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In this paper we investigate some new applications of Scarf’s Lemma. First, we introduce 

the notion of fractional core for NTU-games, which is always nonempty by the Lemma. 

Stable allocation is a general solution concept for games where both the players and their 

possible cooperations can have capacities. We show that the problem of finding a stable 

allocation, given a finitely generated NTU-game with capacities, is always solvable by a 

variant of Scarf’s Lemma. Then we describe the interpretation of these results for matching 

games. Finally we consider an even more general setting where players’ contributions in a 

joint activity may be different. We show that a stable allocation can be found by the Scarf 

algorithm in this case as well, and we demonstrate the usage of this method for the hospitals 

resident problem with couples. This problem is relevant in many practical applications, such 

as NRMP (National Resident Matching Program). 
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Összefoglaló 

 

A tanulmányban Scarf Lemmájának néhány új alkalmazását vizsgáljuk. Először bevezetjük a 

tört mag fogalmát NTU-játékokra, amely a Lemma alapján mindig nem üres lesz. A stabil 

allokáció egy általános megoldási koncepció abban az esetben, amelyben a játékosoknak és 

lehetséges együttműködéseiknek is adott kapacitásaik vannak. Megmutatjuk, hogy a Scarf 

Lemma egy általánosításának segítségével minden végesen generált kapacitásos NTU-

játékra található stabil allokáció. Ezután interpretáljuk a fenti eredményeket párosításos 

játékokra. Végül egy még általánosabb modellt tekintünk át, amelyben a játékosok 

hozzájárulása egy adott együttműködéshez különböző lehet. Megmutatjuk, hogy a Scarf 

Lemma általánosítása ebben az esetben is elvezet stabil allokációhoz, és a módszer 

használatát a rezidens allokációs probléma házastársas esetén demonstráljuk. Ez a 

probléma több valós alkalmazásban is megjelenik, például az amerikai rezidensek párosító 

programjában (NRMP). 

 

 

 
Tárgyszavak: Scarf Lemma, NTU-játékok, mag, stabil párosítás, stabil allokáció, rezidens 

allokációs probléma, házastársak 
 

 

JEL kódok: C61, C71, C78    



Fractional solutions for capacitated NTU-games,

with applications to stable matchings∗
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Abstract. In this paper we investigate some new applications of Scarf’s Lemma.
First, we introduce the notion of fractional core for NTU-games, which is always
nonempty by the Lemma. Stable allocation is a general solution concept for games
where both the players and their possible cooperations can have capacities. We show
that the problem of finding a stable allocation, given a finitely generated NTU-game
with capacities, is always solvable by a variant of Scarf’s Lemma. Then we describe
the interpretation of these results for matching games. Finally we consider an even
more general setting where players’ contributions in a joint activity may be different.
We show that a stable allocation can be found by the Scarf algorithm in this case as
well, and we demonstrate the usage of this method for the hospitals resident problem
with couples. This problem is relevant in many practical applications, such as NRMP
(National Resident Matching Program).

Keywords: Scarf lemma, core, stable matching, stable allocation,
hospitals residents problem, couples
JEL classification: C61, C71, C78

1 Introduction

Complex social and economic situations can be described as games where the players
may cooperate with each other. Most studies in cooperative game theory focus on the
issue of how the participants form disjoint coalitions, and sometimes also on the way the
members of coalitions share the utilities of their cooperations among themselves (in case
of games with transferable utility). However, in reality, an agent in the market (or any
individual in some social situation) may be involved in more than one cooperation at a
time, moreover, a cooperation may be performed with different intensities. For instance, an
employer can have several employees and their working hours can be different (but within
some reasonable limits). Finally, a cooperation might require different contributions from
different players.

∗A preliminary version of this paper has been presented at COMSOC 2010 [7], and a follow-up paper
is also under preparation [8].

†Supported by by the Hungarian Academy of Sciences under its Momentum Programme (LD-004/2010).
‡The author is a member of the MTA-ELTE Egerváry Research Group. The research was supported

by grant (no. CK 80124) from the National Development Agency of Hungary, based on a source from
the Research and Technology Innovation Fund and the results discussed below are supported by the grant
TÁMOP - 4.2.2.B-10/1–2010-0009.
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Scarf [29] proved that every balanced NTU-game (i.e, cooperative game with non-
transferable utilities) has a nonempty core. His theorem was based on a lemma, which
became known as Scarf’s Lemma, as its importance has been recognised for its own right.

In this paper, we give a new interpretation of the fractional solutions which are obtained
by the Scarf algorithm for different settings. First we consider the original setting of the
Lemma for finitely generated NTU-games, and we describe the meaning of the output in
terms of fractional core. We show the correspondence between this notion and the concept
of fractional stable matchings for hypergraphs. We conclude Section 2 by explaining how
the normality of a hypergraph implies the nonemptiness of the core for the corresponding
NTU-games. In Section 3, we define the stable allocation problem for hypergraphs, which
corresponds to the problem of finding a fractional core for NTU-games where the players
can be involved in more than one coalition and the joint activities can be performed at
different intensity levels (up to some capacity constrains). We show that a variant of the
Scarf Lemma implies the existence of the latter solution as well. In Section 4, we apply
these results for matching games and we derive some well-known theorems in this context.
Then, in Section 5, we consider an even more general setting where the contributions of
the players may differ in an activity, called stable allocation problem with contributions.
We show that an extended Scarf algorithm can find a stable allocation for this case as
well. We illustrate the usage of Scarf algorithm as a heuristic for the hospitals residents
problem (the complete description of this experiment can be found in our follow-up paper
[8]). Finally, in Section 6, we present some important open problems and new research
directions.

Related literature

The paper of Scarf [29] is a seminal paper. However, the fractional solution that is coming
as an output of the Scarf algorithm for any NTU-game has not been studied yet, to the
best of our knowledge. The only paper where its connections to the stable matching
problem has been described is by Aharoni and Fleiner [1]. Besides other results, they
demonstrated how the Scarf Lemma implies the existence of stable half-integral solutions
for the stable roommates problem, a theorem originally proved by Tan [31].

Stable matching problems have been extensively studied in the last half century, since
the paper by Gale and Shapley [16] has been published, by economists (see e.g. [28]),
computer scientists (see e.g. [17]), and other scientists as well.1 The main reason of the
increased attention on this subject is the large number of important practical applications.
Perhaps the earliest centralised matching scheme, where the Gale-Shapley algorithm has
been in operation since 1952, is the US resident allocation program, called NRMP. One
of the special features of this program (and its counterparts in other countries, such as
Scotland [34]) is that couples may submit joint applications for pair of positions. This
feature makes the problem challenging to solve both in theory and practice (see more in
a recent survey on this problem [10]). At the end of our paper we illustrate how the Scarf
algorithm can be used as a heuristic for solving this problem.

We are not aware of any paper on NTU-games where both the players and their co-
operations have capacities, apart from the papers on the stable allocation problem for
matching markets ([3], [2], [6] and [14]). However, there is a closely related paper to ours
on TU-games with overlapping coalitions [13]. In the latter paper the general model in-
troduced is essentially the TU version of our stable allocation problem with contributions,
that we study in Section 5. So our last problem can be seen as the generalisation of their
model for NTU-games.

1The 2012 Nobel-Prize in Economic Sciences has been awarded to Alvin Roth and Lloyd Shapley for
the theory of stable allocations and the practice of market design.
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2 Fractional core - fractional stable matchings

In this section, first we describe Scarf’s Lemma and we give a new interpretation of the
fractional results obtained by the Lemma.

2.1 Definitions, preliminaries

We recall the definition of n-person games with nontransferable utility (NTU-game for
short).

Definition 1 An NTU-game is given by a pair (N,V ), where N = {1, 2, . . . , n} is the set
of players and V is a mapping of a set of feasible utility vectors, a subset V (S) of RS to
each coalition of players, S ⊆ N , such that V (∅) = ∅, and for all S ⊆ N , S ̸= ∅:

a) V (S) is a closed subset of RS

b) V (S) is comprehensive, i.e. if uS ∈ V (S) and ũS ≤ uS then ũS ∈ V (S)

c) The set of vectors in V (S) in which each player in S receives no less than the maximum
that he can obtain by himself is a nonempty, bounded set.

One of the most important solution concepts is the core.

Definition 2 A utility vector uN ∈ V (N) is in the core of the game, if there exists no
coalition S ⊆ N with a feasible utility vector ũS ∈ V (S) such that uNi < ũSi for every
player i ∈ S. Such a coalition is called blocking coalition.

An NTU-game (N,V ) is superadditive if V (S) × V (T ) ⊆ V (S ∪ T ) for every pair of
disjoint coalitions S and T . In what follows, we restrict our attention to superadditive
games.

Partitioning games are special superadditive games. Given a set of basic coalitions
B ⊆ 2N , that contain all singletons (i.e. every single player has the right not to cooperate
with the others), a partitioning game (N,V,B) is defined as follows: if ΠB(S) denotes the
set of partitions of S into basic coalitions, then V (S) can be generated as:

V (S) = {uS ∈ RS |∃π = {B1, B2, . . . , Bk} ∈ ΠB(S) : u
S ∈ V (B1)× V (B2)× · · · × V (Bk)}

This means that uS is a feasible utility vector of S if there exist a partition π of S into
basic coalitions such that each utility vector uS |Bi can be obtained as a feasible utility
vector by basic coalition Bi in π.

Given an NTU-game (N,V ), let U(S) be the set of Pareto optimal utility vectors of
the coalition S, i.e. uS ∈ U(S) if there exists no ũS ∈ V (S), where uS ̸= ũS and uS ≤ ũS .

A utility vector uS ∈ V (S) is separable if there exist a proper partition π of S into
subcoalitions S1, S2, . . . , Sk such that uS |Si is in V (Si) for every Si ∈ π. A utility vector
that is non-separable, Pareto-optimal and in which each player receives no less than the
maximum that he can obtain by himself is called an efficient vector. A coalition S is es-
sential if V (S) contains an efficient utility vector. In other words, a coalition S is essential,
if its members can obtain an efficient utility vector that is not achievable independently
by its subcoalitions. The set of essential coalitions is denoted by E(N,V ).

We say that a coalition S is not relevant if for every utility vector uS ∈ V (S) there
exists a proper subcoalition T ⊂ S such that uS |T is in V (T ). The set of relevant coalitions
is denoted by R(N,V ). The idea behind this notion is that if a non-relevant coalition S
is blocking with a utility vector uS , then one of its subcoalitions, say T1, must be also
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blocking with utility vector uT1 = uS |T1 . Moreover, if T1 is not relevant or u
T1 is separable,

then we can find another coalition T2 ⊂ T1, such that uT2 = uT1 |T2 = uS |T2 , an so on.
Continuing this argument, it is clear that there must be a relevant coalition Ti ⊂ S, that is
blocking with a non-separable vector uTi = uS |Ti . This observation implies the following
Proposition:

Proposition 3 A utility vector uN ∈ V (N) is in the core if and only if it is not blocked
by any relevant coalition with an efficient utility vector.

Obviously, if a coalition is not essential, then it cannot be relevant either. In a par-
titioning game, the set of essential coalitions must be a subset of the basic coalitions by
definition.

Proposition 4 For every partitioning game (N,V,B), R(N,V,B) ⊆ E(N,V,B) ⊆ B
holds.

Scarf [29] observed that the previously introduced notions are purely ordinal in charac-
ter: they are invariant under a continuous monotonic transformation of the utility function
of any individual. Hence, without loss of generality, we may assume that U{i} = {0} for
every singleton, and all the efficient utility vectors are nonnegative. Moreover, the dis-
cussion can be carried out on an abstract level with the outcomes for each individual
represented by arbitrary ordered sets, as we describe this in detail below.

Suppose that in order to obtain a particular non-separable vector uS,k in U(S), the
members of S have to perform a joint activity, say aS,k. Let AS denote the set of activities
that yield efficient utility vectors in U(S). The preference of a player over the possible
activities in which he can be involved is determined by the utilities that he obtains in
these activities. Formally, we suppose that aS,k ≤i a

T,l ⇐⇒ uS,ki ≤ uT,li for any pair of
activities aS,k and aT,l, where i ∈ S and i ∈ T .

Considering an efficient utility vector uN,l of the grandcoalition N , the non-separability
implies that uN,l corresponds to a joint activity aN,l of the entire set of players. Otherwise,
if uN,l is separable, then uN,l can be obtained as a direct sum of independent efficient utility
vectors of essential subcoalitions that form a partition of the grandcoalition. This can be
considered as a set of independent activities of the subcoalitions. An outcome of the game,
denoted by X then can be regarded as a partition π of the players and a set of activities
Aπ performed independently by the coalitions in π, so let X = (π,Aπ). An outcome
X is judged by a player i according to the activity he is involved in, denoted by ai(X).
An outcome is in the core of the game, or in other words, it is stable if there exist no
blocking coalition S and an activity aS,k that is strictly preferred by all of its members,
i.e., aS,k >i ai(X) for every i ∈ S. (This is equivalent to the blocking condition uN,l

i < ũSi ,
if the outcome X corresponds to the utility vector uN,l.)

An NTU-game is finitely generated if for every essential coalition S, U(S) contains a
finite number of vectors. Here, the preference order of a player over the set of activities, in
which he can be involved, can be represented by preference lists. As Scarf observed in [29]
and [30], a general NTU-game can be approximated by a finitely generated NTU-game
(see an illustration in Figure 1). Here, we will not discuss this question in details.

If for every essential coalition S, in a given NTU-game, U(S) contains only one single
vector, uS then an outcome of the game is simply a partition, since each essential coalition
has only one activity to perform. So here, instead of activities, each player has a preference
order over the essential coalitions in which he can be a member. These games are called
(hedonic) coalition formation games (cfg for short) [5] and [11], and an outcome that is
in the core of the game is called a core-partition. The following example illustrates a cfg.

4



uS,1

uS,2

uS,3

uS,4

uS,k

Figure 1: Approximation with finite number of efficient utility vectors.

Example 1.

Suppose that we are given 6 players: A,B,C,D,E and F , and 4 possible basic coalitions
with corresponding joint activities. The first activity, b (bridge) can be played by A,B,C
and D, the second one, p (poker) can be played by C,D and E. Finally, B can play chess
with C (denoted by c1) and D can play chess with F (denoted by c2). The preferences of
the players over the joint activities are as follows.

D

A

B

C

E

F

Activities Participants Players Preference lists
b : {A,B,C,D} B : b c1
p : {C,D,E} C : p b c1
c1 : {B,C} D : b p c2
c2 : {D,F}

Here, {p, {A}, {B}, {F}} is a core-partition, since b is not blocking because C prefers
his present coalition p to b, similarly, c1 is not blocking because C prefers playing poker
with D and E to playing chess with B, and c2 is not blocking because D also prefers
playing poker to playing chess with F . One can easily check that {b, {E}, {F}} is also
a core-partition, but the partition {c1, c2, {A}, {E}} is not in the core, since p and b are
both blocking coalitions.

2.2 Fractional core by Scarf’s Lemma

First, we present Scarf’s Lemma [29] and then we introduce the notion of fractional core.
The following description of the Lemma is due to Aharoni and Fleiner [1] (here [n] denotes
the set of integers 1, 2, . . . , n, and δi,j = 1 if i = j and 0 otherwise).

Theorem 5 (Scarf, 1967) Let n,m be positive integers, and b be a vector in Rn
+. Also

let A = (ai,j), C = (ci,j) be matrices of dimension n × (n + m), satisfying the following
three properties: the first n columns of A form an n × n identity matrix (i.e. ai,j = δi,j
for i, j ∈ [n]), the set {x ∈ Rn+m

+ : Ax = b} is bounded, and ci,i < ci,k < ci,j for any
i ∈ [n], i ̸= j ∈ [n] and k ∈ [n+m] \ [n].
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Then there is a nonnegative vector x in Rn+m
+ such that Ax = b and the columns of

C that correspond to supp(x) form a dominating set, that is, for any column i ∈ [n+m]
there is a row k ∈ [n] of C such that ck,i ≤ ck,j for any j ∈ supp(x).

Let the columns of A and C correspond to the efficient utility vectors (or equivalently
to some activities) of the essential coalitions in a finitely generated NTU-game as follows.
If the k-th columns of A and C correspond to the utility vector uS,l, then let ai,k be 1 if
i ∈ S and 0 otherwise, (so the k-th column of A is the membership vector of coalition S).

Furthermore, let ci,k = uS,li if i ∈ S and ci,k = M otherwise, where M is a sufficiently large

number. We set ci,i = u
{i}
i = 0 and ci,j = 2M if i ̸= j ≤ n. Finally, let b = 1N , which

implies that a solution x satisfying Ax = b is a so-called balanced collection of coalitions.
By applying Scarf’s Lemma for this setting, we obtain a solution x that we call a fractional
core element of the game. We refer to the set of fractional core elements as the fractional
core of the game.

What is the meaning of a fractional core element? Let us suppose first, that a fractional
core element x is integer, so xi ∈ {0, 1} for all i. In this case we show that x gives a utility
vector uN that is in the core of the game. Let uN be the utility vector of N received by
summing up those independent essential utility vectors for which x(uS,k) = 1, then uN

is obviously in V (N) by superadditivity. To prove that uN must be in the core of the
game, let uS,k be an essential utility vector, with x(uS,k) = 0. By the statement of Scarf’s
Lemma, there must be a player i and an essential utility vector uT,l, such that i ∈ T ,
x(uT,l) = 1 and uS,ki ≤ uT,li , so S cannot be a blocking coalition with the efficient utility
vector uS,k.

In other words, the Ax = 1N condition of the solution says that x gives a partition
π of N and a set of activities Aπ that are performed (we say that aS,k is performed, i.e.
aS,k ∈ Aπ, if x(uS,k) = 1, implying that S is a coalition in partition π). Let X = (π,Aπ)
be the corresponding outcome, and let aS,k be an activity not performed, (i.e. aS,k /∈ Aπ).
Then, by Scarf’s Lemma there must be a player i of S for which the performed activity,
ai(X) he is involved in is not worse than aS,k, i.e., aS,k ≤i ai(X), thus S cannot be a
blocking coalition with activity aS,k.

In the non-integer case, we shall regard x(uS,k) as the intensity at which the activ-
ity aS,k is performed by coalition S. The Ax = 1N condition means that each player
participates in activities with total intensity 1, including maybe the activity that this
player performs alone. The domination condition says that for each activity, which is not
performed with intensity 1, there exists a member of the coalition who is not interested
in increasing the intensity of this activity, since he is satisfied by some other preferred
activities that fill his remaining capacity. Formally, if x(uS,k) < 1 then there must be a
player i in S such that

∑
aT,l≥iaS,k

x(uT,l) = 1.

In Example 1, x(p) = 1
3 , x(b) =

2
3 is a fractional core element, since for each activity

there is at least one player who is not interested in increasing the intensity of that activity.
We illustrate with the following example that the fractional core of a game may admit a
unique fractional core element where the intensities of certain activities can be arbitrary
small nonnegative values.

Example 2.

In this example we have 6 players with 6 possible joint activities and the following prefer-
ences:
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A

B C

D

E

F

Activities Participants Preference lists
p1 : {A,D,B} A : p1 p3
p2 : {B,E,C} B : p2 p1
p3 : {C,F,A} C : p3 p2
c1 : {D,E} D : p1 c1 c2
c2 : {E,F} E : p2 c2 c3
c3 : {F,D} F : p3 c3 c1

It can be verified that the only fractional core element here is x, where x(p1) = x(p2) =
x(p3) =

1
2 and x(c1) = x(c2) = x(c3) =

1
4 . One can easily extend this construction for 3n

players, where some activities in the unique fractional core element have intensity 2−n.

2.3 Fractional stable matching for hypergraphs

For a finitely generated NTU-game, the problem of finding a stable outcome is equivalent
to the stable matching problem (sm for short) for a hypergraph, as defined by Aharoni
and Fleiner [1]. Here, the vertices of the hypergraph correspond to the players, the edges
correspond to the efficient vectors (or to activities being performed by the players con-
cerned), and the preference of a vertex over the edges it is incident with comes from the
preference of the corresponding player over the activities he can be involved in. This is
called a hypergraphic preference system. A matching corresponds to a set of joint activ-
ities performed by certain coalitions that form a partition of the grandcoalition together
with the singletons (i.e. with the vertices not covered by the matching). A matching M
is stable if there exist no blocking edge, i.e. an edge e /∈ M such for that every vertex
v covered by e, either v is unmatched in M or strictly prefers e to the edge that covers
v in M . The corresponding set of activities gives a stable outcome, since there exist no
blocking coalition with an activity that is strictly preferred by all of its members. Note
that different activities performed by the same players are represented by multiple edges in
the corresponding hypergraph. A hypergraph which represents the efficient utility vectors
of a cfg is simple (i.e, does not contain multiple edges and loops). 2

The notion of a fractional stable matching for an instance of sm for a hypergraph was
defined by Aharoni and Fleiner [1] as follows. A function x assigning non-negative weights
to edges of the hypergraph is called a fractional matching if

∑
v∈h x(h) ≤ 1 for every

vertex v. A fractional matching x is called stable if every edge e contains a vertex v such
that

∑
v∈h,e≤vh

x(h) = 1. The existence of a fractional stable matching can be verified
by Scarf’s Lemma just like the existence of a fractional core element. Actually, these two
notions are basically equivalent.

To show the equivalence formally, we consider the polytope of intensity vectors {x|Ax =
1N , x ≥ 0} on the one hand, where A is the membership-matrix of the efficient utility vec-
tors (or the corresponding activities) of dimension n×(n+m) as defined by Scarf’s Lemma.
On the other hand, the fractional matching polytope is {x|Bx ≤ 1N , x ≥ 0}, where B
is the vertex-edge incidence matrix of the hypergraph of dimension n × m. Obviously,

2We shall note that Aharoni and Fleiner [1] supposed in their model that the preferences of the players
are strict (i.e., no player is indifferent between any pair of activities). In the literature on stable matching,
the setting where players may have ties in their lists is referred to as stable matching problem with ties.
In this case, a matching M is (weakly) stable if it does not admit a blocking edge (where the definition
of a blocking edge is the same as described above). However, an instance of sm with ties can be always
derived to another instance of sm (with no ties) by simply breaking the ties arbitrary, and a matching
that is stable for the derived instance is (weakly) stable for the original one. The same applies for the core
and fractional core in the context of NTU-games. In fact, the Scarf algorithm starts with a perturbation
of matrix C in the case that any player is indifferent between two activities she may be involved in (i.e.,
when her utilities in these two activities are the same for her).
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A = (In|B), so the difference is only the n × n identity matrix, i.e. the membership-
matrix of the singletons. So, there is a natural one-to-one correspondence between the
elements of the two polytopes: if xm is a fractional matching of dimension m, then let
x̄v = 1N −Axm be a vector of dimension n, that gives the unfilled intensities of the players
(or in other words, the intensities of the single activities). The direct sum of these two
independent vectors, x is an intensity vector of dimension n + m, and vice versa. The
stability condition is equivalent to the domination condition of Scarf’s Lemma.

Aharoni and Fleiner [1] showed that a fractional stable matching can be assumed to be
an extremal point of the fractional matching polytope. This fact comes from a statement
similar to the following Proposition:

Proposition 6 If x is a fractional core element of a finitely generated NTU-game, and
x =

∑
αix

i, where αi > 0 for all i,
∑

αi = 1 and xi satisfies the Axi = 1N and xi ≥ 0
conditions, then each xi must be a fractional core element.

The proof of this Proposition is obvious, since supp(xi) ⊆ supp(x), that implies the
dominating property of the fractional core element.

Corollary 7 For any finitely generated NTU-game, there exists a fractional core element
that is an extremal point of the polytope {x|Ax = 1N , x ≥ 0}.

Corollary 7 implies that if, for a given finitely generated NTU-game, all the extremal
points of the above polytope are integers (or, in other words, the polytope has the integer
property) then the game has a nonempty core.

2.4 Normality implies the nonemptiness of the core

The definition of a normal hypergraph is due to Lovász [25]. If H is a hypergraph and
H ′ is obtained from H by deleting edges, then H ′ is called a partial hypergraph of H.
The chromatic index χe(H) of a hypergraph H is the least number of colours sufficient to
colour the edges of H so that no two edges with the same colour have a vertex in common.
Note that the maximum degree, ∆(H) (that is, the maximum number of edges containing
some one vertex) is a lower bound for the chromatic index. A hypergraph H is normal if
every partial hypergraph H ′ of H satisfies χe(H

′) = ∆(H ′). Obviously, the normality is
preserved by adding or deleting multiple edges or loops. The following theorem of Lovász
[25] gives an equivalent description of normal hypergraphs.

Theorem 8 (Lovász) The fractional matching polytope of a hypergraph H has the inte-
ger property if and only if H is normal.

Suppose that for a finitely generated NTU-game the set of essential coalitions forms a
normal hypergraph. The hypergraph of the corresponding sm must be also normal, since
it is obtained by adding multiple edges and by removing the loops. By Theorem 8, the
fractional matching polytope, {x|Bx ≤ 1N , x ≥ 0} has the integer property, and so has
the polytope of intensity vectors, {x|Ax = 1N , x ≥ 0} as it was discussed previously. This
argument and Corollary 7 verify the following Lemma 9.

Lemma 9 If, for a finitely generated NTU-game, the set of essential coalitions, E(N,V )
forms a normal hypergraph, then the core of the game is nonempty.

By Lemma 9 and Proposition 4 the following holds.
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Theorem 10 If the set of basic coalitions, B forms a normal hypergraph, then every
finitely generated NTU-game (N,V,B) has a nonempty core.

Let AB denote the membership-matrix of the set of basic coalitions B. The fact that the
integer property of the polytope {x|ABx = 1N , x ≥ 0} implies the nonemptiness of every
NTU-game (N,V,B) was proved first by Vasin and Gurvich [32], and independently, by
Kaneko andWooders [20]. Later, Le Breton et al. [24], Kuipers [23] and Boros and Gurvich
[12] observed independently that the integer property of the polytope {x|ABx = 1N , x ≥ 0}
is equivalent to the integer property of the matching polytope {x|ABx ≤ 1N , x ≥ 0}, and
to the normality of the corresponding hypergraph.

3 Fractional b-core with capacities - stable allocations

In what follows, we introduce the notion of fractional b-core element as a solution of
Scarf’s Lemma with the original settings. Let the same matrices A and C of dimension
n × (n + m) correspond to the set of effective utility vectors (or activities) in a finitely
generated NTU-game as it was described in the previous section. The only modification
is that now b is an arbitrary vector of Rn

+ (instead of 1N ). Let x ∈ Rn+m
+ be referred to

as a fractional b-core element if x is a solution of the Scarf Lemma for the above setting.
Here, b(i) is an upper bound for the total intensity at which player i is capable to

perform activities, since
∑

i∈S x(uS,l) = b(i). The domination condition of the Lemma says
that for every activity aT,k, there exists some player i who is not interested in increasing
the intensity of aT,k, because his remaining intensity is filled with better activities, i.e., if
uT,k corresponds to activity aT,k, then

∑
uS,l
i ≥uT,k

i
x(uS,l) = b(i).

In fact, to produce a fractional core element (in other words, a fractional 1N -core ele-
ment) with the algorithm of Scarf, we perturb not just matrix C (in case of indifferences),
but also the vector 1N , to avoid the degeneracy. The standard nondegeneracy assump-
tion provides that all variables associated with the n columns of a feasible basis for the
equations Ax̃ = b̃ = 1N + εN are strictly positive. Thus, the perturbation uniquely deter-
mines the steps of Scarf algorithm. By rounding the final fractional b̃-core element x̃, a
fractional core element x is found. The following simple Lemma says that the fractional
b-core element has the scaling property.

Lemma 11 Given a finitely generated NTU-game, and a positive constant λ. Suppose
that b′ = λ · b, then x is a fractional b-core element if and only if x′ = λ · x is a fractional
b′-core element.

Let us suppose that the intensities of the activities in the finitely generated NTU-
game are constrained by capacities. Formally, for each joint activity aS,l and for the
corresponding utility vector uS,l, there may exist a nonnegative capacity c(uS,l) for which
x(uS,l) ≤ c(uS,l) is required.

The stable allocation problem can be defined for hypergraphs as follows. Suppose that
we are given a hypergraph H and for each vertex v a strict preference order over the edges
incident with v (again, this corresponds to the preferences of the players over the activities
in which they can be involved). Suppose, that we are given nonnegative bounds on the
vertices b : V (H) → R+ and nonnegative capacities on the edges c : E(H) → R+. A
nonnegative function x on the edges, is an allocation if x(e) ≤ c(e) for every edge e and∑

v∈h x(h) ≤ b(v) for every vertex v. An allocation is stable if every unsaturated edge e
(i.e., every edge e with x(e) < c(e)) contains a vertex v such that

∑
v∈h,e≤vh

x(h) = b(v).
In this case we say that e is dominated at v. If every bound and capacity is integral then
we refer to this problem as the integral stable allocation problem.
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Theorem 12 Every stable allocation problem for hypergraphs is solvable.

Proof: Suppose that we are given a given a hypergraph H. Let V (H) = {v1, v2, . . . , vn}
be the set of vertices and let E(H) = {e1, e2, . . . , em} be the set of edges. We define the
extended membership-matrix A, and the extended preference-matrix C of size (n+m)×
(n+ 2m) as follows.

The left part of A is an identity matrix of size (n+m)× (n+m), (i.e. ai,j = δi,j for
i, j ∈ [n + m]). At the bottom of the right side there is another identity matrix of size
m×m, so an+i,n+m+j = δi,j for i, j ∈ [m]. Finally, at the top of the right side we have the
vertex-edge incidence matrix of H (i.e. ai,n+m+j = 1 if vi ∈ ej and 0 otherwise for i ∈ [n]
and j ∈ [m]).

The top-right part of C correspond to the preference of the vertices (that is the pref-
erence of the players over the activities). We require the following two conditions:

• ci,n+m+j < ci,n+m+k whenever vi ∈ ej ∩ ek and ej <vi ek;

• ci,n+m+j < ci,n+m+k whenever vi ∈ ej \ ek.

Furthermore, suppose that cn+i,n+m+i < cn+i,n+m+j for every i ̸= j ∈ [m] in the
bottom-right part of C. Finally, let the left part of C be such that it satisfies the conditions
of Scarf’s Lemma. The constant vector, b ∈ Rn+m

+ is given by the bounds and capacities,
so let bi = b(vi) for i ∈ [n] and bn+j = c(ej) for j ∈ [m].

We shall prove that the fractional core element x, obtained by Scarf’s Lemma, gives
a stable allocation, xe by simply taking the last m coordinates of x. Here, xej is equal to
xe(ej) that is the weight of the edge ej (or equivalently, this is the intensity at which the
corresponding activity is performed). If x̄v and x̄e are the vectors obtained by taking the
[1, . . . , n] and [n + 1, . . . , n + m] coordinates of x, then these vectors correspond to the
remaining weights of the vertices and edges (or the remaining intensities of the players
and the activities), respectively.

Obviously, xe is an allocation by Ax = b, since the first n equations preserve the∑
v∈h x

e(h) ≤ b(v) condition for every vertex v, and the last m equations preserve xe(ej) ≤
c(ej) for every edge ej .

To prove stability, let us consider an unsaturated edge ej and let us suppose that the
corresponding dominating row by the lemma has index k. First we show, that i ∈ [n].
From Ax = b, obviously x̄e(ek) + xe(ek) = c(ek) for every edge ek. Since xe(ej) < c(ej),
then x̄e(ej) > 0, thus the assumptions on C imply that i ̸= n+ j, for other i ∈ [n+m]\ [n]
the contradiction is trivial. If i ∈ [n] then ej is dominated at vi, since x̄v(vi) = 0 by the
assumptions on C, and the Ax = b condition for the i-th row together with the statement
of the lemma imply

∑
vi∈ek,ej≤viek

xe(ek) = b(vi).

4 Matching games

Matching games can be defined as partitioning NTU-games, where the cardinality of each
basic coalition is at most 2. For simplicity, in this section we suppose that no player is
indifferent between two efficient utility vectors, so their preferences over the joint activities
are strict. If a matching game is finitely generated, then the problem of finding an outcome
that is in the core is equivalent to a sm for a graphic preference system, where the edges
of the graph correspond to efficient utility vectors (and to joint activities).

4.1 Stable matching problem

If the graph of a matching game is simple (i.e, if it contains no multiple edges and loops)
then the problem of finding a core-partition for the resulting cfg is called stable roommates
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problem. Otherwise, if the graph has multiple edges then we may refer to sm as stable
roommates problem with multiple activities.

Let us suppose the set of players N can be divided into two parts, say M and W ,
such that every two-member basic coalition contains one member from each side (so if
{m,w} ∈ B then m ∈ M and w ∈ W ). In this case, we get a two-sided matching game (in
the general nonbipartite case the matching game is called one-sided).

If a two-sided matching game is finitely generated then the corresponding graphic
representation of the sm is bipartite. For bipartite graphs, the following Proposition is
well-known.

Proposition 13 Every bipartite graph is normal.

Proposition 13 and Theorem 10 imply the following result.

Theorem 14 Every finitely generated two-sided matching game has a nonempty core.

Theorem 14 was proved for every two-sided matching game, originally called central
assignment game, by Kaneko [19]. For the corresponding cfg-s, called stable marriage
problems, this result was proved by Gale and Shapley [16].

A one-sided matching game can have an empty core, even for a cfg, as Gale and Shap-
ley [16] illustrated with an example. However the half-integer property of the fractional
matching polytope implies the existence of stable half-solutions. The following statement
is due to Balinski [4].

Theorem 15 The fractional matching polytope for every graph has only half-integer ex-
tremal points.

As Aharoni and Fleiner [1] showed, Theorem 15 and Corollary 7 imply that for every
matching game there exists a so-called half-core element, that is a fractional core element
x with the half-integer property, i.e. xi ∈ {0, 12 , 1}.

Theorem 16 If a matching game is finitely generated then it always has a half-core ele-
ment.

For cfg-s, the fact that for every instance of sm there exists a stable half-matching
was proved by Tan [31]. Finally we note that an easy consequence of Theorem 15 and
Lemma 11 is that for every finitely generated matching game, there always exists an integer
2N -core element.

4.2 Stable allocation problem for graphs

The stable allocation problem was introduced by Bäıou and Balinski [3] for bipartite
graphs. The integer version, where the allocation x is required to be integer on every edge
for integer bounds and capacities, was called the stable schedule problem by Alkan and
Gale [2] (however they considered a more general model, the case of so-called substitutable
preferences).

Biró and Fleiner [6] generalised the algorithm of Bäıou and Balinski [3] for nonbipartite
graphs, resulting in a weakly polynomial algorithm that finds a half-integral stable allo-
cation for any given instance of integral stable allocation problem. Dean and Munshi [14]
strengthened this result by giving a strongly polynomial algorithm for the same problem.
But we shall note that the existence of a stable half-integer allocation is a consequence of
Theorem 12.
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Theorem 17 For every integral stable allocation problem in a graph there exists a half-
integral stable allocation. If the graph is bipartite, then every integral stable allocation
problem is solvable.

Proof: Suppose that we have a stable allocation x that has some weights that are not
half-integers. We create another stable allocation x′ with half-integer weights as follows. If
x(e) is not integer then let v be the vertex where e is dominated. Since b(v) is integer, there
must be another edge, f that is incident with v and has non-integer weight. Moreover, f
cannot be dominated at v. By this argument, it can be verified that the edges with non-
integer weights form vertex-disjoint cycles, moreover, in each such a cycle the fractional
parts of the weights are ε and 1 − ε alternately. If a cycle is odd, then ε must be 1

2 . If
a cycle is even, then ε can be modified to be 0 (or 1) in such a way that the obtained
allocation x′ remains stable and has only half-integer weights.

If the graph is bipartite, thus has no odd cycle, then x′ has only integer weights, so x′

is an integral stable allocation .
We note that the scaling property holds also for the stable allocation problem. By this,

if every bound and capacity is even, then the existence of an integral stable allocation is
straightforward by Theorem 17.

We finish this section by giving an integral stable allocation problem for a graph and
illustrating how a half-integer stable allocation can be obtained with the Scarf algorithm.

Example 3.

We are given 6 agents and 7 possible pairwise activities. The bounds of the agents are:
b(a1) = 4, b(a2) = 1, b(a3) = 1, b(a4) = 2, b(a5) = 2 and b(a6) = 4. The capacities of the
possible activities are: c({a1, a2}) = 1, c({a1, a3}) = 2, c({a1, a5}) = 2, c({a1, a6}) = 3,
c({a2, a5}) = 1, c({a3, a6}) = 2 and c({a4, a6}) = 1. The preference lists of the agents are
the following:

a1

a3

a6

a4

a5

a2

4
3

4
2

2

2
2

1
1

2 1 1

1

Players Preference lists
a1 : a6 a3 a2 a5
a2 : a5 a1
a3 : a6 a1
a4 : a6
a5 : a1 a2
a6 : a4 a3 a1

The extended membership-matrix A is:
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A =



1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

− − − − − − − − − − − − − − − − − − − −

0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1


Matrix C, that represents the preference of the players, can be generated as follows:

C =



0 24 23 22 21 20 19 18 17 16 15 14 13 3 4 2 5 8 7 6

25 0 23 22 21 20 19 18 17 16 15 14 13 4 11 10 9 5 7 6

25 24 0 22 21 20 19 18 17 16 15 14 13 12 4 10 9 8 5 6

25 24 23 0 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5

25 24 23 22 0 20 19 18 17 16 15 14 13 12 11 5 9 4 7 6

25 24 23 22 21 0 19 18 17 16 15 14 13 12 11 10 3 8 4 5

− − − − − − − − − − − − − − − − − − − −

25 24 23 22 21 20 0 18 17 16 15 14 13 1 11 10 9 8 7 6

25 24 23 22 21 20 19 0 17 16 15 14 13 12 1 10 9 8 7 6

25 24 23 22 21 20 19 18 0 16 15 14 13 12 11 1 9 8 7 6

25 24 23 22 21 20 19 18 17 0 15 14 13 12 11 10 1 8 7 6

25 24 23 22 21 20 19 18 17 16 0 14 13 12 11 10 9 1 7 6

25 24 23 22 21 20 19 18 17 16 15 0 13 12 11 10 9 8 1 6

25 24 23 22 21 20 19 18 17 16 15 14 0 12 11 10 9 8 7 1


In the algorithm, we used the following perturbation on b: we set b̃i = bi + εi =

bi + 1/p101−i, where pi is the i-th prime number. By rounding the output x̃ of the Scarf
algorithm, we get the following fractional b-core element x, and stable allocation xe:

a1

a3

a6 a5

a2a4

3
2

1 1

2

1
2

1
2

x = [x̄v|x̄e|xe], where xe = [
1

2
, 0,

3

2
, 2,

1

2
, 1, 1]

x̄v = [0, 0, 0, 1, 0, 0] and x̄e = [
1

2
, 2,

1

2
, 1,

1

2
, 1, 0]

In the above figure, we oriented each unsaturated edge to its endvertex, where it is
dominated.
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5 Stable allocations with contributions

It is possible that the contribution of the participants are not equal in a cooperation.
Imagine an internal project of a company where the hours allocated to the employees
involved can be different (e.g., a quality manager may have less work load assigned than
an engineer in terms of working hours). We can model this extension easily for a stable
allocation problem, that we call stable allocation problem with contributions. We only need
to use contribution vectors here rather than membership vectors, as for the simple stable
allocation problem.

In addition to the definitions of the stable allocation problem, here we introduce a
contribution vector re : V (H) → R+ for each edge e of the hypergraph. An agent v can
contribute to the activity represented by e if and only if re(v) > 0. A nonnegative function
x on the edges, is an allocation if x(e) ≤ c(e) for every edge e and

∑
v∈e x(e)re(v) ≤ b(v)

for every vertex v. An allocation is stable if every unsaturated edge e (i.e., every edge
e with x(e) < c(e)) contains a vertex v such that

∑
v∈f,e≤vf

x(f)rf (v) = b(v). If every
bound, capacity and contribution is integral then we refer to this problem as the integral
stable allocation problem with contributions.

Theorem 18 Every stable allocation problem with contributions is solvable.

Proof: The same proof technique works here as for Theorem 12, the only difference is
that now we use contribution vectors instead of membership vectors when defining matrix
A in Scarf’s Lemma.

5.1 Solving the hospitals residents problem with couples

As Gale and Shapley [16] envisaged, stable matching problems turned out to be very
useful models for real applications in two-sided markets. Centralised matching schemes
have been established worldwide to allocate residents to hospitals, students to schools,
and so on. In most cases, a stable solution can be found by the classical Gale-Shapley
algorithm. However, there are some special features, such as the presence of couples in the
residence allocation program, that can make the problem unsolvable. Moreover, even if a
stable matching exists, the problem of finding one is NP-hard [26]. This applies even for
the simple case where each hospital has one place only, so when the problem is actually
a cfg. However, if the ratio of the couples is relatively small in a large market then a
stable matching exists with high probability and sophisticated heuristics may be able to
find such solutions (see e.g., [22] and [9]). A new heuristic for this problem can be based
on the Scarf algorithm for the stable allocation problem (with contributions), where an
edge in the hypergraph represents an application from a couple to a pair of hospitals. If
the solution obtained by the Scarf algorithm is integral then it corresponds to a stable
matching.

If each hospital has one place only then we can describe the hospitals residents prob-
lem with couples as a stable matching problem for a hypergraph (or as a hedonic coalition
formation game). Here the individual applicants, the couples and the hospitals are repre-
sented by vertices, and each edge corresponds to an application (either to an individual
application or to a joint application). If the hospitals have capacities (as it is usually the
case in practice) then we can still model the problem as a stable allocation problem for
the same hypergraph; the only difference is that the bounds of the vertices corresponding
to hospitals are equal to their quotas, and all the edges have unit capacities. We illustrate
this application with the following example.
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Example 4.

This example was given in [9] as a difficult instance, for which all the major heuristics
currently used in real applications would fail to find the unique stable solution. Suppose
that we have eight residents, comprising three couples (r1, r5), (r2, r4) and (r6, r8) together
with two single applicants r3 and r7. There are eight hospitals, h1, . . . , h8, each with just
one post. Suppose that the residents are ordered in the same way by every hospital, ac-
cording to their indices (r1 best, r8 worst), and the individual and joint preference lists of
the residents are as follows.

r3 : h1 h5
r7 : h6 h8

(r1, r5) : (h1, h2) (h3, h6)
(r2, r4) : (h4, h5) (h1, h2) (h3, h7)
(r6, r8) : (h6, h8)

We tried to solve this problem with the Scarf algorithm by using two different pertur-
bations. First we set b̃i = bi + εi = bi + 1/p101−i, where pi is the i-th prime number, and
we obtained the following half-integral solution:

x([r3 → h3]) = 0, x([r3 → h5]) = 1, x([r7 → h6]) = 1
2 , x([r7 → h8]) = 1

2 ,
x([(r1, r5) → (h1, h2)]) = 1, x([(r1, r5) → (h3, h6)]) = 0, x([(r2, r4) → (h4, h5)]) = 0,
x([(r2, r4) → (h1, h2)]) = 0, x([(r2, r4) → (h3, h7)]) = 1, x([(r6, r8) → (h6, h8)]) =

1
2 .

However, by setting b̃i = bi + εi = bi+1/p101+i, where pi is the i-th prime number, we
obtained

x([r3 → h3]) = 0, x([r3 → h5]) = 1, x([r7 → h6]) = 0, x([r7 → h8]) = 1, x([(r1, r5) →
(h1, h2)]) = 0, x([(r1, r5) → (h3, h6)]) = 1, x([(r2, r4) → (h4, h5)]) = 0, x([(r2, r4) →
(h1, h2)]) = 1, x([(r2, r4) → (h3, h7)]) = 0, x([(r6, r8) → (h6, h8)]) = 0.

which corresponds to the unique stable matching for this instance, namely

M = {(r1, h3), (r2, h1), (r3, h5), (r4, h2), (r5, h6), (r7, h8)}.

5.1.1 Paired applications to the same hospital

In most papers on the hospitals residents problem with couples, the possibility of a couple
applying to a pair of positions to the same hospital is neglected (see more details on this
issue in [10]). However, this possibility is open in many current applications, such as
the NRMP [27] or the Scottish resident allocation scheme (SFAS) [9]. When a couple is
allowed to apply for a pair of positions of a hospital, then we can describe the corresponding
stable matching problem as an integral stable allocation problem with contributions. In
particular, a paired application to the same hospital is a coalition where the contribution
required from a hospital is two (as compared to an application of a single candidate or of
one member of a couple). Thus, instead of membership vectors, now we have contribution
vectors in matrix A of the Lemma, where joint proposal from a couple to a hospital is
represented with a vector consisting of two non-zero entries: value 2 in the row of the
hospital and value 1 in the row of the couple.

In our follow-up paper [8] we describe how the Scarf algorithm can be used efficiently
in this scenario. We implemented and tested this method and compared its performance
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with the two algorithms that are used in NRMP [27] and in SFAS [9]. The results of a
particular experiment for same random samples used in [9] are shown in Table 1.

Number of couples
Algorithm 12 25 50 75 100 125 150 175 200 225 250

R–P (1999) 952 897 701 547 395 277 170 83 41 9 3
B–I–S (2011) 976 958 911 870 811 752 682 546 281 71 10

Scarf by B–F–I (2012) 895 813 649 532 426 356 316 261 202 174 158

Table 1: Randomly created matching markets with couples for 500 residents.

In this computational experiment, there were 500 residents and the proportion of
couples varied from 5% to 100%. For each proportion of couples, 1000 random instances
were generated and we counted how many instances each variant could solve. The table
shows that the heuristics due to [9] obtained a much better success ratio than the Roth-
Peranson heuristics, especially for high proportions of couples. But surprisingly, the Scarf-
algorithm was even much better than the others when (almost) all the applicants form
couples. Note that a similar situation occurs in another applications, the Hungarian higher
education matching scheme [33], where applicants may apply for pairs of teacher’s studies
(e.g. to become a teacher in maths and physics). More details on this experiment can be
found in [8].

6 Further directions

Guarantees for solvability. The original goal of Scarf [29] was to give a necessary
condition for the nonemptiness of the core for general NTU-games (and this condition was
the balancedness of the game). As we described in Section 3, if the coalition structure of
an NTU-game can be represented with a normal hypergraph then the core of the game is
always nonempty (regardless of the players’ preferences). The bipartite graph is an easy
example for normal hypergraphs, and so every two-sided matching game has nonempty
core. But what other games have this property? Our claim is that certain network games
also have a coalition structure where the underlying hypergraph is normal. Another way
of guaranteing solvability of NTU-games can be to make assumptions on the players’
preferences.
Understanding Scarf’s results. Scarf proved his Lemma in an algorithmic way. Is there
some deeper reasons for the correctness of the Lemma (and a more general interpretation
of the algorithm)? What is the relation of this result to other fundamental theorems, such
as the Sperner Theorem? There are some recent papers [21, 15] attempting to answer this
question, but yet, there still are many open problems regarding this issue.

Also, it would be interesting to know how the Scarf algorithm works for special games.
For instance, does the Scarf algorithm run in polynomial time for matching games?

At the beginning of the Scarf algorithm we perturb matrix C and vector b. By doing
so, the steps in the algorithm and the final output are fully determined. Can we output
every core element of a given NTU-game by using a suitable perturbation? How does the
perturbation effect the solution, we obtain by the algorithm? For stable marriage problem
we observed that using small epsilons for men and larger epsilons for women we always
get the man-optimal stable matching. Can we output each stable matching by a suitable
perturbation? Is that true that the smaller epsilon we give to a woman the better partner
she is going to get in the resulting stable matching? Is a similar statement is true for
general NTU-games?
Further theoretical applications. In this paper we demonstrated the usage of Scarf
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Lemma in stable matching theory. However, there are still many related open questions.
For instance, the stable matching problem with contributions has not been studied yet to
the best of our knowledge (only some special cases, such as the hospitals residents problem
with couples). A natural question is whether can we find a stable integral allocation in
polynomial time for two-sided or one-sided matching games with contributions?

Furthermore, there can be other family of NTU-games where the concept of stable
allocations may be worth to study, e.g. network games.
Practical applications. The problem of finding a core element for an NTU-game can
be NP-hard for some family of games or stable matching problems, but we may well need
to solve such problems in practical applications. In section 5, we illustrated how the Scarf
algorithm can be used as a heuristic to solve the hospitals residents problem (detailed
descriptions on our experiments are given in our follow-up paper [8]). This suggests that
perhaps the same technique can be used in other applications as well. This usage of the
Scarf algorithm is similar to the usage of LP-relaxations in solving integer programming
problems. The latter techniques proved to be very efficient in practice in the last decades,
and so we believe that the Scarf algorithm will also be found useful with regard to this
aspect, too.
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[32] A. A. Vasin and V. A. Gurvič. Reconcilable sets of coalitions. In Questions in applied
mathematics (Russian), pages 20–30. Sibirsk. Ènerget. Inst., Akad. Nauk SSSR Sibirsk.
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[33] P. Biró. University admission practices - Hungary. matching-in-practice.eu, accessed
on 23 May 2012

[34] R. Irving. Matching practices for entry-labor markets - Scotland. matching-in-
practice.eu, accessed on 23 May 2012

19


	MT-DP – 2012/34

