

A Service of

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre

Biró, Péter; Norman, Gethin

Working Paper Analysis of Stochastic Matching Markets

IEHAS Discussion Papers, No. MT-DP - 2011/32

Provided in Cooperation with:

Institute of Economics, Centre for Economic and Regional Studies, Hungarian Academy of Sciences

Suggested Citation: Biró, Péter; Norman, Gethin (2011): Analysis of Stochastic Matching Markets, IEHAS Discussion Papers, No. MT-DP - 2011/32, ISBN 978-615-5024-69-6, Hungarian Academy of Sciences, Institute of Economics, Budapest

This Version is available at: https://hdl.handle.net/10419/108232

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

MŰHELYTANULMÁNYOK

DISCUSSION PAPERS

MT-DP - 2011/32

Analysis of Stochastic Matching Markets

PÉTER BIRÓ - GETHIN NORMAN

Discussion papers MT-DP - 2011/32

Institute of Economics, Hungarian Academy of Sciences

KTI/IE Discussion Papers are circulated to promote discussion and provoque comments. Any references to discussion papers should clearly state that the paper is preliminary. Materials published in this series may subject to further publication.

Analysis of Stochastic Matching Markets

Authors:

Péter Biró research fellow Institute of Economics - Hungarian Academy of Sciences E-mail: birop@econ.core.hu

> Gethin Norman lecturer School of Computing Science University of Glasgow Gethin.Norman@glasgow.ac.uk

> > July 2011

ISBN 978-615-5024-69-6 ISSN 1785 377X **Analysis of Stochastic Matching Markets**

Péter Biró - Gethin Norman

Abstract

Suppose that the agents of a matching market contact each other randomly and form new

pairs if is in their interest. Does such a process always converge to a stable matching if one

exists? If so, how quickly? Are some stable matchings more likely to be obtained by this

process than others? In this paper we are going to provide answers to these and similar

questions, posed by economists and computer scientists. In the first part of the paper we

give an alternative proof for the theorems by Diamantoudi et al. and Inarra et al. which

implies that the corresponding stochastic processes are absorbing Markov chains. Our

proof is not only shorter, but also provides upper bounds for the number of steps needed

to stabilise the system. The second part of the paper proposes new techniques to analyse

the behaviour of matching markets. We introduce the Stable Marriage and Stable

Roommates Automaton and show how the probabilistic model checking tool PRISM may

be used to predict the outcomes of stochastic interactions between myopic agents. In particular, we demonstrate how one can calculate the probabilities of reaching different

matchings in a decentralised market and determine the expected convergence time of the

stochastic process concerned. We illustrate the usage of this technique by studying some

well-known marriage and roommates instances and randomly generated instances.

Keywords: roommates problem, marriage problem, stochastic processes, core

convergence, probabilistic model checking

JEL Classification: C62, C63, C71, C78

Acknowledgement:

Supported by EPSRC grants EP/E011993/1, by OTKA grant K69027 and by the Hungarian

Academy of Sciences under its Momemtum Programme (LD-004/2010).

Sztochasztikus párosítási piacok elemzése

Biró Péter - Gethin Norman

Összefoglaló

Tegyük fel, hogy egy párosítási piac szereplői véletlenszerűen találkoznak egymással, és új

párokat alkotnak, amennyiben ez érdekükben áll. Konvergál-e ez a folyamat egy stabil

párosításhoz, ha létezik ilyen az adott piacon? Milyen gyors ez a konvergencia? Vannak-e

olyan stabil párosítások, amelyeket nagyobb valószínűséggel érhetünk el egy ilyen

sztochasztikus folyamat révén, mint másokat? Ezekre és további hasonló – közgazdászok

és számítástudósok által megfogalmazott – kérdésekre adunk választ a cikkben. A dolgozat

első részében alternatív bizonyítást adunk Diamantoudi és társai, illetve Inarra és társai

tételeire. Bizonyításunk egyrészt rövidebb, másrészt felső korlátot is ad a rendszer

stabilizálódásához szükséges lépések számára. A cikkünk második felében egy új módszert

javasolunk a párosító piacok viselkedésének elemzésére. Definiáljuk a Stabil Szobatárs és

Stabil Házastárs Automatákat és megmutatjuk, miként használhatjuk a PRISM

valószínűségi modellellenőrzés programcsomagot arra, hogy meghatározzuk a szereplők

között lejátszódó sztochasztikus interakciók várható kimenetelét. Példaként említhetjük a

szóba párosítások elérési valószínűségeinek jöhető folyamat

konvergenciaidejének kiszámítását. Az új technika használatát jól ismert házasság- és

szobatársfeladatok, illetve véletlenszerűen generált példák elemzésén keresztül mutatjuk

be.

házasság probléma, Tárgyszavak: szobatárs probléma, sztochasztikus folyamatok,

magkonvergencia, valószínűségi modellellenőrzés

JEL kódok: C62, C63, C71, C78

Analysis of Stochastic Matching Markets

Péter Biró^{a,1}, Gethin Norman^b

^aInstitute of Economics, Hungarian Academy of Sciences, H-1112, Budaörsi út 45, Budapest, Hungary ^bSchool of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

Suppose that the agents of a matching market contact each other randomly and form new pairs if is in their interest. Does such a process always converge to a stable matching if one exists? If so, how quickly? Are some stable matchings more likely to be obtained by this process than others? In this paper we are going to provide answers to these and similar questions, posed by economists and computer scientists. In the first part of the paper we give an alternative proof for the theorems by Diamantoudi et al. and Inarra et al. which implies that the corresponding stochastic processes are absorbing Markov chains. Our proof is not only shorter, but also provides upper bounds for the number of steps needed to stabilise the system. The second part of the paper proposes new techniques to analyse the behaviour of matching markets. We introduce the Stable Marriage and Stable Roommates Automaton and show how the probabilistic model checking tool PRISM may be used to predict the outcomes of stochastic interactions between myopic agents. In particular, we demonstrate how one can calculate the probabilities of reaching different matchings in a decentralised market and determine the expected convergence time of the stochastic process concerned. We illustrate the usage of this technique by studying some well-known marriage and roommates instances and randomly generated instances.

1. Introduction

The Stable Roommates problem (SR) is a classical combinatorial problem that has been studied extensively in the literature, see e.g. [9]. An instance I of SR contains an undirected graph G(V, E), where $V = \{v_1, \ldots, v_n\}$ and m = |E(G)|. We refer to G as the underlying graph of I, and we interchangeably refer to the vertices of G as the agents. If (v_i, v_j) is an edge in E(G), then we say that v_i and v_j find each other acceptable. Each agent v_i has a linear order v_i over her acceptable partners, where v_i and v_j means that v_i prefers v_i to v_j . Let $M(v_i)$

 $Email\ addresses:\ {\tt birop@econ.core.hu}\ ({\tt P\'eter\ Bir\'o}),\ {\tt gethin.norman@glasgow.ac.uk}\ ({\tt Gethin\ Norman})$

¹Supported by EPSRC grants EP/E011993/1, by OTKA grant K69027 and by the Hungarian Academy of Sciences under its Momentum Programme (LD-004/2010)

denote the partner of v_i in a given matching M. An edge (v_i, v_j) is said to be blocking with respect to M if (i) either v_i is unmatched in M or prefers v_j to $M(v_i)$, and (ii) either v_j is unmatched in M or prefers v_i to $M(v_j)$. A matching is called stable if it admits no blocking edge. If G is bipartite, then the problem of finding a stable matching is called the Stable Marriage problem (SM). In this case, if the graph is G(U, W, E), then we refer to $U = \{m_1, \ldots, m_{n_1}\}$ and $W = \{w_1, \ldots, w_{n_2}\}$ as the sets of men and women, respectively.

Note that both the Stable Roommates and the Stable Marriage problems can be seen as NTU-games, since for any SR or SM instance the set of stable matchings coincide with the core of the corresponding game. Fur further details, see for example the celebrated book by Roth and Sotomayor [25].

Gale and Shapley [8] give a linear time algorithm that finds a stable matching for any instance of SM, while also illustrating an instance of SR that does not admit a stable matching. Irving [12] gives a linear time algorithm that, for any instance of SR, finds a stable matching or reports that none exists. Both algorithms assume that the preference lists are complete (i.e., the graph G is complete), although it is straightforward to extend the algorithms to incomplete lists [9].

Suppose that we are given a SR instance I with underlying graph G. For a matching M, if a pair (v_i, v_j) is blocking, then we may satisfy this blocking pair and get a new matching $M^{(v_i, v_j)}$, where $(v_i, v_j) \in M^{(v_i, v_j)}$ and for each $w \in \{v_i, v_j\}$, if w is matched in M, then M(w) is unmatched in $M^{(v_i, v_j)}$. Roth and Vande Vate [26] prove that, given an instance of SM, starting from any unstable matching we can always obtain a stable matching by successively satisfying blocking pairs. Diamantoudi et al. [7] show that a similar result holds for the roommates problem, namely, for a given instance of SR that admits a stable matching and starting from any unstable matching, one can obtain a stable matching by successively satisfying blocking pairs. This essentially means that the corresponding stochastic processes (to be defined in Section 3) are absorbing Markov chains (for more details of these stochastic processes see, e.g. Chapter 3 of [14]). Since there are only finitely many matching in any instance, the result of Roth and Vande Vate implies that, starting from an arbitrary matching, the process of allowing randomly chosen blocking pairs to match will converge to a stable matching with probability one.

The proof of Roth and Vande Vate is based on the following idea. Suppose that we have a stable matching for an instance of SM and we add a new agent

 $^{^2}$ Note that this question was originally proposed by Knuth [18] (Problem 8 from his twelve famous research problems) in a slightly different setting. In his case, the set of possible matchings was restricted to the complete matchings (as all the preference lists were supposed to be complete), and whenever a blocking pair was satisfied the left-alone agents formed a new pair immediately. The above described transition from a complete matching to another one was called *interchange*. Knuth asked whether, given an instance of SM and a starting matching M, there always exist a sequence of interchanges from M to some stable matching? Tamura [28], and independently Tan and Su [32], answered this question negatively by giving counterexamples.

to the market, then there is a natural proposal-rejection sequence (described in Section 2) that leads to a stable matching for the extended instance. If, we start with the empty matching and run this incremental algorithm, then the resulting stable matching will depend on the order in which the agents arrive. This is called the random order mechanism. By assuming that each order is equally likely, we may calculate the probability of each stable matching being obtained. Ma [22] carried out this calculation for an instance, originally suggested by Knuth [18], and observed that not all stable matchings can be reached by this mechanism and there is a higher probability of reaching some stable matchings over others (although his calculation was not entirely correct as [16] pointed out).³ In this paper we will also study this instance (Example 2 in Section 3) with respect to a different stochastic process.

We may suppose that all agents are present in the market and, starting with the empty matching, the blocking pairs to be satisfied are chosen randomly (with equal probability in each step). In this case, every stable matching can be reached with positive probability (since we may satisfy all pairs involved in this matching at the beginning of the process), but still, as we will illustrate in Section 3, some stable matchings can be more likely than others.

There is also a growing literature concerning stable roommates problems that may not admit stable solutions. Tan [30] show that a stable half-matching always exists for any given instance of SR. A half-matching is a weight function $h: E(G) \to \{0, \frac{1}{2}, 1\}$ such that $\sum_{v_i \in e} h(e) \leq 1$ for each vertex v_i . A half-matching is said to be stable if, for each edge $(v_i, v_j) \in E(G)$, one of its vertices, say v_i satisfies $\sum_{(v_i, v_k)v_k \geq v_i v_j} h((v_i, v_k)) = 1$, (otherwise the edge (v_i, v_j) is said to be blocking). Note that if $h: E(G) \to \{0, 1\}$ is stable, then h corresponds to a stable matching.⁴ Tan and Hsueh [31] give a polynomial time algorithm to find a stable half-matching for a given instance of SR. This algorithm is, in fact, a generalised version of the algorithm of Roth and Vande Vate (a detailed description of this is given in Section 2).

Inarra et al. [10] define an h-stable matching M relative to a stable half-matching h as follows. Let M contain every edge that has weight 1 in h, every second edge from each even half-weighted cycle of h (if there were any), and k (disjoint) edges from each odd half-weighted cycle of length 2k + 1 in h.⁵ They show that, starting from an arbitrary matching, one can get an h-stable matching by successively satisfying blocking pairs for a given instance of SR.

³An explanation for the first observation is the result of Blum and Rothblum [6] which demonstrates that, when using the Roth-Vande Vate algorithm, the last agent to arrive always gets their best stable partner (an alternative proof of this result is given by Biró *et al.* [3]). Hence, a stable matching in which nobody gets their best partner cannot be obtained by this mechanism.

⁴The existence of a half-matching may be proved by the Lemma of Scarf [27], as Aharoni and Fleiner [1] demonstrate. The notion of *stable fractional matching* (or *fractional core*) is an extension of stable half-matching that may be defined for more general matching problems (or NTU-games) as well, see more on this theory in a recent paper by Biró and Fleiner [4].

⁵This concept was originally proposed by Tan [29] as a method to find a matching as large as possible that is stable for the matched agents in an unsolvable instance.

Note that for every solvable instance of SR the set of h-stable matchings is equivalent to the set of stable matchings, thus the above result generalises the theorem of Diamantoudi et al. [7]. In Section 2, we give an alternative short proof for the theorem of Inarra et al. [10] by using the Tan-Hsueh algorithm, by providing also upper bounds for the steps needed to reach a desired matching.

In another paper, Inarra $et\ al.\ [11]$ define the $absorbing\ sets$ for an instance of SR as follows. Each absorbing set consists of matchings that are reachable from one another by successively satisfying blocking edges, but no other matching can be reached from this set by satisfying a blocking edge. These are in fact the $ergodic\ sets$ of the corresponding Markov chain (see e.g. [14]), and a matching M is in an ergodic set if and only if the limit probability of M, starting from the empty matching, is positive. Moreover, Klaus $et\ al.\ [17]$ prove that the absorbing sets consist of exactly those matchings that have positive probabilities in the limit distribution of a stochastic process where, starting from any matching, the agents make mistakes with small probabilities in their myopic blocking decisions. They called this process $perturbed\ blocking\ dynamics$. Similar stochastic systems have been studied for the Stable Marriage problem in the context of network formations by Jackson and Watts [13].

Ackermann et al. [2] study the convergence time of the stochastic processes occurring from stable marriage problems. They refer to the stochastic process, where in each step a blocking pair is chosen uniformly at random and satisfied, as the random better response dynamics. They demonstrate that, although the process converges to a stable matching, the expected convergence time is exponential for a family of SM instances. Our experiments conducted for the above family of instances confirm this finding, as we describe in Section 3. However, we also demonstrate that this behaviour is unexpected in an average market, since for the randomly generated instances the expected convergence time is significantly smaller.

The dynamics of matching markets have also been in focus in some recent engineering papers on P2P systems, see, e.g, [23] for an overview. In particular, Lebedev et al. [21] show that the convergence is fast for systems, modelled with SR instances, where the preferences are acyclic, i.e., the preferences are derived from some global rank function on the pairs. This is a realistic assumption in case of some real P2P networks.

To summarise, the contribution of this paper is the following. In Section 2 we give an alternative proof for the theorems of Diamantoudi $et\ al.$ [7] and Inarra $et\ al.$ [10]. This new proof, which is based on the Tan-Hsueh algorithm, is not only shorter and simpler than the originals, but also provides upper bounds on the number of steps needed to reach a stable (or h-stable) matching. In Section 3 we define the Stable Marriage and Stable Roommates Automata and then we demonstrate how the probabilistic model checker PRISM [20, 34] can be used to analyse and compare the performance of difference instances. In particular, we study two well-known SM instances, a SR instance and then present a case study involving structured and random SM instances. We believe that this approach will also have applications in the study the interaction of agents in real markets and networks for more complex settings.

2. Convergence to stability, an alternative proof

In this section we describe the Roth-Vande Vate and the Tan-Hsueh algorithms. We use the latter to give an alternative proof for the theorems of Diamantoudi $et\ al.$ [7] and Inarra $et\ al.$ [10]. That is, we show that starting from an arbitrary matching of a solvable SR instance one can always find a stable matching by successively satisfying blocking pairs; and that starting from an arbitrary matching of an instance of SR (solvable or unsolvable) one can always find an h-stable matching by successively satisfying blocking pairs, respectively. Note that these theorems were the main results of the above papers. Our proof is much shorter and it gives upper bounds for the number of blocking pairs that need to be satisfied to obtain a stable (or h-stable) matching. Also, it shows that the argument of Roth and Vande Vate for the marriage case can be extended for the roommates case in a natural way.

The Roth-Vande Vate algorithm. Suppose that we are given an instance I of SM together with a matching $M_0 = \{(m_1, w_1), \dots, (m_k, w_k)\}$. We shall show that we can reach a stable matching by successively satisfying blocking pairs. A variant⁶ of the Roth-Vande Vate algorithm works as follows.

During the procedure we gradually extend a set $S \subseteq (U \cup W)$ and a matching M_S that is stable in S. Initially let $S = \{\emptyset\}$ and $M_S = \{\emptyset\}$. For each index i (i = 1, ..., k), if $M_S \cup \{(m_i, w_i)\}$ is stable in $S \cup \{m_i, w_i\}$, then let $M_{S'} = M_S \cup \{(m_i, w_i)\}$ and $S' = S \cup \{m_i, w_i\}$ (i.e. we simply enlarge both S and M_S with a new pair). Otherwise we add m_i and w_i to S one by one as follows.

Without loss of generality suppose that m_i is involved in a blocking pair with an agent of S with respect to matching $M_S \cup \{(m_i, w_i)\}$, let w_{i_1} be the woman who is the best blocking partner of m_i and let $S' = S \cup \{m_i\}$. If w_{i_1} is unmatched in M_S , then $M_{S'} = M_S \cup \{(m_i, w_{i_1})\}$ is a stable matching in S'. Otherwise, let $m_{i_1} = M_S(w_{i_1})$ and $M_{S' \setminus \{m_{i_1}\}} = (M_S \setminus \{(m_{i_1}, w_{i_1})\} \cup \{(m_i, w_{i_1})\}$ is stable for $S' \setminus \{m_{i_1}\}$. Now we let m_{i_1} re-enter the market. If m_{i_1} is not involved in any blocking pair, then $M_{S' \setminus \{m_{i_1}\}}$ is stable for S'. Otherwise we satisfy the best blocking pair m_{i_1} is involved in according to his preferences, and so on. This process must terminate after satisfying at most m blocking pairs, since no woman ever receives a worse partner. We can also add w_i in a similar manner, reversing the role of men and women. (Note that if m_i was not involved in a blocking pair with an agent of S with respect to matching $M_S \cup \{(m_i, w_i)\}$ then w_i must have been involved in a blocking pair, so we start by adding w_i to S first, followed by m_i .)

After processing all pairs of M_0 , we add the remaining agents one by one in the same way. Therefore, we obtain the sequence of blocking pairs that we need to satisfy to reach a stable matching starting from M_0 . Since we never satisfy a pair twice when adding a new agent to S, it follows that the number of steps

⁶This version of the Roth-Vande Vate algorithm has been described by Ma [22]. Note that it slightly differs from the original method described in [26], but the difference is not substantial.

in the path to stability is at most mn.

The Tan-Hsueh algorithm. The Tan-Hsueh algorithm deals with SR instances (rather than SM instances) and stable half-matchings (rather than stable matchings), and there is no starting matching M_0 . But otherwise it is based on the same idea as the Roth-Vande Vate algorithm: we gradually extend a set $S \subseteq V(G)$ and we restore the stability of a half-matching h_S in S.⁷

Suppose that we are given an instance I of SR with an underlying graph G(V, E). Initially let $S = \{\emptyset\}$ and $h_S(e) = 0$ for each $e \in E(G)$. Suppose that after adding k agents we have $S = \{v_1, v_2, \ldots, v_k\}$ with a corresponding stable half-matching h_S where each half-weighted cycle has odd length. Let $S' = S \cup \{v_{k+1}\}$. Now we describe how we can construct the new stable half-matching $h_{S'}$ in S'.

If v_{k+1} is not involved in any blocking pair in S', then h_S remains stable in S', obviously. Otherwise let v_j be the best blocking partner of v_{k+1} in S'. If v_j is unmatched (i.e., not matched and not covered by a half-weighted cycle either), then by setting $h_{S'}((v_{k+1},v_j))=1$ and $h_{S'}(e)=h_S(e)$ for every other edge we obtain a new stable half-matching in S'. If v_j is covered by a half-weighted odd cycle, say by $(v_{c_1},v_{c_2},\ldots,v_{c_{2l+1}})$ where $v_j=v_{c_1}$, then by setting $h_{S'}((v_{k+1},v_j))=1$, $h_{S'}((v_{c_{2i}},v_{c_{2i+1}}))=1$ for $i=1,\ldots,l$, $h_{S'}((v_{c_{2i-1}},v_{c_{2i}}))=0$ for $i=1,\ldots,l$ and $h_{S'}((v_{c_{2l+1}},v_{c_1}))=0$ we obtain a new stable half-matching. The last case is when v_j is matched in h_S to an agent, say v_{a_1} . By setting $h_{S'\setminus\{v_{a_1}\}}((v_{k+1},v_j))=1$ and $h_{S'\setminus\{v_{a_1}\}}((v_j,v_{a_1}))=0$ we obtain a half-matching that is stable in $S'\setminus\{v_{a_1}\}$. Now, we restart the process with v_{a_1} .

In contrast with the SM context, it is possible that the latter case happens every time and the above process never ends, since in a sequence $v_{a_1}, v_{b_1}, \ldots, v_{a_l}, v_{b_l}$, where v_{b_l} may be the same as v_{a_1} . Tan and Hsueh [31] showed that, if such a repetition occurs, then a subset of these agents will be involved in a never ending cycling and we can form a new half-weighted odd cycle on the corresponding edges resulting in a new stable half-matching $h_{S'}$ in S'.

Alternative proofs of [10] and [7]. Modifying the Tan-Hsueh algorithm slightly (with h-stable matchings rather than with stable half-matchings), we can obtain an alternative proof for the following theorem of Inarra $et\ al.\ [10]$, with an upper bound on the number of steps needed to reach an h-stable matching.

Theorem 1. Suppose that we are given an instance of SR and a matching M_0 , then one can always reach an h-stable matching starting from M_0 by successively satisfying at most mn blocking pairs.

PROOF. Let $M_0 = \{(v_1, v_2), (v_3, v_4), \dots, (v_{2k-1}, v_{2k})\}$. Just as in the proof of Roth and Vande Vate, we gradually extend a set $S \subseteq V(G)$ and a matching M_S in S, where initially $S = \{\emptyset\}$ and $M_S = \{\emptyset\}$.

⁷For any bipartite graph the Tan-Hsueh algorithm is identical to the Roth-Vande Vate algorithm if the starting matching of the latter algorithm is $\{\emptyset\}$. Detailed descriptions of the two algorithms with illustrative examples can be found in [3].

Suppose that $S = \{v_1, v_2, \ldots, v_{2i}\}$ and M_S is a h_S -stable matching relative to a stable half-matching h_S . Recall that each edge e of weight 1 in h_S is represented in M_S and each half-weighted odd cycle $C = (v_{c_1}, v_{c_2}, \ldots, v_{c_{2l+1}})$ is represented by l disjoint edges of C in M_S . Consider a half-matching h^* in $S \cup \{v_{2i+1}, v_{2i+2}\}$ where $h^*((v_{2i+1}, v_{2i+2})) = 1$ and the other weights are the same as in h_S . If h^* is stable in $S \cup \{v_{2i+1}, v_{2i+2}\}$, then it follows that $M_{S'} = M_S \cup \{(v_{2i+1}, v_{2i+2})\}$ is an h^* -stable matching in $S' = S \cup \{v_{2i+1}, v_{2i+2}\}$. Otherwise, if h^* is not stable in $S \cup \{v_{2i+1}, v_{2i+2}\}$, then we add v_{2i+1} and v_{2i+2} to S as follows.

Without loss of generality suppose that v_{2i+1} is involved in a blocking pair with an agent of S with respect to matching $M_S \cup \{(v_{2i+1}, v_{2i+2})\}$, let v_j be the best blocking partner of v_{2i+1} and let $S' = S \cup \{v_{2i+1}\}$. If v_j is unmatched in h_S (and so also in M_S), then $M_{S'} = M \cup \{(v_{2i+1}, v_j)\}$ is an $h_{S'}$ -stable matching in S' where $h_{S'}((v_{2i+1}, v_j)) = 1$ and otherwise it is the same as h_S . Note that (v_{2i+1}, v_j) must be a blocking pair for M_S too, so we may obtain $M_{S'}$ from M_S by satisfying (v_{2i+1}, v_j) .

If v_j is covered by a half-weighted odd cycle in h_S , say by $C = (v_{c_1}, \ldots, v_{c_{2l+1}})$ where $v_{c_1} = v_j$, then we proceed as follows. Note v_j may be matched to her preferred partner among her two neighbours in C, say to v_{c_2} . In this case it might be the case that (v_{2i+1}, v_j) is blocking for h_S but it is not blocking for M_S . However, in this case, we can always rotate the edges of M_S in C by successively satisfying blocking pairs so that v_j becomes unmatched. Then we can satisfy (v_{2i+1}, v_j) and obtain an $h_{S'}$ -stable matching $M_{S'}$ where $h_{S'}$ is the stable half-matching that we would get from h_S according to the Tan-Hsueh algorithm.

Finally, if v_j is matched in h_S (and also in M_S) to an agent v_{j_1} , then we satisfy (v_{2i+1},v_j) obtaining a matching $M_{S'\setminus\{v_{j_1}\}}=(M_S\setminus\{(v_j,v_{j_1})\})\cup\{(v_{2i+1},v_j)\}$ which is an $h_{S'\setminus\{v_{j_1}\}}$ -stable matching in $S'\setminus\{v_{j_1}\}$, where $h_{S'\setminus\{v_{j_1}\}}$ is a stable half-matching in $S'\setminus\{v_{j_1}\}$ that we would obtain in the Tan-Hsueh algorithm. Again, we continue the same process with v_{j_1} .

If a repetition occurs for the first time, namely, when a left-alone agent gets a proposal later in the process, then in the Tan-Hsueh algorithm we would form a new half-weighted odd cycle from the agents involved in the cycling, resulting in a new stable half-matching $h_{S'}$. But regarding the matching $M_{S'}$, we can just stop after seeing the first repetition, and $M_{S'}$ will be an $h_{S'}$ -stable matching.

Note that if a repetition occurs, then we have to satisfy at most m blocking pairs (since each left-alone agent keeps getting worse partners, so no pair occurs twice as a blocking pair). Otherwise, if we have no repetition, then we also reach a new h-stable matching within m steps, since even if we have to rotate edges along a half-weighted odd cycle, the agents of this cycle could not be involved in any blocking pair satisfied before invoking this rotation. Thus we can obtain the final h-stable matching in mn steps.

This result implies the theorem of Diamantoudi *et al.* [7] with an upper bound on the number of steps needed to reach a stable matching.

Corollary 1. Suppose that we are given a solvable instance of SR and a match-

ing M_0 , then one can always reach a stable matching starting from M_0 by successively satisfying at most mn blocking pairs.

3. Analysing the market behavior with automata

If the input is random, then the automaton may simulate the dynamics of a matching market where two agents meet with each other randomly and behave in a myopic way (i.e. they form a new pair if they both would be better off). This is called the better response dynamics by Ackermann et al. [2]; whilst, Klaus et al. [17] refer to it as unperturbed blocking dynamics. What is the expected outcome of a matching market with myopic agents? To answer this question first we define the stable marriage and roommates automata as follows.

Definition 1. Let I be a SR (SM) instance with underlying graph G. The stable roommates automaton (stable marriage automaton) of I, denoted SRA(I) (SMA(I)) is the automaton ($\mathcal{M}(G), \mathcal{M}_0, E(G), \delta, S_I$) where:

- the set of states is the set of all matchings $\mathcal{M}(G)$ of G;
- the initial state M_0 is any matching (e.g. the empty matching $\{\emptyset\}$);
- the set of symbols is the set of edges E(G) of G;
- the transition function $\delta : \mathcal{M}(G) \times E(G) \to \mathcal{M}(G)$ is given by:

$$\delta(M, (v_i, v_j)) = \begin{cases} M^{(v_i, v_j)} & \text{if } (v_i, v_j) \text{ blocks } M \\ M & \text{otherwise} \end{cases}$$

• the set of accepting states equals the set S_I of stable matchings of I.

Recall, for a matching M and blocking pair (v_i, v_j) , $M^{(v_i, v_j)}$ is the matching such that $(v_i, v_j) \in M^{(v_i, v_j)}$ and for each $w \in \{v_i, v_j\}$, if w is matched in M, then M(w) is unmatched in $M^{(v_i, v_j)}$.

Suppose that in each step of the process each blocking edge is chosen with equal probability, then starting from an arbitrary matching (e.g. the empty matching $\{\emptyset\}$) we can calculate the exact probabilities of particular matchings occurring after certain rounds. To be more precise, we will calculate these probabilities in the following absorbing Markov chain.

Definition 2. Let I be a SR instance with corresponding automaton $SRA(I) = (\mathcal{M}(G), M_0, E(G), \delta, S_I)$. The Markov chain of I is given by $(\mathcal{M}(G), M_0, \mathbf{P})$ where the set of states and initial state are taken from SRA(I) and the probability transition matrix $\mathbf{P} : \mathcal{M}(G) \times \mathcal{M}(G) \to [0, 1]$ is such that for $M, M' \in \mathcal{M}(G)$:

- if M is stable, then P(M, M') equals 1 if M=M' and 0 otherwise;
- if M is not stable, then

$$\mathbf{P}(M,M') = \frac{\left|\left\{(v,v') \in E(G) \mid (v,v') \ blocks \ M \ and \ \delta(M,\sigma) = M'\right\}\right|}{\left|\left\{(v,v') \in E(G) \mid (v,v') \ blocks \ M\right\}\right|}.$$

For any SM instance or solvable SR instance, the stochastic process is an absorbing Markov chain where the absorbing states are the stable matchings.

We now report on our experiments to construct and analyse the Markov chain of a number of different instances with the probabilistic model checking tool PRISM [20, 34]. PRISM has both efficient solution engines for performing analysis of Markov chains and a high-level formal modelling language for modelling the instances. Further details of our experiments are available from the PRISM website.⁸ For small instances, we also exported the PRISM models to the symbolic solver Maple [24] and computed the exact rational values.

Example 1.. We start with a classical instance by Gale and Shapley [8] with three men and three women and the following preferences:

```
m_1: w_1, w_2, w_3 m_2: w_2, w_3, w_1 m_1: w_1, w_2, w_3 w_1: m_2, m_3, m_1 w_2: m_3, m_1, m_2 w_3: m_1, m_2, m_3
```

Here, the Markov chain has 34 states and 123 transitions, and the following three absorbing states (stable matchings):

```
\begin{array}{lcl} M_m & = & \{(m_1,w_1),(m_2,w_2),(m_3,w_3)\} & \text{(man-optimal)} \\ M_w & = & \{(m_1,w_3),(m_2,w_1),(m_3,w_2)\} & \text{(woman-optimal)} \\ M_e & = & \{(m_1,w_2),(m_2,w_3),(m_3,w_1)\} & \text{(egalitarian)} \end{array}
```

Calculating the absorption probabilities we find:

$$x^*(M_m) = x^*(M_w) = \frac{299}{1362} \sim 0.2195301028$$
 and $x^*(M_e) = \frac{382}{681} \sim 0.5609397944$.

The egalitarian stable matching is therefore more likely than both the extreme solutions together. This differs from using the random order mechanism, since in this case the egalitarian stable matching is not achievable (as nobody gets their best stable partner) and the remaining stable matchings have probability $\frac{1}{2}$.

Example 2.. The following classical instance was proposed by Knuth [18] with four men and four women and the following preferences:

 $^{^{8} \}verb|http://www.prismmodelchecker.org/casestudies/stable \verb|_matching.php||$

In this case, the Markov chain has 209 states, 1280 transitions, and the following 10 absorbing states (stable matchings):

```
\begin{array}{lll} M_1 & = & \{(m_1,w_1),(m_2,w_2),(m_3,w_3),(m_4,w_4)\} \\ M_2 & = & \{(m_2,w_1),(m_1,w_2),(m_3,w_3),(m_4,w_4)\} \\ M_3 & = & \{(m_1,w_1),(m_2,w_2),(m_4,w_3),(m_3,w_4)\} \\ M_4 & = & \{(m_2,w_1),(m_1,w_2),(m_4,w_3),(m_2,w_4)\} \\ M_5 & = & \{(m_3,w_1),(m_1,w_2),(m_4,w_3),(m_2,w_4)\} \\ M_6 & = & \{(m_2,w_1),(m_4,w_2),(m_1,w_3),(m_3,w_4)\} \\ M_7 & = & \{(m_3,w_1),(m_4,w_2),(m_1,w_3),(m_2,w_4)\} \\ M_8 & = & \{(m_4,w_1),(m_3,w_2),(m_1,w_3),(m_2,w_4)\} \\ M_9 & = & \{(m_3,w_1),(m_4,w_2),(m_2,w_3),(m_1,w_4)\} \\ M_{10} & = & \{(m_4,w_1),(m_3,w_2),(m_2,w_3),(m_1,w_4)\} \end{array}
```

and calculating the absorption probabilities we find:

$$x^*(M_1) = x^*(M_{10}) = \frac{549582018404187049}{9518428268802561564} \sim 0.0577387362$$

$$x^*(M_2) = x^*(M_3) = x^*(M_8) = x^*(M_9) = \frac{1582747100504304809}{19036856537605123128} \sim 0.0831412002$$

$$x^*(M_4) = x^*(M_7) = \frac{61576717268573787}{528801570489031198} \sim 0.1164457912$$

$$x^*(M_5) = x^*(M_6) = \frac{253084017443076793}{1586404711467093594} \sim 0.1595330722 .$$

Using the random order mechanism we find M_4, \ldots, M_7 are not achievable, whilst in our case it is more likely one of these matchings will be reached.⁹

Example 3. In this example we consider the roommates instance from [17, Example 3, page 25], provided by Elena Molis. This instance concerns eight agents with the following preferences:

It is an unsolvable instance, it admits two stable half-matchings (with no even cycles), namely h_1 and h_2 , where

$$h_1((4,5)) = h_1((6,7)) = 1$$
 and $h_1((1,2)) = h_1((2,3)) = h_1((3,1)) = \frac{1}{2}$
 $h_2((4,6)) = h_2((5,7)) = 1$ and $h_2((1,2)) = h_2((2,3)) = h_2((3,1)) = \frac{1}{2}$

⁹The probabilities of getting these six matchings by the random order mechanism are as follows [16]: $p(M_1)=p(M_{10})=\frac{9600}{40320}$ and $p(M_2)=p(M_3)=p(M_8)=p(M_9)=\frac{5280}{40320}$.

The h_1 -stable matchings are:

$$\begin{array}{rcl} M_1 & = & \{(2,3),(4,5),(6,7)\} \\ M_2 & = & \{(1,2),(4,5),(6,7)\} \\ M_3 & = & \{(1,3),(4,5),(6,7)\} \end{array}$$

while the h_2 -stable matchings are:

$$M_4 = \{(2,3), (4,6), (5,7)\}\$$

 $M_5 = \{(1,2), (4,6), (5,7)\}\$
 $M_6 = \{(1,3), (4,6), (5,7)\}\$

Theorem 1 states that, starting from any matching, we can always reach one of these matchings by successively satisfying blocking pairs. This implies that any ergodic set (which is called absorbing set in [11] and [17]) of the corresponding Markov chain must contain some of the above matchings. Constructing this instance in PRISM, we find there are 308 matchings and a single ergodic set which consists of the matchings $\{M_4, M_5, M_6, M_7\}$, where $M_7 = \{(1,2), (3,8), (4,6), (5,7)\}$. This corresponds to the results presented in [17]. Computing the long-term likelihood of being in any one of the matching (i.e. the steady state probabilities of the Markov chain) we find:

$$x^*(M_4) = x^*(M_5) = x^*(M_6) = \frac{2}{7} \sim 0.285714$$
 and $x^*(M_7) = \frac{1}{7} \sim 0.142857$.

Case study.. We now compare the performance characteristics of a number of different instances of the SM problem, as the number of men and women k(=n/2) varies between 4 and 8.

- Symmetric: in this instance the preferences of the men and women are of the form $m_j: w_j, \ldots, w_k, w_1, \ldots, w_{j-1}$ and $w_j: m_j, \ldots, m_k, m_1, \ldots, m_{j-1}$.
- *Uncoord:* this instance is used in [2] to show an exponential lower bound for the convergence time. The preference lists in this instance are given by $m_j: w_{j+1}, \ldots, w_k, w_1, \ldots, w_j$ and $w_j: m_j, m_{j+1}, \ldots, m_k, m_1, \ldots, m_{j-1}$.
- Uniform: in this case the preference lists of all men and all women are the same and equal w_1, w_2, \ldots, w_k and m_1, m_2, \ldots, m_k respectively.

In our experiments we consider both the case when we start with a random (complete) matching and the empty matching. Tables 1 and 2 report on the model statistics (states and transitions) of the Markov chains generated with PRISM. Table 1 includes both the average and the maximum expected time to reach a stable matching when starting from a complete matching, while Table 2 the expected time when starting from the empty matching and number of stable matchings. For comparison, the tables also includes the minimum, average and maximum values obtained from a sample of 1,000 random instances. ¹⁰

 $^{^{10}\}mathrm{Since}$ for $k{=}8$ each instance takes over 20 minutes to analyse, it was not feasible to study 1,000 different instances.

Model	k	states	transitions	expected time	
Model		states	transmons	av.	max.
Symmetric	4	208	1,433	3.595	5.713
	5	1,545	15,901	5.456	7.919
	6	13,326	189,691	7.692	11.05
	7	130,921	2,450,001	10.30	14.09
	8	1,441,728	34,194,273	13.27	17.97
Uncoord	4	208	1,268	18.97	25.22
	5	1,545	14,205	84.23	93.74
	6	13,326	170,886	399.2	413.5
	7	130,921	2,222,745	2,197	2,216
	8	1,441,728	31,209,032	14,361	14,385
Uniform	4	87	369	6.822	9.160
	5	665	4,746	12.04	14.92
	6	5,972	64,341	19.08	22.73
	7	61,215	926,095	28.18	32.42
	8	702,311	14,175,310	39.61	44.56
1000	4	102	461	4.735	6.932
random	5	993	8,524	8.082	11.21
samples	6	9,272	119,035	11.61	15.59
(min)	7	130,884	2,378,889	15.93	20.89
1000	4	193	1,247	8.032	10.65
random	5	1,562	15,618	13.83	17.34
samples	6	13,317	192,465	22.84	27.28
(average)	7	130,918	2,524,157	37.34	42.74
1000	4	208	1,460	17.25	20.30
random	5	1,545	16,660	46.28	50.68
samples	6	13,326	202,560	115.8	121.1
(max)	7	130,921	2,657,024	164.9	170.7

Table 1: Expected time to reach a stable matching from a complete intial matching

The number of states reported in Tables 1 and 2 demonstrate that, when starting from a randomly chosen complete matching, the number of reachable matchings is dependent on the particular instance. We also see that for the Symmetric and Uncoord instances all matchings (except the empty matching) are reachable. The results for the Uncoord instances are far slower than for the other instances, corresponding to the fact that [2] uses this instance to demonstrate a exponential lower bound on the convergence time. Considering the random sample results, we see that the performance of the Uncoord instance is unlikely to be seen in practice. These results also indicate that the number of stable matches does not seem to be cause of the slow convergence time demonstrated by the Uncoord instance. To further demonstrate how PRISM can be used to analyse instances, Figure 1 plots the probability of reaching a stable matching within R rounds when starting from the empty configuration.

4. Further remarks

As an extension of the approach presented in this paper, it would be interesting to study stochastic processes occurring in more general settings, for example, in *coalition formation games*, where the size of possible coalitions can be larger than two. However, in this case the existence of a stable solution does not guarantee that there is a convergence to a stable solution when starting

Model	k	states	transitions	expected	no. of stable
				time	matchings
Symmetric	4	209	1,449	7.469	1
	5	1,546	15,926	10.51	1
	6	13,327	189,727	13.95	1
	7	130,922	2,450,050	17.78	1
	8	1,441,729	34,194,337	21.99	1
Uncoord	4	209	1,284	28.04	4
	5	1,546	14,230	97.16	5
	6	13,327	170,922	416.5	6
	7	130,922	2,222,794	2,220	7
	8	1,441,729	31,209,096	14,388	8
Uniform	4	209	1,421	11.31	1
	5	1,546	15,926	17.66	1
	6	13,327	192,862	25.82	1
	7	130,922	2,525,804	36.03	1
	8	1,441,729	35,686,961	48.56	1
1000	4	209	1,421	7.851	1
random	5	1,546	15,926	11.53	1
samples	6	13,327	192,862	15.77	1
(min)	7	130,922	2,525,804	21.04	1
1000	4	209	1,421	11.02	1.506
random	5	1,546	15,926	17.54	1.657
samples	6	13,327	192,862	27.39	1.961
(average)	7	130,922	2,525,804	42.80	2.187
1000	4	209	1,421	20.35	5
random	5	1,546	15,926	50.61	5
samples	6	13,327	192,862	121.2	7
(max)	7	130,922	2,525,804	170.8	9

Table 2: Expected time to reach a stable matching from the empty initial matching

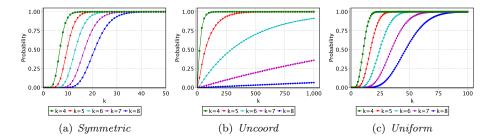


Figure 1: Probability of reaching a stable matching within ${\cal R}$ rounds.

from any unstable state, as illustrated by Klaus et al. [17]. So in this case absorbing states and ergodic sets may appear together in the Markov chain. Yet, one could investigate the structure of absorbing and ergodic states for special classes of coalition formation games, and analyse particular games in a similar framework as we did here, using PRISM. Furthermore, the same questions can be asked for cooperative games with transferable utilities as well, such as the stable matching problem with payments [5], where the agents who are matched

together may share the value of their cooperation between themselves.¹¹ Finally, more general network formation games and matching problems could also be analysed with this technique. An example for this is the resident allocation problem with couples, where the existence of a stable matching is not guaranteed in general. However, for particular preference structures Klaus and Klijn [15] show that not only the existence of a stable solution can be guaranteed but also the path to stability from any starting matching.

- [1] R. Aharoni and T. Fleiner. On a lemma of Scarf. *J. Combin. Theory Ser. B*, 87(1):72–80, 2003. Dedicated to Crispin St. J. A. Nash-Williams.
- [2] H. Ackermann, P.W. Goldberg, V. Mirrokni, H. Röglin and B. Vöcking. Uncoordinated two-sided matching markets. *Proc. 9th ACM Conference on Electronic Commerce (EC'08) Chicago, USA*, pages 256–263, 2008.
- [3] P. Biró, K. Cechlárová and T. Fleiner. The dynamics of stable matchings and half-matchings for the stable marriage and roommates problems. *Int. Journal of Game Theory*, 36:333–352, 2008.
- [4] P. Biró and T. Fleiner. Fractional solutions for NTU-games. *Proc. 3rd Workshop on Computational Social Choice*, 2010.
- [5] Biró, P., Kern, W., Paulusma, D.: Computing solutions for matching games. *Int. Journal of Game Theory*, forthcoming (2011)
- [6] Y. Blum and U.G. Rothblum. "Timing is everything" and marital bliss. Journal of Economic Theory, 103:429–443, 2002.
- [7] E. Diamantoudi, E. Miyagawa and L. Xue. Random paths to stability in the roommates problem. *Games and Economic Behavior*, 48:18–28, 2004.
- [8] D. Gale and L.S. Shapley. College admissions and the stability of marriage. *American Mathematical Monthly*, 69:9–15, 1962.
- [9] D. Gusfield and R.W. Irving. *The Stable Marriage Problem: Structure and Algorithms*. MIT Press, 1989.
- [10] E. Inarra, C. Larrea and E. Molis. Random paths to *P*-stability in the roommate problem. *Int. Journal of Game Theory*, 36:461–471, 2008.
- [11] E. Inarra, C. Larrea and E. Molis. The stability of the roommate problem revisited. *Proceedings of Matching Under Preferences (MATCH-UP)* Satellite workshop of ICALP 2008, 114–125, 2008.

¹¹Note that for TU-games there are some results on the *accessibility of the core* and the number of blocks needed to access the core (or some other desired set of imputations), see e.g. [19] and [33]. These can be seen as the counterparts of our theorem about the number of steps needed to obtain a stable (or h-stable) matching.

- [12] R.W. Irving. An efficient algorithm for the "stable roommates" problem. Journal of Algorithms, 6:577–595, 1985.
- [13] M.O. Jackson and A. Watts. The evolution of social and economic networks. Journal of Economic Theory, 106(2):265–295, 2002.
- [14] J.G. Kemeny and J.L. Snell. *Finite Markov chains*. D. Van Nostrand Company, Inc., 1960.
- [15] B. Klaus and F. Klijn. Path to stability for matching markets with couples. Games and Economic Behavior, 58:154–171, 2007.
- [16] B. Klaus and F. Klijn. Corrigendum to "On randomized matching mechanisms" [Economic Theory 8(1996)377–381]. Economic Theory, 32:411–416, 2007.
- [17] B. Klaus, F. Klijn and M. Walzl. Stochastic stability for roommate markets. Journal of Economic Theory, 145:2218-2240, 2010.
- [18] D.E. Knuth Mariages stable et leurs relations avec d'autres problèmes combinatoires. Les Presses de l'Université de Montréal, Montréal, 1976.
- [19] L.A. Kóczy. The core can be accessed with a bounded number of blocks. Journal of Mathematical Economics, 43:56–64, 2006.
- [20] M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of Probabilistic Real-time Systems. *Proc. 23th Int. Conf. Computer Aided Verification (CAV'11)*, volume 6806 of LNCS, Springer, 2011. To appear.
- [21] D. Lebedev, F. Mathieu, L. Viennot, A.-T. Gai, J. Reynier and F. de Montgolfier On using matching theory to understand P2P network design. *Proc. INOC 2007: Int. Network Optimization Conference.*, pages 1–6, 2007.
- [22] J. Ma. On randomized matching mechanisms. *Economic Theory*, 8:377–381, 1996.
- [23] F. Mathieu. Acyclic preference-based systems. In Xuemin Shen, Heather Yu, John Buford, and Mursalin Akon, editors, *Handbook of Peer-to-Peer Networking*. Springer Verlag, Berlin Heidelberg, January 2010.
- [24] MapleSoft Corporation. Maple computer algebra system (www.maplesoft.com).
- [25] A.E. Roth and M.A.O. Sotomayor. Two-sided matching: a study in gametheoretic modeling and analysis. *Cambridge: Econometric Society monographs*, 1990.
- [26] A.E. Roth and J.H. Vande Vate. Random paths to stability in two-sided matching. *Econometrica*, 58:1475–1480, 1990.
- [27] H. E. Scarf. The core of an N person game. Econometrica, 35:50–69, 1967.

- [28] A. Tamura. Transformation from arbitrary matchings to stable matchings. Journal of Combinatorial Theory, Series A, 62:310–323, 1993.
- [29] J.J. Tan. A maximum stable matching for the roommates problem. *BIT Numerical Mathematics*, 30:631–640, 1990.
- [30] J.J. Tan. A necessary and sufficient condition for the existence of a complete stable matching. *Journal of Algorithms*, 12:154–178, 1991.
- [31] J.J. Tan and J.C. Hsueh. A generalisation of the stable matching problem. Discrete Applied Mathematics, 59:87–102, 1995.
- [32] J.J. Tan and W.C. Su. On the divorce digraph of the stable marriage problem. *Proc. National Science Council, Republic of China*, 19:342–354, 1995
- [33] Y.-Y. Yang. On the accessibility of the core. Games and Economic Bevahior, 69:194–199, 2010.
- [34] PRISM web site. http://www.prismmodelchecker.org/

- Mihályi Péter: Utolérési kísérletek Magyarországon, 1870-2030. MT-DP 2011/1
- Zsolt Darvas Jean Pisani-Ferry: The Threat of 'Currency Wars': A European Perspective. MT-DP 2011/2
- Zsolt Darvas: Beyond the Crisis: Prospects for Emerging Europe. MT-DP 2011/3
- Barnabás M. Garay András Simonovits János Tóth: Local Interaction in Tax Evasion. MT-DP 2011/4
- Maria Csanadi: Varieties of System Transformations and Their Structural Background Based on the IPS Model. MT-DP 2011/5
- Mária Lackó: The Poor Health Status of the Hungarians; Comparative Macro-Analysis of the Likely Explanatory Factors on Hungarian and Austrian Data, 1960-2004. MT-DP 2011/6
- Fazekas Károly: Közgazdasági kutatások szerepe az oktatási rendszerek fejlesztésében. MT-DP 2011/7
- Gábor Kézdi Gergely Csorba: Estimating the Lock-in Effects of Switching Costs from Firm-Level Data. MT-DP 2011/8
- Antal-Pomázi Krisztina: A kis- és középvállalkozások növekedését meghatározó tényezők A különböző finanszírozási formák hatása a vállalati növekedésre. MT-DP 2011/9
- Zsolt Darvas Jean Pisani-Ferry André Sapir: A Comprehensive Approach to the Euro-Area Debt Crisis. MT-DP 2011/10
- András Simonovits: International Economic Crisis and the Hungarian Pension Reform. MT-DP 2011/11
- András Simonovits: The Mandatory Private Pension Pillar in Hungary: An Obituary. MT-DP 2011/12
- Horn Dániel: Az oktatási elszámoltathatósági rendszerek elmélete. MT-DP 2011/13
- Miklós Koren Márton Csillag: Machines and machinists: Capital-skill complementarity from an international trade perspective. MT-DP 2011/14
- Áron Kiss: Divisive Politics and Accountability. MT-DP 2011/15
- Áron Kiss: Minimum Taxes and Repeated Tax Competition. MT-DP 2011/16
- Péter Csóka Miklós Pintér: On the Impossibility of Fair Risk Allocation. MT-DP 2011/17
- Gergely Csorba Gábor Koltay Dávid Farkas: Separating the ex post effects of mergers: an analysis of structural changes on the Hungarian retail gasoline market. MT-DP 2011/18
- Helga Habis and P. Jean-Jacques Herings: Core Concepts for Incomplete Market Economies. MT-DP 2011/19
- Helga Habis and P. Jean-Jacques Herings: Transferable Utility Games with Uncertainty. MT-DP 2011/20
- Valentiny Pál: Árukapcsolás és csomagban történő értékesítés: jogesetek és közgazdasági elmélet. MT-DP 2011/21

- Seres Antal Felföldi János Kozak Anita Szabó Márton: Termelői szervezetek zöldség-gyümölcs kisárutermelőket integráló szerepe a nagy kereskedelmi láncoknak történő értékesítésben. MT-DP 2011/22
- Tamás Fleiner Balázs Sziklai: Notes on the Bankruptcy Problem: an Application of Hydraulic Rationing. MT-DP 2011/23
- Zoltán Hermann Dániel Horn: How inequality of opportunity and mean student performance are related? A quantile regression approach using PISA data. MT-DP 2011/24
- Dávid Csercsik László Á. Kóczy: Externalities in the games over electrical power transmission networks. MT-DP 2011/25
- Dóra Balog: Capital allocation in financial institutions: the Euler method. MT-DP 2011/26
- Zsolt Darvas Valentina Kostyleva: Fiscal and Monetary Institutions in Central, Eastern and South-Eastern European Countries. MT-DP 2011/27
- Jing Dang Max Gillman Michal Kejak: Real Business Cycles with a Human Capital Investment Sector and Endogenous Growth: Persistence, Volatility and Labor Puzzles. MT-DP 2011/28
- László Á. Kóczy Miklós Pintér: The men who weren't even there: Legislative voting with absentees. MT-DP 2011/29
- Békés Gábor Koren Miklós Zsohár Péter: Benzinárak földrajzi meghatározása. MT-DP 2011/30
- Maria Csanádi: Adaptation pressures during global decline on system transformation and its spatial consequences in China. MT-DP 2011/31