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Corvinus University of Budapest

May 25, 2012

Abstract

In this paper shortest path games are considered. The transporta-
tion of a good in a network has costs and benefit too. The problem is
to divide the profit of the transportation among the players. Fragnelli
et al (2000) introduce the class of shortest path games, which coincides
with the class of monotone games. They also give a characterization
of the Shapley value on this class of games.

In this paper we consider further four characterizations of the
Shapley value (Shapley (1953)’s, Young (1985)’s, Chun (1989)’s, and
van den Brink (2001)’s axiomatizations), and conclude that all the
mentioned axiomatizations are valid for shortest path games. Frag-
nelli et al (2000)’s axioms are based on the graph behind the problem,
in this paper we do not consider graph specific axioms, we take TU
axioms only, that is, we consider all shortest path problems and we
take the view of an abstract decision maker who focuses rather on the
abstract problem than on the concrete situations.

Keywords: TU games, Shapley value, Shortest path games, Ax-
iomatizations of the Shapley value

JEL Classification: C71.

∗Miklós Pintér acknowledges the support by the János Bolyai Research Scholarship of
the Hungarian Academy of Sciences and grant OTKA. Anna Radványi would like to thank
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1 Introduction

In this paper we consider the class of shortest path games. There are given
some agents, a good, and a network. The agents own the nodes of the network
and they want to transport the good from certain nodes of the network to
another. The transportation cost depends on the chosen path. The successful
transportation of a good means profit. The problem is not only choosing the
shortest path (a path with minimum cost, that is, with maximum profit), we
also have to divide the profit arising among the players.

Fragnelli et al (2000) introduce the notion of shortest path games and
they prove that the class of such games coincides with the well-known class
of monotone games. They also give a characterization of the Shapley value
(Shapley, 1953) on the class of shortest path games.

In this paper we consider further characterizations of the Shapley value:
Shapley (1953)’s, Young (1985)’s, Chun (1989)’s, and van den Brink (2001)’s
axiomatizations, and explore whether they are valid on the class of shortest
path games. We conclude that all above mentioned characterizations of the
Shapley value are valid on the class of shortest path games.

This paper is different from Fragnelli et al (2000) in two points. First,
Fragnelli et al (2000) gives a new axiomatization of the Shapley value, but we
consider four well-known characterizations. Second, Fragnelli et al (2000)’s
axioms are based on the graph behind the problem, in this paper we do not
consider graph specific axioms, we take TU axioms only. This means that
while Fragnelli et al (2000) consider a fixed graph problem, we consider all
shortest path problems, so we take the view of an abstract decision maker
(e.g. a minister) who focuses rather on the abstract problem, than on the
concrete situations.

The setup of the paper is as follows. In Section 2 we introduce the notions
related to transferable utility (TU) games. In Section 3 we discuss the notion
of shortest path games and Fragnelli et al (2000)’s result on the coincidence
of the classes of shortest path games and monotone games. The last section
is about our results.

2 Preliminaries

Notations : |N | is for the cardinality of set N , P(N) denotes the class of all
subsets of N . {A is for the complement of set A. A ⊂ B means A ⊆ B but
A 6= B. Lin (A) is the smallest linear space which contains A (the linear hull
of A). Similarly, cone (A) is the smallest convex cone which contains A.

Let N 6= ∅, |N | <∞, and v : P(N)→ R be a function such that v(∅) = 0.
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Then N , v are called set of players, and transferable utility cooperative game
(henceforth game) respectively. The class of games with players’ set N is
denoted by GN .

It is easy to verify that GN is isomorphic with R2|N|−1. Henceforth, we
assume that there is a fixed isomorphism1 between the two spaces, and regard
GN and R2|N|−1 as identical.

Let v ∈ GN and i ∈ N , and for each S ⊆ N : let v′i(S) = v(S ∪ {i}) −
v(S). v′i is called player i’s marginal contribution function in game v. Put
it differently, v′i(S) is player i’s marginal contribution to coalition S in game
v. Furthermore, players i, j ∈ N are equivalent in game v, i ∼v j, if for each
S ⊆ N \ {i, j}: v′i(S) = v′j(S).

For a set of players N and coalition T ⊆ N , T 6= ∅, and for each S ⊆ N
let:

uT (S) =

{
1, if T ⊆ S
0 otherwise

.

Then game uT is called unanimity game on coalition T .
The function ψ is a solution on set A ⊆ ΓN =

⋃
T⊆N, T 6=∅

GT , if ∀T ⊆ N ,

T 6= ∅: ψ|GT∩A : GT ∩ A → RT . Therefore in this paper we assume that a
solution is single valued (more precisely: the range of a solution consists of
singleton sets).

Let v ∈ GN , and

piSh(S) =


|S|!(|N \ S| − 1)!

|N |!
, if i /∈ S

0 otherwise
.

Mapping φi(v), the Shapley value (Shapley, 1953) of player i in game v, is
the piSh expected value of v′i. In other words

φi(v) =
∑
S⊆N

v′i(S) piSh(S) . (1)

Furthermore let φ denote the Shapley solution.
In the next definition we list the axioms we use to characterize a solution.

Definition 1. The solution ψ on A ⊆ GN is / satisfies

• Pareto optimal (PO), if for each game v ∈ A:
∑
i∈N

ψi(v) = v(N),

1The fixed isomorphism is the following: we take an arbitrary complete ordering
on N , therefore N = {1, . . . , |N |}, and ∀v ∈ GN : let v = (v({1}), . . . , v({|N |}),
v({1, 2}), . . . , v({|N | − 1, |N |}), . . . , v(N)) ∈ R2|N|−1.
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• null-player property (NP ), if for each game v ∈ A, player i ∈ N :
v′i = 0 implies ψi(v) = 0,

• equal treatment property (ETP ), if for each game v ∈ A, players i, j ∈
N : i ∼v j implies ψi(v) = ψj(v),

• additive (ADD), if for each pair of games v, w ∈ A such that v+w ∈ A:
ψ(v + w) = ψ(v) + ψ(w),

• fairness property (FP ), if for each games v, w ∈ A, players i, j ∈ N
such that v+w ∈ A and i ∼w j: ψi(v+w)−ψi(v) = ψj(v+w)−ψj(v),

• marginality (M), if for each games v, w ∈ A, player i ∈ N : v′i = w′i
implies ψi(v) = ψi(w),

• coalitional strategic equivalence (CSE), if for each game v ∈ A, player
i ∈ N , coalition T ⊆ N , α > 0: i /∈ T and v + αuT ∈ A imply
ψi(v) = ψi(v + αuT ).

A brief interpretation of the above axioms is the following.
Let us consider a network of towns and a set of companies. Let each

town host the site of only one company, in this case we say that the company
owns the city. There is given a good (e.g. a raw material or a finished
product) that some of the towns are producing (called sources) and some
other towns are consuming (called sinks). Hereafter we refer to a series of
towns as path, and we say a path is owned by a group of companies if and
only if all towns of the path are owned by one of these companies. A group
of companies is able to transport the good from a source to a sink if there
exists a path connecting the source to the sink which is owned by the same
group of companies. The delivery of the good from source to sink results in a
fixed value benefit, and a cost depending on the chosen transportation path.
The goal is the transportation of the good through a path with minimal cost
to achieve a maximal profit.

With the interpretation above let us consider the axioms introduced ear-
lier. The axiom PO (commonly referred to as efficiency) requires that the
total value of the grand coalition must be distributed among the players. In
our example PO states that the whole profit from the transportation must
be shared among the companies.

Axiom NP states that if a player’s marginal contribution is zero (i.e. she
has no influence, effect on the given situation) then her share (her value)
must be zero. In the context of our example this means that if a company
does not have an effect on the transportation profit then the company’s share
in the profit must be zero.
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On the class of transferable utility games the axiom ETP is equivalent
with another well-known axiom, symmetry. In our case these axioms require
that if two players have the same effect in the given situation then their
evaluations must be equal. Going back to our example, if two companies are
equivalent with respect to the transportation profit of the good then their
shares from the profit must be equal.

A solution meets axiom ADD if for any two games the result is equal if
we add up the games first and evaluate the players later, or if we evaluate the
players first and add up their evaluations later. Let us modify our example so
that we consider the same network of towns (the same structure of companies)
in two consecutive years. In this case ADD requires that if we want to
evaluate the profit of a company for these two years (that is we sum the
shares of a company up to the two years), then the share must be equal to
the sum of the shares of the company in the two years separately.

FP puts that if we add up two games such that in one of them two
players are equivalent, then the evaluations of the given two players must
change equally from the values they get in the game where they are not
necessarily equivalent to the values they get in the game we get by adding
up the two original games. In our example it means that if the town-network
”absorbs” a new company and we consider the network in two consecutive
years where the ”absorbed” company has the same profit in the years, then
the shares of the ”new” company must change the total profit of the enlarged
networks in the two years (according to the original network) equally. It is
worth noting that the origin of this axiom goes back to Myerson (1977).

Axiom M requires that if a given player in two games produces the same
marginal contributions then that player must be evaluated equally in those
games. Therefore, in our example if we consider profits for two consecutive
years and there is given a company providing the same effect on the profit
of transportation (e.g. it raises the profit with the same amount) in the two
years separately, then the shares in the profit of the company must be equal
in the two years.

CSE can be interpreted as follows: let us assume that some companies
together (coalition T ) are responsible for the change (raise) in the profit of
the transportation. Then a CSE solution evaluates the companies in such a
way that the shares of the companies which are not responsible for the raise
in the profit of the transportation ({T ), from the profit of the transportation
do not change.

It is worth noticing that Chun (1989)’s original definition of CSE is
different from ours. He defined CSE as ”ψ is coalitional strategic equivalence
(CSE), if for each v ∈ A, i ∈ N , T ⊆ N , α ∈ R: i /∈ T and v + αuT ∈ A
imply ψi(v) = ψi(v+αuT ).” However if for some α < 0: v+αuT ∈ A then by
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w = v + αuT we get ”i /∈ T and w + βuT ∈ A imply ψi(w) = ψi(w + βuT )”,
where β = −α > 0. Therefore the two CSE definitions – Chun (1989)’s and
ours – are equivalent.

The following lemma is on some obvious and well-known relations among
the above listed axioms.

Lemma 2. See the following points:

1. If solution ψ is ETP and ADD then it is FP .

2. If solution ψ is M then it is CSE.

Proof. It is left for the reader (for point 1. one can see van den Brink’s
van den Brink (2001) Proposition 2.3. point (i) p. 311.). �

Finally a well known result, we use later intensively.

Proposition 3. The Shapley solution is PO, NP , ETP , ADD, FP , M ,
and CSE.

3 Shortest path games

In this section we introduce the class of shortest path games. Recently,
economists pay more attention to network optimization problems, where the
nodes of the network are owned by the agents. The goal is to find a distri-
bution of the costs or of the profits. So in the case of shortest path games
we have to allocate the profits generated by a coalition of agents who own
the nodes of the network, and who want to transport a good from sources
to sinks in the network at a minimum cost. By defining the class of shortest
path games we rely on Fragnelli et al (2000).

Definition 4. A shortest path problem Σ is a tuple (X,A,L, S, T ), where

• (X,A) is a directed graph without loops, that is, X is a finite set, A is a
subset of X×X such that every a = (x1, x2) ∈ A satisfies that x1 6= x2.
The elements of X and A are called nodes and arcs, respectively. For
each a = (x1, x2) ∈ A we say that x1 and x2 are the ends of a.

• L is a map assigning to each arc a ∈ A a non-negative real number
L(a). L(a) can be interpreted as the length of a.

• S and T are non-empty and disjoint subsets of X. The elements of S
and T are called sources and sinks, respectively.
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A path P in Σ connecting two nodes x0 and xp is a collection of nodes
{x0, . . . , xp} with (xi−1, xi) ∈ A, i = 1, . . . , p. L(P ), the length of the path

P is the sum
p∑
i=1

L(xi−1, xi). We remark that if we write path we mean path

connecting a source and a sink. A path P is shortest path if there exists no
other path P ′ with L(P ′) < L(P ). In a shortest path problem we look for
such shortest paths.

Now we introduce the relating TU games. There is given a shortest path
problem Σ whose nodes are owned by a finite set of players N according to
a map o : X → N , such that o(x) = i means that player i is the owner
of node x. For each path P , o(P ) denotes the set of players who own the
nodes of P . We assume that the transportation of a good from a source
to a sink produces an income g, and the cost of the transportation is given
by the length of the used path. A path P is owned by a coalition S ⊆ N ,
if o(P ) = S, and we assuma that a coalition S can only transport a good
through own paths.

Definition 5. A shortest path cooperative situation σ is a tuple (Σ, N, o, g).
We can associate with σ the TU game vσ given by, for each S ⊆ N :

vσ(S) =

{
g − LS, if S owns a path in Σ and LS < g
0 otherwise

,

where LS is the length of the shortest path owned by S.

Definition 6. A shortest path game vσ is a game associated with a short-
est path cooperative situation σ. Let SPG denote the class of shortest path
games.

See the following example:

Example 7. Let N = {1, 2} be the set of players, the graph in Figure 1
represents the shortest path cooperative situation, s1, s2 are the sources, t1,
t2 are the sink nodes. The numbers on the arcs identify their costs or lengths,
and g = 7. Player 1 owns the nodes s1, x1, and t1, Player 2 owns nodes s2,
x2, and t2, and Table 1 gives the induced shortest path game.

Finally, we present Fragnelli et al (2000)’s result on the relation of the
classes of shortest path games and monotone games.

Definition 8. A v ∈ GN is a monotone game if ∀S, T ∈ N , S ⊆ T implies
v(S) ≤ v(T ).

Theorem 9. SPG = MO, where MO is for the class of monotone games.
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Figure 1: The graph of the shortest path cooperative situation of Example 7

S Shortest path owned by S L(S) v(S)
{1} {s1, x1, t1} 6 1
{2} {s2, x2, t2} 8 0
{1, 2} {s1, x2, t2} ∼ {s2, x1, t1} 5 2

Table 1: The induced shortest path game of Example 7

4 Results

In this section we organize our results into thematic subsections.

4.1 The potential

In this subsection we turn our attention to the potential characterization
(Hart and Mas-Colell, 1989) of the Shapley value on the class of monotone
games.

Definition 10. Let v ∈ GN and T ⊆ N , T 6= ∅. Then the subgame of v on
coalition T , vT ∈ GT , is defined as follows, for each S ⊆ T :

vT (S) = v(S) .

It is clear that vT must be defined only on the subsets of T .

Definition 11. Let A ⊆ ΓN , P : A → R be a function, and for each game
v ∈ GT ∩ A and player i ∈ T : |T | = 1 or vT\{i} ∈ A:

P ′i (v) =

{
P (v), if |T | = 1
P (v)− P (vT\{i}) otherwise

. (2)

Furthermore, if for each game v ∈ GT ∩ A such that either |T | = 1 or for
each player i ∈ T : vT\{i} ∈ A:

8



∑
i∈T

P ′i (v) = v(T ) ,

then P is called potential on set A.

Definition 12. Set A ⊆ ΓN is subgame closed, if for each coalition T ⊆ N
such that |T | > 1, game v ∈ GT ∩ A, and player i ∈ T : vT\{i} ∈ A.

The concept of subgame is meaningful only if the original game has at
least two players. Therefore in the above definition we require that for each
player i: vT\{i} be in the set under consideration only if there are at least
two players in T .

Theorem 13. Let A ⊆ ΓN be a subgame closed set of games. Then function
P on A is a potential, if and only if for each game v ∈ GT ∩ A and player
i ∈ T : P ′i (v) = φi(v).

Proof. See e.g. Peleg and Sudhölter (2003) Theorem 8.4.4. on pp. 216-
217. �

Next we focus on the class of monotone games.

Corollary 14. A function P on the class of monotone games is a potential, if
and only if for each monotone game v ∈ GT and player i ∈ T : P ′i (v) = φi(v),
that is, if and only if P ′i is the Shapley value, i ∈ N .

Proof. It is easy to verify that the class of monotone games is a subgame
closed set of games. Therefore we can apply Theorem 13. �

4.2 Shapley’s characterization

In this subsection we look in Shapley (1953)’s classical characterization. The
next theorem fits into the sequence of more and more enhanced results of
Shapley (1953), Dubey (1982), Peleg and Sudhölter (2003).

Theorem 15. Let A ⊆ GN be such that cone ({uT}T⊆N, T 6=∅) ⊆ A. Then a
solution ψ on A is PO, NP , ETP and ADD if and only if ψ = φ.

Proof. if: See Proposition 3.
only if: Let v ∈ A be a game and ψ a solution on A be PO, NP , ETP

and ADD. If v = 0 then NP implies that ψ(v) = φ(v), therefore w.l.o.g. we
can assume that v 6= 0.

We know that there exist weights {αT}T⊆N, T 6=∅ ⊆ R such that
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v =
∑

T⊆N, T 6=∅

αTuT .

Let Neg = {T : αT < 0}. Then(
−
∑
T∈Neg

αTuT

)
∈ A ,

and  ∑
T∈2N\(Neg∪{∅})

αTuT

 ∈ A .

Furthermore

v +

(
−
∑
T∈Neg

αTuT

)
=

∑
T∈2N\(Neg∪{∅})

αTuT .

Since for each unanimity game uT and α ≥ 0 Axioms PO, NP and ETP
imply ψ(αuT ) = φ(αuT ), and since Axiom ADD:

ψ

(
−
∑
T∈Neg

αTuT

)
= φ

(
−
∑
T∈Neg

αTvT

)
and

ψ

 ∑
T∈2N\(Neg∪{∅})

αTuT

 = φ

 ∑
T∈2N\(Neg∪{∅})

αTuT

 .

Then Proposition 3. and Axiom ADD imply

ψ(v) = φ(v) .

Therefore the proof is complete. �

By Theorem 15 we can conclude on the class of monotone games.

Corollary 16. A solution ψ on the class of monotone games is PO, NP ,
ETP and ADD if and only if ψ = φ, that is, if and only if it is the Shapley
solution.

Proof. The class of monotone games contains the convex cone spanned by
the unanimity games {uT}T⊆N, T 6=∅, hence we can apply Theorem 15. �
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4.3 van den Brink’s axiomatization

In this subsection we discuss van den Brink (2001)’s characterization of the
Shapley value on the class of monotone games.

The next lemma is a slight generalization of van den Brink (2001)’s Propo-
sition 2.4. (point (ii) p. 311).

Lemma 17. Let A ⊆ GN be such that 0 ∈ A, and solution ψ on A be NP
and FP . Then ψ is ETP .

Proof. Let v ∈ A be such that i ∼v j, and w = 0, then NP implies ψ(0) = 0.
From that ψ is FP

ψi(v + w)− ψi(w) = ψj(v + w)− ψj(w) ,

hence ψi(v + w) = ψj(v + w). From FP again

ψi(v + w)− ψi(v) = ψj(v + w)− ψj(v) .

Then ψi(v + w) = ψj(v + w) implies that

ψi(v) = ψj(v) .

�

The next proposition is the key result of this subsection.

Proposition 18. Let ψ, a solution on the convex cone spanned by the una-
nimity games, that is, on cone ({uT}T⊆N, T 6=∅), be PO, NP and FP . Then
ψ is ADD.

Proof. First we show that ψ is uniquely determined on set cone ({uT}T⊆N, T 6=∅).

Let v ∈ cone ({uT}T⊆N, T 6=∅) be a (monotone) game, in other words, v =∑
T⊆N, T 6=∅ αTuT , and let I(v) = {T : αT > 0}. The proof goes by induction

on |I(v)|.
|I(v)| ≤ 1: By NP and Lemma 17 ψ(v) is uniquely determined.
Suppose that for some 1 ≤ k < |I(v)|, for each A ⊆ I(v) such that |A| ≤

k: ψ(
∑

T∈A αTuT ) is well defined. Let C ⊆ I(v) be such that |C| = k + 1,
and z =

∑
T∈C αTuT .

Case 1: There exist uT , uS ∈ C such that there exist i∗, j∗ ∈ N : i∗ ∼uT
j∗, but i∗ �uS j∗. In this case, Axiom FP and that z − αTuT , z − αSuS
∈ cone ({uT}T⊆N, T 6=∅) imply that for each player i ∈ N \ {i∗} such that
i ∼αSuS i∗:

11



ψi∗(z)− ψi∗(z − αSuS) = ψi(z)− ψi(z − αSuS) , (3)

and for each player j ∈ N \ {j∗} such that j ∼αSuS j∗:

ψj∗(z)− ψj∗(z − αSuS) = ψj(z)− ψj(z − αSuS) , (4)

and

ψi∗(z)− ψi∗(z − αTuT ) = ψj∗(z)− ψj∗(z − αTuT ) . (5)

Moreover, PO implies that ∑
i∈N

ψi(z) = z(N) . (6)

From the induction hypothesis the system of linear equations (3), (4), (5),
(6) consists of |N | variables (ψi(z), i ∈ N), |N | equations, and it has a unique
solution. Therefore ψ(z) is well-defined.

Case 2: z = αTuT + αSuS such that S = N \ T . Then z = m(uT +
uS) + (αT −m)uT + (αS −m)uT , where m = min{αT , αS}. W.l.o.g. we can
assume that m = αT . Then by i ∼m(uT+uS) j, ψ((αS −m)uS) is well-defined
(induction hypothesis) and Axiom PO: ψ(z) is well-defined.

To sum up, ψ is well-defined on cone ({uT}T⊆N, T 6=∅). Then Proposition
3 implies that ψ is ADD on cone ({uT}T⊆N, T 6=∅). �

The following theorem, which generalizes van den Brink (2001)’s Theorem
2.5. (pp. 311–315.), is the main result of this subsection.

Theorem 19. A solution ψ on the class of monotone games is PO, NP and
FP if and only if ψ = φ, that is, if and only if it is the Shapley solution.

Proof. if: See Proposition 3.
only if: From Theorem 15 and Proposition 18 on cone ({uT}T⊆N, T 6=∅)

ψ = φ. Let v =
∑

T⊆N, T 6=∅ αTuT be a monotone game and w = (α +
1)
∑

T⊆N, T 6=∅ uT , where α = max{−minT αT , 0}.
Then v + w ∈ cone ({uT}T⊆N, T 6=∅), for each players i, j ∈ N : i ∼w j,

so Axioms PO and FP imply that ψ(v) is well-defined. Then we can apply
Proposition 3. �
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4.4 Chun’s and Young’s approaches

In this subsection Chun (1989)’s and Young (1985)’s approaches are dis-
cussed. In the case of Young (1985)’s axiomatization we only refer to an
external result, in the case of Chun (1989)’s we connect it to Young (1985)’s
characterization.

The next result is from Pintér (2011).

Proposition 20. A solution ψ on the class of monotone games is PO, ETP
and M if and only if ψ = φ, that is, if and only if it is the Shapley solution.

In the game theory literature there is some confusion about the relation
of Chun (1989)’s and Young (1985)’s characterizations. van den Brink (2007)
suggests that CSE is equivalent to M . However, that argument is not true,
e.g. on the class of assignment games this does not hold.

Unfortunately, the class of monotone games does not bring to surface the
difference between Axioms M and CSE. The next lemma is about this.

Lemma 21. On the class of monotone games Axioms M and CSE are
equivalent.

Proof. CSE ⇒M : Let monotone games v, w and player i ∈ N be such that
v′i = w′i. It is easy to verify that (v − w)′i = 0, v − w =

∑
T⊆N, T 6=∅ αTuT ,

and for each T ⊆ N , T 6= ∅: if i ∈ T , then αT = 0. Therefore, v =
w +

∑
T⊆N\{i},T 6=∅ αTuT .

Let T+ = {T ⊆ N | αT > 0}. Then from that for each monotone
game z, α > 0, and unanimity game uT : z + αuT is a monotone game, we
get w +

∑
T∈T+ αTuT is a monotone game, and w′i = (w +

∑
T∈T+ αTuT )′i.

Furthermore, from CSE: ψi(w) = ψi(w +
∑

T∈T+ αTuT ).
Moreover, from that for each monotone game z, α > 0, and unanimity

game uT : z + αuT is a monotone game, we get v +
∑

T /∈T+ −αTuT is a
monotone game, and v′i = (v +

∑
T /∈T+ −αTuT )′i. Furthermore, CSE implies

that: ψi(v) = ψi(v +
∑

T /∈T+ −αTuT ).
Then w +

∑
T∈T+ αTuT = v +

∑
T /∈T+ −αTuT , therefore

ψi(w) = ψi

(
w +

∑
T∈T+

αTuT

)
= ψi

(
v +

∑
T /∈T+

−αTuT

)
= ψi(v) .

M ⇒ CSE: See Lemma 2. �

Therefore:

Corollary 22. A solution ψ on the class of monotone games is PO, ETP
and CSE if and only if ψ = φ, that is, if and only if it is the Shapley solution.
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