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Abstract 

 

 

An electrical transmission network consists of producers, consumers and the power lines 

connecting them. We build an ideal (lossless) DC load flow model as a cooperative game 

over a graph with the producers and consumers located at the nodes, each described by a 

maximum supply or desired demand and the power lines represented by the edges, each 

with a given power transmission capacity and admittance value describing its ability to 

transmit electricity. Today's transmission networks are highly interconnected, but 

organisationally partitioned into several subnetworks, the so-called balancing groups with 

balanced production and consumption. We study the game of balancing group formation 

and show that the game contains widespread externalities that can be both negative and 

positive. 

We study the stability of the transportation network using the recursive core. While the 

game is clearly cohesive, we demonstrate that it is not necessarily superadditive. We argue 

that subadditivity may be a barrier to achieve full cooperation. Finally the model is 

extended to allow for the extension of the underlying transmission network. 
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Az elektromos átviteli hálózati játékok externáliái 

 

 

Csercsik Dávid – Kóczy Á. László 

 

Összefoglaló 

 

Egy elektromos átviteli hálózat tagjai a termelők, a fogyasztók és az őket összekötő 

vezetékek. Egy idealizált egyenáramú hálózati modellt építünk egy gráfon. A termelők 

legnagyobb termelési kapacitásukkal, a fogyasztók legnagyobb felhasználási igényeikkel a 

gráf csúcsaiban helyezkednek el vezetékekkel összekötve. A vezetékeknek megadjuk 

kapacitását és elektromos vezetőképességét. Bár ma sűrűn kapcsolt hálózatokkal 

találkozunk, ezek szervezési szempontból sok kisebb részhálózatra tagolódnak.  

A mérlegköröknek nevezett részhálózatokban a termelés pontosan kielégíti a keresletet.  

E mérlegkörök alakulását és külhatásait vizsgáljuk: egyszerre találunk pozitív és negatív 

externáliákat. A mérlegkörök rendszere stabilitásának elemzésére a rekurzív magot 

javasoljuk. Bár a játék könnyen igazolhatóan kohézív, de szuperadditivitása már nem 

teljesül, amit egy ellenpéldával igazolunk. A szubadditivitás a magasabb fokú 

együttműködés kialakulásának a gátja lehet. Végül kiterjesztjük a modellt, hogy kezelje a 

hálózat bővítésének lehetőségét is. 
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1 Introduction

All complex systems (Érdi, 2008) can be examined from two distinguished
points of view: the �ow of energy, and the �ow of information. From the
smallest size, such as a cell, where these considerations de�ne biochemical
metabolic and signaling networks to continent-wide social or economical net-
works, where both the energy and information �ow takes place in many
forms, the subsystems controlling these distinguished �ows have di�erent
tasks, but they are interdependent. One of the key subsystems of the global
or continental energy �ow is the electrical power transmission network. We
study the electrical energy market as an interaction of market participants,
where the possible interactions are constrained by laws of physics and market
regulations.

Models of the power grid derived from engineering principles are appro-
priate to describe the physical nature of energy transfer, and they can be used
to �nd appropriate technological solutions during the construction, modi�ca-
tion and operation of these systems. These models, however, tend to neglect
the motivations of the participants as economic agents. Economics models,
in contrast, focus on the �nancial considerations, ignoring the problems and
limitations originating from the physical details of the system. We suppose,
that there are phenomena, so called emergent properties (Érdi, 2008), which
can be examined only beyond the certain level of complexity. Such an exam-
ple is the in�uence of multiple power plants of the market belonging to the
same company, or circle of interest. We study the interaction between the
physical and economic aspects of the system focussing on the incentives for
group formation.

The aim of this paper is therefore to de�ne a framework, which is capable
of describing the interactions in the electrical energy market in a simpli�ed
way, considering both physical and economical aspects of the participants
and the network itself. Furthermore, we try to ful�ll these aims with the
methodology of cooperative game theory, which approach has already been
successfully used in the case of many economic systems.

The structure of the paper will, accordingly, be as follows: First we de-
scribe the physical properties of the network and derive a simpli�ed frame-
work that describes the stakeholders' characteristics and utilities as well as
the partition function form approach, a model in cooperative game theory
that can handle coalition formation with widespread externalities. The main
part of the paper is Section 3, where, by means of a series of examples we
demonstrate some unexpected properties that might provide incentives for
network participants to go against the usual trends of network development
such as increased levels of integration. We close with a brief summary a set
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of open questions.

2 Materials and Methods

2.1 Background literature

When studying electric power transmission networks, most of the research
in economics has been on the topics of competition, market power and reg-
ulation (see, for example Cardell, Hitt, and Hogan, 1997; Gilbert, Neuho�,
and Newbery, 2004; Neuho�, Barquin, Boots, Ehrenmann, Hobbs, Rijkers,
and Vázquez, 2005; Chen, Hobbs, Ley�er, and Munson, 2006) and very few
works study the market and the transmission issues in their whole complex-
ity (Kirschen and Strbac, 2004, is a notable exception). Hobbs (1992); Bai,
Shahidehpour, and Ramesh (1997) use already game theory for transmission
analysis, and Orths, Schmidtt, Styczynski, and Verstege (2001) describes a
game theoretic approach of a multi-criteria optimization problem related to
transmission planning and operation. A strategic gaming approach is de-
scribed in Kleindorfer, Wu, and Fernando (2001).

Gately (1974) is probably the �rst to apply cooperative game theory to
planning investments of electrical power systems. Evans, Zolezzi, and Rud-
nick (2003) describes a cost assignment model for electrical transmission
system expansion using Kernel theory. Contreras (1997) provides a decen-
tralized framework in his thesis to study the transmission network expansion
problem using cooperative game theory.

2.2 Model of the energy transmission network

Before presenting our model �rst we summarise the main assumptions and
constraints regarding the description of the power transmission network.
The notations and the mathematical formalism are based on Oren, Spiller,
Varaiya, and Wu (1995) and Contreras (1997).

We assume that the power transmission system is described by a graph,
the system graph, in which n nodes (or buses) are connected by m edges,
which naturally represent the transmission lines.

As foreshadowed, generators can be characterized by the quantity of ac-
tual and maximal generated (or supplied) power, while consumers are de-
scribed by the amount of actually and ideally consumed power. We assume
that a transmission line is characterized by its admittance value, denoted by
Yij (which will be equal to susceptance in this case, for we neglect the real
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part of impedance values), and maximum transmission capacity (or branch
power �ow limit) q̄ij.

According to our modelling considerations, we describe the voltage at
node i with sinusoidal waveform:

vi(t) = Vi sin(ωt+ θi) (1)

where Vi stands for the magnitude, ω = 2πf denotes the frequency in rad/s
and θi is the phase angle.

If we assume that the nodes i and j are connected by a transmission line
with admittance Yij = Yji, the (real) power �ow from i to j can be described
with:

qij = ViVjYij sin(θi − θj) (2)

We use the sign convention qij > 0 if the power �ows from i to j. qij = −qji
We can formalize the energy conservation for each node as follows. The net
power qi injected into (or drawn from) the network at bus i addition to the
total in�ow is equal to the total out�ow:

qi =
n∑

j=1

qij (3)

Without the loss of generality, let us assume Vi ≡ 1. in this case

qi =
n∑

j=1

Yij sin(θi − θj) (4)

which means n−1 independent equations (as q1+ ...+qn = 0). Let us choose
θn

.
= 0. In this case the individual line �ows can be expressed as:

qij = Yij sin(θi − θj) (5)

Assuming that (θi − θj) is small, sin(x) may be approximated with x.
This leads to the so called "DC load �ow model", which exhibits the follow-
ing uniqueness property: Given power injections and power consumptions at
each node, the phase angles θi are determined by solving a system of linear
equations. From the phase angle di�erences, the line �ows can be uniquely
determined.

We can summarize the equations in the following matrix formalism (Con-
treras, 1997): The relation between the total inlet/outlet power and power
�ows can be described by

AQ = P (6)
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where A ∈ Rn×m is the Node-branch incidence matrix of the network, Q ∈
Rm denotes the power �ow vector, and P ∈ Rn is the power injection vec-
tor (composed of [q1, q2...]). If we substitute the individual power �ows in
Equation 6 with the linearized expressions from Equation 2, we can write

B(Y )Θ = P (7)

where B(Y ) ∈ Rn×n denotes the susceptance matrix whose elements are
Bkl = −Ykl for the o�-diagonal terms and

Bkk =
∑

l ̸=k∈Ψ

Bkl

(the column sum of o�-diagonals) for diagonal elements (where Ψ is the
actual column). Θ ∈ Rn is vector of nodal voltage angles.

The constraint describing the maximum line power �ows can be derived
as

|Q| = |BDATΘ| < Q̄ (8)

where |Q̄| is branch power �ow limit vector (composed of the elements q̄ij),
and BD is a diagonal matrix with BD

kk = Yij.

2.2.1 The linear programming form of the generator rescheduling
problem

As we know from Equation 7, BΘ = P . The matrix B is singular due to the
column conservation property, but since in the calculation of �ows only the
di�erences of the elements of the vector Θ are appearing (see Equation 2),
we may express it as

Θ = B+P (9)

where B+ is the Moore-Penrose pseudoinverse of B. Constraint 8 becomes

|BDATΘ| = |BDATB+P | < Q̄ (10)

Let us suppose the initial power generation/consumption vector (of which's
elements are positive in the case of consumers and negative in the case of
generators) is equal to P init and let us determine the initial �ows Qinit. We
de�ne a sign vector sP and a diagonal matrix sDQ , corresponding to the signs
of �ows.

sP = −sign(P init) sDQ = diag(sign(Qinit)) (11)

As we know, the general form of linear programming (LP) problem is

min
x

fTx subject to: Aineqx 5 bineq, Aeqx = beq. (12)

5



We may put the rescheduling problem in an LP form, as follows

f = sP Aineq = sDQB
DATB+ bineq = Q̄ Aeq = [1 1...1] beq = 0 (13)

where the inequality constraints are corresponding to the maximum load of
lines and the equality constraints corresponding to the balance of total inlet
and outlet power. Further linear constraints can be added to the problem,
describing the minimal and maximal values of nodal power values, corre-
sponding to maximum generator capacity, and minimum consumption at
certain nodes.

2.3 The cooperative game on the transmission network

We de�ne a game in partition function form (PFF, Thrall and Lucas, 1963)
on the transmission system model. A PFF game is a pair (N, V ), where N
is the set of players, and V : Π → (2N → R) is the partition function, which
assigns characteristic functions (v : 2N → R) to each partition P ∈ Π(N)
(where Π(N) denotes the set of partitions of N).

We will make the following assumptions regarding the game to be de�ned:

• An initial con�guration of the network is given with generation and
consumption values.

• The overall power inlet/outlet of any coalition has to be in balance (this
can be implemented in the LP formalism, as de�ning additional equality
constraints describing the coalitional balances - which practically means
additional rows in the matrix Aeq). This implies that every non trivial
coalition must hold at least one generator and one consumer.

• We assume an independent network regulator, who determines the
possible in�ow/out�ow quantities, according to the maximum possible
overall consumption (for a given coalition structure, and the implied
constraints, the amount of the total transmitted energy is optimized).

• Every generator produces (sells) as much energy as possible, and the
consumers are interested in consuming their ideal amount. We will de-
�ne the function µ as µ(i) = qi for both generators and consumers, as-
suming that consumers can not consume more than their ideal amount,
nor can generators produce more than their maximal capacity. The
value of the characteristic function for a given coalition C is the sum
of its members' utilities:

v(C) =
∑
i∈C

µ(i)
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During any change of the coalition structure, which implies the change of
network constraints, the generators will be rescheduled, in order to reach the
maximal transmission capacity of the network under the limitations implied
by the actual coalition structure.

2.3.1 The core

The production and consumption level of the network is determined by the
network manager, who simply runs an optimisation process given the par-
tition of the players into balancing groups and the characteristics of the
network. The partition into balancing groups may be exogenous, but in a
liberalised market it is natural to assume that nodes are free to leave their
balancing group, join another or even that a group of players forms a new
balancing group altogether. Note that the restructuring of the nodes leaves
the power grid, that is, the underlying network una�ected.

Partitions where there are no incentives for such restructuring, where
no coalition of players will bene�t from the formation of another coalition
deserve special attention. The core Gillies (1959) collects imputations of a
characteristic function form game where no coalition can bene�t from deviat-
ing. In a PFF game whether a coalition bene�ts from deviating depends on
the induced partition of the players. The α−core Aumann and Peleg (1960)
assumes that a coalition deviates only if it gets a higher payo� irrespective
of the induced partition. In the γ−core Chander and Tulkens (1997) the
coalition must face individually best responses. Here we use the concept of
the recursive core Kóczy (2007, 2009), that allows the remaining, residual
players to freely react and form a core-stable partition before the payo� of
the deviating coalition is evaluated. In the following we recall the de�nition.

First we de�ne the residual game over the set R ( N . Assume N \ R
have formed PN\R. Then the residual game (R, VPN\R) is the PFF game
over the player set R with the partition function given by VPN\R(C,PR) =
V (C,PR ∪ PN\R).

De�nition 1 ((Pessimistic) recursive core) Let (N, V ) be a PFF game.

1. Trivial game. The core of ({1} , V ) is the only outcome with the trivial
partition:

C({1} , V ) =
{(

V
(
1, (1)

)
, (1)

)}
.

2. Inductive assumption. Assume that the core C(R, V ) has been de�ned
for all games with at most k− 1 players. The assumption about game
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(R, V ) is

A(R, V ) =

{
C(R, V ) if C(R, V ) ̸= ∅
Ω(R, V ) otherwise.

where Ω(R, V ) denotes the set of outcomes in (R, V ).

3. Dominance. The outcome (x,P) is dominated via the coalition S form-
ing partition PS if for all (yN\S,PN\S) ∈ A(N \ S, VPS

) there exists
an outcome ((yS, yN\S),PS ∪ PN\S) ∈ Ω(N, V ) such that yS > xS.
The outcome (x,P) is dominated if it is dominated via a coalition.

4. Core. The core, denoted C(N, V ), is the set of undominated outcomes.

The (pessimistic) core is denoted C(N, V ).

The recursive core is well-de�ned, though it may be empty.

3 Results

3.1 Negative and positive externalities

First, in this section we will demonstrate the emergence of negative and
positive externalities on a simple 5 node network depicted in Fig. 1.

1

2

3

4

Y12=1

Y13=1

Y24=1

Y34=1
q12=5

q13=5

q24=5

q34=5

5
Y35=1

q35=5
Y15=1

q15=5

Figure 1: The basic structure and line parameters of the 5 node network.
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Let us assume that the maximal capacity of the generators 1 and 3 are
10 and 20 units, and that the ideal consumption amount of the consumers
2, 4 and 5 are 7, 5, 10 respectively.

3.1.1 Flows in the case of the coalition structure {1, 2}, 3, 4, 5

1

2

3

4

5

6.875 (10)

6.875 (7)

0 (20)

0 (5)

0 (10)

5 (5) 1.875 (5)

1.875 (5)

1.25 (5)

0.625 (5)0.625 (5)

Figure 2: Flows in the case of the coalition structure {1, 2}, 3, 4, 5. The num-
bers on the edges denote the actual �ows, while the numbers in parentheses
denote the �ow limits. Red labels on the edges denote �ow rates equal to
maximum transmission capacity. The numbers on the edges denote the ac-
tual and maximum (parentheses) injected power in the case of generators,
and the actual and ideal (parentheses) consumed amount in the case of con-
sumers.

The �ows corresponding to the maximal total transmitted energy amount
is depicted in Fig. 2.

We consider this scenario as a reference case where the players 3, 4 and
5 form trivial one-member coalitions. We can easily derive the value of the
function µ, and so the characteristic function v:

µ(1) = 6.875 µ(2) = 6.875 µ(3) = 0 µ(4) = 0 µ(5) = 0 (14)

v({1, 2}) = 6.875 + 6.875 = 13.75 v(3) = 0 v(4) = 0 v(5) = 0(15)
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3.1.2 Flows in the case of the coalition structure {1, 2}, {3, 4}, 5

If the players 3 and 4 merge into a coalition, the resulting �ow rates will be
as depicted in Fig. 3. This case represents a negative externality regarding
the coalition {1, 2}.

1

2

3

4

5

5 (5)

5 (10)

5 (7)

0 (5)

5 (20)

5 (5)

 0 (10)

0 (5)

0 (5)

5 (5)

0 (5)

Figure 3: Flows in the case of the coalition structure {1, 2}, {3, 4}, 5.

As we can see, in this case the network is "horizontally" balanced, there
is no power �ow except on the lines connecting 1, 2 and 3, 4.

The µ, and v values in this case will be as follows

µ(1) = 5 µ(2) = 5 µ(3) = 5 µ(4) = 5 µ(5) = 0 (16)

v({1, 2}) = 5 + 5 = 10 v({3, 4}) = 5 + 5 = 10 v(5) = 0 (17)

3.1.3 Flows in the case of the coalition structure {1, 2}, {3, 4, 5}

If the coalition {3, 4} merges with player 5, the resulting con�guration will
give rise to transmission conditions depicted in Fig. 4. This serves as a
reference case of a positive externality regarding the coalition {1, 2}.

In this case, also the horizontal edges of the network are utilized for power
transmission, which enables a higher resulting transmission rate also for the
coalition {1, 2}.

The µ, and v values in this case will be as follows
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1

2

3

4

5

5 (5)

6.67 (10)

6.67 (7)

1.67 (5)

11.67 (20)

3.33 (5)

8.33 (10)

3.33 (5)

1.67 (5)

5 (5)

5 (5)

Figure 4: Flows in the case of the coalition structure {1, 2}, {3, 4, 5}.

µ(1) = 6.67 µ(2) = 6.67 µ(3) = 11.67 µ(4) = 3.33 µ(5) = 8.33 (18)

v({1, 2}) = 6.67 + 6.67 = 13.33 v({3, 4, 5}) = 11.67 + 3.33 + 8.33 = 23.33(19)

3.2 Summary of the game

In table 1, the characteristic functions for the various partitions of the pre-
viously de�ned game (on the network depicted in Fig. 1) are given.
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Table 1: Partition function of the PFF game
P V P V

1,2,3,4,5 40 1,4 + 2,3,5 10 , 23.3333

1,2,3,4 + 5 20 , 0 1,4 + 2,3 + 5 10 , 10 , 0

1,2,3,5 + 4 34 , 0 1,5 + 2,3,4 20 , 20

1,2,3 + 4,5 14 , 0 1 + 2,3,4,5 0 , 28.8

1,2,3 + 4 + 5 14 , 0 , 0 1 + 2,3,4 + 5 0 , 19 , 0

1,2,4,5 + 3 20 , 0 1,5 + 2,3 + 4 19.7143 , 14 , 0

1,2,4 + 3,5 20 , 20 1 + 2,3,5 + 4 0 , 25.7143 , 0

1,2,4 + 3 + 5 17.5 , 0 , 0 1 + 2,3 + 4,5 0 , 14 , 0

1,2,5 + 3,4 20 , 10 1 + 2,3 + 4 + 5 0 , 14 , 0 , 0

1,2 + 3,4,5 13.3333 , 23.3333 1,4,5 + 2 + 3 20 , 0 , 0

1,2 + 3,4 + 5 10 , 10 , 0 1,4 + 2,5 + 3 10 , 0 , 0

1,2,5 + 3 + 4 20 , 0 , 0 1,4 + 2 + 3,5 10 , 0 , 18.5714

1,2 + 3,5 + 4 14 , 17.7143 , 0 1,4 + 2 + 3 + 5 10 , 0 , 0 , 0

1,2 + 3 + 4,5 13.75 , 0 , 0 1,5 + 2,4 + 3 15.7143 , 0 , 0

1,2 + 3 + 4 + 5 13.75 , 0 , 0 , 0 1 + 2,4,5 + 3 0 , 0 , 0

1,3,4,5 + 2 30 , 0 1 + 2,4 + 3,5 0 , 0 , 15.7143

1,3,4 + 2,5 10 , 0 1 + 2,4 + 3 + 5 0 , 0 , 0 , 0

1,3,4 + 2 + 5 10 , 0 , 0 1,5 + 2 + 3,4 17.1429 , 0 , 10

1,3,5 + 2,4 20 , 0 1 + 2,5 + 3,4 0 , 0 , 10

1,3 + 2,4,5 0 , 0 1 + 2 + 3,4,5 0 , 0 , 24.2857

1,3 + 2,4 + 5 0 , 0 , 0 1 + 2 + 3,4 + 5 0 , 0 , 10 , 0

1,3,5 + 2 + 4 20 , 0 , 0 1,5 + 2 + 3 + 4 15.7143 , 0 , 0 , 0

1,3 + 2,5 + 4 0 , 0 , 0 1 + 2,5 + 3 + 4 0 , 0 , 0 , 0

1,3 + 2 + 4,5 0 , 0 , 0 1 + 2 + 3,5 + 4 0 , 0 , 15.7143 , 0

1,3 + 2 + 4 + 5 0 , 0 , 0 , 0 1 + 2 + 3 + 4,5 0 , 0 , 0 , 0

1,4,5 + 2,3 20 , 14 1 + 2 + 3 + 4 + 5 0 , 0 , 0 , 0 , 0

3.3 Stability

The next step is to calculate the recursive core. Firstly observe that the game
in this example is superadditive: the merger of two coalitions � assuming
that other coalitions do not change � leads to an increase of the total payo�s
(see table 1). This property is not true in general, but here it facilitates
the calculation of the recursive core. For instance it is su�cient to study
single-coalition deviations as multi-coalition deviations can never do better.
As a further restriction only coalitions with at least one generator and one
consumer are interesting. This rules out, for instance, singletons as potential
deviators. The value of four player coalitions is directly given, since the
remaining, �fth player can only form a singleton. For 3-player coalitions the
situation is still simple, but less trivial: the remaining two players can remain
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singletons or form a pair. Due to the observed superadditivity they form a
pair in all cases when the residual game is nontrivial, that is, when it consists
of a generator and a consumer. Unfortunately in the �trivial� cases both
partitions are feasible, and due to pessimism the one o�ering a lower payo�
for the deviating triple is chosen. The deviating pairs constitute the most
interesting case as the remaining 3 players can form 5 di�erent partitions.
Due to the observed superadditivty, however, a nonempty residual core will
use the grand coalition as partition for all nontrivial residual games. Here
the nonemptiness of the residual cores is nontrivial, but can easily be veri�ed
using balancedness Bondareva (1963); Shapley (1967).

Table 2: Characteristic function based on the PFF game
S v(S) S v(S)
∅ 0 {1, 2, 3, 4, 5} 40

{1} 0 {2, 3, 4, 5} 20
{2} 0 {1, 3, 4, 5} 30
{3} 0 {1, 2, 4, 5} 20
{4} 0 {1, 2, 3, 5} 34
{5} 0 {1, 2, 3, 4} 20

{1, 2} 13.33 {3, 4, 5} 23.33
{1, 3} 0 {2, 4, 5} 0
{1, 4} 10 {2, 3, 5} 23.33
{1, 5} 20 {2, 3, 4} 20
{2, 3} 14 {1, 4, 5} 20
{2, 4} 0 {1, 3, 5} 20
{2, 5} 0 {1, 3, 4} 10
{3, 4} 10 {1, 2, 5} 20
{3, 5} 20 {1, 2, 4} 20
{4, 5} 0 {1, 2, 3} 14

Given the characteristic function in Table 2 we can calculate the core.
The core consists of all imputations x such that for all S ⊆ N we have∑

i∈S xi ≥ v(S). While in general calculating the core is a complex problem,
in this particular example the calculation is relatively straightforward.

First notice that the total payo� must be at least 40, which is also the
payo� under the most e�cient partitions: {{1, 2, 3, 4, 5}}, {{1, 5} , {2, 3, 4}},
{{1, 2, 4} , {3, 5}}. Clearly the payo�s of these coalitions will be exactly their
characteristic value. After the simpli�cation of the system of inequalities
we �nd that the core collects the following points: The projection onto the
x3 = x4 = x5 = 0 plane is of the form of a parallelogram with vertices (4,
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Figure 5: The projection of the core onto the x3 = x4 = x5 = 0 plane.

10), (6.67, 10), (10.67, 3.33), (13.33, 3.33), while x3 = x1, x4 = 20− x1 − x2

and x5 = 40− x1 − x2 − x3 − x4.
When looking at the core notice that the equilibrium payo�s can vary

greatly. In this game pro�table coalition requires both generators and con-
sumers and the value is produced jointly. This situation shows some resem-
blance to the glove games where players own left or right gloves and the value
of a coalition is given by the number of pairs it owns. As one of the empirical
criticisms of the core, it can be shown that the halves that are fewer may
keep all the pro�t even if the di�erence in quantities is arbitrarily small when
compared to the number of pairs. Here transmission capacity constraints and
other physical properties of the network prevent the exploitation of one side
or the other. This also means that the system of balancing groups remains
most likely stable in the core sense even if legal regulations put restrictions
on the distribution of pro�ts.

3.4 Superadditivity

If P and Q are partitions, and (∀P ∈ P)(∃Q ∈ Q)(P ⊆ Q), we say that
P is a re�nement of Q. In this case, under superadditivity we mean that
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v(P1,P) + ...+ v(Pk,P) ≤ v(Q,Q).
Superadditivity is a natural property here, since the merger of two or

more coalitions removes some of the constraints in the LP problem 12 thereby
increasing the total �ow. It turns out that these bene�ts do not necessarily
stay within the merged coalitions, in fact they may be worse o� after the
merger!

In the following we will show on an example 6 node network that the de-
�ned game is not necessary superadditive. If two coalitions merge, it is possi-
ble that they generate a positive externality, meanwhile in turn their overall
transmission will be reduced. The 6 node network used for the demonstration
of this subadditive property is depicted in Fig. 6

1

2

3

4

Y12=1

Y24=1

Y34=1
q12=3

q24=3

q34=3

5

Y36=1
q36=10

Y46=1
q46=5

6
Y25=1
q25=5

Y56=1
q56=10

(5)

(3)

(1)

(3)(10) (10)

Figure 6: The basic structure, line and node parameters of the 6 node network

3.4.1 Flows in the case of the coalition structure {1, 2}, {3, 4}, {5, 6}

The �ows in the case of the coalition structure {1, 2}, {3, 4}, {5, 6} are de-
picted in Fig 7.

µ(1) = 3 µ(2) = 3 µ(3) = 1 µ(4) = 1 µ(5) = 7.75 µ(6) = 7.75

v({1, 2}) = 3 + 3 = 6 v({3, 4}) = 1 + 1 = 2 v({5, 6}) = 7.75 + 7.75 = 15.5(20)

Let us note that the coalitions {1, 2} and {3, 4} put load on the network
only in vertical directions. The horizontal transfers can be related to the
coalition {5, 6}.

3.4.2 Flows in the case of the coalition structure {1, 2, 3, 4}, {5, 6}

The resulting �ows, corresponding to the scenario if the coalitions {1, 2} and
{3, 4} merge, are depicted in Fig 8.
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3 (3)
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Figure 7: Power in and outlets and line �ows in the case of the coalition
structure {1, 2}, {3, 4}, {5, 6}. Coalitions are labeled with di�erent colors.
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3 (3)
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5.75 (10)
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4.25 (5)

2 (3) 1.25 (3)

Figure 8: Power in and outlets and line �ows in the case of the coalition
structure {1, 2, 3, 4}, {5, 6}. Coalitions are labeled with di�erent colors.

µ(1) = 2 µ(2) = 3 µ(3) = 1 µ(4) = 0 µ(5) = 9.75 µ(6) = 9.75(21)

v({1, 2, 3, 4}) = 2 + 3 + 1 = 6 v({5, 6}) = 9.75 + 9.75 = 19.5

As we see, as the coalitions {1, 2} and {3, 4} have merged, their overall
value decreased from 6+2=8 to 6. Meanwhile, this recon�guration of coali-
tions implied a positive externality of value 4 regarding the coalition {5, 6}.
In this case of subadditivity, the positive externality is necessary, because in
the case of less coalitions (which implies less constraints in the LP problem),
the resulting overall network �ow cannot be lower than in the case of more
coalitions.
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3.4.3 Discussion

What is the phenomenon behind this subadditivity example? If two coalitions
merge, the number of the corresponding constraints is reduced. In the new
con�guration, they might put load on certain lines, on which they could not
before. In this case this critical line is the line between node 2 and 4.

Until the coalition recon�guration, the third generator-consumer pair
({5, 6}) has used this line to transfer energy from left to right. This coalition
also uses the route 5-3-6 with parallel to the route 5-2-4-6 for the transfer,
however, the bottleneck is line 2-4.

As the constraints resolve, coalition {1, 2, 3, 4} can be 'forced' by the
independent network regulator to use the line 2-4 for transfer from right to left
(which implies the relief of line 2-4 from the point of view of {5, 6}, who use it
in the opposite direction). Furthermore, because the total transmitted energy
of coalition {5, 6} is routed only partially via the line 2-4, they can increase
their total transmitted amount more, compared to the quantity coalition
{1, 2, 3, 4} had to reduced theirs to appropriately balance the line 2-4.

This way the total amount of power transmitted by the network increases,
while the total amount of power transmission between nodes {1, 2, 3, 4} is
reduced.

3.5 Changing the power grid

A straightforward way, in which we can extend the previously de�ned game
of generator rescheduling, is the expansion problem. In this case, we will
assume that there is a given set of possible line additions in the network, as
depicted in the case of an example network in Fig. 9.

In this case, we assume that every line addition has a �xed cost (in this
case 5 units). If a new line is added to the network, the resulting admittance
and capacity of the line between the corresponding nodes will be the sum of
the values of the new and the original lines (both admittance and capacity
values are summarized).

Furthermore, we assume that a new line can be built only between two
such nodes, which are in the same coalition (in the coalition which covers the
cost of the line expansion). In this case, the cost of the line addition is natu-
rally covered by the corresponding coalition. A line is built only, if it brings
additional value for the coalition. Regarding the characteristic functions, for
a given coalition C in the case of a certain partitioning, the value of v can
be determined as follows: v(C) = max{vi(C)} where the values vi(C) corre-
spond to the possible line additions of the coalition (including also the case
of no line addition). If additional lines are added to the network, vi(C) can
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Figure 9: The basic structure and line parameters of the 5 node network in
the case of a possible line extension between nodes 3 and 4 (denoted by the
dashed line). p234 denotes the cost of the line expansion.

be calculated as vi(C) =
∑

i∈C µ(i)−
∑

j pj, where
∑

j pj describes the over-
all cost of actual line addition con�guration. The values µi are determined
corresponding to the network capacities and admittances corresponding to
the network including the newly added lines.

3.5.1 Example for the expansion game

In this simple example, we analyze in the case of the simple 5 node network
depicted in Fig. 9 which partitions imply the addition of a new line to the
network. Let us assume that the maximal generator capacities and ideal con-
sumption values are the same as described previously in section 3.1, except
that the ideal consumption value of node 4 is 7.

Coalition structure {1, 2}, {3, 4}, 5
First, let us consider the coalition structure {1, 2}, {3, 4}, 5. We calculate
all vi values for the coalition {3, 4}, which is capable of a line addition to
determine, whether the new line will be added in this coalition structure. If
we consider no line addition (and denote this possibility with v1), the �ows
will be the same as earlier (depicted in Fig. 3), so the value of v1 can be
calculated as v1({3, 4}) = 5 + 5 = 10 (the ideal consumption value of node 3
is higher compared to Fig. 3, but the transmission capacity constrains, which
limit the transferable quantity are the same). If we assume the addition of a
new line, the resulting power inlets/consumtions and �ows will be as depicted
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in Fig. 10
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3

4

5

5 (5)

5.69 (10)

5.69 (7)

0.46 (5)

7 (20)

7 (7)

 0 (10)

0.23 (5)

0.69 (5)

7.69 (10)

0.23  (5)

Figure 10: The power in/outlets and line �ows of the network, in the case
of the coalition structure {1, 2}, {3, 4}, 5, assuming that the line between
node 3 and 4 is built

In this case

µ(1) = 5.69 µ(2) = 5.69 µ(3) = 7 µ(4) = 7 µ(5) = 0

v({1, 2}) = 5.69 + 5.69 = 11.38

v2({3, 4}) =
∑
i∈C

µ(i)− p234 = 7 + 7− 5 = 9 v(5) = 0 (22)

As we see v2({3, 4}) < v1({3, 4}). This means that the cost of the new
line addition (p234 = 5) exceeds the bene�t that is implied by the enhanced
power generation of node 3, and the higher consumption of node 4 (overall
2+2=4). This means, that in the case of this coalition structure, the new
line between node 3 and 4 will not be built.

Coalition structure {1, 2}, {3, 4, 5}
Similarly to the previous case, if we consider no line addition (v1({3, 4, 5})),
the �ows will be the same as earlier (depicted in Fig. 4) in the case of this
coalition structure, so the value of v1 can be calculated as v1({3, 4, 5}) =
11.67 + 3.33 + 8.33 = 23.33. If we assume the addition of a new line, the
resulting power inlets/consumptions and �ows will be as depicted in Fig. 11.
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Figure 11: The power in/outlets and line �ows of the network, in the case of
the coalition structure {1, 2}, {3, 4, 5}, assuming that the line between node
3 and 4 is built

In this case

µ(1) = 7 µ(2) = 7 µ(3) = 15.5 µ(4) = 7 µ(5) = 8.5

v({1, 2}) = 7 + 7 = 14

v2({3, 4, 5}) =
∑
i∈C

µ(i)− p234 = 15.5 + 7 + 8.5− 5 = 26 (23)

In this case, as we see from v2({3, 4, 5}) > v1({3, 4, 5}),the overall e�ect
of the line addition is bene�cial for the coalition {3, 4, 5}, so the new line will
be built in this case.

4 Conclusion

4.1 Summary

In this paper a cooperative game of generator rescheduling on electrical en-
ergy transmission networks has been proposed. The game is de�ned in a par-
tition function form; for each partition, the characteristic function is given
by the actual resulting power in and out�ows that are calculated by an inde-
pendent network regulator. This regulator optimizes the total transmission
of the system, according to the line transmission capacity constraints and
balance equations implied by the actual coalition structure. The optimiza-
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tion problem of the independent network regulator is formalized and solved
as a linear programming problem.

We have shown that the game can give rise both to positive and negative
externalities, and demonstrated this using a 5 node example network. In the
case of the proposed superadditive example demonstrating externalities, the
pessimistic recursive core has been calculated, and its non-emptiness for this
example has been shown.

A second example of a 6 node network demonstrated that power trans-
mission games are not necessary superadditive.

Furthermore, we described a straightforward method, due which the net-
work expansion problem can be included in the proposed formalism.

4.2 Future work

Our model has been designed to be realistic enough to be interesting, but
remain manageable. Some of the aspects of the real power transmission
networks has been ignored for simplicity. Such are the redundancies to ensure
that the network remains stable even in the case of an instant failure of
any one transmission line (if we 'cut' one line, the resulting power �ows
must not exceed the transmission capacities anywhere in the network). This
property can be included in the LP optimization problem, but it is not trivial
how it will a�ect the properties of the resulting game. Reintroducing these
elements will naturally add to the complexity to the model, but are unlikely
to drastically alter our conclusions.

Regarding the dynamical extension of the game, two straightforward sce-
narios can be analyzed. One is the extension of the model in the direction
of the description of daily change in energy demands, while the other corre-
sponds to the network extension problem. In the case of daily adaptation,
the analysis of safe (and e�cient) transition between various network con-
�guration can be a question of high interest. In the case of the extension
problem, we may analyze for example whether a coalition, which builds a
new line remains stable during a reorganization of coalitions according to
the new network structure; whether it is bene�cial to the linked parties and
even if yes: who should stand the bill?

The steady increase of demand for energy and the increasing connectivity
of national power networks are just two long-term trends that require large
scale expansions. Ambitious plans will often boil down to the same question.
A complex game theoretic model as ours that studies both the competition
and cooperation of the parties can help to evaluate such con�icts.
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