 2007 on differences in selection into tracks between Italy and Germany).
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APPENDIX

A1. DESCRIPTIVE STATISTICS FOR THE SAMPLE

Table A1

Summary statistics of student achievement by educational track

Grade 8 Grade 10
math reading marks score math reading

Academic track mean 0.530 0.626 0.510 0.407 0.576

s.d. 0.91 0.83 0.55 0.85 0.74

N 12365 12430 12431 12424 12427

Mixed track mean -0.030 -0.018 -0.034 -0.098 -0.029

s.d. 0.81 0.79 0.53 0.78 0.76

N 15149 15320 15321 15317 15316

Vocational track mean -0.858 -0.870 -0.748 -0.966 -1.031

s.d. 0.67 0.71 0.42 0.74 0.75

N 5924 6276 6278 6273 6274

Total mean 0.031 0.060 0.033 -0.074 0.007

s.d. 0.96 0.95 0.68 0.93 0.94

N 33438 34026 34030 34014 34017

Table A2

Within and between track, school and class variation 

of grade 8 student achievement

grade 8 grade 9
school class track School x track class

math

share of between variation 0.204 0.325 0.257 0.464 0.544
share of within variation 0.795 0.675 0.743 0.536 0.456
N of groups 1460 2910 3 1478 4166
N of students 33478 33478 33478 33478 33478

reading
share of between variation 0.181 0.286 0.311 0.472 0.536
share of within variation 0.819 0.714 0.689 0.528 0.464

N of groups 1465 2942 3 1486 4194
N of students 34080 34080 34080 34080 34080
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Figure A1

The distribution of test scores in the student population and the sample
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A2. DESCRIPTIVE STATISTICS: MATCHED REJECTED APPLICANTS

Table A3

The number and share of matched observations in the treatment group

rejected applications rejected students

track of preferred - actual class N N matched r matched N N matched r matched

mixed – vocational 2475 1255 0,51 1482 890 0,60
academic – mixed 2970 1245 0,42 1693 887 0,52

academic – academic 5408 2602 0,48 2895 1782 0,62
mixed - mixed 4855 2628 0,54 3019 1930 0,64
vocational – vocational 1556 988 0,63 1103 779 0,71
total 17264 8718 0,50 9453 5971 0,63

Table A4

Rejected applicants in the prior test score distribution of the preferred class

math reading

track of preferred - actual class low medium top low medium top

mixed – vocational 0.538 0.305 0.158 0.447 0.348 0.204

academic – mixed 0.528 0.296 0.176 0.521 0.296 0.182
academic – academic 0.494 0.325 0.181 0.477 0.327 0.196

mixed - mixed 0.552 0.308 0.140 0.531 0.321 0.148
vocational – vocational 0.426 0.359 0.215 0.421 0.360 0.219

Table A5

Average prior achievement and family background characteristics of rejected 

applicants and control students

Prior student achievement

math reading marks
treated control treated control treated control

track of preferred - actual class

mixed – vocational -0.56 -0.48 -0.47 -0.40 -0.47 -0.42
academic – mixed 0.20 0.30 0.35 0.44 0.31 0.35

academic – academic 0.46 0.57 0.64 0.71 0.55 0.58
mixed - mixed -0.15 -0.08 -0.11 -0.06 -0.13 -0.09

vocational – vocational -0.95 -0.91 -0.92 -0.87 -0.79 -0.77

Family background

books at home
mother’s years of
educ

father’s years of
educ

treated control treated control treated control

track of preferred - actual class

mixed – vocational 3.19 3.28 10.44 10.79 10.32 10.64
academic – mixed 4.11 4.32 12.12 12.57 11.62 12.07

academic – academic 4.53 4.64 12.91 13.10 12.47 12.65
mixed - mixed 3.61 3.68 11.25 11.47 10.93 11.15

vocational – vocational 2.61 2.74 9.70 9.91 9.79 9.92
Average values for rejected applications. Books at home: number of books at home, measured in 7 categories 
(from 1 to 7).
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Figure A2

The distribution of test scores in grade 8 for the sample population of students 

and for rejected applicants by educational track
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A3. REGRESSION ESTIMATES OF THE EFFECT OF BEING REJECTED

Table A7

Testing the differences in the effect of being rejected

math reading

(1) (2) (3) (1) (2) (3)

track effects vs within track effects

mix/voc - within any -11.208** -9.053*** -9.455*** -13.312** -11.220** -11.125**
aca/mix - within any -1.586 -0.281 -0.875 -4.428* -2.837 -2.780

pairwise comparison of coefficients

mix/voc - aca/mix -9.622*** -8.772*** -8.581*** -8.884*** -8.383*** -8.346***
mix/voc - aca/aca -9.826*** -8.354*** -9.130*** -16.753** -15.261** -14.837**

mix/voc - mix/mix -8.670*** -6.379*** -6.485*** -12.073** -9.787*** -9.493***

mix/voc - voc/voc -15.129** -12.425** -12.751** -11.109** -8.611** -9.046***
aca/mix - aca/aca -0.204 0.418 -0.549 -7.869*** -6.878*** -6.492***

aca/mix - mix/mix 0.952 2.393 2.096 -3.189 -1.404 -1.147
aca/mix - voc/voc -5.507* -3.653 -4.170 -2.225 -0.228 -0.701

aca/aca - mix/mix 1.156 1.975 2.645 4.680** 5.474** 5.344**
aca/aca - voc/voc -5.302* -4.071 -3.621 5.644** 6.650** 5.791*

mix/mix - voc/voc -6.458** -6.046** -6.266** 0.964 1.176 0.447
Differences in the combination of estimated coefficients of Table 4. 
F-tests: *** p<0.01, ** p<0.05, * p<0.1

Table A8

Regression estimates of the effect of the rank of the actual class in rejected 

student’s preference list on the effect of being rejected from the preferred class

math reading

(1) (2) (3) (1) (2) (3)
the rank of the actual class in students’
preference list (ref.: 2nd)

3rd 0.000 0.004 0.002 0.009 0.013 0.013
(0.018) (0.018) (0.018) (0.019) (0.019) (0.019)

4th -0.017 -0.010 -0.016 0.001 -0.001 -0.001
(0.019) (0.019) (0.019) (0.021) (0.021) (0.021)

5th 0.019 0.025 0.020 0.069*** 0.074*** 0.074***
(0.026) (0.025) (0.026) (0.027) (0.027) (0.027)

6th 0.022 0.027 0.020 -0.008 0.018 0.019
(0.028) (0.027) (0.028) (0.032) (0.032) (0.031)

7th or higher 0.075** 0.078*** 0.071** 0.014 0.013 0.013

(0.030) (0.030) (0.030) (0.032) (0.032) (0.032)
Standard errors clustered for preferred classes of rejected applicants are in parentheses. *** p<0.01, ** p<0.05, * 
p<0.1
Control variables as in Table 4. 
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Table A6

Regression estimates for the effect of being rejected from the preferred class, by track of preferred and actual class

track of preferred - actual class: mixed vocational academic mixed academic academic mixed mixed vocational vocational
(2) (3) (2) (3) (2) (3) (2) (3) (2) (3)

math

difference in peer mean -0.1347** -0.1595** -0.1477*** -0.1342*** -0.1464*** -0.1382*** -0.1523*** -0.1569*** 0.0354 -0.0073
(0.0682) (0.0674) (0.0423) (0.0427) (0.0309) (0.0308) (0.0385) (0.0372) (0.0749) (0.0756)

distance from peer mean in preferred class 0.1670*** 0.1628*** 0.2539*** 0.2537*** 0.2140*** 0.2125*** 0.1623*** 0.1716*** 0.1924*** 0.1847***
(0.0421) (0.0428) (0.0367) (0.0359) (0.0326) (0.0328) (0.0271) (0.0268) (0.0595) (0.0582)

distance from preferred class squared 0.0003 0.0003 -0.0006 -0.0006* -0.0006** -0.0006** -0.0004 -0.0004 0.0010 0.0009
(0.0004) (0.0004) (0.0004) (0.0004) (0.0003) (0.0003) (0.0003) (0.0003) (0.0007) (0.0006)

gender: female -4.0407 -4.0026 -7.0475 -6.3577 -5.0253 -5.1130 -2.4936 -1.8843 -4.0838 -3.6892
(4.0758) (4.0385) (4.2883) (4.2573) (3.1849) (3.1948) (2.9360) (2.9131) (5.0707) (5.1309)

micro-region fixed-effects no yes no yes no yes no yes no yes
constant -18.1266*** -17.3952*** -9.1580*** -9.8896*** -9.5215*** -9.2105*** -11.7153*** -11.7631*** -1.5985 -2.6267

(2.5098) (2.4919) (1.8995) (1.8113) (1.4970) (1.4824) (1.4559) (1.3909) (2.5492) (2.5535)
N 1,180 1,180 1,217 1,217 2,532 2,532 2,504 2,504 886 886

R2 0.0256 0.0252 0.0424 0.0416 0.0265 0.0259 0.0212 0.0234 0.0356 0.0318

reading

difference in peer mean -0.2857*** -0.3344*** -0.0970* -0.0637 -0.0901** -0.1022*** -0.1231*** -0.1182*** -0.2292*** -0.2434***
(0.0795) (0.0738) (0.0575) (0.0583) (0.0370) (0.0365) (0.0439) (0.0445) (0.0760) (0.0729)

distance from peer mean in preferred class 0.1893*** 0.1957*** 0.2041*** 0.1943*** 0.2355*** 0.2385*** 0.1793*** 0.1816*** 0.1186*** 0.1310***

(0.0445) (0.0436) (0.0368) (0.0367) (0.0258) (0.0260) (0.0268) (0.0271) (0.0395) (0.0393)
distance from preferred class squared -0.0002 -0.0004 -0.0005 -0.0005 -0.0002 -0.0002 -0.0002 -0.0001 0.0003 0.0002

(0.0005) (0.0005) (0.0005) (0.0005) (0.0003) (0.0003) (0.0003) (0.0003) (0.0004) (0.0004)
gender: female -2.8177 -1.8402 -3.9472 -1.4673 -0.2823 0.5020 1.5201 3.2241 2.9067 2.2090

(4.7267) (4.6545) (4.0291) (4.0109) (3.3219) (3.3226) (3.0988) (3.1159) (5.3277) (5.5603)
micro-region fixed-effects no yes no yes no yes no yes no yes

constant -17.1855*** -14.9851*** -14.1737*** -14.9449*** -6.9227*** -7.6286*** -12.1693*** -12.2135*** -13.9510*** -13.0151***
(3.4142) (3.1206) (2.3359) (2.2525) (1.5810) (1.5329) (1.5765) (1.5729) (2.3126) (2.3407)

N 1,218 1,218 1,218 1,218 2,567 2,567 2,584 2,584 955 955
R2 0.0256 0.0295 0.0271 0.0237 0.0376 0.0379 0.0230 0.0241 0.0172 0.0192

Standard errors clustered for preferred classes are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A9

Regression estimates for the effect of being rejected from the preferred class, sample restricted to preferred and actual 

classes in the same town and with the same type of owner

math math reading reading
public and private schools public schools only public and private schools public schools only

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

track of preferred -
actual class 

mixed – vocational -0.199*** -0.184*** -0.186*** -0.199*** -0.184*** -0.190*** -0.235*** -0.213*** -0.211*** -0.217*** -0.194*** -0.191***
(0.022) (0.023) (0.023) (0.023) (0.023) (0.024) (0.025) (0.026) (0.027) (0.026) (0.027) (0.027)

academic – mixed -0.124*** -0.114*** -0.117*** -0.127*** -0.117*** -0.117*** -0.151*** -0.135*** -0.133*** -0.143*** -0.127*** -0.123***
(0.020) (0.020) (0.020) (0.020) (0.020) (0.021) (0.023) (0.024) (0.025) (0.023) (0.024) (0.025)

academic – academic -0.096*** -0.091*** -0.083*** -0.091*** -0.087*** -0.084*** -0.063*** -0.059*** -0.058*** -0.062*** -0.058*** -0.059***
(0.018) (0.018) (0.019) (0.019) (0.018) (0.020) (0.018) (0.018) (0.019) (0.018) (0.019) (0.020)

mixed / mixed -0.102*** -0.105*** -0.108*** -0.102*** -0.104*** -0.105*** -0.114*** -0.115*** -0.117*** -0.112*** -0.113*** -0.114***
(0.016) (0.016) (0.016) (0.015) (0.015) (0.016) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

vocational – vocational -0.017 -0.026 -0.033 -0.023 -0.030 -0.032 -0.111*** -0.120*** -0.114*** -0.106*** -0.116*** -0.110***
(0.032) (0.032) (0.033) (0.031) (0.032) (0.033) (0.034) (0.034) (0.035) (0.034) (0.035) (0.036)

N (rejected 
applications) 5,908 5,908 5,908 5,724 5,724 5,724 6,080 6,080 6,080 5,898 5,898 5,898
R2 0.039 0.064 0.065 0.039 0.066 0.067 0.042 0.070 0.068 0.038 0.065 0.063
Standard errors clustered for preferred classes are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
Control variables as in Table 4.
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A4. SENSITIVITY ANALYSIS

Table A10

Estimated effect of the preferred track and the preferred school on student achievement: sensitivity for the matching 

method

math, level  (no bias corr.) math, diff reading, level  (no bias corr.) reading, diff

track of preferred - actual class ATT se ATT se N treated N control ATT se ATT se N treated N control

baseline
mixed – vocational -0.288 0.020 -0.210 0.022 1203 1623 -0.337 0.022 -0.266 0.025 1255 1706

academic – mixed -0.215 0.019 -0.112 0.021 1234 1534 -0.227 0.020 -0.139 0.023 1245 1557
within track -0.178 0.009 -0.097 0.011 6050 7047 -0.160 0.010 -0.101 0.011 6216 7270

academic – academic -0.218 0.015 -0.113 0.017 2161 2447 -0.157 0.016 -0.078 0.018 2182 2465
mixed - mixed -0.172 0.014 -0.105 0.016 2568 3275 -0.169 0.015 -0.120 0.017 2627 3344

vocational – vocational -0.096 0.024 -0.051* 0.028 911 1207 -0.176 0.027 -0.126 0.029 987 1344

nearest neighbour
mixed – vocational -0.286 0.022 -0.206 0.024 1198 935 -0.341 0.024 -0.271 0.027 1249 972

academic – mixed -0.211 0.021 -0.113 0.023 1225 954 -0.227 0.021 -0.131 0.025 1236 964
within track -0.169 0.010 -0.090 0.011 5974 4171 -0.156 0.011 -0.103 0.012 6140 4275

academic – academic -0.209 0.016 -0.104 0.018 2125 1525 -0.159 0.017 -0.083 0.019 2146 1538
mixed - mixed -0.160 0.015 -0.100 0.017 2537 1836 -0.166 0.016 -0.122 0.018 2596 1872

vocational – vocational -0.107 0.027 -0.049+ 0.031 907 669 -0.171 0.029 -0.133 0.032 983 720

treated: one appl. per student only
mixed – vocational -0.296 0.027 -0.216 0.030 643 1008 -0.319 0.029 -0.259 0.033 665 1064
academic – mixed -0.204 0.026 -0.118 0.027 610 902 -0.242 0.027 -0.168 0.031 615 916

within track -0.166 0.011 -0.092 0.013 3513 5126 -0.154 0.012 -0.098 0.013 3620 5304
academic – academic -0.210 0.019 -0.111 0.020 1226 1729 -0.143 0.020 -0.062 0.022 1240 1741

mixed - mixed -0.165 0.016 -0.106 0.019 1507 2373 -0.165 0.018 -0.129 0.020 1543 2437
vocational – vocational -0.088 0.028 -0.038+ 0.033 583 919 -0.184 0.031 -0.122 0.034 634 1023

control: lower track applicants only
mixed – vocational -0.225 0.029 -0.171 0.035 619 586 -0.250 0.032 -0.212 0.038 652 619
academic – mixed -0.184 0.024 -0.097 0.027 871 866 -0.218 0.024 -0.135 0.027 881 882

*: significant at 10%, +: not statistically significant, all other treatment effects significant at the 1% level 
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Table A11

Estimated effect of the preferred track and the preferred school on student achievement: sensitivity for the matching 

covariates

math, level (no bias corr.) math, diff reading, level (no bias corr.) reading, diff
track of preferred - actual class ATT se ATT se N treated N control ATT se ATT se N treated N control

baseline

mixed – vocational -0.288 0.020 -0.210 0.022 1203 1623 -0.337 0.022 -0.266 0.025 1255 1706
academic – mixed -0.215 0.019 -0.112 0.021 1234 1534 -0.227 0.020 -0.139 0.023 1245 1557

within track -0.178 0.009 -0.097 0.011 6050 7047 -0.160 0.010 -0.101 0.011 6216 7270
academic – academic -0.218 0.015 -0.113 0.017 2161 2447 -0.157 0.016 -0.078 0.018 2182 2465

mixed - mixed -0.172 0.014 -0.105 0.016 2568 3275 -0.169 0.015 -0.120 0.017 2627 3344
vocational – vocational -0.096 0.024 -0.051* 0.028 911 1207 -0.176 0.027 -0.126 0.029 987 1344

test score

mixed – vocational -0.276 0.014 -0.257 0.018 1688 2744 -0.356 .016 -0.340 0.020 1738 2749

academic – mixed -0.196 0.014 -0.178 0.017 1693 2183 -0.227 .015 -0.209 0.018 1786 2299

within track -0.154 0.007 -0.140 0.009 7552 9233 -0.192 .008 -0.178 0.009 7872 9458

academic – academic -0.172 0.012 -0.160 0.015 2618 3029 -0.191 .013 -0.177 0.015 2804 3161

mixed - mixed -0.152 0.010 -0.136 0.013 3343 4643 -0.200 .011 -0.186 0.014 3399 4649

vocational – vocational -0.134 0.020 -0.124 0.025 1062 1489 -0.210 .022 -0.195 0.027 1100 1492

marks score, math score, reading score
mixed – vocational -0.253 0.034 -0.243 0.045 267 290 -0.258 0.039 -0.248 0.050 300 327

academic – mixed -0.107 0.035 -0.096 0.049 209 214 -0.163 0.038 -0.165 0.046 215 223
within track -0.110 0.015 -0.107 0.020 1336 1378 -0.130 0.016 -0.127 0.020 1441 1499

academic – academic -0.155 0.027 -0.155 0.034 404 411 -0.092 0.027 -0.094 0.034 412 421
mixed - mixed -0.123 0.022 -0.117 0.029 616 657 -0.155 0.024 -0.156 0.029 652 700

vocational – vocational -0.009+ 0.039 -0.003+ 0.053 219 239 -0.168 0.042 -0.145 0.047 276 305
*: significant at 10%, +: not statistically significant, all other treatment effects significant at the 1% level 
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Table A12

Sensitivity for the specification of bias correction

math reading

track of preferred - actual class ATT se
N 
treated

N 
control ATT se

N 
treated

N 
control

baseline:
bias correction based on prior 
achievement only 

mixed – vocational -0.262 0.017 1203 1623 -0.285 0.019 1255 1706
academic – mixed -0.158 0.016 1234 1534 -0.171 0.017 1245 1557

within track -0.148 0.008 6050 7047 -0.123 0.009 6216 7270
academic – academic -0.166 0.013 2161 2447 -0.111 0.014 2182 2465

mixed - mixed -0.149 0.012 2568 3275 -0.138 0.013 2627 3344
vocational – vocational -0.115 0.022 911 1207 -0.139 0.024 987 1344

bias correction based on prior 
achievement + family 
background

mixed – vocational -0.264 0.018 1203 1623 -0.263 0.019 1255 1706
academic – mixed -0.156 0.017 1234 1534 -0.169 0.017 1245 1557

within track -0.151 0.008 6050 7047 -0.119 0.009 6216 7270
academic – academic -0.173 0.014 2161 2447 -0.115 0.014 2182 2465

mixed - mixed -0.146 0.012 2568 3275 -0.134 0.013 2627 3344
vocational – vocational -0.113 0.023 911 1207 -0.115 0.024 987 1344
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Figure A3

Estimated treatment effects, standard errors and number of observations with 

different matching parameters, preferred class: mixed, actual class: vocational
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▲ math, p=0.05,     ∆ math, p=0.1,     ● reading, p=0.05,     o reading, p=0.1
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Figure A4

Estimated treatment effects, standard errors and number of observations with 

different matching parameters, preferred class: academic, actual class: mixed
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▲ math, p=0.05,     ∆ math, p=0.1,     ● reading, p=0.05,     o reading, p=0.1
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Figure A5

Estimated treatment effects, standard errors and number of observations with 

different matching parameters, preferred class: academic, actual class: academic
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▲ math, p=0.05,     ∆ math, p=0.1,     ● reading, p=0.05,     o reading, p=0.1
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Figure A6

Estimated treatment effects, standard errors and number of observations with 

different matching parameters, preferred class: mixed, actual class: mixed
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▲ math, p=0.05,     ∆ math, p=0.1,     ● reading, p=0.05,     o reading, p=0.1
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Figure A7

Estimated treatment effects, standard errors and number of observations with 

different matching parameters, preferred class: vocational, actual class: vocational
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▲ math, p=0.05,     ∆ math, p=0.1,     ● reading, p=0.05,     o reading, p=0.1


