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Who Earns Their Keep? An Estimation of the 

Productivity-Wage Gap in Hungary 1986-2005 

 

Anna Lovász – Mariann Rigó 

Abstract 

In this paper we seek to provide new empirical evidence on the relative productivities and 

wages of various worker groups (by gender, age, and education), based on longitudinal 

matched employer-employee data from Hungary covering 1986-2005. We estimate the 

productivity and wage gaps from firm-level production functions and wage equations, using 

firm-level data on productive inputs and output, wage costs, and the demographic 

composition of the work force obtained from the linked worker data. This methodology 

allows us to assess whether productive differences can account for the wage gaps between 

worker groups, as well as the evolution of these gaps following the transition to a free market. 

We take firm fixed effects into account to assess the role of selection at the firm level, and 

estimate the production function via the method of Levinson and Petrin to account for 

endogeneity of input choice. The results show that while there may be significant differences 

in productivities and wages between groups in the OLS specification, these mostly become 

insignificant within firms. We find that much of the fall in the value of skills obtained prior to 

the transition is due to selection of workers at the firm level. 

 

 

JEL: J24, J31, J71 

 
 
Keywords: Relative wage, relative productivity, quality of labor, production function, 

earnings equation 
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Különböző dolgozói csoportok relatív bérének és 

termelékenységének becslése cégszintű adatok  

alapján 1986 és 2005 között 

Lovász Anna – Rigó Mariann 

 

Összefoglaló 

A kutatás célja különböző dolgozói csoportok (nem, kor, és iskolázottság alapján) relatív 

bérének és termelékenységének becslése és összehasonlítása a magyar vállalati szféra hosszú 

idősoros összekötött munkáltatói-dolgozói adatbázisa (Bértarifa) alapján. A termelékenységi 

és bérkülönbségeket cégszintű termelési függvények és béregyenletek alapján becsüljük, az 

adatbázisban meglévő termelési inputokra és bevételre vonatkozó adatok, a bérköltség, és a 

dolgozói adatokból becsült cégszintű dolgozói összetétel alapján. Ezzel a módszerrel meg 

tudjuk vizsgálni, hogy a különböző csoportok közötti bérkülönbségek mely része tudható be 

nem megfigyelhető csoportszintű termelékenység-beli különbségeknek, valamint ezen 

különbségek alakulását a rendszerváltás óta. A cégszintű szelekció hatását is figyelembe 

vesszük cég fixhatásos becslések révén, és a termelési függvényben az inputok lehetséges 

endogeneitása által okozott hiba csökkentésére a Levisohn és Petrin módszert alkalmazzuk. 

Az eredmények a cégszintű szelekció fontosságára utalnak: a cégen belüli becsléseknél 

lényegesen csökkennek a csoportok közötti különbségek, és a rendszerváltás előtt szerzett 

humán tőke értékének csökkenése is nagyrészt a cégszintű szelekciónak tudható be. 

 

Tárgyszavak: relatív bér, relatív termelékenység, munkaerő minőség, termelési függvény, 

béregyenlet 

 

 

JEL: J24, J31, J71 
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I. INTRODUCTION 

 

Wage differentials between various groups of workers are commonly estimated using 

Mincerian earning equations, in which the control variables are typical observable worker 

characteristics such as education, experience, marital and family status, race, and gender. In 

this context, a significant female dummy coefficient is often interpreted as evidence of wage 

discrimination, while the coefficients corresponding to various levels of schooling are 

assumed to represent the returns to education. However, these interpretations are only valid 

if all productivity-related differences among different individuals are controlled for, or if the 

observable control variables are not correlated with unobservable worker characteristics.1 For 

example, unobserved systematic differences in productivity between men and women could 

lead to an overstatement of gender wage discrimination based on the female coefficient, as 

pointed out by Becker’s (1985) theory of effort allocation. If women with equal observable 

characteristics supply a lower effort on the job than men – due to different responsibilities 

outside the job, attitudes towards careers, etc. – then the estimated coefficient of the female 

dummy will overstate the level of wage discrimination, since the observable variables do not 

fully capture productive differences between men and women.2  

In this paper, we seek to provide new empirical evidence on the returns to worker 

characteristics, by separating the productivity-related and other components of the wage gap. 

We do this by using a methodology that controls for the productive differences between 

various employee types based on relative productivity estimates that we estimate 

independently of wages. In this way we are able to assess whether worker groups – as defined 

by gender, age, and education level – are being compensated according to their productivity, 

as in the case of no wage discrimination. We use a large matched employer-employee dataset 

from Hungary covering the years 1986 to 2005, which is well suited to the analysis due to its 

sample size, detailed firm and worker variables, and the fact that we are able to follow firms 

longitudinally. Additionally, the period covered by the data includes the transition to a free 

market, providing new evidence on transition-related labor market phenomena such as skill 

obsolescence, and whether market forces in the form of increased competitive pressures led 

to more efficient wage-setting behavior of firms. 

                                                 
1 Omitted firm information from the earning regression may also bias estimates if workers sort into firms non-randomly. 
However, with the increasing availability of matched employer-employee datasets, firm-specific controls or firm fixed effects 
are usually included among the explanatory variables. Data on worker-level productivity, on the other hand, is still rarely 
available. 
2 Many other papers study why unobserved systematic productive differences may exist. For example, Bowlus (1997) 
examines the role of differences in job matching quality, while Ichino and Moretti (2006) study biological productive 
differences. Another source of bias may be measurement error in the observable worker variables, for example, if potential 
experience is used to proxy for actual years of labor market experience. Since women are usually absent from the labor market 
when they have children, this measure may overstate their actual work experience and productivity. 
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The ideal method for assessing the components of wage gaps between groups would be 

the estimation of earnings equations including individual-level data on each worker’s 

productivity. In such a specification, a significant coefficient on any worker category dummy 

(such as the female or university dummy) would suggest a deviation from competitive wages 

that is not explained by productivity of the given group (such as negative or positive wage 

discrimination). However, datasets with direct measures of individual productivity are rarely 

available, limited in size, and not representative of the economy as a whole. Some studies that 

use direct measures of individual productivity include Foster and Rosenzweig (1993), who 

use data on piece-rate wages to measure productivity in time-rate work, and some other 

studies based on performance ratings of workers (Korenman and Neumark 1991, Holzer 

1990). Another strand of the literature focuses on finding a suitable measure of worker 

ability, the control variable most often considered to be correlated with observable worker 

characteristics such as gender and education, but not observed by the researcher. Various 

proxies are used to account for the missing information from the earning regression: some 

studies (e.g. Griliches and Mason, 1972; Griliches, 1977; Neal and Johnson, 1996) use IQ or 

AFQT test scores to apply a productivity-based ability control instead of the input-based 

education variable. However, these studies refer only to a small subsample of individuals, and 

do not attempt to capture other unobserved productive differences besides ability.  

The availability of matched employer-employee datasets and panel data on workers has 

allowed some new methods to emerge. Abowd, Kramarz, and Margolis (1999) developed a 

measure of human capital that incorporates individual observable (experience, education, 

sex, race) and unobservable (innate ability, educational quality, social capital, effort, etc.) 

productivity components. They do this by following both individuals and firms over time and 

identifying unobservable worker and firm fixed effects. Their measure of human capital is 

used subsequently by numerous studies, e.g. Abowd, Lengerman and McKinney, 2003; 

Haskel, Hawkes and Pereira, 2005; or, Iranzo, Schivardi, Tosetti, 2006. Unfortunately, the 

method applied by Abowd, Kramarz, and Margolis (1999) requires a database that is a panel 

in both workers and firms, and such databases are still relatively rare.  

In this paper, we use a matched employer-employee dataset in a different way: we 

estimate an independent measure of the relative productivities of different worker groups 

based on firm-level data on production output and inputs, and the demographic composition 

of plants’ labor forces. Estimation of a production function in which the labor term is 

augmented with the worker composition of the firm provides us with a measure of the 

relative productivity of each worker group that is independent of wages. This measure 
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incorporates all productivity-related differences between the various demographic groups; 

hence, both observed and unobserved productivity components are accounted for.3 

There are two possible ways in the above production function – wage equation framework 

to test whether wages deviate from productivities significantly. First, as Griliches (1960) 

notes and Hellerstein and Neumark (2004) explain, assuming that labor markets operate in a 

competitive way, the traditional labor input variable can be transferred into efficiency units 

by using wages as weights for the corresponding worker group. Then, a test of the equality of 

the coefficients on the labor and on the quality index term serves as an indirect test of the 

competitive market hypothesis4. However, imposing the competitive market assumption in 

advance will likely yield false test results, as any measurement error of the labor quality index 

will bias the coefficients of the other variables in an unpredictable way.5 For this reason, we 

use an alternative method here, in which we obtain separate estimates of the relative 

productivities and relative wages without a priori imposing the competitive market 

hypothesis. This has the added benefit of allowing us to examine directly the estimated 

relative productivities and wages of the worker groups, which we feel are of interest in 

themselves. 

This approach pioneered by Hellerstein and Neumark (1999), and Hellerstein, Neumark 

and Troske (1999) has been used by numerous other studies on data from various countries.6 

To test whether different worker groups are paid according to their productivity, we compare 

the estimated productivity differential to each group’s wage differential obtained from an 

earning regression. A discrepancy between wage and productivity gaps may correspond to 

various phenomena, e.g. discrimination, efficiency wages, or the existence of compensating 

wage differentials. While testing the equality of wages and productivity is not necessarily a 

test for perfect competition (or for the presence of discrimination), this methodology does 

                                                 
3 The difference compared to the previous approach by Abowd, Kramarz and Margolis (1999) is that while they compute a 
truly individual measure of productive human capital, our approach yields only group-level relative productivities. However, 
these estimates are well-suited to the assessment of the existence of group-level wage gaps, as they allow us to control for 
group-level systematic differences in productivity. 
4 For example, if workers are grouped only by gender, and wF and wG refer to the wages of female (F) and male (G) employees, 
then the labor quality term can be expressed as: 













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




L

F

w
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LwFwGwQL
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Substituting this into the Cobb-Douglas production function gives: 


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




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


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


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w
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F
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Testing the equality of coefficients on the labor and on the quality index term, one can indirectly test whether relative wages 
are equal to relative marginal products.  
5 For example, if the mismeasurement of the labor quality term biases its own coefficient and that of the labor term in 
opposite directions, we may falsely reject the equality of the two. Further, labor quality may differ along multiple dimensions, 
for example, occupation, which makes the interpretation of the test even more difficult. 
6 See also Zhang and Dong (2009), Kawaguchi (2007), Ilmakunnas and Maliranta (2003), Van Biesebroeck (2007), Dostie 
(2006), Hellerstein and Neumark (2004), and Deniau and Perez-Duarte (2003). Frazer (2007) advances the method of 
Hellerstein and Neumark (1999) further by trying to obtain precise estimates of productivity and wage returns separately, not 
only of the gap between the two measures. He does this by identifying a firm-level ability component from the production 
function and plugging this ability measure into the firm-level wage equation. 
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allow us to assess more accurately the contribution of productive differences between groups 

to the wage gap. In the context of the Hungarian data, one would expect that the discrepancy 

becomes smaller as competitive forces get stronger following the transition7, leading to a 

decrease of the gap between productivities and wages.8 Previous studies on Hungary have 

underlined the importance of the process of skill obsolescence, in which skills acquired before 

the transition lose value relative to new skills.9 Our aim is to extend these results using the 

Hellerstein and Neumark methodology for the years 1986-2005, paying special attention to 

the estimation of the production function for more detailed worker categories. 

The characteristics of our dataset allow for several improvements over previous studies 

that use the same approach. The large sample size – the final regression sample includes 

67,928 firm-years and 1,245,577 worker-year observations – and the relatively large sample 

of workers from each firm allows us to include more detailed worker categories, and to 

estimate the production functions and wage equations based on these groups with fewer 

restrictions than previous studies.10 Since we do not observe every worker at each firm, we 

do not have a true measure of workforce composition, but the random sampling design based 

on the birthdates of workers does yield a more representative sample of workers than many 

other studies, where the number of workers sampled from each firm is limited regardless of 

firm size.11 The data contains detailed firm and worker variables, allowing for more accurate 

estimation of the production function and wage equation,12 and several robustness checks. 

Most importantly, the dataset enables us to follow firms over time, so we can control for bias 

due to omitted firm characteristics that may also be correlated with workforce composition 

by taking firm fixed effects into account. To our knowledge, very few previous studies used a 

database that followed firms over a relatively long time period to assess the importance of 

selection of workers at the firm level13. Hence, we feel that our study adds valuable insight to 

both the existing international literature that uses Hellerstein & Neumark methodology,  

                                                 
7 The level of competition facing Hungarian firms increased significantly and rapidly during the time period covered by the 
data. The number of registered economic organizations increased from 391 thousand to 1.1 million by 1998, and eighty 
percent of the GDP was produced by the private sector. The mean of the concentration ratio (measured by the Herfindahl 
Index at the three-digit level) fell from .34 to .16. 
8 Lovász (2008) found evidence supporting this in post-transitional Hungary: an increase in competition at the industry level 
(measured by market concentration, import penetration and export share) led to a fall in the within-firm endowment-
adjusted wage gap between men and women. 
9 Köllő and Kertesi (2002) use the same Hungarian data for 1986-1999 to study skill obsolesence following the transition. 
They estimate the returns to skills of detailed worker groups based on gender, education, and experience, and find that after 
1993, the return to skills from the pre-transitional era decreases, while the returns to new skills increase. They also estimate 
the effect of worker composition on firm-level productivity for unskilled, skilled young, and skilled old workers, and find that 
the changes in relative wages reflect the relative productivities of the groups.  
10 Hellerstein, Neumark (1999) has information only on the gender composition and the occupational distribution of the 
workforce, but they do not have the occupational distribution by gender, which necessitates the use of a restricted labor 
quality aggregate. 
11 For example, Van Biesebroeck (2007) observes a maximum of 10 workers within plants; and Dostie (2006) has worker data 
on maximum 12 employees within firms. 
12 For example, Dostie (2006) has no information on firms’ capital stock, and uses industry average capital stock as a proxy for 
the individual firm’s capital stock. 
13 Hellerstein and Neumark (1998) provide within-firms estimates, but they use only two years of data. Vanderberghe and 
Waltenberg (2009) are using similar methodology for Belgian data covering 1998 to 2006 to assess the effect of ageing an 
workforce on productivity and wages. 
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and to previous empirical studies assessing the changes in the labor market position of 

different worker groups in Hungary following the transition. 

The remainder of the paper is organized as follows: in section II. we describe our model 

and estimation strategy, including estimation issues; section III describes the sampling 

design of the dataset and the relevant variables; in section IV we present the estimation 

results and interpretation for the pooled years, as well as for separate time periods to assess 

the changes  and several robustness checks; section V concludes. 

 

 

II. METHODOLOGY 

 

Our approach is to estimate the relative productivities and wages of worker groups at the firm 

level, and check whether they differ significantly for any group.14 Following the idea of 

Griliches (1957, 1970), the motivation for the estimation procedure can be based on a simple 

model with two types of perfectly substitutable labor and a general production function: 

)( 21 LLfY   ,  (1) 

where Y is firm output and L1 and L2 are the number of employees in group 1 and 2. The 

parameter φ reflects the marginal productivity of type-2 employees relative to type-1 

employees: φ = MP2/MP1. In a competitive spot labor market where firms are maximizing 

their profits, the marginal product of each type of labor equals its wage.  Introducing the 

notation λ for relative wages: λ = w2/w1, the following relationship should hold: φ = λ. Hence, 

if firms are behaving efficiently, there is no wedge between the relative wages and relative 

productivities of different types of employees: each type receives remuneration according to 

its productivity. In the case of φ ≠ λ, the profit-maximizing firm will arrive to a corner 

solution: hire only the cheaper type of labor. Empirical evidence showing that φ ≠ λ is 

inconsistent with the assumption that we are observing profit-maximizing, or cost-

minimizing firms in a competitive spot labor market.  

                                                 
14 A less rigorous approach to estimating the contribution of worker characteristics to firm-level productivity is to augment a 
labor productivity regression with firm-level worker characteristics. In this case, the following general equation is estimated:  

jtjt

N

n

n
n

jt

uZ
L

L

L

Y







 




1

0ln  

Basically, this can be considered a restricted version of our production function specification with K, M ommitted and γ = 1. 
Studies using this method do not aim to estimate relative productivities. Rather, they want to see if firm-level average worker 
characteristics have a significant impact on the productivity of the firm. For example, Haltiwanger, Lane and Spletzer (1999 
and 2007) investigate the connection between labor productivity and the composition of the firm’s workforce described by 
gender, age, education, and the ratio of foreign born employees. A similar concept is applied in the studies of Malmberg et al 
(2005) and Lallemand and Rycx (2009). These studies use a log-log specification with log labor productivity regressed on the 
log of firm-level average worker characteristics. In this case, the estimated coefficients of the share variables can be 
interpreted as elasticities, but no precise estimate of relative productivity can be inferred. 
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Though our aim is not to test the existence of perfect competition in the Hungarian labor 

market, the theoretical relationship between relative marginal products and relative wages 

serves as a framework to study the relationship between the two measures. Results indicating 

that we can reject the equality of φ and λ support alternative hypotheses, such as taste-based 

discrimination or the existence of efficiency wages, but may also fit into the competitive 

market hypothesis if certain workers are rewarded by compensating wage differentials or if 

there are short-term frictions on the market.  

 

II.1. PRODUCTION FUNCTION 

 

Production function estimation has a burgeoning literature. Despite the growing number of 

studies, there is no consensus yet as for the proper approach. Since Marshak and Andrews 

(1944) a vivid discussion emerged about the treatment of unobserved productivity shocks15, 

and, more recently, the impact of worker characteristics on firms’ productivity generated a 

large number of interesting studies. The main methodological issues centering on the 

production function estimation are (1) correct measurement of the input and output 

variables, especially of the labor input, (2) treatment of unobservable productivity shocks, 

and (3) the functional form assumption of the production function, which is mostly a choice 

between the Cobb-Douglas and the translog case.16 Since our aim is to compare the relative 

productivities of different groups with their relative wages, we devote special attention to the 

first issue, measuring labor input. We also perform robustness checks using methods that 

correct for the endogeneity bias inherent in production function estimations, and that allow 

for the possibility of imperfect substitution among worker types. 

The standard, 3-input Cobb-Douglas production function is of the form: 

 

LMKAY lnlnlnlnln          (2) 

 

where A is a technology parameter, Y is output, which may be proxied by value added or 

sales; and the inputs are capital, material costs, and labor (K, M, and L, respectively). In our 

database we have accounting data on sales, different profit measures (before-tax profit, after-

tax profit, operating profit), end-of-year tangible assets, material costs and the average 

number of employees. As a capital measure we use deflated year-average tangible assets. 

                                                 
15 Recent studies include e.g.  Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg, Caves and Frazer (2005). 
16 In our specification, we use the traditional Cobb-Douglas specification of the production function. The translog alternative 
offers a more flexible specification, as it includes higher-order polynomial terms of the productive inputs, most often a 
second-order approximation including all possible interactions of the productive inputs besides the Cobb-Douglas controls. 
Results, as reported e.g. by Hellerstein, Neumark, Troske (1999), Hellerstein, Neumark (2004), or Dong et al (2009), tend to 
be robust between the two functional form specifications. 
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Regarding the output measure, we have several options. As we do not have data on physical 

output, we proxy output by deflated sales revenue in our baseline specification, but we check 

the robustness of our results by using the deflated value-added specification as well.17 To 

mitigate the problem of differential market prices, which are incorporated both in the sales 

and value-added data, we include industry and year dummies among the control variables. 

This may be especially relevant if certain industries are concentrated and there are 

differences in market power among firms (Melitz, 2000).18 

As our aim is to analyze relative productivities, the measurement of the labor input 

deserves special attention. The standard measure of labor input is the number of employees 

at the firm. However, Griliches’ early work (Griliches 1957) on the specification biases in 

production function estimation brought attention to the possibility that labor may be more 

precisely captured by a labor quality variable, which more accurately describes the productive 

capabilities of the workforce of each firm. To measure this, he suggests the use of a 

multiplier, which transforms the traditional labor input into “equivalent effective labor 

units”, since neglecting the inclusion of labor quality variable may bias the returns to other 

inputs.19 

The most straightforward way to relate worker characteristics to productivity is based on 

a generalized version of the theoretical model introduced in the previous section. Workers are 

grouped into n = 0, 1, …, N categories, and instead of L, the total number of employees, a 

labor quality variable, QL is used in the production function: 

n

N

n
n LQL 




0

    (3) 

where Ln is the number of employees in group n and the φn coefficients are economy-wide 

productivities of employees in group n20.  QL can be interpreted as the productivity-adjusted 

sum of employees.21 Applying simple algebra, QL can be expressed as the product of L and a 

worker-quality term with relative productivities:  

 

                                                 
17 Hellerstein, Neumark and Troske (1999) argue that the value-added specification avoids estimating the coefficient of the 
most endogenous variable, material input. However, in our database, sales data is considered to be more reliable than the 
profit measures, so this will be our baseline measure. 
18 On the other hand, if firms within the same industry produce differentiated products, then firm-level prices will be different 
from the industry-level price index, implying that the residuals will incorporate to some extent also the pricing policies of the 
firms (Melitz, 2000). 
19 Recent empirical results (e.g. Fox and Smeets, 2007; Hellerstein and Neumark, 2004) do not show large biases of returns to 
productive inputs when estimating production functions excluding the labor quality variable,  hence, the standard Cobb-
Douglas production function is suitable for studying many research questions. However, in our research context, including 
the labor quality variable into the production function yields the appropriate framework. 
20 As pointed out in the Introduction, the φn coefficients could be replaced by the wages of the corresponding worker group, 
assuming in advance that labor markets are perfectly competitive. However, as we argued, imposing a priori the competitive 
market assumption may easily lead to false test results. Hence, we are estimating relative productivities independently of 
relative wages. 
21 This additive formulation assumes that different types of workers are perfect substitutes. As Hellerstein, Neumark and 
Troske (1999) note, the perfect substitutability among all types of workers may be a strict assumption in certain cases; one 
example is the case of unskilled and skilled employees. In a later section we will talk about the possible ways to relax this 
assumption. However, as results are most straightforward to interpret in the perfect substitution framework, we will first 
introduce the econometric methodology for the case of perfect substitutes. 
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where L is the sum of employees over all categories: 
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. Using the labor quality 

augmented production function, we can identify N relative productivity parameters, taking n 

= 0 as the reference group. In this case, the following equation (5) can be estimated: 
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where Z includes additional controls that may determine a firms’ productivity. Since relative 

productivities do not enter linearly, the equation can be estimated via nonlinear least 

squares.22 

Workers need to be assigned to groups along any characteristic that could potentially 

differ in productivity. These groups are typically based on gender, race, education, age or 

experience, marital status, and occupation. The Hungarian WES does not contain 

information on race or marital status, so we group workers into categories based on gender, 

age (young if age<31, middle if between 30 and 50, and old if over 50), and education 

(university, secondary, or elementary). This gives us a total of 18 worker categories. 

Alternatively, we can also use information on occupation, but the number of workers in each 

worker group cell within each firm becomes too small in some cases, so we avoid grouping 

workers both along occupation and education in our main specification. 

 

 

 

 
                                                 

22 A less rigorous approach is to include a worker-quality term linearly into the log production function. In this case, the 
proportions of workers in different groups are treated as separate inputs besides K, M, L and the estimable production 
function is: 
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In this case the n  terms cannot be interpreted as relative productivities, they only show the importance of worker 

characteristics in the production process. However, if 
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approximation of (5), with n
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. Hence, relative productivities can be inferred by dividing the worker-quality 

coefficient with the coefficient of the labor (L) term. Though the linear version yields a convenient alternative to (5) to 
estimate relative productivities, its use is restricted by the sum-condition. The linear version is used to compute relative 
productivities by Dostie (2006) and Ilmakunnas and Maliranta (2003). 
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Restrictions on the quality of labor term 

 

As grouping workers into detailed categories often requires estimating a large number of 

productivity parameters, in most studies two restrictions are usually applied to the labor 

quality term.23 First, the number of coefficients to be estimated can be reduced by assuming 

that relative productivities are constant across other categories. This means that, for 

example, the gender productivity gap is the same among young, middle-aged and old 

employees; or, the productivity ratio between young and middle-aged workers is the same 

among male and female employees, etc. Though in certain cases this assumption may be too 

restrictive (e.g. gender gaps are probably different in the various occupational categories; or, 

the returns to education may be different among the different age groups), the same 

framework is widely applied in the earning regression context when using standard 

Mincerian earning regressions without interactions24.  

The second restriction assumes that the proportion of workers is constant across other 

categories (e.g. the proportion of female employees is the same in each age category). This is 

mostly necessary if the proportion of workers in each group cannot be estimated accurately 

due to a low percentage of sampled workers for each firm. With the imposition of both 

restrictions, the number of parameters to be estimated in our specification decreases from 18 

to 5. We then estimate the relative productivity of females compared to males ( F ), middle 

aged and old compared to young ( M  and O ), and university or secondary compared to 

elementary schooling ( S  and U ), according to the following restricted equation: 
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  (6) 

Hellerstein, Neumark (1999, 2004), Hellerstein, Neumark and Troske (1999) and Van 

Biesebroeck (2007) use both assumptions, while Dong et al (2008) use only the assumption 

of equal relative productivities. In case of Jnnn  ...21  categories, both the one- and two-

assumption case reduces the number of relative productivities to be estimated from 

1...21  Jnnn  to 1...11 21  Jnnn . However, applying only the constant relative 

                                                 
23 For example, if worker groups are defined by gender, 3 education categories (university, secondary, or elementary), 3 
occupation categories (unskilled, skilled, professionals), and 3 age categories (Y, M, O), we would have 54 groups of 
employees, which implies the estimation of 53 relative productivity parameters in the unrestricted equation.  
24 As a robustness check, Hellerstein and Neumark (2004) relax the equal relative productivity assumption regarding 
marriage, race and gender. They refer to empirical evidence that the marriage wage premium and the race differential is larger 
for men than for women. 



 

15 

productivities assumption supposes precise estimation on more detailed worker categories 

(e.g. proportion of female, old employees, etc.), while having both assumptions requires 

estimation of rough categories (e.g. proportion of female employees, proportion of old 

employees, etc.), which may be more precisely estimated from survey-type data.  

In most cases, data limitations necessitate the use of restrictions on the QL term. 

Hellerstein, Neumark and Troske (1999) argue that using only a sample of workers matched 

to the plant, they are not likely to get accurate estimates on the proportion of workers defined 

by their 192 categories25, and as a benchmark case they use both the equiproductivity and 

equiproportion assumptions26. However, we believe that our Hungarian database offers the 

potential to loosen some of these constraints and estimate a more flexible model.  

Our database surveys on average 9 percent of workers within firms, with 5,282 as the 

maximum number of workers sampled within a firm. Out of the more than 40,000 firms 

included in the database, 1,416 firms have information on more than 50 employees. Hence, 

our data make it possible to include a less restricted form of labor quality aggregate in a 

subsample of larger firms, letting both the ratio and the relative productivity differ across the 

worker groups. 

 

Unobserved productivity shocks 

 

Perhaps the most sensitive issue of production function estimation is how unobserved 

productivity shocks are tackled. In the case of unobservable input variables that are 

correlated with productivity shocks, simple OLS estimates will be biased. We apply two 

methods to tackle the endogeneity issue: (1) include firm fixed-effects, and (2) apply the 

„proxy variable approach” developed by Levinsohn and Petrin (2003). 

Specification of the production function with firm fixed-effects controls for any time 

invariant firm-specific productivity shocks. This tool has the potential to remove a substantial 

amount of bias, but its application is restricted only to productivity shocks that are constant 

across time. Though fixed-effect panel estimation is widely used in production function 

estimation without worker characteristics (e.g. Brown, Earle and Telegdy, 2006), it is rarely 

applied to this type of estimation. The estimated relative productivity is a within-firm 

differential in this case, identified by changes in the group shares within firms over time, 

rather than differences between firms. The firm fixed effects method allows us to separate 

observed productive differences into the part that is due to selection of workers into high or 

low productivity firms, and productivity differences within firms. 

                                                 
25 Hellerstein, Neumark and Troske (1999) distinguish workers by sex, race, marital status, age, education and occupation.  
26 As a robustness check, they relax some of the assumptions, but results are robust in most specifications. 
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The second method, which was developed by Olley and Pakes (1996) and further by 

Levinsohn and Petrin (2003), includes nonparametric proxies for unobservable productivity 

shocks. Olley and Pakes (1996) use investment to proxy the unobserved productivity 

component, while Levinsohn and Petrin (2003) suggest using intermediate inputs (material 

costs, energy) as a proxy. Using intermediate inputs as a proxy may be more advantageous if 

there are many observations with missing or zero investment.  This approach is used by 

Hellerstein, Neumark (2004) and Dostie (2006). In this paper, we apply the nonparametric 

technique by using material costs to proxy unobserved productivity shocks. Levinsohn and 

Petrin (2003) suggest a two-stage approach to obtain consistent estimates of the input 

coefficients. Separating the original error term ujt into an unobserved productivity 

component ωjt and a pure noise parameter ejt, consistent estimate of the labor quality terms 

can already be obtained in the first stage by estimating: 
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where the polynomial term is a third-order Taylor approximation of the expression: 

)ln(lnlnln)ln,(ln 0 jtjtjtjtjtjtt MKgMKMK    

The function g(.) is used to proxy the unobserved productivity component.  

 

II.2. EARNINGS EQUATION 

 

We now turn our attention to the second part of the estimation procedure, the estimation of 

the relative wages of the worker groups. Relative earnings can be estimated either at the 

worker level, using Mincer-type earnings equations, or, similarly to the production function, 

one can take a structural approach using firm-level variables. For example, Hellerstein, 

Neumark (1999), Hellerstein, Neumark, Troske (1999) and Van Biesebroeck (2007) estimate 

structural earning equations; while Dostie (2006) analyzes relative wages on individual data. 

The advantage of individual earning equations is that individual unobserved heterogeneity 

can be controlled for as well. On the other hand, estimating earning equations in similar 

fashion to the production function, makes the estimated productivity and wage differentials 

directly comparable, and the simultaneous model minimizes the impact of the unobserved 

shocks on productivity and wages. Moreover, at the firm-level, one can estimate the 

production function and the earning equation jointly, allowing the error terms to be 

correlated, and obtaining more efficient estimates. Besides, joint estimation has the benefit of 

making the hypothesis testing of equal relative productivities and relative wages 
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straightforward. An additional advantage of estimating firm-level wage equations in our case 

is the opportunity to use different wage bill measures as our dependent variable. 

We can use two different compensation measures as our dependent variable in the firm-

level analysis: the firm’s annual wage and salary bill, or the weighted sum of the individual 

wages of the employees surveyed within the firm. These measures may differ in two ways. 

The wage bill contains the employer’s contribution payments and all remuneration-related 

non-wage expenses, while the individual wages do not. Second, the wage bill is based on the 

actual composition of the workforce, while the summed individual wage measure is based on 

the sample of workers. 

The firm-level wage equation can be considered a definitional equation, aggregating 

individual-level equations over all workers. To see this, let us consider the case when workers 

are grouped by gender only into two categories. An individual wage equation including only 

gender controls would be: 

iFiMai FwMaww    (8) 

where Ma and F are dummy variables for males and females. As we are assuming that wages 

are identical in each unique worker category, wMa and wF are the average wages for 

employees in the male and female groups27. Summing up for all employees, gives the total 

wage bill of the firm: 

FFMaMa LwLww    (9) 

where LMa and LF are the number of employees in the corresponding groups. The total wage 

bill is the weighted sum of the employees’ individual wages, where the weights are the 

number of employees in each cell.  

Using simple algebra, choosing male employees as the reference category, and 

introducing the notation λ for relative wages and including similar controls as in the 

production function yields the estimable equation: 
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In a more general form, with any number of worker types, equation (11) is estimated: 
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27 More precisely, the plant-level wage equation assumes that after controlling for industry, region, firm size and year, wages 
of workers in the same category are identical. 
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Worker groups and restrictions are defined in the same way in the earning equation 

specification as in the quality of labor term of the production function. 

Capital and material costs may or may not be included in the plant-level earning 

equation. Hellerstein, Neumark (1999, 2004) exclude these productive inputs from the firm-

level controls, while Hellerstein, Neumark and Troske (1999) and Van Biesebroeck (2007) 

use capital in the firm-level earning regression. The inclusion of capital and material costs in 

the plant-level earning equation may serve to control for unobserved worker ability, as there 

may be complementary relationship between capital and unobserved skills (Hellerstein, 

Neumark, Troske, 1999). We include the inputs as controls in our baseline specification. 

However, we find that the results do not change significantly if we exclude them in our 

specification.  

 

Estimation strategy 

 

In our baseline specification, we estimate equation (6) and the analogous firm-level wage 

equation grouping workers along gender, age and education, including year, region and 

industry dummies, ownership variables, and, in certain specifications, firm fixed-effects in Z 

as the control variables. We then relax the restrictions on the quality of labor term, and 

estimate jointly equations (5) and (11) in which separate relative productivities and wages are 

estimated for all 18 detailed categories. This is the most flexible formulation of the labor 

quality term, as it allows for differences in productivity and wages among more specific 

worker group types. 

Both the restricted and the unrestricted equations will be first estimated by NLS. In this 

case, relative productivities/wages are identified using the between-firm variation of the 

corresponding variables. As a second scenario, firm fixed-effects will be included in the 

production and earning functions, and the equations will be estimated in a first-differenced 

form. This step corresponds to the within-firm identification strategy, removes selection into 

high/low productivity/wage – firms and controls for time-invariant unobserved productivity 

shocks. To account for time-variant unobserved productivity shocks, we follow the method 

suggested by Levinsohn and Petrin (2003). We obtain consistent estimate of the labor quality 

term in the production function by estimating equation (*). 

Our preferred specification of the production function takes care of both firm fixed-effects 

and time-variant unobserved productivity shocks. In this case, we will estimate jointly the 

production function (*) with the firm-level wage equation in a first-differenced form. The 

joint estimation allows for correlation of the error terms of the two equations. The joint 

estimations will be followed by the hypothesis testing of equal relative productivities and 

wages. 
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To see if the results are stable across time, we also estimate the equations on a sample 

divided into three different periods. This relaxes the assumption that relative productivities 

(and the coefficients of the other inputs) are constant across time, which may be too strict as 

the Hungarian economy underwent significant changes following the transition. In this 

specification, the first period covers the pre-transitional and transitional years (1986-1993), 

the second period is the time of major reforms (1994-1999), while the third period covers a 

few years before the EU accession and the early union-years (2000-2005). A comparison of 

the relative productivities and wages (discussed in the next section) over time reveals 

whether competitive forces led to a decrease in wage differentials that are not due to 

productive differences. 

One critical assumption of the model outlined above is that different types of workers are 

perfect substitutes. As we have already mentioned, this may be too restrictive in certain cases, 

for example, among skilled and unskilled workers. One way to relax the assumption of perfect 

substitution is to include the different types of workers as separate inputs in log form. 

Relaxing the assumption between two types of workers, and leaving the perfect 

substitutability within these groups, the following form of the production function can be 

estimated: 

 

jtjtjtjtjt uZQLQLMKY
jtjt

  22110 lnlnlnlnln   (7) 

 

Hence, within group 1 and group 2, workers are perfect substitutes, but this does not hold 

between group 1 and group 2. The QL terms are of the same form as earlier. Checking if 

relative productivities within the groups have changed gives a test for the reliability of the 

perfect substitutability assumption.28 As a robustness check, we allow for imperfect 

substitution between workers based on education level: in the above specification, group 1 

refers to workers with a university-level education, and group 2 refers to lower education 

levels. 

As a last set of robustness checks, we will examine if the estimated coefficients are stable 

across different categories of the firms. On the one hand, there may be differences in the 

productivities of worker groups in different industries. To check for this, we split the sample 

into four broad industry categories (agriculture, heavy industry, light industry, services), and 

estimate relative productivities for each separately. Another issue pertains to the estimation 

of worker composition of firms based on the sampled workers: since the sampling of workers 

is based on birth dates, the ratios are estimated more accurately for larger firms who will 

                                                 
28 Hellerstein, Neumark and Troske (1999) check the robustness of their estimates dropping the perfect substitutes 
assumption between production and non-production workers. Van Biesebroeck (2007) allows for imperfect substitution 
between workers with low and high levels of experience. 
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have a larger number of workers sampled consistently. Thus we run spate regressions to see 

if results are robust on a sample of large firms (defined as having more than 90 employees).  

 

III. DATA AND SAMPLE 

  

The Hungarian Wage and Employment Survey is available from the National Employment 

Office for the years 1986, 1989, and 1992-2005. The sample frame includes all full time 

workers from tax-paying legal entities with double-sided balance sheets that employed at 

least 20 employees in 1986, extended to firms with at least 10 workers in 1995, and from 1999 

on to micro-firms as well.  In 1986 and 1989, workers were selected into the sample using a 

random design based on fixed intervals of selection, with every seventh production worker 

and every fifth non-production worker selected in 1986, and every tenth worker regardless of 

type selected in 1989. Starting from 1992, workers were selected into the sample based on 

their date of birth: production workers were included if their birth date fell on either the 5th 

or the 15th of any month, and non-production workers if it fell on the 5th, 10th, or 15th of a 

month. 

The WES includes demographic information for this random sample of workers, matched 

to detailed characteristics and balance sheet information of the firms where they are 

employed. Worker variables include the gender, age, highest education level (five categories: 

less than 8th grade, elementary, high school, vocational, university), and occupation (4 digit 

occupational code). For the purposes of defining the various worker groups, we define three 

age categories (under 30, 31-50, over 50), three education categories (university, secondary, 

or elementary), and use gender. The firm variables used in the estimation are firm output, 

capital, material costs, employment, wage bill, industry, region, size, and ownership. 

The sample used in the production and wage differential estimation is restricted in a few 

ways. Only firms from the private sector are included. For all years of the data, we include 

only firms with at least 20 employees, to preserve consistency. To be able to estimate the 

ratios of employees within each demographic group, and to ensure a representative sample, 

we include only firms in which at least 5 percent of the total workers employed are included 

in the WES worker data. The resulting sample includes observations on 67,928 firm-years 

and 1,245,577 worker-years. Table III.1. gives the summary statistics of the firm-level sample. 
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IV. RESULTS 

 

We now present the results of the relative productivity and wage estimation. First, we discuss 

the restricted results (Tables 2 through 5), in which separate estimates are obtained for 

females relative to males, skilled relative to unskilled, and middle-aged and older aged 

compared to young workers for both the pooled years and time period cases. We then turn 

our attention to the unrestricted results (Tables 6 to 8), which allow for differences within 

different groups. We compare our results to both existing international estimates that use the 

Hellerstein and Neumark methodology, as well as with an eye on previous studies on 

Hungary, which mostly focus on the phenomenon of skill obsolescence following the 

transition. 

 

RESTRICTED RESULTS 

 

A quick look at Tables 2 and 3 shows that relative productivity estimates obtained with and 

without Levinsohn and Petrin (2003)’s polynomial term are qualitatively the same, indeed 

they mostly differ only in the second or third digit in the within-firm specification. This 

implies that time-variant unobserved productivity shocks are not a major issue in the 

production function estimation. However, as the comparison of between-firm and within-

firm specification reveals, selection of workers along firm-level unobservables plays a much 

larger role. Hence, when interpreting the results, we will mostly focus on our starting NLS 

specification and on our most preferred within-firm specification including Levinsohn and 

Petrin (2003)’s polynomial term (FDLP). In our most preferred FDLP specification, the 

production function and the wage equation is estimated jointly and the hypothesis testing of 

equal relative wages and productivities is presented.  
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Gender 

  

Previous international empirical results based on cross-sectional estimates usually document 

a negative female – male wage gap, and also a negative association between firm-level 

productivity and the proportion female within the firm. The female-male relative productivity 

is mostly estimated in the range of 0.7 – 0.9 and female wages are usually 15 – 40 percent 

less than the wages of male employees.29  

Table 2 shows the results of the restricted specifications on the pooled sample 

encompassing all the years of our data. The base specification, estimated with nonlinear least 

squares (NLS) which reflects between-firm effects, shows that the relative productivity of 

women compared to men is 1.54, while the relative wage is 1.08 based on the firm level wage 

bill, and only 0.89 based on the sum of individual wages.30 This means that an increase of the 

ratio of women tends to increase the productivity of firms, and is contrary to the findings of 

international studies. Testing the equality of relative productivity and wages, the p-values of 

0 suggests that women are significantly underpaid compared to what their productivity 

would suggest. 

The estimates based on the first differenced data (shown in Table 3) which take firm fixed 

effects and thus selection at the firm level into account, suggest that this difference is due to 

the selection of women into more productive, and slightly better paying firms. The preferred 

specification, in which the Levinsohn and Petrin method is carried out on the differenced 

data (FDLP), estimates the relative productivity of females at 1.03 with a standard error of 

0.03, suggesting that there is no significant difference in productivity of men and women 

within firms (Table 3.a). The relative wage estimate is 1.03 based on the firms’ total wage bill, 

which means that women are paid in line with their productivity. However, the estimated 

relative wage is very different based on the sum of individual wages (Table 3.b): the relative 

wage estimate of 0.7 suggests that there is still a significant wage gap between men and 

women that is not in line with the non-existent productivity gap. 

One main concern regarding the pooled estimates is the fact that the Hungarian labor 

market (and economy) underwent significant changes between 1986 and 2005, and the 

assumption of the same structure in all years is too strict. Estimation of the production 

                                                 
29 For example, Hellerstein, Neumark and Troske (1999) and Hellerstein, Neumark (2004) using a US database from 1990 
found that the productivity of women is 0.85 – 0.87 that of the men, however, relative wages are even lower: women receive 
32-38 percent less than men. Their results point to a negative wage – productivity gap, which may be interpreted as wage 
discrimination. Hellerstein, Neumark (1999) on Israeli data and Dong et al (2009) on Chinese data also shows negative 
association between wages, productivity and the proportion female, however, they do not document a significant wage – 
productivity gap. Both studies find that relative wages and relative productivities of female employees are 75 – 80 percent that 
of the men. Dostie (2006) uses Canadian data covering 1999-2002 and estimates a female – male wage gap of 0.85, and a 
female relative productivity of 0.8 – 0.9 depending on specification. Haltiwanger, Lane and Spletzer (1999) also found a 
negative relationship between labor productivity and the fraction of female workers, however, they do not aim to compare 
directly relative productivities and relative wages. 
30 Individual wage regressions give results that are very similar to the firm level regressions based on the sum of individual 
wages, as would be expected, since the firm level equation is a weighted sum of the individual level equations. 
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function and wage equations on separate time periods is preferable for this reason, and may 

shed some light on the true underlying changes in the relative situation of the worker groups. 

We divided our sample into periods based on the transition process and previous literature 

(Kollo and Kertesi 2002): 1986-1992 covers the “transformational recession”, 1993-1999 the 

period in which the market economy began to evolve, and 2000-2005 the final period.  Table 

4.a shows the estimates of relative productivity for the three time periods in the restricted 

specifications. The between-firm estimates of relative productivity suggest that women were 

three times more productive than men in the initial period, and their relative productivity fell 

to 1.12 in the last period. Tables 4.b. and 4.c. show that their relative wage was below their 

relative productivity using either wage measure, though the firm level wage bill suggests they 

were paid more than men. The relative wage fell more slowly than the relative productivity in 

the subsequent periods, approaching their relative productivity by the last time period. 

To assess the extent of selection at the firm level, the second panels of Tables 4.a-4.c show 

the time period results of the restricted specification in the FDLP within-firm case. The 

relative productivity of women is 0.75 within firms in the first period, suggesting that in the 

socialist era, women tended to be grouped into more productive firms, but were actually less 

productive within firms. In the second and third periods, their relative productivity increases, 

and is not significantly different from one, suggesting that this positive selection at the firm 

level decreased following the transition, while the productivity of women within firms is the 

same as that of men. One reason for the increasing productivity of women after the 

transitional period may be the growing share of the service sector in the economy where 

women became dominantly employed. Checking the robustness of our results by industries 

may help in sorting out the underlying processes. The two wage measures again give very 

different results regarding the relative wage of women: the firm level wage bill suggests that 

women were initially overpaid, but later paid in line with their productivity, while the sum of 

individual wages suggests a significant gap between relative productivity and wages of about 

0.3 that remains through the final period. 

 

Schooling 

 

In general, previous empirical results point to a positive association between wages, 

productivity and the ratio of workers with diploma within the firm. However, results 

regarding the wage – productivity premium (relative wage paid in excess of relative 

productivity) are mixed. We would expect a positive wage – productivity premium as 
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predicted by efficiency wage theories, or relative wages in line with relative productivities if 

competitive forces dominate.31  

The pooled results in Table 2 suggest that between firms, skilled workers are much more 

productive than unskilled workers, with a relative productivity estimate of 3.3. The relative 

wage – using either the wage bill of sum of individual wages – is around 1.45, showing a 

significant gap between the relative productivity and wage of skilled workers. Turning our 

attention to the FDLP specification (Table 3.a), we see that the relative productivity of skilled 

workers falls to 1.05 within firms, while the relative wage falls to 1.01, which is in line with 

positive selection of skilled workers into more productive and better-paying firms. 

The time period results in Table 4 paint a more accurate picture of the underlying 

processes. The NLS results show that the relative productivity of skilled workers increased 

from 2.3 to 3.9 by the last period, and the relative wages increased slightly from 1.4 to 1.6. 

The within firm results suggest that within firms, the relative productivity actually decreased 

from 1.36 to .99 (not significantly different from one), while relative wages increased from 

0.94 to about one. These results mean that skilled workers are increasingly selected into 

better firms, and seem to be paid in line with their productivity within firms. This selection 

effect appears to be much stronger than seen in other international results, and contradicts 

the existence of a wage-productivity premium for skilled workers as seen in Dostie (2006). 

 

Age 

 

Empirical results are rather diverse regarding the relationship between wages, productivity 

and the age composition of the firm. However, the majority of studies (e.g. Hellerstein, 

Neumark, 2004; Dostie, 2006) find that prime-age workers increase productivity the most, 

and that higher proportion of old employees is associated with lower productivity. Wages are 

usually found to be rising and concave with age, and the comparison of relative productivities 

and wages usually imply that the older employee group receives a wage premium.32 Studies 

examining the relationship between labor productivity and the age composition of the firm 

usually find that older workers decrease productivity and the ratio of young and prime-age 

                                                 
31 For example, Hellerstein and Neumark (2004) estimate a 56 percent productivity premium for diploma, which exceeds the 
36 percent wage premium of college graduates. This result is somewhat opposite to our expectations, as not predicted by any 
standard theories. Dostie (2006) estimates a positive wage – productivity premium in an OLS specification with relative 
productivity of 1.18 and a graduate – no graduate relative wage of 1.27, while in a Levinsohn-Petrin framework for production 
function and estimating wage equation with individual unobserved heterogeneity, the converse is true, graduate relative 
productivity (1.22) is higher than relative wages (1.19). Haltiwanger, Lane and Spletzer (1999) also estimate a positive 
relationship between firm-level productivity and the proportion of workers with college education. 
32 For example, Hellerstein and Neumark (2004) documents a positive wage – productivity gap for prime-age workers with 
relative productivity of 1.12 and relative wage of 1.21 compared to young employees. Old employees are found to be less 
productive with relative productivity of 0.79, while their relative wages are 1.12 compared to young employees. Dostie (2006) 
also documents a positive wage premium for old workers with relative productivity of 0.95 and relative wage of 1.09, but she 
finds that prime-age workers receive 5 percentage point less than their productivity of 1.21. Vandenberghe and Waltenberg 
(2009) using Belgian data also estimates in a within-firm specification a positive wage premium for old workers with relative 
productivity of 50 percent and relative wages of 74 percent. However, young employees are found to be equally productive as 
prime-age workers and receive somewhat less than would be expected according to their productivity 
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workers is positively associated with firm-level productivity (e.g. Haltiwanger, Lane and 

Spletzer, 1999; Thierry and Rycx, 2009).33 

Our pooled results (Table 2) show that between firms, the ratio of middle aged and older 

workers decreases the productivity of firms, the relative productivity estimates are 0.6 for 

middle-aged workers, and 0.4 for older workers. Relative wages do not reflect their 

productivities: middle aged and older workers are paid more than young workers. Relative 

wages increase with age, which is line with previous international results. The within-firm 

estimates (Tables 3.a and 3.b) show that much of the productivity gap is due to selection of 

young workers into better firms: the relative productivity of middle aged workers  is just 

below one at 0.96, while older workers are equally productive as the young at 1.04 (not 

significantly different from one). Relative wages based on the firm-level wage bill are near 

one for every worker group, while the relative wage of older workers exceeds their relative 

productivity based on the sum of individual wages, especially for the middle-aged group.  

The time period results in Table 4 seem to be in line with the theory of skill obsolescence 

described in previous transitional studies. The NLS results suggest that old workers were 

more productive than the young in the initial period (relative productivity of 1.09), and were 

paid higher (relative wage of 1.17). Their productivity fell sharply in the later periods to 0.43, 

while their relative wages continued to rise to 1.56. The within-firm results reflect the same 

pattern: the relative productivity of middle-aged and older workers was 1.26 and 2.65 in the 

initial period, then fell to 0.95 and 1.01 in the latter periods. Older workers appear to have 

been underpaid within firms in the initial period, but their relative wages approach relative 

productivities by the last period, around 1 for both groups. Middle-aged workers seem to be 

overpaid and less productive than the young and the old in each specification, which is not in 

line with previous results that suggest that prime age workers contribute the most to firm 

productivity. This may reflect the deterioration of the value of skills gained before the 

transition, and reflects the selection of older workers to worse firms following the transition. 

 

                                                 
33 The empirical result is somewhat different in Sweden: Malmberg et al (2005) finds that the lower productivity of older 
workers reflect only the plant-specific lower productivity, as older workers tend to be employed in firms with old and less 
efficient technologies. After controlling for firm fixed-effects, they find a positive relationship between labor productivity and 
the ratio of old employees. 
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UNRESTRICTED RESULTS 

 

Our goal in estimating the unrestricted specifications is two-fold. First, we seek to add new 

empirical evidence to the burgeoning international literature based on the Hellerstein and 

Neumark methodology. Due to the characteristics of our data - matched employers and 

employees, long time series panel in terms of firms, higher sampling ratio of workers - we are 

able to lift some of the restrictions of previous studies in estimating relative productivities 

and wages by allowing worker groups to differ along more dimensions, and by taking firm 

fixed effects and endogeneity biases into account. Our second goal is to re-examine post-

transitional changes in the value of various worker characteristics described in previous 

empirical studies on Hungary using the new, longer time-series data and the econometric 

methodology used in the international studies. The specification of the unrestricted labor 

term may reveal trends that are hidden by the restricted results. For example, it is possible 

that the relative productivities and wages of women differ by skill level, or the return to 

education may vary by age (cohort), as in the presence of skill obsolescence. On the other 

hand, the estimation becomes imprecise if our measure of the ratio of workers in detailed 

groups is too noisy, so the specification of the unrestricted equations requires great care. 

Our first set of unrestricted results allows workers to differ in productivity and wages 

along the three dimensions described in the methodology section. This means we lift the 

previously imposed restrictions on the quality of labor term, and allow for differences 

between worker groups defined as combinations of gender, age, and education level. Tables 

6, 7.a, and 7.b present the estimated relative productivities and wages of the detailed worker 

groups, with the male, young, elementary education group as the reference category. It is 

clear that we are not able to obtain significant estimates based on this specification, and even 

less when we control for firm fixed effects. This means that there is not enough variation in 

the detailed worker groups to identify an effect. The worker group measure is biased by 

measurement error as we are calculating the ratios of workers in each category based on a 

sample of the workers. We thus turn our attention to an alternative specification, which 

proves more fruitful as it corrects for some of these problems. 

Tables 8.a and 8.b provide the between and within-firm estimates of this unrestricted 

specification. We define a total of 8 worker groups as combinations of gender, “age” (those 

with pre-transitional work experience and those without), and akill level (those with a 

university degree and those without). The sample is divided into two time periods: the early 

period from 1992-1999, and the later from 2000-2005. This specification lends itself to the 

analysis of the relative value of pre- and post-transitional skills, or rather to differentiate two 

cohorts of workers based on their labor market participation. 
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Previous studies on Hungary have mostly found evidence of the devaluation of pre-

transitional skills. Kertesi and Köllő (2002) found that the returns to old skills fell, while the 

return to new skills rose following the recovery from the transition, and that this was due to 

an increased productivity gap between the old-skilled and the young-skilled. Galasi (2004) 

found that wage premiums for the young and better educated workers increased increased, 

esp. after 1996, while the work experience of older workers was devalued in the market. Kézdi 

(2004) found that returns to education increased substantially between 1989 and 2002, and 

this increase was steeper for the younger generation. Inter-generational differences 

decreased, especially for young cohorts, reflecting a decrease in the value of experience from 

pre-transitional period. On the other hand, Campos and Jolliffe (2008) found that the return 

to education decreased in the late 90s for the young who received schooling post-transition, 

while the returns for older workers continued to rise. They suggest that the planned economy 

had under-valued education, and the market corrected for this over time. In terms of gender, 

Dong et al (2009) study the gender productivity-wage differential in a transitional context, 

and find that the state sector paid substantial wage subsidies to the most fragile unskilled 

female group who would be hardest hit by the market reforms, while skilled male and female 

workers are paid according to their marginal productivities. 

The between-firm results in Table 8.a show that unskilled males withpre-transitional 

work experience are less productive and overpaid compared to the young. Over time, their 

productivity decreased, while their wages did not, suggesting that the experience gained prior 

to the transition did not increase workers’ productivity. Table 8.b shows that this productivity 

gap is mostly due to selection to worse firms, within firms, the productivity of older workers 

is close to one. Similarly, skilled young workers are more productive and underpaid in the 

between-firm estimates, but within-firm, older workers are more productive than the young 

and underpaid. In the case of women, we see increasing selection to worse firms: the 

between-firm productivity of unskilled workers falls, while within firm, their productivity 

increases, and is higher than men’s. Their wages do not reflect this change, and remain close 

to one. We also see the negative selection of old workers to worse firms in both the unskilled 

and skilled female workers. Overall, the results suggest a strong negative selection of older 

workers to worse firms, especially in the case of men. This means that much of the observed 

fall in the value of pre-transitional labor experience may be due to selection at the firm level: 

better firms demand younger workers more than older workers.  
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V. CONCLUSION 

 

Our goal in this paper is to estimate the relative productivities and relative wages of different 

worker groups based on firm-level data from Hungary for the years 1986-2005. We then 

compare these estimates to see whether certain groups are over- or underpaid relative to 

their productivity, as would be the case if labor markets are not perfectly competitive, or in 

the case of wage discrimination. We assess the role of firm-level selection in determining 

productivity and wage gaps by including firm fixed effects in some of our specifications, and 

attempt to correct for the endogeneity of our production function estimates by applying the 

Levinsohn and Petrin method. To assess changes in the productive and wage returns to 

characteristics over time, we divide our sample into three time periods: that of the early 

transitional recession in 1986-1992, that of the recovery in 1993-1999, and the last period 

from 2000-2005. 

Our restricted results – in which we estimate the relative productivity of women, middle 

aged and older workers, and workers with higher education separately- suggest that women 

selected into more productive firms initially, but this positive selection decreased following 

the transition, and within firms, their productivity increased over time to slightly above 

men’s. When estimating the relative wage using the firm-level wage bill, there does not 

appear to be a significant gap by the last period, but when the estimate is based on individual 

wages, a significant gap of .3 persists through all the periods. 

In terms of worker age, older workers were more productive than the young pre-

transition, but their productivity fell following the transition, although some of the drop is 

due to negative selection to firms, as within firms they are equally productive as the young. 

This is in line with a loss of the value of skills gained before the transition. The middle-aged 

group appears to be overpaid in the last period, while older workers are compensated 

according to their relative productivity. In terms of education, the productivity gap between 

those with a higher education and those without grew following the transition, although it 

decreased within firms. Skilled workers were undervalued pre-transition, but their relative 

wage approaches their relative productivity in the later periods as the market corrected for 

the value of their skills. 

The unrestricted specifications seek to shed some light on the processes behind these 

changes. When we define our worker groups in a way that allows us to assess the differences 

between skills gained pre- or post-transition, we find that much of the fall in the value of pre-

transitional work experience is due to a negative selection at the firm-level: younger workers 

are selected into more productive firms. However, it is clear that the unrestricted estimation 

strategy requires further development in order for us to better explore these processes. The 

specification of worker groups and time periods needs to be set in a way that allows for 
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meaningful estimates that are significant, and the difference between relative wage results 

using the firm-level wage bill and the weighted sum of individual wages needs to be 

addressed. We need to estimate separately for different industries to allow for structural 

differences, and also lift the restricting assumption of perfect substitution between worker 

types. 
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Table 1 

Summary Statistics of Firm-Level Sample 1986-2005 

Year 1986 1989 1992 1995 1998 2001 2005 

Number of 
firms 730 2,253 3,044 4,911 4,922 5,845 4,357 

Productive inputs 
ln(Output) 7.49 7.28 6.63 6.42 6.47 6.44 6.92 
ln(Capital) 6.11 5.80 5.31 5.08 4.94 4.82 5.49 

ln(Materials) 6.33 6.16 5.30 5.11 5.17 5.38 5.89 
Employment 366 310 293 227 208 167 205 

Wagecost 6.10 6.11 5.50 5.05 4.94 4.78 5.30 
Demographic composition 

female 0.41 0.42 0.41 0.38 0.38 0.38 0.41 
high school 0.48 0.52 0.62 0.65 0.67 0.69 0.68 
university 0.11 0.10 0.11 0.11 0.12 0.14 0.15 

middle-aged 0.57 0.61 0.62 0.58 0.56 0.51 0.47 
old 0.16 0.17 0.13 0.15 0.16 0.20 0.27 

 
Source: Hungarian Wage and Employment Survey 1986-2005. Sample restricted to private sector firms with at 
least 20 employees, and 5% of their workforce included in the employee dataset. Values represent means.  
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Table 2  

Pooled Restricted Between-Firm Results 

 
Between-firm regressions, 1986 - 2005 

  NLS LP     

 
log 

sales 
log 

sales 
log 

wagecost 
log 

sumwage 

0.095   0.054 0.058 log 
capital 0.002   0.001 0.002 

0.586   0.153 0.121 log 
materials 0.003   0.002 0.002 

0.318 0.309 0.829 0.861 log labor 
0.004 0.004 0.002 0.003 
1.535 1.452 1.081 0.886 female / 

male 0.051 0.050 0.008 0.009 
3.288 3.394 1.457 1.497 skilled / 

unskilled 0.174 0.187 0.014 0.019 
0.604 0.599 1.205 1.274 middle-

aged / 
young 

0.022 0.022 0.012 0.017 

0.436 0.426 1.455 1.549 old / 
young 0.024 0.024 0.017 0.023 
No. obs 67,928 
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Table 3.a 

Pooled Restricted Within-Firm Results, Firm-Level Wagecost 

 
Within-firm regressions, 1986 - 2005 

  FD FD+LP     
  

log 
sales 

log 
wagecost 

log 
sales 

log 
wagecost 

gap 
(wage 

- prod) 

p-
value 
(wage 

= 
prod) 

0.075 0.027   0.027     log 
capital (0.005) (0.003)   (0.003)     

0.425 0.115   0.115     log 
materials (0.004) (0.002)   (0.002)     

0.366 0.677 0.370 0.677     log labor 
(0.006) (0.004) (0.006) (0.004)     

1.029 1.026 1.025 1.026 female / 
male (0.029) (0.009) (0.028) (0.009) 

0.001 0.981 

1.050 1.012 1.052 1.012 skilled / 
unskilled (0.026) (0.008) (0.026) (0.008) 

-0.040 0.108 

0.956 0.998 0.957 0.998 middle-
aged / 
young 

(0.022) (0.008) (0.022) (0.008) 
0.041 0.059 

1.039 1.003 1.036 1.003 old / 
young (0.032) (0.010) (0.031) (0.010) 

-0.033 0.271 

No. obs 40,868 
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Table 3.b 

Pooled Restricted Within-Firm Results, Sum of Individual Wages 

 
Within-firm regressions, 1986 - 2005 

  FD FD+LP     

 
log 

sales 
log 

sumwage 
log 

sales 
log 

sumwage 

gap 
(wage 

- prod) 

p-
value 
(wage 

= 
prod) 

0.075 0.034   0.034     log 
capital (0.005) (0.006)   (0.006)     

0.425 0.045   0.045     log 
materials (0.004) (0.005)   (0.005)     

0.366 0.704 0.369 0.704     log labor 
(0.006) (0.008) (0.006) (0.008)     

1.026 0.703 1.023 0.704 female / 
male (0.028) (0.015) (0.028) (0.015) 

-0.319 0.000 

1.050 1.032 1.052 1.032 skilled / 
unskilled (0.026) (0.018) (0.026) (0.018) 

-0.020 0.523 

0.957 1.122 0.958 1.122 middle-
aged / 
young 

(0.022) (0.019) (0.022) (0.019) 
0.164 0.000 

1.039 1.069 1.037 1.069 old / 
young (0.032) (0.024) (0.031) (0.024) 

0.032 0.408 

No. obs 40,868 
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Table 4.a 

 Time Period Restricted Results, Productivity  

 
  Between-firm regressions, 

NLS 
Within-firm regressions, 

FD+LP 
  log sales log sales 

 
1986-
1992 

1993-
1999 

2000-
2005 

1986-
1992 

1993-
1999 

2000-
2005 

0.056 0.078 0.107       log 
capital (0.008) (0.003) (0.003)       

0.598 0.574 0.592       log 
materials (0.010) (0.004) (0.004)       

0.338 0.337 0.315 0.213 0.342 0.409 log labor 
(0.014) (0.006) (0.006) (0.030) (0.009) (0.009) 
2.959 1.715 1.123 0.753 1.016 1.084 female / 

male (0.351) (0.075) (0.059) (0.214) (0.042) (0.039) 
2.259 2.921 3.866 1.359 1.114 0.988 skilled / 

unskilled (0.328) (0.189) (0.359) (0.376) (0.042) (0.031) 
0.791 0.584 0.642 1.261 0.975 0.946 middle-

aged / 
young 

(0.110) (0.027) (0.039) (0.538) (0.033) (0.029) 

1.093 0.402 0.425 2.648 1.009 1.013 old / 
young (0.188) (0.032) (0.035) (1.118) (0.046) (0.039) 
No. obs 5,919 32,886 29,123 1,193 20,438 19,237 
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Table 4.b 

 Time Period Restricted Results, Firm-Level Wagecost 

 
  Between-firm regressions, 

NLS 
Within-firm regressions, 

FD+LP 
  log wagecost log wagecost 

 
1986-
1992 

1993-
1999 

2000-
2005 

1986-
1992 

1993-
1999 

2000-
2005 

0.045 0.063 0.049 0.005 0.030 0.030 log 
capital (0.004) (0.002) (0.002) (0.018) (0.004) (0.004) 

0.175 0.147 0.161 0.217 0.130 0.088 log 
materials (0.006) (0.003) (0.003) (0.016) (0.003) (0.003) 

0.685 0.822 0.852 0.486 0.657 0.747 log labor 
(0.008) (0.003) (0.004) (0.021) (0.005) (0.005) 

1.218 1.078 1.059 1.293 0.989 1.033 female / 
male (0.037) (0.012) (0.013) (0.106) (0.013) (0.012) 

1.413 1.403 1.539 0.942 1.040 0.999 skilled / 
unskilled (0.047) (0.018) (0.025) (0.076) (0.012) (0.010) 

1.082 1.169 1.259 1.183 0.980 1.008 middle-
aged / 
young (0.043) (0.016) (0.022) (0.139) (0.010) (0.010) 

1.172 1.379 1.566 1.333 0.988 0.997 old / 
young (0.061) (0.023) (0.027) (0.180) (0.014) (0.012) 
No. obs 5,919 32,886 29,123 1,193 20,438 19,237 
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Table 4.c 

 Time Period Restricted Results, Sum of Individual Wages 

 
  Between-firm regressions, 

NLS 
Within-firm regressions, 

FD+LP 
  log sumwage log sumwage 

 
1986-
1992 

1993-
1999 

2000-
2005 

1986-
1992 

1993-
1999 

2000-
2005 

0.023 0.066 0.058 0.077 0.031 0.020 log 
capital (0.007) (0.003) (0.003) (0.030) (0.009) (0.009) 

0.131 0.111 0.132 0.117 0.048 0.033 log 
materials (0.009) (0.004) (0.004) (0.028) (0.007) (0.007) 

0.777 0.846 0.887 0.653 0.598 0.813 log labor 
(0.012) (0.005) (0.005) (0.036) (0.013) (0.012) 
0.706 0.911 0.869 0.573 0.637 0.779 female / 

male (0.030) (0.013) (0.013) (0.070) (0.023) (0.020) 
1.395 1.460 1.563 0.947 1.105 0.987 skilled / 

unskilled (0.065) (0.026) (0.031) (0.098) (0.034) (0.021) 
1.146 1.282 1.269 1.040 1.157 1.097 middle-

aged / 
young (0.066) (0.024) (0.027) (0.143) (0.033) (0.023) 

1.388 1.585 1.534 0.970 1.157 1.008 old / 
young (0.098) (0.036) (0.033) (0.171) (0.044) (0.028) 
No. obs 5,919 32,886 29,123 1,193 20,438 19,237 
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Table 5.a 

 Time Period Restricted Results, Wage Gaps, Firm-Level Wagecost 

 
Gap (wagecost - productivity), FD+LP specification 

  1986-1992 1993-1999 2000-2005 

 gap 
p-value 

(wage=p
rod) 

gap 
p-value 

(wage=p
rod) 

gap 
p-value 

(wage=pr
od) 

female / 
male 0.540 0.012 -0.027 0.513 -0.051 0.185 

skilled / 
unskilled -0.416 0.252 -0.074 0.068 0.011 0.708 

middle-
aged / 
young 

-0.078 0.880 0.005 0.881 0.062 0.028 

old / 
young -1.315 0.227 -0.020 0.649 -0.015 0.690 

 
 
 

Table 5.b 

 Time Period Restricted Results, Wage Gaps, Sum of Individual Wages 

 
Gap (sumwage - productivity), FD+LP specification 

  1986-1992 1993-1999 2000-2005 

 gap 
p-value 

(wage=p
rod) 

gap 
p-value 

(wage=p
rod) 

gap 
p-value 

(wage=pr
od) 

female / 
male -0.198 0.364 -0.375 0.000 -0.302 0.000 

skilled / 
unskilled -0.395 0.279 -0.008 0.880 -0.001 0.989 

middle-
aged / 
young 

-0.203 0.696 0.181 0.000 0.150 0.000 

old / 
young -1.619 0.127 0.148 0.019 -0.005 0.922 
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Table 6 

 Pooled Unsrestricted Between-Firm Estimates 

 
Between-firm regressions (NLS), 1986 - 2005 

 
log 

sales 
log 

wagecost 
log 

sumwage 
0.606 0.948 0.953 male, elem, 

middle (0.100) (0.028) (0.036) 
0.507 1.161 1.032 male, elem, old 

(0.116) (0.039) (0.046) 
2.733 1.106 1.015 male, high, young 

(0.281) (0.026) (0.031) 
1.669 1.346 1.390 male, high, 

middle (0.169) (0.029) (0.037) 
1.319 1.600 1.751 male, high, old 

(0.154) (0.037) (0.051) 
1.242 0.797 0.721 female, elem, 

young (0.239) (0.040) (0.046) 
0.767 0.953 0.776 female, elem, 

middle (0.114) (0.028) (0.030) 
0.349 1.077 0.787 female, elem, old 

(0.125) (0.043) (0.046) 
5.217 1.172 0.960 female, high, 

young (0.543) (0.030) (0.032) 
2.631 1.479 1.244 female, high, 

middle (0.269) (0.033) (0.035) 
2.143 1.884 1.546 female, high, old 

(0.269) (0.050) (0.054) 
No. obs 67,928 
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Table 7.a 

 Pooled Unsrestricted Within-Firm Estimates, Firm-Level Wagecost 

 
Within-firm regressions (FD+LP), 1986 - 2005 

  
log 

sales 
log 

wagecost 

gap 
(wage-
prod) 

p-value 
(wage=prod) 

0.879 0.976 male, elem, 
middle (0.046) (0.016) 

0.097 0.030 

0.965 0.991 male, elem, old 
(0.065) (0.022) 

0.026 0.681 

0.992 0.999 male, high, 
young (0.042) (0.014) 

0.006 0.876 

0.975 0.998 male, high, 
middle (0.036) (0.012) 

0.024 0.493 

1.054 1.008 male, high, old 
(0.046) (0.015) 

-0.046 0.301 

0.973 1.011 female, elem, 
young (0.084) (0.029) 

0.038 0.645 

0.964 1.013 female, elem, 
middle (0.052) (0.018) 

0.049 0.338 

0.986 1.018 female, elem, 
old (0.076) (0.026) 

0.033 0.658 

1.022 1.017 female, high, 
young (0.052) (0.017) 

-0.005 0.915 

0.957 1.014 female, high, 
middle (0.040) (0.014) 

0.056 0.144 

1.056 1.001 female, high, 
old (0.059) (0.019) 

-0.055 0.338 

No. obs 40,868 
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Table 7.b 

 Pooled Unsrestricted Within-Firm Estimates, Sum of Individual Wages 

 
 

Within-firm regressions (FD+LP), 1986 - 2005 

 
log 

sales 
log 

sumwage 

gap 
(wage-
prod) 

p-value 
(wage=prod) 

0.879 1.144 male, elem, 
middle (0.046) (0.041) 

0.265 0.000 

0.966 0.960 male, elem, 
old (0.065) (0.049) 

-0.006 0.942 

0.991 1.057 male, high, 
young (0.042) (0.033) 

0.066 0.209 

0.976 1.230 male, high, 
middle (0.036) (0.032) 

0.254 0.000 

1.054 1.220 male, high, 
old (0.046) (0.038) 

0.165 0.005 

0.972 0.858 female, 
elem, 
young 

(0.084) (0.057) 
-0.114 0.254 

0.964 0.905 female, 
elem, 
middle 

(0.052) (0.037) 
-0.058 0.348 

0.988 0.868 female, 
elem, old (0.076) (0.053) 

-0.120 0.188 

1.020 0.755 female, 
high, young (0.052) (0.031) 

-0.265 0.000 

0.956 0.860 female, 
high, 
middle 

(0.040) (0.027) 
-0.096 0.041 

1.055 0.848 female, 
high, old (0.059) (0.039) 

-0.207 0.003 

No. obs 40,868 
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Table 8.a 

Alternative Unrestricted Two Period Between-Firm Results  

 
Between-firm regressions, NLS 

  log sales log wagecost 
  

1992-1999 2000-2005 1992-1999 2000-2005 

0.531 0.401 1.492 1.481 Male, old, 
unskilled (0.044) (0.033) (0.063) (0.050) 

8.195 4.210 3.792 4.009 Male, young, 
skilled (0.902) (0.387) (0.235) (0.165) 

2.459 2.050 2.684 2.868 Male, old, 
skilled (0.210) (0.171) (0.118) (0.104) 

1.812 0.905 1.133 1.005 Female, 
young, 
unskilled 

(0.191) (0.095) (0.071) (0.050) 

0.893 0.529 1.555 1.496 Female, old, 
unskilled (0.073) (0.040) (0.066) (0.049) 

10.235 2.816 4.237 3.186 Female, 
young, skilled (1.245) (0.339) (0.286) (0.155) 

2.555 1.345 3.087 3.658 Female, old, 
skilled (0.262) (0.187) (0.151) (0.151) 
No. obs 35,822 29,123 35,822 29,123 
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Table 8.b 

Alternative Unrestricted Two Period Within-Firm Results  

 
Within-firm regressions, FD 

  log sales log wagecost 
  

1992-1999 2000-2005 1992-1999 2000-2005 

0.933 0.978 0.993 0.984 Male, old, 
unskilled (0.064) (0.050) (0.024) (0.015) 

0.853 1.098 0.975 0.994 Male, young, 
skilled (0.172) (0.105) (0.062) (0.029) 

1.107 1.183 0.973 1.023 Male, old, 
skilled (0.099) (0.089) (0.031) (0.024) 

0.981 1.098 1.007 1.031 Female, 
young, 
unskilled (0.106) (0.077) (0.037) (0.022) 

0.943 1.077 0.999 1.021 Female, old, 
unskilled (0.070) (0.061) (0.026) (0.017) 

1.046 1.223 1.101 1.003 Female, 
young, skilled (0.219) (0.124) (0.076) (0.033) 

1.117 1.169 0.969 1.059 Female, old, 
skilled (0.127) (0.118) (0.040) (0.033) 
No. obs 21,045 19,237 21,045 19,237 
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