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Stacionárius konzisztens egyensúlyok által előállított 

koalícióstruktúrák alkotják a rekurzív magot 

 
Kóczy Á. László 

 
 
Összefoglaló 
 
 
Olyan koalíciós játékokat vizsgálunk, amelyekben a koalíciók kifizetése függ a teljes 

koalícióstruktúrától. Egy nonkooperatív, szekvenciális koalícióformációs modellt vezetünk 

be és igazoljuk, hogy az egyensúlyi kimenetek halmaza egybeesik a rekurzív maggal, a mag 

partíciós játékokra alkalmazható általánosításával. A korábbi, kizárólag tökéletesen rekurzív 

kiegyensúlyozott játékokra alkalmazható eredmény kiterjesztése érdekében bevezetjük a 

részjáték-konzisztencia fogalmát, ami a tökéletességet csak a releváns részjátékokban 

vizsgálja, míg a többi részjátékot figyelmen kívül hagyjuk. Az externáliák miatt az elhajlások 

nyereségessége függ a maradék játékosok által létrehozott partíciótól: a magbéli kifizetés-

konfigurációk stabilitását garantálja egyrészt a kizárólag a biztos profitra törekvő játékosok 

borúlátása, másrészt az a feltétel, mely szerint a játékosok stacionárius stratégiájukat egy 

kitalált történelem alapján választják meg és e szerint büntetik a vélt deviánsokat, 

alkalmanként ráhibázva a valódi történelemre. 
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Stationary consistent equilibrium coalition

structures constitute the recursive core∗

László Á. Kóczy†

Abstract

We study coalitional games where the coalitional payoffs depend

on the entire coalition structure. We introduce a noncooperative, se-

quential coalition formation model and show that the set of equilib-

rium outcomes coincides with the recursive core, a generalisation of

the core to such games. In order to extend past results limited to

totally recursive-balanced partition function form games we introduce

subgame-consistency that requires perfectness in relevant subgames

only, while some unreached subgames are ignored. Due to the exter-

nalities, the profitability of deviations depends on the partition formed

by the remaining players: the stability of core payoff configurations is

ensured by a combination of the pessimism of players going for cer-

tain profits only and the assumption that players base their stationary
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strategies on a made-up history punishing some of the possible devi-

ators – and getting this sometimes right.

Subject classification: C71, C72

Keywords and phrases: partition function, externalities, imple-

mentation, recursive core, stationary perfect equilibrium, time consis-

tent equilibrium

1 Introduction

Throughout its history the theory of coalitional games has mostly focussed

on the study of games with orthogonal coalitions, that is, coalitions, which

can be studied independently of each other. The most obvious example is the

commonest form of a TU-game with a characteristic function that assigns a

payoff to a coalition disregarding other players and coalitions. When we look

at the usual interpretations of coalitions, be those trading blocks (Yi, 1996),

trusts (Bloch, 1995) or international environmental agreements (Funaki and

Yamato, 1999; Eyckmans and Tulkens, 2003), the orthogonality assumption

is difficult to maintain; we believe it is the exception rather than the rule

that coalitions can be studied independently of each other.

Since the seminal paper of Thrall and Lucas (1963) introducing the par-

tition function form numerous cooperative approaches and solution concepts

have been proposed to solve games with externalities, but in the absence

of an implementation by non-cooperative equilibria these remain interest-

ing heuristics (Chander and Tulkens, 1995; Ray and Vohra, 1997; Hyndman

and Ray, 2007). For games with orthogonal coalitions the implementation

of cooperative solution concepts, such as the core has an extensive literature

(Chatterjee et al., 1993; Lagunoff, 1994; Perry and Reny, 1994), but these

results do not directly generalise to games with externalities. In this do-
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main Huang and Sjöström (2006) and Kóczy (2009) have provided partial

results that are limited to games with non-empty cores in all subgames, or,

in terms of sequential coalition formation games: to games with stationary

perfect equilibria. It turns out that perfectness is a very demanding condition

and the implementation might fail even for simple TU games. We therefore

introduce a generalisation, subgame-consistency, and show that the set of

partitions formed under the resulting equilibria coincides with the recursive

core.

Subgame-consistency is a weaker concept than subgame-perfectness, but

more demanding than time-consistency (Kydland and Prescott, 1977). While

subgame-perfectness requires all subgames to be perfect, time-consistency

insists only on the consistency of playing the equilibrium. Subgame con-

sistency insists on the perfectness of most subgames, only ignoring sub-

games that are not relevant for studying the stability of the equilibrium

play. Subgame-perfect equilibria are therefore also subgame-consistent and

subgame-consistent equilibria are also time-consistent. Moreover station-

ary perfect equilibria are stationary consistent. For more on the relation

of subgame-perfect and time-consistent strategies see Fershtman (1989) and

Asilis (1995).

The structure of the paper is as follows. After this introduction a long

second section follows introducing both the cooperative and noncooperative

theories to solve games in partition function form, we introduce the notation

and simple terminology we are going to use. We present the cooperative so-

lution, namely the recursive core and similarly the noncooperative coalition

formation game and its equilibria. A novel equilibrium concept, subgame

consistency and the corresponding notion of relevant subgame are also intro-

duced here. We state and prove our main result in the third section. The
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paper ends with a brief conclusion.

2 Preliminaries

Let N denote the set of players. Subsets are called coalitions. A partition

S of S is a splitting of S into disjoint coalitions. Π(S) denotes the set of

partitions of S. In general we use capital and calligraphic letters to denote

a set and its partition (the set of players N being an exception), indexed

capital letters are elements of the partition. We write i ∈ S if there exists Sk

such that i ∈ Sk ∈ S and if i ∈ S we write S(i) for the coalition embedded

in S containing i.

The game (N, V ) is given by a player set N and a partition function

(Thrall and Lucas, 1963) V : Π(N) → (2N → R), where V (Si,S) denotes

the payoff for coalition Si embedded in partition S. For vectors x, y ∈ RN

we write xS for the restriction to the set S and xS > yS if xi ≥ yi for all

i ∈ S ⊂ N and there exists j ∈ S such that xj > yj.

Due to the externalities in the partition function form game the standard

solution concepts do not work; we consider outcomes instead of imputations

and the recursive core (Kóczy, 2007), a generalisation of the core, as the

solution concept.

The pair ω = (x,P) consisting of a payoff vector x ∈ RN and a partition

P ∈ Π(N) is a payoff configuration (or outcome) if
∑

i∈S xi = V (Pi,P) for

all Pi ∈ P . The set of outcomes of game (N, V ) is denoted Ω(N, V ).

Let S ( N and S the partition of S = N \ S. Then the residual game

S, V S is the partition function game played over S such that V S(Si,S) =

V (Si,S ∪ S) for all Si ⊆ S and S ∈ Π(S).

Definition 1 (Recursive core (Kóczy, 2007)). For a single-player game the
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recursive core is trivially defined. Now assume that the core C(N, V ) has

been defined for all games with |N | < k players. Then for an |N |-player

game an outcome (x,P) is dominated if there exists a coalition Q forming

partition Q and an outcome (y,Q∪Q) ∈ Ω(N, V ) such that yQ > xQ and if

C(Q, V Q) 6= ∅ then (yQ,Q) ∈ C(Q, V Q). The core C(N, V ) of (N, V ) is the

set of undominated outcomes.

Huang and Sjöström’s (2003) r-core coincides on a broad class of games

that does not, however include the standard TU-games without externali-

ties. Ray’s (2007) standard equilibrium, defined for for symmetric partition

function form games has a similar recursive structure. For an interpretation

and the discussion of the properties of the recursive core see Kóczy (2007,

2009); Huang and Sjöström (2010).

3 Sequential coalition formation

The sequential coalition formation game we define is similar to Bloch’s (1996)

and Perry and Reny’s (1994). First a player proposes the formation of some

coalitions. The offer specifies not only who should be the members of these

coalitions, but also how the coalitional payoffs will be shared. If all involved

players accept the offer, the coalitions form and leave the game. When the

offer is rejected, a new proposal is made and so on, until all players exit.

3.1 The game

Consider a game (N, V ) with a player set N and partition function V . Time

t is continuous, but we assume that there is always a open time interval

between two actions: there is time to respond. Let Qt ⊆ N denote those

who have already quit the game by time t, forming partition Qt. Player i
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can make proposals

P t
i =

(P t, wt)

∣∣∣∣∣∣P t ∈ Π(P t), P t ⊆ Qt, P t 3 i, wt ∈ RP t

,∀P t
k ∈ P t

∑
j∈P t

k

wtj = 1


the current proposer is it making the proposal pt = (P t, wt) to the players

in P t, already accepted by the players in At ⊆ P t (we assume it ∈ At) have

already accepted the proposal. At t a player i can

1. accept the proposal pt if i ∈ P t,

2. make a new proposal, or

3. do nothing.

The strategy σi of a player i specifies a complete protocol of actions for all

times and contingencies during the game and σti the action at t. Let σ denote

the strategy profile collecting the strategies of all players.

A state st is a snapshot of the game and is given by a tuple (Qt, it, pt, At).

History h is a complete record of actions: we only need a small part of this

information. Technically let t1, t2, ... be points in time such that stk = st 6=

stk+1 for all tk < t < tk+1 . Then h = {stk}k. Let ht be a truncation of

history up to time t. There is a one-to-one correspondence between history

truncations and decision nodes in the game tree. We will identify subgames

by truncated histories. Let σ|ht denote the restriction of strategy σ to the

subgame ht.

There is no guarantee that the game ends, that all players quit. We

therefore specify the payoffs for coalitions Qk embedded in an incomplete

partition Q. We take a conservative approach: players only receive their

guaranteed payoff, the lowest value the coalition can obtain in a partition
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embedding the coalition structure of departed players:

V (Qk,Q) =

minP⊃Q V (Qk,P) Qk ∈ Q

0 otherwise.

(3.1)

Given a strategy profile σ the payoff of player i is xi(σ).

3.2 Equilibria

Now that we have specified the available strategies (actions), the resulting

payoffs (incentives) we can focus on the outcomes of the coalition formation

game. We hope to answer two questions simultaneously: (i) which coalitions

will form (ii) how are coalitional payoffs distributed.

Recall that players are conservative and only go for certain profits: If

different beliefs lead to different subsequent actions from the other players,

a deviation may or may not be profitable under all such scenarios.

Definition 2. The strategy profile σ∗ is a subgame-perfect equilibrium if for

all h ∈ H, time t, i ∈ N , strategies σi the corresponding restrictions σ∗|ht

and σi|ht to the subgame at ht we have

xi(σ
∗|ht) ≥ xi(σi|ht , σ∗−i|ht). (3.2)

The set of perfect equilibria may be too inclusive (see Muthoo (1990,

1995); Perry and Reny (1994); Osborne and Rubinstein (1990) for a discus-

sion of folk-theorem-like results) so we focus on stationary strategies.

Definition 3. A strategy σ is stationary if it does not depend on time.

Formally: if for all h and t1, t2 with ht1 = ht2 we have σ|ht1 = σ|ht2 .

Definition 4. A stationary perfect equilibrium σ∗ is a strategy profile that

is both subgame-perfect and stationary.
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For games with nonempty residual cores the set of stationary perfect

equilibrium partitions coincide with the recursive core (Kóczy, 2009). This

equivalence result predicts that games containing empty residual cores do

not have stationary perfect equilibria.

Bloch (1996) presents a 3-player example, where player 1 would like to

form a coalition with 2, 2 with 3, 3 with 1. This game does not have

stationary-perfect equilibria. Since residual games are also partition func-

tion form games, the smallest residual game for which the corresponding

subgame of the sequential game has no stationary strategies has an empty

core. By a sufficiently large payoff for the grand coalition the core of the

original game is nevertheless empty. Perfectness only holds globally, that is,

if the tiniest subgame fails to have stationary perfect equilibria this failure

extends to the entire game. On the other hand, just as the recursive core

may be non-empty even if the game has empty residual cores, with a weaker

concept of perfection we may retain an essentially perfect behaviour in the

corresponding sequential coalition formation games, too.

Time-consistency (Kydland and Prescott, 1977) merely requires the equi-

librium strategy to be consistent or revision-free and is therefore unaffected by

empty cores in other elsewhere. This is a promising direction for weakening

subgame perfectness as most subgames are never reached anyway. Subgame-

consistency, that we introduce below is the aurea mediocritas, the golden

mean: the perfectness/consistency criterion is only required in relevant sub-

games. What is relevant?

Definition 5. For a strategy profile σ a subgame at t is relevant if

1. it is the original game (t = 0),

2. it can be reached via an elementary profitable deviation from σ, or
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3. it is a relevant subgame of a relevant subgame.

Let σ|h denote the truncation of σ to the subgame corresponding to h.

Definition 6. The strategy profile σ∗ is a subgame-consistent equilibrium if

for all relevant subgames ht, i ∈ N , strategies σi the corresponding restric-

tions σ∗|ht and σi|ht to ht we have

xi(σ
∗|ht) ≥ xi(σi|ht , σ∗−i|ht). (3.3)

For an equilibrium strategy profile, this requires checking the equilibrium

path only: Since no profitable deviation exist, other subgames need not be

checked. Were there profitable deviations they would have to be supported

by a strategy that is subgame perfect along that strategy.

Clearly, subgame perfect equilibrium strategies are also subgame-consistent.

3.3 Alternative histories

Consider a game with nonempty recursive-core. For a general implementation

result we want to define an equilibrium strategy profile that produces core

outcomes. In Subsection 3.2 we have solved the issue of empty residual

cores, here we describe and solve another issue. Before we move to the

example let us clarify that in a sequential, noncooperative coalition formation

game players do not “respond” to deviations by punishment, and players will

especially not revert to non quitting the game. Instead, players will have

strategies to the same effect and those are these strategies that we try to

mend to salvage the equilibrium.

We assume that players obtain the payoff x when the equilibrium strategy

is played. Suppose now that players find themselves in an off-equilibrium

state with two deviant coalitions (see Figure 1): A and B. In case A deviates
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Figure 1: Stationary strategies cannot react to different histories.

first A (including B) should stop this deviation producing payoff-vector yA

such that yAA < xA. When B deviates, too, the remaining A ∪B should also

choose an action to get a payoff zB such that zBB < yAB. Consequently B does

not deviate, yA forms which is bad for A, hence A does not deviate and the

equilibrium is preserved.

What if A ∪B think B deviated first? They want response yB, which

A did not comply with thus A must be punished by zA, where yBB < xB

and zAA < yBA . If zAB > yBB and zAA > xA the response does not work. It

seems it is essential for A ∪B to know the correct history: When looking at

the sequential game we must explicitly determine which equilibrium strat-

egy responds to a particular history, which equilibrium strategy can render

the same deviations non-profitable. When looking at stationary strategies,

history is masked from the players, who only see the current state of the

game. At some point players may see a state that is very different from the

equilibrium play. What is the equilibrium that prevents such deviations?
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Figure 2: Stationary decision with possible histories

Although players do not know the history, given the current state s they

can reconstruct one of the possible histories h(s) satisfying sh
t(s) = s for some

t. This history h(s) provides a plausible, but not necessarily true explanation

of the current state. Let H(s) =
{
h
∣∣∃t : sh

t
= s

}
be the set of plausible

histories to the current state s.

Unfortunately in a stationary process these possible histories only pro-

vide a temporary explanation as they get forgotten, too. We assume that h

is arbitrarily regenerated when the partition Qt changes, that is, each time

some players quit the game. It is common knowledge among the remaining

players, who choose their strategies treating h as the true history, but taking

into account that future deviations may generate a new alternative history.

“History” is not preserved, subsequent alternative histories are totally unre-

lated, it may well be that the current state will not have happened at all. Let

H(σ) denote the set of all possible histories happening as σ is played (and

there are no deviations). Finally H(σ, s) ⊆ H(σ) ∩ H(s) denotes the set of
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possible histories passing through s when σ is played after s is reached. Let

us stress that many of the h ∈ H(σ, s) will believe that s did not exist at all,

but at s players are aware of their limited rationality in the future.

The coalitional payoffs are not related to history and are thus unaf-

fected, but what happens to the payoff of the individual players? In the

non-stationary game players can calculate the payoffs by just looking at the

strategies. With stationarity we must take the subsequent updating of the

history into account. The subsequent development of the game therefore

depends on the current state s – in particular, the partition Q – and the

strategy restricted to this subgame. Since we focus on stationary strategies

it is sufficient to say that these strategies are restricted to a subgame s.

Then the subsequent development of history depends on some strategy σ|s
restricted to s. Let x(σ, h) ∈ RN denote the vector of payoffs in case σ is

played along the history h. Then the payoff players can expect is

x(σ, s) = min
h∈H(σ,s)

x(σ, h). (3.4)

Note the pessimism of the players. When uncertain about the subse-

quent development of the game, they assume that the remaining players will

fabricate histories that are the least favourable to them. While subgame per-

fectnes can be formulated with these expectations, too, the resulting equilib-

ria are different in general. Since the additional “information” comes from the

past, the concepts of stationarity and stationary equilibria are not affected,

the stationary equilibria remain the same and the recursive core equivalence

result remains valid. Likewise, subgame consistency can be redefined in this

environment, but we first clarify what is a relevant subgame.

Definition 7. For a strategy profile σ a subgame at ht is relevant if

1. it is the original game (Qht = ∅),
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2. there exists an elementary deviation σ′ producing Q′ such that

xi(σ, s
ht) < xi(σ

′,Q′,∅), (3.5)

3. or it is a relevant subgame of a relevant subgame.

The subgame-consistency is accordingly modified replacing h by an arbi-

trary (compatible) history h(s) in Inequality 3.3 and payoffs are now given

by Equation 3.4 and are conditional on the current s via the different updates

of made-up history.

xi(σ
∗|ht(s), s) ≥ xi(σi|ht(s), σ∗−i|ht(s), s). (3.6)

The condition becomes clear now: it has implications not so much for the

present, but for the reactions of the remaining players.

Let σ be a stationary strategy and σ|s its restriction to a state s.

A stationary consistent equilibrium σ∗ is a strategy profile that is both

subgame-consistent and stationary, that is, if for all relevant subgames cor-

responding to some s we have

xi(σ
∗|s, s) ≥ xi(σi|s, σ∗−i|s, s). (3.7)

We denote the set of stationary consistent equilibria by SCE(N, V ) and

outcomes resulting from playing such equilibrium strategies by Ω∗(N, V ).

4 Results

Theorem 1. Let (N, V ) be a partition function form game. Then its recur-

sive core C(N, V ) coincides with the set Ω∗(N, V ) of outcomes supported by

stationary consistent equilibrium strategy profiles.
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The rest of this section is devoted to the inductive proof of this theorem.

As the proof is long, we break it into a number of propositions and finally

present a summary of these results. The first proposition requires no proof:

Proposition 2. Let ({1} , V ) be a trivial, single-player partition function

form game. Then C({1} , V ) = Ω∗({1} , V ).

Now assume that Theorem 1 holds for all games with less than k players.

In the following we extend it to games with k players. In order to show

Ω∗(N, V ) = C(N, V ), first we show Ω∗(N, V ) ⊆ C(N, V ) then Ω∗(N, V ) ⊇

C(N, V ).

Lemma 3. If Theorem 1 holds for all games with up to k − 1 players,

Ω∗(N, V ) ⊆ C(N, V ) for all k-player games.

Proof. If Ω∗(N, V ) = ∅ the result is trivial, otherwise there exists a SCE

σ producing ω(σ, h) = (x(σ, h),P(σ, h)) ∈ Ω∗(N, V ) for some sequence of

possible histories h ∈ H(σ,∅). In particular, we assume that ω(σ, h) 6∈

C(N, V ) and prove contradiction.

By this assumption there exists a profitable deviation D by some set D

of players. By this we really mean a deviation by a single player i ∈ D that

results in the departure of D, that is, in a state s′ with Qs′ = D, where,

without loss of generality, we assume that the deviation occurs at s when

no other players have yet left the game. The induced subgame has fewer

players so the inductive assumption can be applied. In the sequential game

the deviation at ht is expressed by the strategy profile σ′ = (σi|−ht , σ′i|ht , σ−i)

differing only for i and only in the subgame ht. We discuss three cases.

Case 1. For the strategy profile σ′ the subgame at D is not relevant.

Then for all σ−i there exists i ∈ D and h′ ∈ H(σ′, s′) such that xi(σ
′, h′) <
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xi(σ, h) – thus the deviation cannot be profitable in the cooperative game;

contradiction.

Case 2. The subgame is relevant, the core of the corresponding residual

subgame is empty. Then V (D,D ∪D) >
∑

i∈S xi(σ, h) for all D ∈ Π(D). As

V (D,D ∪D) = min
h′∈H(σ′,D)

∑
i∈S

xi(σ
′, h′),

a player i in D should immediately propose to form D. By subgame con-

sistency all in D will accept. Therefore σ is not a stationary consistent

equilibrium, moreover the outcome ω(σ, h) cannot be supported by other

equilibria either. Contradiction.

Case 3. The induced subgame is relevant and the core of the correspond-

ing residual subgame is not empty. Since σ is a SCE its restriction σ|s to

this relevant subgame s is stationary consistent, too. Moreover the deviation

from σ to form D is not profitable, therefore

xD(σ|s, s) ≥ xD(σ′|s′ , s′) (4.1)

On the other hand, by the inductive assumption,

ω(σ′|s′ , s′) ∈ C(D, V D). (4.2)

This, however, implies that the deviation D is not profitable in the coopera-

tive game; contradiction.

We have discussed all cases, and found the assumptions contradicting.

Therefore ω(σ,H) ∈ C(N, V ).

Punishment strategy Before we move on to our next lemma, we specify a

“response” to each deviation that turns these deviations unprofitable. In the

recursive core a deviation is only profitable if it represents an improvement

in the payoffs for all residual assumptions. In a game (N, V ) the core is
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nonempty if for all outcomes (x,P) ∈ C(N, V ) and for all deviations D there

exists an outcome (yD,D) ∈ Ω(D, V D) such that

1. there exists D1 ∈ D such that
∑

i∈D1
xi ≥ V (D1,D ∪D) and

2. (yD,D) ∈ C(D, V D) if C(D, V D) 6= ∅.

Generally, for a residual game (S, V S) the response to D is denoted as

(xS(D),S(D)).

In the sequential game, primary deviations can be punished, but due to

stationarity, with multiple departed coalitions finding the right punishment

is difficult.

In the following we specify the punishment strategy to a deviation know-

ing that some other coalitions left, too. We assume that Q has already left

the game, but Q̃ ⊆ Q was (or at least Q think it was) the last to exit. In the

partition function form game (Q \ Q̃, V Q\Q̃) the partition Q̃, as a deviation,

defines a residual game (Q, V Q), where the response to Q̃ is (xQ(Q̃),Q(Q̃)).

Lemma 4. If Theorem 1 holds for all games with less than k players, then

Ω∗(N, V ) ⊇ C(N, V ) for all k-player games (N, V ).

Proof. The proof is partly inspired by Bloch’s (1996, Proposition 3.2), and is

by construction. We show that if (x∗,P∗) ∈ C(N, V ) there exists a stationary

consistent strategy profile σ∗ such that for all for all possible histories h ∈

H(σ∗,∅) we have ω(σ∗, h) ∈ C(N, V ).

In the following we define the stationary strategy σ∗i for player i. Due

to stationarity it is sufficient to specify the strategy for each triple (Q, Q̃, p)

consisting of the partition of players who have already quit, the subpartition

consisting of the coalitions that left last according to the current made-up

history and the current proposal p = (T , w). Then the strategy of player i

is given as
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σ∗i (Q, Q̃, T , w) =



accept if xi(σ
∗,Q∪ T ,∅) > xi(σ

∗,Q,∅)(
P∗, x∗

|x∗|

)
if T = Q = ∅(

Q(Q̃),
xQ(Q̃)

|xQ(Q̃)|

)
if T = ∅, but Q 6= ∅

wait otherwise.

(4.3)

In equilibrium P(σ∗) = P∗ and the strategy is stationary by construction

so we only need to verify subgame-consistency. We show this by induction.

As subgame-consistency holds for a trivial game we may assume that it holds

for all games of size less than |N |.

Now consider game (N, V ) and observe that if Q departed to form Q the

subgame is simply a coalition formation game with less players. We discuss

two cases based on the emptiness of the residual core.

1. If the residual core is not empty, the proposed strategy exhibits the

same similarity property: in equilibrium the core partition is proposed and

accepted, while residual cores form off-equilibrium.

The inductive assumption then ensures that the off-equilibrium path is

subgame-consistent so we only need to check whether a deviation Q̃ is ever

accepted. This deviation corresponds to a deviation in the partition function

game. Since (x∗,P∗) ∈ C(N, V ), by the construction of

(
Q(Q̃),

xQ(Q̃)

|xQ(Q̃)|

)
we

know that for some history h(Q) there exists a player in Q̃ for whom the

deviation Q̃ is not profitable. Given the pessimism of the players, this is

sufficient to deter this player from accepting the proposal to deviate.

2. The emptiness of the residual core, by our assumption, implies that

there are no stationary consistent equilibrium strategy profiles. In the ab-

sence of such strategy profiles the strategy σ∗ will be abandoned and so
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the players in Q̃ cannot predict the partition of Q – in this case, by Ex-

pression 3.1, they, individually, expect the worst. As Q̃ only forms if it is

a profitable deviation, that is, only if xi(σ
∗, h) is an improvement for all

h ∈ H(σ∗,Q,∅). Since (x∗,P∗) ∈ C(N, V ) this is not the case. This, implies

that post-deviation subgame is not relevant. Also, the formation of P∗ is un-

affected by possible deviations in this subgame, meeting the first condition

of subgame-consistency.

Proof of Theorem 1. The proof is by induction. The result holds for trivial,

single-player games. Assuming that the result holds for all k−1 player games,

the result for k-player games is a corollary of Lemmata 3 & 4.

5 Conclusion

Theorem 1 holds for arbitrary games in discrete partition function form, but

of course it is most interesting for games where some of the residual cores are

empty. When a proposal is made in a game without externalities the invited

players do not even (need to) consider the residual game and therefore the

emptiness of a residual core is not addressed. Huang and Sjöström (2006)

and Kóczy (2009) focus on games where the residual cores are non-empty,

in fact the r-core (Huang and Sjöström, 2003) is not even defined for games

with empty residual cores. As already pointed out by Kóczy (2007) this is not

only an enormous limitation given the number of conditions such games must

satisfy (one for each residual game), but the definitions/results do not apply

to some games without externalities and so they are not generalisations of the

well-known results for TU-games. The present paper heals this deficiency.

If the concept is a generalisation of the core for TU-games, it is natural

to ask how our game proceeds in the special case when the partition function
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form game at hand is actually a TU-game as it does not have externalities.

In the absence of externalities, there is way to “punish” deviations as their

payoff does not depend on the partition of the remaining players. Since

there are no punishments, any strategy profile resulting in a core outcome

in the remaining game will equally be a punishment strategy and therefore

considering alternative histories does not really have a bite here.

Similarly, the expectation that the residual players will form a residual

core outcome does not influence the decisions of active players: their payoff

will not depend on the coalitions formed in the residual game. Perry and

Reny (1994) study market games (Shapley and Shubik, 1969), which are

totally-balanced. For such games the “residual core” is always non-empty and

therefore i) the game always terminates with all players leaving the game and

ii) there always exist stationary perfect equilibria. For such games subgame

consistency and subgame perfectness coincide and so the two procedures

provide the same implementation.
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