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Dávid Csercsik - Balázs Sziklai 

 

 
 
Abstract 
 
The purpose of this paper is to introduce a novel family of games related to congested 

networks. Traffic routing has been extensively analyzed from the non-cooperative aspect.  

A common assumption is that each individual optimizes his route in the network selfishly. 

However looking at the same network from a different scope in some cases we can find 

some actors that are responsible for the majority part of the traffic. From the point of view 

of these actors cooperation is indeed an inherent possibility of the game. Sharing 

information and cooperation with other agents may result in cost savings, and more 

efficient utilization of network capacities. Depending on the goal and employed strategy of 

the agents many possible cooperative games can arise. Our aim is to introduce and analyze 

these wide variety of transferable utility (TU) games. Since the formation of a coalition may 

affect other players costs via the implied flow and the resulting edge load changes in the 

network, externalities may arise, thus the underlying games are given in partition function 

form. 

 

Keywords: Cooperative game theory, Partition function form games, Routing, 

Externalities 
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Forgalomirányítási oligopóliumok 

 

Csercsik Dávid - Sziklai Balázs  
 
 

Összefoglaló 

 

Tanulmányunkban egy új játékosztályt vezetünk be a forgalomirányítási hálózatokon.  

A forgalomirányítási problémákat legtöbbször nem-kooperatív szemszögből vizsgálják. 

Általános feltevés, hogy minden részvevő önző módon optimalizálja az útvonalát a 

hálózaton. 

Ugyanakkor más szemléletet követve olyan szereplőket is azonosíthatunk, akik a forgalom 

jelentős hányadáért felelősek. Az ilyen szereplők számára a kooperáció valódi lehetőségként 

jelentkezik. Az információ megosztása és a forgalom összehangolása költségmegtakarítást és 

a hálózati kapacitások hatékonyabb kihasználását eredményezheti. A részvevők céljától és 

alkalmazott stratégiájától függően többféle kooperatív játékot is definiálhatunk ilyen 

módon. A célunk ezeknek az átruházható hasznosságú (TU) játékoknak az elemzése. Mivel 

egy koalíció megalakulása hatással van a többi játékos költségeire az útvonalak megváltozott 

terhelése miatt, externáliák léphetnek fel. A játékot így partíciós függvény formában írjuk 

fel. 

 

Tárgyszavak: kooperatív játékelmélet, partíciós függvény formájú játék, 

forgalomirányítás, externáliák 

 

JEL kódok: C71, L13, L91 
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AbstratThe purpose of this paper is to introdue a novel family of gamesrelated to ongested networks. Tra� routing has been extensivelyanalyzed from the non-ooperative aspet. A ommon assumptionis that eah individual optimizes his route in the network sel�shly.However looking at the same network from a di�erent sope in someases we an �nd some ators that are responsible for the majoritypart of the tra�. From the point of view of these ators ooperationis indeed an inherent possibility of the game. Sharing informationand ooperation with other agents may result in ost savings, andmore e�ient utilization of network apaities. Depending on the goaland employed strategy of the agents many possible ooperative gamesan arise. Our aim is to introdue and analyze these wide variety oftransferable utility (TU) games. Sine the formation of a oalitionmay a�et other players osts via the implied �ow and the resultingedge load hanges in the network, externalities may arise, thus theunderlying games are given in partition funtion form.Keywords and phrases: Cooperative game theory, Partitionfuntion form games, Routing, ExternalitiesJEL-odes: C71, L13, L91
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1 IntrodutionProblems onerning ongested networks originate traditionally from the�eld of engineering (Altman, Boulognea, El-Azouzi, Jimenez, and L.Wynter,2006). Probably this is the reason why non-ooperative approah is morewide-spread among the researhers of the subjet1. The �rst general model isdue to Wardrop (1952). In this model the network is represented by a graph,while routing tasks are assigned to a subset of nodes and lateny funtionsare de�ned on the edges. Furthermore it is assumed that the tra� an bedivided into in�nitesimally small parts whih therefore an be representedas �ows in the graph. The objetive of these in�nitesimally small piees orindividuals is to minimize the experiened lateny.Many equilibrium notions were introdued to analyze suh ongested net-works (for a omprehensive study see Roughgarden (2005, 2006)). Most ofthe literature fouses on Nash-equilibria and a related onept the so-alledPrie of Anarhy (Feldmann, Gairing, Luking, Monien, and Rode, 2003).In a ongested network Nash-equilibrium (NE) is reahed when no individ-ual an obtain a lower lateny by unilaterally hanging his route. In general,suh a NE need not be unique. The Prie of Anarhy is the ratio of the soialost of the worst and best NE-point. The notion was introdued by Koutsou-pias and Papadimitriou (2009) and quikly beame popular as it suessfullyaptures the possible suboptimality of NE-points. To resolve suh situationsStakelberg routing was introdued (Korilis, Lazar, and Orda, 1997) in whihmodel a ertain ratio of all users are obeying to a entral authority whoseobjetive is to drive the tra� toward an equilibrium point with lower soialost. In partiular there are two types of players a so-alled leader and fol-lowers. The goal is to �nd a strategy for the leader that fores the followersto reat in a way that minimizes the total lateny in the system. For moreon this topi see (Karakostas and Kolliopoulos, 2009).A possible logial extension of the above model is to onsider more thanone leader. In other words there are a few distinguished players that al-together are responsible for the whole tra� in the network. The originalWardrop model is inherently non-ooperative, while a setup where all theplayers are "leaders" is essentially ooperative. The objetive of eah playeris to route his tra� with minimal ost. Furthermore it an be assumed thatooperating players determine their routes by joint design to minimize theiroverall ost. The values of the oalitions are de�ned as the improvement om-pared to the referene ase, when no ooperation appears. As some oalitions1Although the ooperative (non-TU) approah is also often used in the ase of wirelessommuniation networks (Khandani, J.Abounadi, E.Modiano, and L.Zheng, 2007)2



form, routing paths may alter due to the joint optimization proess, whihmay in turn a�et the osts of other players via the modi�ed edge latenies.Sine suh externalities may happen the game is given in partition funtionform (Thrall and Luas, 1963).A senario where multiple navigation systems are routing their lients onthe same tra� network an be onsidered as a possible appliation of thede�ned game theoreti model framework. Novel teleommuniation systemsmay mean an other potential appliation �eld of the proposed approah (Alt-man, Boulognea, El-Azouzi, Jimenez, and L.Wynter, 2006; Khandani, Modi-ano, Abounadi, and Zheng, 2005; Khandani, J.Abounadi, E.Modiano, andL.Zheng, 2007; Devroye, Vu, and Tarokh, 2008)The struture of the paper is as follows. In setion 2 we introdue thenotation used, de�ne the partition funtion form ooperative game on therouting network and summarize the onsidered routing strategies. The mainresults are disussed in setion 3, where we show that the sequene of iterativepreditive strategies of inreasing order may onverge to routing on�gura-tion, whih is a Nash equilibrium (NE), but this onvergene is not alwaysneessary even if a unique NE exists. Furthermore, we and analyze thesuperadditivity and stability properties of the game, and via the reursiveore onept we show total ooperation may not be always bene�ial for theplayers.2 Materials and methods2.1 De�nition of the gameIn this setion we de�ne delivery games and introdue the tra� routing andgame theoreti framework that is needed to analyze suh games. We madean e�ort to keep the notational traditions of both disiple. To make it morelegible we employ the standard that the upper index always refers to someplayer or a oalition and in ase of �ows the lower index is always some edgeor a path.First let us reall some basi notions of ooperative games. A ooperativegame with transferable utility or simply a TU-game is an ordered pair (N, v)onsisting of the player set N = {1, 2, . . . , n} and a harateristi funtion v :
2N → R with v(∅) = 0. The value v(S) is regarded as the worth of oalition
S. The members of S an ahieve this value by ooperating regardless ofhow players outside the oalition reat. In a partition funtion form (PFF)game v(S) depends also on the partition to where S belongs (Thrall andLuas, 1963). Formally a partition funtion form game is a pair (N, V ) where3



V : π → (2N → R) is the partition funtion whih assigns harateristifuntions (v) to eah partition π ∈ Π(N) (where Π(N) denotes the set ofpartitions of N). For S ∈ π, the worth of V (S, π) denotes the amount thatthe players in S an guarantee themselves by ooperating, when the oalition
S is embedded in the partition π.Furthermore we all the pair ω = (x, π) an outome, where π ∈ Π(N) isa partition and x = (x1, . . . , xn) ∈ RN is a payo� vetor satisfying feasibility;∑

i∈(S∈π) x
i ≥ V (S, π) for all S ∈ π. Let us denote the the set of outomesin (N, V ) by Ω(N, V ).Next we de�ne the delivery game, and show how the value of a ertainoalition S embedded in a partition π an be alulated.De�nition 1 A delivery game D = (N,Γ,∆, σ) is a 4-tuple onsisting of aplayer set N , a network Γ, a set of delivery tasks ∆ and a routing strategy σ.A network Γ is a two-tuple (G, l), represented by a direted graph G(V,E),and a set of edge lateny funtions l = {le|e ∈ E}. A delivery task τ =

(r, s, t) ∈ R+ × V × V is desribed by a quantity and two nodes (a soureand sink respetively). To eah player j ∈ N kj delivery tasks are assigned
τ j = ∪kj

i=1{(r
j
i , s

j
i , t

j
i )}.Aording to an atual strategy σ ∈ Σ (where Σ is the set of all thepossible pure routing strategies) all players determine the route for theirdelivery for eah of their tasks. Cooperating players determine their deliveryroutes by joint design in order to minimize their overall ost, taking intoaount the loads on the edges generated by the deliveries of all playerspartiipating in the oalition. The set of all distint paths from sji to tjiis denoted by Pj

i . Then Pj def
= ∪kj

i=1P
j
i and P

def
= ∪j∈N

(
Pj

). Therefore Pontains all the possible routes between soures and sinks. A tra� �ow is afuntion f : P → R≥0. The �ow of player j on edge e is f j
e =

∑
P∈Pj :e∈P fP ,while the �ow of oalition S on edge e is fS

e =
∑

j∈S f
j
e (for onvenienesake instead of fN

e we write shortly fe). We denote by fS the set of �owsof oalition S, formally fS = {fP : P ∈ Pj for some j ∈ S}. We say that
fS is a feasible solution for oalition S i� ∑

P∈P
j
i
fP = rji for all j ∈ S and

i ∈ {1, 2, . . . , kj}. The set of feasible solutions is denoted by F. The loadof edge e with respet to agent j is the tra� that goes through the edgenot ounting f j
e . We denote this by λj

e, formally λj
e =

∑
k 6=j f

k
e = fe − f j

e .Similarly λS
e =

∑
k/∈S f

k
e = fe− fS

e . The expeted load of edge e with respetto oalition S is the �ow that goes through e not ounting fS
e aording tothe urrent knowledge of S (whih depends on the oalition struture and

σ). We denote this by λ̂S
e . 4



It is ommonly aepted to make some onstrains on the lateny funtion,suh as non-negativity, di�erentiability and non-dereasingness. We will onlyassume non-negativity thus le : R≥0 → R≥0.The di�erene between a delivery game and the analogue non-ooperativerouting problem is that players are allowed to form oalitions. Tehnially aoalition is treated as a new player who inherits the delivery tasks from itsmembers. The expeted ost of a oalition S is
cexp(D,π)(S) =

∑

e∈E

le(λ̂
S
e + fS

e ) · f
S
e . (1)Note that the value of (1) depends on the routing strategy the playersuse and the partition π embedding S. The resulting ost of the oalition Srelated to D(N,Γ,∆, σ) is

c(D,π)(S) =
∑

e∈E

le(fe) · f
S
e (2)where fe is determined by omputing argminfS∈F c

exp
(D,π)(S) for every S ∈ π.In other words eah oalition in a given partition determines its routingby assessing how muh tra� will appear on ertain edges of the network.However the atual ost c(D,π)(S) indued this way an be quite di�erentthan the expeted ost.The harateristi funtions, based on the ost of a oalition are de�nedthen as follows. The value of a oalition S in a partition π is

v(D,π)(S) =
∑

j∈S

c(D,π0)(j)− c(D,π)(S) (3)where π0 is the referene, all singleton partition. In other words, the value ofa oalition in a ertain partition is the di�erene between the total routingost of its partiipants and the overall ost of its members in the all singletonpartition. We will see that the players do not always bene�t by forming aoalition, as a result v an be negative.Finally the partition funtion related to the delivery game D is the fun-tion VD(π) that assigns to eah partition π ∈ Π(N) the harateristi funtion
v(D,π)(S). To simplify the notation, we omit the lower index (D,π) in the aseof the ost, expeted ost and harateristi funtions from now on.2.2 Routing strategiesPlayers and oalitions may route their delivery aording to di�erent possiblestrategies. These are shortly desribed below, and demonstrated in setion5



3. The expression 'routing strategy' is interpreted in a wide sense, inludinginformation and beliefs about other players. The zero order strategy assumesthat the players have no information about eah other while in other asesthe delivery tasks are ommon knowledge. The strategies presented here arepure in the sense that players may route their deliveries in several di�erentpaths in the same time but they do it with probability 1.2.2.1 Zero order strategyThis "dummy" strategy assumes that all oalitions neglet the ativity ofothers, and route their deliveries in a way, whih is optimal when no othertra� appears on the network. This strategy assumes that non-ooperatingplayers/oalitions have no information of eah others routing tasks. In otherwords λ̂S
e = 0 for eah edge e ∈ E and for eah oalition S ∈ N .2.2.2 First order preditive (FOPS) and n-th order preditive(nOPS) strategyWe de�ne the �rst order preditive strategy as follows. Every oalition ex-pets the remaining oalitions to route their deliveries aording to the zeroorder strategy, and minimizes his routing osts aording to this. This strat-egy assumes that the oalitions are aware of the other partiipants deliveryontrats.Formally, let us denote the resulting �ow of edge e in the zero orderrouting by fe(σ0). In this ase λ̂S

e = fe(σ0) − fS
e (σ0). In the seond orderpreditive strategy all oalitions assume that the remaining ones will routetheir delivery aording to the FOPS et.2.2.3 Routing under Nash-equilibriumLet A be an algorithm that omputes a NE for a given routing problem

(N,Γ,∆). Furthermore let σ(A) be the routing strategy that routes thedelivery tasks as in the NE omputed by A. Then D(N,Γ,∆, σ(A)) is adelivery game. The equilibrium strategy of oalition S is denoted by sSσ(A).Note that the strategy of S is naturally equivalent to the set of �ows of S,namely fS.3 ResultsIn this setion we demonstrate the various possibly arising properties of thede�ned game on various networks and examples.6



3.1 Basi properties of preditive strategiesThe preditive tehnique is an elemental way to strategially approah a gametheoretial problem. The most di�ult part is to guess the depth of reasoningof the other players. A fair assumption is that the players think that theygo at least one step further than the others. Here we only analyzed the asewhen the depth of reasoning is the same for all players and oalitions, andevery ator thinks that the other players take one step less in the reasoningproess. Now we state a straightforward but important result.Theorem 2 Let D be a delivery game, π = {S1, S2, . . . , Sk} a partition of Nand let sσn
= (fS1(σn), f

S2(σn) . . . , f
Sk(σn)) denote the n-th order preditivestrategy. If sσn+1

= sσn
then sσm

= sσn
for all m > n furthermore theresulting routing will be a Nash-equilibrium.Proof: A routing strategy s̃ = (f̃S1, f̃S2, . . . , f̃Sk) is a NE if for all S ∈ π

argmin
fS∈F

c(D,π)(S) = argmin
fS∈F

∑

e∈E

le(λ̃e + fS
e ) · f

S
e = f̃S.If the n-th and the n+1-th order preditive strategies oinide, it meansthat fS(σn) = fS(σn+1) for all S ∈ π, thus the expeted and atual load ofany edge e is the same. Formally

λ̂S
e (σn) =

∑

T∈π,T 6=S

fT
e (σn) =

∑

T∈π,T 6=S

fT
e (σn+1) = λ̂S

e (σn+1).It follows that sσm
= sσn

for all m > n. By the de�nition of the hara-teristi funtion
argmin
fS∈F

cσn+1
(S) = argmin

fS∈F

∑

e∈E

le(λ̂
S
e (σn+1) + fS

e )f
S
e =

argmin
fS∈F

∑

e∈E

le(λ̂
S
e (σn) + fS

e )f
S
e = argmin

fS∈F

cexpσn+1
(S) = fS(σn+1).for all S ∈ π, hene it is indeed a NE.We an obtain a useful orollary of Theorem 2 by reinterpreting the play-ers strategy. We an think of fS as a |P| dimensional vetor. The oordinatesof fS orresponds to the �ows of the distint paths between the soures andsinks. In this way it is meaningful to speak about the pointwise onvergeneof fS. 7



Corollary 3.1 Let D be a delivery game with ontinuous lateny funtions.If limn→∞ sσn
= (f̃S1 , f̃S2, . . . , f̃Sk) = s̃ where f̃Si ∈ RP for i = 1, 2, . . . , kthen s̃ is a NE.In other words if the �ows of inreasing order preditive strategies areonvergent, they onverge to a NE point.3.2 Externalities and the onvergene of nOPS to NELet us onsider network 1 depited in Fig. 1. We take into aount 3 playersin order to be able to demonstrate the appearing externalities in the game.In this simple example all players have one delivery task, and the nodesorresponding to the sinks and soures are disjoint.
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Figure 1: The basi struture of the network 1, and the possible routing alter-natives of the players. The numbers with and without parentheses quantifysinks and soures respetively. Player 2 an route his delivery of 6 unitsvia two ways (the distribution among the two optional paths is desribedby x1), while player 3 an route his delivery of 6 units via three ways (thedistribution among the three optional paths is desribed by x2 and x3)Let us suppose the following delivery tasks: τ 1 = (3, a, d), τ 2 = (6, b, f),
τ 3 = (3, c, e). Player one has no hoie (|P1| = 1), player 2 has two possibleoptions (|P1| = 2), and thus has one deision variable x1, whih desribes theproportion regarding the distribution of his delivery among the two availablepaths. Player 3 has 3 available paths (|P3| = 3), thus he has two deisionvariables (x2 and x3). 8



The detailed alulations of this example an be found in Appendix A.The resulting partition funtion in the ase of zero order strategy is summa-rized in Table 1. partition (π) values of oalitions (v(S)){1},{2},{3} 0,0,0{1,2},{3} 2.625, -0.75{1,3},{2} 1.8437, 0.1875{1},{2,3} 0.75, 7.125{1,2,3} 12.375Table 1: The resulting partition funtion of network 1 in the ase zero orderstrategy.Table 1 learly demonstrates the emergene of both positive and negativeexternalities in the ase of zero order strategy. As oalitions {1} and {2}merge, it implies a negative externality on player 3, while in ontrast themerging of oalitions {1} and {3} or {2} and {3} is bene�ial for the playernot inluded in the ooperation (player 2 and 1 respetively).3.2.1 The onvergene of nOPS to Nash EquilibriumAfter the alulation of the FOPS, we are able to analyze the higher orderstrategies in the ase of various oalition strutures. Tables 2 and 3 summa-rizes, how the resulting routing variables, and ost of the oalitions hange,while onseutively applying higher order strategies.Partition {1}, {2}, {3} {1, 2},{3} {1, 3},{2}StrategyZero order1 (FOPS)2345
x1 x2 x33.5 1.5 1.254 2.5 0.54.13 2.63 0.384.16 2.66 0.344.16 2.66 0.344.17 2.67 0.33

x1 x2 x34.25 1.5 1.254.75 2.5 0.54.86 2.81 0.194.95 2.84 0.164.96 2.86 0.144.96 2.67 0.33
x1 x2 x34 1.63 1.384 2.5 0.54.13 2.63 0.384.16 2.66 0.344.16 2.66 0.344.17 2.67 0.33Table 2: The evolution of routing variables [x1, x2, x3] of network 1 towardsNEs as the order of strategies inreased.Let us note that the resulting NE oinides in the ase of the all-singletonpartiton and {1, 3}{2}. 9



Partition {1}, {2}, {3} {1, 2},{3} {1, 3},{2}StrategyZero order1 (FOPS)2345
c1 c2 c317.25 42 12.6215 38 10.2514.63 37.45 10.2714.53 37.32 10.2714.51 37.29 10.2814.5 37.28 10.28

c{1,2} c356.63 13.3851.5 10.6349.93 10.4549.78 10.4649.68 10.4649.6 10.46
c{1,3} c228.03 41.8125.25 3824.9 37.4524.8 37.3224.79 37.2924.78 37.28Table 3: The evolution of resulting osts of the oalitions in network 1 towardsNEs as the order of strategies inreased.The partition {1}, {2}, {3} pratially reahes NE in the 5th iteration(ε < 10−4), while partitions {1, 2}, {3} and {1, 3}, {2} reah it around the7th. The partition {1}, {2, 3} is not of interest, beause player 1 has nodeision variables, in this ase all nOPS with n>1 will be the same as theFOPS. The routing in the ase of the grand oalition is the same in all ases(onsider eg. π = {1, 2, 3}) assuming zero order strategy.As we sill see in the next setion 3.3, the FOPS, SOPS, nOPS sequeneof strategies is not neessary onvergent. Furthermore, as we will show, aNE may exist in a game with divergent nOPS.3.3 Divergent nOPSIn this setion we demonstrate on the widely used Pigou network (Pigou,1920) that the sequene of the inreasing order strategies is not neessaryonvergent even if a unique NE exists in the game.3.3.1 Routing under Nash-equilibrium on Pigou's graphLet ΓP be the well-known example of Pigou i.e. a graph with two paralleledges (u and w) onneting two nodes (s and t). On the so alled upperedge u the lateny is onstant 1, on the lower edge w the lateny is propor-tional to the tra� (see Fig. 2). Furthermore let N = {1, 2, . . . , n} be theset of players with delivery tasks τ j = (rj, s, t) i.e. player j has to route

rj amount of tra� from s to t. Let A be an algorithm that omputes aNash-equilibrium in ΓP and let σ(A) be the orresponding routing strategy.Therefore D(ΓP , N,∆, σ(A)) is a well de�ned delivery game.Note, that the lateny ost of player j is
c(j) = rj − f j

w + f j
w · fw = rj + (λj

w − 1) · f j
w + (f j

w)
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s t

1

xFigure 2: Network 2: Pigou's graph.As rj is onstant c(j) is uniquely determined by how muh the playersroute on the lower edge. Note that σ(A) = (f 1
w, f

2
w, . . . , f

n
w) is a NE point ifno player j ∈ N an obtain smaller lateny ost by altering his strategy.Theorem 3 If rj ≥ 1

n+1
for any player j ∈ N , where n = |N | then there is aunique Nash-equilibrium point in D(ΓP , N,∆, σ(A)), namely where fw = k

k+1and fS
w = 1

k+1
for any S ∈ π, where k = |π|.Proof: It is enough to prove for the singleton partition. For other partitionsthe theorem follows from the fat that eah oalition an be onsidered as aseparate player and if rj ≥ 1

n+1
for all j ∈ N then rS =

∑
j∈S r

j ≥ 1
n+1

forall S ∈ π.Suppose players follow the same strategy. Then eah player j ∈ N routes
rj − x amount of tra� on the upper and x amount on the lower edge.This is a Nash-equilibrium point if for any real number δ ∈ R, suh that
0 ≤ x + δ ≤ rj , if player j routes δ amount of tra� in a di�erent way, hisindividual ost is inreasing. Formally

rj − (x+ δ) + (x+ δ)(n · x+ δ) ≥ rj − x+ (x)(n · x).We an rewrite the above ondition as follows.
δ2 + δ · x · (n+ 1)− δ ≥ 0Whih yields

1− |δ|

n+ 1
≤ x ≤

1 + |δ|

n+ 1for any real number δ. We an onlude that x = 1
n+1

is a Nash-equlibriumstrategy for any number of player n.Now we prove that this is a unique NE point. First suppose that fw < n
n+1

.In partiular let fw = n
n+1

− ǫ1. Then there exists j suh that f j
w = 1

n+1
− ǫ2where ǫ2 along with ǫ1 are some positive real numbers. Let m def

= min(ǫ1, ǫ2).Now inreasing f j
w by m dereases c(j).11



rj − (f j
w +m) + (f j

w +m) · (fw +m) ≤ rj − f j
w + f j

w · fw (4)Whih is equivalent to
(f j

w +m) · (fw +m− 1) ≤ f j
w · (fw − 1).For instane if m = ǫ2

( 1

n+ 1
− ǫ2 +m

)
·
( n

n+ 1
− ǫ1 +m− 1

)
≤

( 1

n + 1
− ǫ2

)
·
( n

n+ 1
− ǫ1 − 1

)

( 1

n + 1

)
·
( n

n + 1
− ǫ1 + ǫ2 − 1

)
≤

( 1

n + 1
− ǫ2

)
·
( n

n+ 1
− ǫ1 − 1

)

ǫ2
n+ 1

≤
−n · ǫ2
n + 1

+ ǫ1 · ǫ2 + ǫ2

0 ≤ ǫ1 · ǫ2Similar alulations shows that (4) also holds when m = ǫ1. We leave theproof of the ase fw > n
n+1

to the reader.3.3.2 Routing under nOPS strategies on Pigou's graphNow we show that for any partition π ∈ Π(N) that onsist of at least 3oalition, we an set the delivery tasks in suh way that the nOPS strategiesdo not onverge to the NE point in D(ΓP , N,∆, σ(A)). It is lear fromTheorem 3 that if π is �xed then for every S ∈ π, the zero order strategy is
sS0 =

{
fS
w =

∑
j∈S r

j if
∑

j∈S r
j < 1/2

fS
w = 1/2 otherwise.If the number of player and the delivery tasks are suh that λS

w ≥ 1 forevery S ∈ π then FOPS of every oalition will be to route everything onthe upper edge. Then again the SOPS will be the same as the zero orderstrategy and so on. Therefore nOPS does not neessarily onverge as n goesto in�nity, even when there is a unique Nash-equilibrium point in a given D.
12



3.4 SubadditivityIntuitively one would expet that the delivery game is superadditive. Whena oalition is formed it gains extra information from the new members. Thesum λ̂S
e + fS

e that determines the lateny of the edge e seems to be moreontrollable as S gets larger. However this impression turns out to be wrong.We show two examples of the arising subadditive property for two di�erentstrategies.3.4.1 An example of subadditivity in the ase of zero order strat-egyIn this example we demonstrate the subadditivity property on a symmetrithree player example assuming zero order strategy. In this three player ex-ample the ooperation of any two players implies negative onsequenes forthem and a positive externality for the third player. The explanation for thephenomena is that (assuming zero order strategy in this ase) the routingorresponding to the expeted minimum ost result in a higher overall ost,implied by the other players' ativity.Let us onsider network 3 depited in Fig. 3. τ 1 = (2, a, t), τ 2 = (2, b, t)and τ 3 = (2, c, t).
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Figure 3: The basi struture of the network 3.Coalition struture {i},{j},{k}Beause of the symmetry, eah player will route his delivery distributedequally between the two available paths. This will result in 2 units of tra�on eah line, and a total ost of 8 of eah player.Coalition struture {i,j},{k}It is easy to see that the ooperating players will route their total deliverydistributed equally among the 3 pathways available for them The resulting13



routing eg. in the ase of the oalition struture {1, 2}, {3} will be as depitedin Fig. 4.
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1Figure 4: Routing in the ase of oalition struture {1,2},{3}The resulting ost of the oalition {1, 2} will be c({1, 2}) = 16.88 whih is0.88 units higher than their total ost in singleton on�guration (v({i, j}) =
−0.88). The resulting ost of the third player will be c(3) = 2(1 + 2/3)2 =
5.556 whih implies v({k}) = 2.444Grand oalition In the ase of the grand oalition, the resulting routingand routing osts will be as the same as in the ase of singleton oalitions,whih means that these two oalition on�gurations are the stable partitionsof the game.3.4.2 An Example of Subadditivity assuming Nash routing strat-egyLet us onsider three players with the same delivery task τ 1−3 = (1, s, t) onthe Pigou network. It follows from Theorem 3 that for oalition struture
π0 = {1}{2}{3} at the NE-point every player routes 1

4
amount of tra� onthe lower edge. Therefore eah player has 3

4
· 1 + 1

4
· 3
4
= 0.9375 lateny ost.For oalition strutures π = {i}{j, k} the Nash-equilibrium strategies are dif-ferent as oalition {j, k} ats as one player. Therefore at the NE-point there�ows 2

3
tra� on the lower edge. The ost of oalition {i} is 2

3
·1+ 1

3
· 2
3
= 0.88̇while {j, k} has 5

3
· 1+ 1

3
· 2
3
= 1.88̇ ost. Note that players j and k are worseo� together than if they would route their tra� individually, whih is anexample of subadditivity. If the grand oalition is formed then there goes 1

2tra� on the bottom road. The overall ost is 5
2
· 1 + 1

2
· 1
2
= 2.75. Table 4summarizes the above omputation. 14



partition (π) ost of players (c(j)) values of oalitions (v(S)){i},{j},{k} 0.9375, 0.9375, 0.9375 0,0,0{i,j},{k} 1.8888̇, 0.8888̇ -0.0138, 0.0487{i,j,k} 2.75 0.0625Table 4: Routing osts and oalitional values in the ase of the Pigou example(network 2) assuming Nash routing.3.5 StabilityTo analyze stability and determine a harateristi funtion for a ertainstrategy we use the onept of the reursive ore (Kózy, 2007, 2009), thatallows the remaining, residual players to freely reat and form a ore-stablepartition before the payo� of the deviating oalition is evaluated.First we de�ne the residual game over the set R ( N . Π(N) denotes theset of partitions of N . Assume R = N \ R have formed πR ∈ Π(R). Thenthe residual game (R, Vπ
R
) is the PFF game over the player set R with thepartition funtion given by Vπ

R
(S, πR) = V (S, πR ∪ πR).De�nition 4 (Reursive ore Kózy (2007)) For a single-player gamethe reursive ore is trivially de�ned. Now assume that the ore RC(N, V )has been de�ned for all games with |N | < k players. For an |N |-playergame an outome (x, π) is dominated if there exists a oalition Q formingpartition π′ and an outome (y, π′∪πQ) ∈ Ω(N, V ), suh that yQ > xQ and if

RC(Q, Vπ′) 6= ∅ then (yQ, πQ) ∈ RC(Q, Vπ′). The (reursive) ore RC(N, V )of (N, V ) is the set of undominated outomes.Based on the onept of the Reursive Core, a minimal laim funtionan be de�ned, whih desribes the minimal laim of eah oalition in theorresponding PFF game redued to that oalition. This funtion, termed
vmc in the following, may be applied in the same spirit as a harateristifuntion, sine it assigns a unique value to eah oalition, whih they anseure for themselves if they deviated. The formal de�nition of vmc is asfollows.De�nition 5 Let us onsider the residual game (S̄, VπS

) over the player set
S de�ned by the partition funtion VS(R, πS) = V (R, πS∪S) where R ∈ πS ∈
Π(S). Let us denote the Reursive Core of the residual game by RC(S̄, VS).15



The (pessimisti) minimal laim funtion vmc an be de�ned as
vmc(S) =

{
min∑

i∈S xi{Ω(N, V )|(x, P S) ∈ RC(S̄, VS)} if RC(S̄, VS) 6= ∅
min∑

i∈S xi{Ω(N, V )} if RC(S̄, VS) = ∅where vmc(S) is the minimal laim of oalition S.With the help of the minimal laim funtion, a haraterization of theReursive Core an be given as follows.Lemma 3.2 The Reursive Core RC(N, V ) of the game (N, V ) is a olle-tion of Pareto e�ient outomes (x, π) ∈ Ω(N, V ), suh that there is nooalition S with vmc(S) >
∑

i∈S x
i.3.5.1 The stability of example IAording to the onept of the reursive ore, the minimal laim funtionsregarding the strategies of various order an be determined. The minimallaim funtions in the ase of zero order strategy and FOPS are summarizedin Table 5. Coalition Value{1} 0.75{2} 0.1875{3} -0.75{1,2} 2.625{1,3} 1.8437{2,3} 7.125{1,2,3} 12.375

Coalition Value{1} -0.25{2} 0{3} -0.375{1,2} 1.5{1,3} 0{2,3} 1.875{1,2,3} 4Table 5: Minimal laim funtions derived by the reursive ore method ofExample 1 in the ase of zero order strategy and FOPSWe an depit the evolution of the geometry of the reursive ore as theorder of the applied strategy inreases (see Fig. 5). Although the singletonreferene ase and so the oalitional values and payo�s are di�erent in thease of eah strategy, it an be seen in Fig. 5, that as we inrease the orderof the applied strategy, the geometry of the reursive ore onverges to its�nal shape.3.5.2 Emptiness of the reursive oreIn this subsetion we show two examples, where the reursive ore turns outto be empty. 16



Figure 5: The projetion of the reursive ore in the ase of various strategiesto the plane x3=0. The equation x3 = v({1, 2, 3})−x1−x2 holds in every ase.Let us remember that the ost of the referene ase (all singleton oalitions)aording to whih the values of the oalitions in di�erent partitions aredetermined is di�erent in the ase of eah strategy - that is the reason whythe overall payo� tends to derease.Non-monotone edge lateny funtions In this setion we demonstratethat the reursive ore may be empty if we assume a network with an edgewith non-monotone lateny funtion (depited in Fig.6), and routing tasks
δ1 = (1, a, t), δ2 = (1, b, t), δ3 = (1, c, t).
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In ontrast, if we assume the oalition struture {i,j},{k}, then {i,j} willroute his tra� on the (x − 2)2 edge at the ost of 0  v({i, j}) = 1, whilethe third player is not a�eted (v(k) = 0). In the ase of the grand oalition:
c({1, 2, 3}) = 0.4705  v({1, 2, 3}) = 1.0295. It is easy to see that thisresults in the emptiness of the reursive ore.Non-ontinuous edge lateny funtions Consider the following exam-ple (see Fig.7)2 where N = {1, 2, 3}, players follow zero-order strategy andthe delivery tasks are τ 1 = (1.4, a, t), τ 2 = (1.4, b, t) and τ 3 = (1.4, c, t).
Figure 7: Example network with non-ontinuous edge lateny funtion andresulting routing in the ase of the grand oalition.In the ase of singleton oalition eah player splits his tra� into twoequal parts and sends them on the two possible routes to t. In this way eahedge with non-zero lateny funtion has a lateny ost of 2 (as ⌈1.4⌉ = 2).For partitions π = {i, j}{k}, player i and j route on the jointly used edge1 amount of tra� and send the rest on the other routes. As a result onthe other two edge the tra� is inreased to 1.6 however this hange doesnot a�et the lateny ost of these two edge. Finally in the ase of grandoalition it is not hard to see that the players an send only 1 amount oftra� with a lateny ost of 1 the rest has to be sent for a lateny ost of
2. Therefore the total ost is 7.4. Emptiness of the ore follows from thefat that the ost saving of any two person oalition is the same as the ostsaving of the grand oalition (see Table 6).4 Conlusions and future workIn this artile a new family of PFF form delivery games on routing networkshas been introdued. Various routing strategies have been analyzed, and it2⌈x⌉ denotes the upper integer part of x.18



partition (π) ost of players (c(j)) values of oalitions (v(S)){i},{j},{k} 2.8, 2.8, 2.8 0,0,0{i,j},{k} 4.6, 2.8 1, 0{i,j,k} 7.4 1Table 6: Emptiness of the ore in a network with non-ontinuous edge latenyfuntion.has been shown that the sequene of preditive strategies of inreasing ordermay onverge to a NE routing on�guration, but it an be also divergent.We have shown on the widely known Pigou network that NE routing mayexists in suh games, where the nOPS is divergent. We provided examplesto subadditive senarios in various ases, and thus have proven that thede�ned game is not neessary superadditive. Furthermore we analyzed thestability of the game, and the evolution of the geometry of stable payo� setsvia the reursive ore onept. In addition we have shown that assumingnon monotone or non ontinuous lateny funtions the reursive ore may beempty.One straightforward open question is whether the reursive ore may beempty if we suppose ontinuous (stritly) monotone inreasing lateny fun-tions. An other open problem is how to provide neessary and su�ientonditions for the sequene of iterative strategies to onverge to a NE. Wehope that the approah of potential methods desribed in (Nisan, Roughgar-den, Tardos, and Vazirani, 2007) may o�er useful tools for the analysis ofthis problem.5 AknowledgementThe authors aknowledge the ontribution of the members of the Game The-ory Researh Group, László Á. Kózy, Helga Habis and Péter Biró. Thework has been supported by the Hungarian Aademy of Sienes via grantLP-004/2010 and by the Hungarian national found OTKA NF 104706.
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Appendix AIn this appendix the detailed alulations regarding network 1 depited inFig. 1 assuming FOPS strategy an be found, to demonstrate the preditivestrategies.Determination of routing paths aording to the zero or-der strategyDo determine the routing under FOPS strategy, �rst we have to alulate theresulting routing in the ase of zero order strategy. In the ase of singletonoalitions, all players neglet the ativity of other players, and determinetheir routing variables (x) aording to minimize
cexp(∆,π)(S) =

∑

j∈S

(∑

e∈E

le(λ̂S
e + fS

e ) · f
j
e

)
.assuming λ̂S

e = 0 ∀ e ∀ S. In this ase resulting load and latenies of thenetwork will be as depited in Fig. 8, and listed in Table 2. The routingvariables x uniquely determine the edge �ows fS
e .
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Figure 8: Resulting routing loads, and edge latenies assuming zero orderstrategy and singleton oalitions.The resulting total delivery osts of the oalitions (whih are equal toplayers in this ase) an be alulated as (in order to simplify the notations,
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we omit the lower index (∆,π):
c(1) = (3 + (6− x1) + (3− x2 − x3))3

c(2) = (x1 + x3)x1 + 2(6 − x1) + (6− x1 + 3− x2 − x3 + 3)(6− x1) + 6

c(3) = (0.5 + x2)x2 + (3− x2) + 2(3− x2 − x3) + (x1 + x3)x3

+((3− x2 − x3) + (6− x1) + 3)(3 − x2 − x3) (5)In the above ase the delivery osts will be as follows. c(1) = 17.25,
c(2) = 42, c(3) = 12.625, as listed in Table 3. As it an be seen, the zeroorder planning strategy (not surprisingly) signi�antly underestimates therouting osts.Other oalition strutures In the ase of other partitions, the alula-tions are similar. Eah oalition optimizes the routing variables orrespond-ing to the partiipating players, taking into aount the resulting load theoalition puts on the network. The resulting routing variables and osts arelisted in tables 2 and 3.Determination of routing paths aording to the �rst or-der preditive strategy (FOPS)
π = {1}, {2}, {3}The route planning of player 1 is still trivial (his expeted ost is 8.25 in thisase).Player 2 will assume that player 1 and player 3 will route their deliveryaording to the zero order strategy. This will result in the minimization ofthe value of c(2) (see Eq. 5) assuming [x2 x3] = [1.5 1.25] (cexp({2}) =
c(2)|[x2 x3]=[1.5 1.25]) this implies x1 = 4.Aording to the zero order routing of players 1 and 2, the expeted ost ofplayer 3 will be cexp(3) = c(3)|x1=3.5, whih is minimal at [x2 x3] = [2.5 0.5].In this ase the delivery osts will be as follows. c({1}) = 15, c({2}) = 38,and c({3}) = 10.25. As it an bee seen when ompared to the zero orderstrategy, in the ase of singleton oalitions the FOPS in this ase has reduedthe total ost of all players.
π = {1, 2},{3}The expeted ost of the oalition {1, 2} is cexp({1, 2}) = c(1)+c(2)|[x2 x3]=[1.5 1.25]whih is minimal at x1 = 4.75. The routing of player 3 will be as before. Therouting osts will be c(1) = 12.75, c(2) = 38.75 and c(3) = 10.625. Thus the21



bene�t of the ooperation for oalition {1, 2} is 1.5, while the value of player
3 is -0.375 in this partition.
π = {1, 3},{2}In this ase, player 1 and player 3 an not improve their routing, the resultingwill be the same as in the singleton ase. The expeted ost of the oalition
{1, 3} is cexp({1, 3}) = c(1) + c(3)|x1=3.5 whih is minimal at [x2 x3] =
[2.5 0.5]. c({1}) = 15, c({2}) = 38, and c({3}) = 10.25.
π = {1},{2, 3}The expeted ost of the oalition {2, 3} is cexp({2, 3}) = c(2)+ c(3) whih isminimal at [x1 x2 x3] = [4.25 3 0]. c({1}) = 14.25, c({2}) = 35.875, and
c({3}) = 10.5. This implies a bene�t of 1.875 to the oalition {2, 3}.
π = {1, 2, 3} The resulting routing in the ase of the grand oalition is thesame as under zero order strategy. This implies here the bene�t of 4 for thegrand oalition.ReferenesAltman, E., T. Boulognea, R. El-Azouzi, T. Jimenez, andL.Wynter (2006): �A survey on networking games in teleommunia-tions,� Computers & Operations Researh, 33, 286 � 311.Devroye, N., M. Vu, and V. Tarokh (2008): �Cognitive Radio Networks:Highlights of Information Theoreti Limits, Models and Design,� IEEESignal Proessing Magazine, 25, 12�23.Feldmann, R., M. Gairing, T. Luking, B. Monien, and M. Rode(2003): �Sel�sh Routing in Non-ooperative Networks: A Survey,� inMath-ematial Foundations of Computer Siene 2003, ed. by B. Rovan, andP. Vojtás, vol. 2747 of Leture Notes in Computer Siene, pp. 21�45.Springer Berlin / Heidelberg.Karakostas, G., and S. Kolliopoulos (2009): �Stakelberg Strategiesfor Sel�sh Routing in General Multiommodity Networks,� Algorithmia,53, 132 � 153.Khandani, A., J.Abounadi, E.Modiano, and L.Zheng (2007): �Co-operative Routing in Stati Wireless Networks,� IEEE Transations onCommuniations, 55, 2185 � 2192.22
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