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Abstract 

 

Suppose that the agents of a matching market contact each other randomly and form new 

pairs if is in their interest. Does such a process always converge to a stable matching if one 

exists? If so, how quickly? Are some stable matchings more likely to be obtained by this 

process than others? In this paper we are going to provide answers to these and similar 

questions, posed by economists and computer scientists. In the first part of the paper we 

give an alternative proof for the theorems by Diamantoudi et al. and Inarra et al. which 

implies that the corresponding stochastic processes are absorbing Markov chains. Our 

proof is not only shorter, but also provides upper bounds for the number of steps needed 

to stabilise the system. The second part of the paper proposes new techniques to analyse 

the behaviour of matching markets. We introduce the Stable Marriage and Stable 

Roommates Automaton and show how the probabilistic model checking tool PRISM may 

be used to predict the outcomes of stochastic interactions between myopic agents. In 

particular, we demonstrate how one can calculate the probabilities of reaching different 

matchings in a decentralised market and determine the expected convergence time of the 

stochastic process concerned. We illustrate the usage of this technique by studying some 

well-known marriage and roommates instances and randomly generated instances. 
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Sztochasztikus párosítási piacok elemzése 

 

 Biró Péter - Gethin Norman 

 

Összefoglaló 

 

Tegyük fel, hogy egy párosítási piac szereplői véletlenszerűen találkoznak egymással, és új 

párokat alkotnak, amennyiben ez érdekükben áll. Konvergál-e ez a folyamat egy stabil 

párosításhoz, ha létezik ilyen az adott piacon? Milyen gyors ez a konvergencia? Vannak-e 

olyan stabil párosítások, amelyeket nagyobb valószínűséggel érhetünk el egy ilyen 

sztochasztikus folyamat révén, mint másokat? Ezekre és további hasonló – közgazdászok 

és számítástudósok által megfogalmazott – kérdésekre adunk választ a cikkben. A dolgozat 

első részében alternatív bizonyítást adunk Diamantoudi és társai, illetve Inarra és társai 

tételeire. Bizonyításunk egyrészt rövidebb, másrészt felső korlátot is ad a rendszer 

stabilizálódásához szükséges lépések számára. A cikkünk második felében egy új módszert 

javasolunk a párosító piacok viselkedésének elemzésére. Definiáljuk a Stabil Szobatárs és 

Stabil Házastárs Automatákat és megmutatjuk, miként használhatjuk a PRISM 

valószínűségi modellellenőrzés programcsomagot arra, hogy meghatározzuk a szereplők 

között lejátszódó sztochasztikus interakciók várható kimenetelét. Példaként említhetjük a 

szóba jöhető párosítások elérési valószínűségeinek és a folyamat várható 

konvergenciaidejének kiszámítását. Az új technika használatát jól ismert házasság- és 

szobatársfeladatok, illetve véletlenszerűen generált példák elemzésén keresztül mutatjuk 

be. 

 

 Tárgyszavak: szobatárs probléma, házasság probléma, sztochasztikus folyamatok, 

magkonvergencia, valószínűségi modellellenőrzés 
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Analysis of Stochastic Matching Markets

Péter Biróa,1, Gethin Normanb

aInstitute of Economics, Hungarian Academy of Sciences, H-1112, Budaörsi út 45,
Budapest, Hungary

bSchool of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK

Abstract

Suppose that the agents of a matching market contact each other randomly and
form new pairs if is in their interest. Does such a process always converge to a
stable matching if one exists? If so, how quickly? Are some stable matchings
more likely to be obtained by this process than others? In this paper we are go-
ing to provide answers to these and similar questions, posed by economists and
computer scientists. In the first part of the paper we give an alternative proof
for the theorems by Diamantoudi et al. and Inarra et al. which implies that the
corresponding stochastic processes are absorbing Markov chains. Our proof is
not only shorter, but also provides upper bounds for the number of steps needed
to stabilise the system. The second part of the paper proposes new techniques to
analyse the behaviour of matching markets. We introduce the Stable Marriage
and Stable Roommates Automaton and show how the probabilistic model check-
ing tool PRISM may be used to predict the outcomes of stochastic interactions
between myopic agents. In particular, we demonstrate how one can calculate
the probabilities of reaching different matchings in a decentralised market and
determine the expected convergence time of the stochastic process concerned.
We illustrate the usage of this technique by studying some well-known marriage
and roommates instances and randomly generated instances.

1. Introduction

The Stable Roommates problem (sr) is a classical combinatorial problem
that has been studied extensively in the literature, see e.g. [9]. An instance I of
sr contains an undirected graph G(V,E), where V={v1, . . . , vn} andm=|E(G)|.
We refer to G as the underlying graph of I, and we interchangeably refer to the
vertices of G as the agents. If (vi, vj) is an edge in E(G), then we say that vi
and vj find each other acceptable. Each agent vi has a linear order >vi over her
acceptable partners, where vk >vi vj means that vi prefers vk to vj . Let M(vi)

Email addresses: birop@econ.core.hu (Péter Biró), gethin.norman@glasgow.ac.uk
(Gethin Norman)

1Supported by EPSRC grants EP/E011993/1, by OTKA grant K69027 and by the Hun-
garian Academy of Sciences under its Momemtum Programme (LD-004/2010)

Preprint submitted to Elsevier June 21, 2011



denote the partner of vi in a given matching M . An edge (vi, vj) is said to be
blocking with respect to M if (i) either vi is unmatched in M or prefers vj to
M(vi), and (ii) either vj is unmatched in M or prefers vi to M(vj). A matching
is called stable if it admits no blocking edge. If G is bipartite, then the problem
of finding a stable matching is called the Stable Marriage problem (sm). In
this case, if the graph is G(U,W,E), then we refer to U={m1, . . . ,mn1} and
W={w1, . . . , wn2} as the sets of men and women, respectively.

Note that both the Stable Roommates and the Stable Marriage problems
can be seen as NTU-games, since for any sr or sm instance the set of stable
matchings coincide with the core of the corresponding game. Fur further details,
see for example the celebrated book by Roth and Sotomayor [25].

Gale and Shapley [8] give a linear time algorithm that finds a stable matching
for any instance of sm, while also illustrating an instance of sr that does not
admit a stable matching. Irving [12] gives a linear time algorithm that, for
any instance of sr, finds a stable matching or reports that none exists. Both
algorithms assume that the preference lists are complete (i.e., the graph G is
complete), although it is straightforward to extend the algorithms to incomplete
lists [9].

Suppose that we are given a sr instance I with underlying graph G. For
a matching M , if a pair (vi, vj) is blocking, then we may satisfy this blocking
pair and get a new matching M (vi,vj), where (vi, vj) ∈ M (vi,vj) and for each
w ∈ {vi, vj}, if w is matched in M , then M(w) is unmatched in M (vi,vj).
Roth and Vande Vate [26] prove that, given an instance of sm, starting from
any unstable matching we can always obtain a stable matching by successively
satisfying blocking pairs.2 Diamantoudi et al. [7] show that a similar result holds
for the roommates problem, namely, for a given instance of sr that admits
a stable matching and starting from any unstable matching, one can obtain
a stable matching by successively satisfying blocking pairs. This essentially
means that the corresponding stochastic processes (to be defined in Section
3) are absorbing Markov chains (for more details of these stochastic processes
see, e.g. Chapter 3 of [14]). Since there are only finitely many matching in
any instance, the result of Roth and Vande Vate implies that, starting from an
arbitrary matching, the process of allowing randomly chosen blocking pairs to
match will converge to a stable matching with probability one.

The proof of Roth and Vande Vate is based on the following idea. Suppose
that we have a stable matching for an instance of sm and we add a new agent

2Note that this question was originally proposed by Knuth [18] (Problem 8 from his twelve
famous research problems) in a slightly different setting. In his case, the set of possible
matchings was restricted to the complete matchings (as all the preference lists were supposed
to be complete), and whenever a blocking pair was satisfied the left-alone agents formed a
new pair immediately. The above described transition from a complete matching to another
one was called interchange. Knuth asked whether, given an instance of sm and a starting
matching M , there always exist a sequence of interchanges from M to some stable matching?
Tamura [28], and independently Tan and Su [32], answered this question negatively by giving
counterexamples.
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to the market, then there is a natural proposal-rejection sequence (described in
Section 2) that leads to a stable matching for the extended instance. If, we start
with the empty matching and run this incremental algorithm, then the resulting
stable matching will depend on the order in which the agents arrive. This is
called the random order mechanism. By assuming that each order is equally
likely, we may calculate the probability of each stable matching being obtained.
Ma [22] carried out this calculation for an instance, originally suggested by
Knuth [18], and observed that not all stable matchings can be reached by this
mechanism and there is a higher probability of reaching some stable matchings
over others (although his calculation was not entirely correct as [16] pointed
out).3 In this paper we will also study this instance (Example 2 in Section 3)
with respect to a different stochastic process.

We may suppose that all agents are present in the market and, starting with
the empty matching, the blocking pairs to be satisfied are chosen randomly
(with equal probability in each step). In this case, every stable matching can
be reached with positive probability (since we may satisfy all pairs involved in
this matching at the beginning of the process), but still, as we will illustrate in
Section 3, some stable matchings can be more likely than others.

There is also a growing literature concerning stable roommates problems
that may not admit stable solutions. Tan [30] show that a stable half-matching
always exists for any given instance of sr. A half-matching is a weight function
h : E(G) → {0, 1

2 , 1} such that
∑

vi∈e h(e) ≤ 1 for each vertex vi. A half-
matching is said to be stable if, for each edge (vi, vj) ∈ E(G), one of its vertices,
say vi satisfies

∑
(vi,vk)vk≥vi

vj
h((vi, vk)) = 1, (otherwise the edge (vi, vj) is said

to be blocking). Note that if h : E(G) → {0, 1} is stable, then h corresponds
to a stable matching.4 Tan and Hsueh [31] give a polynomial time algorithm
to find a stable half-matching for a given instance of sr. This algorithm is, in
fact, a generalised version of the algorithm of Roth and Vande Vate (a detailed
description of this is given in Section 2).

Inarra et al. [10] define an h-stable matching M relative to a stable half-
matching h as follows. Let M contain every edge that has weight 1 in h, every
second edge from each even half-weighted cycle of h (if there were any), and
k (disjoint) edges from each odd half-weighted cycle of length 2k + 1 in h.5

They show that, starting from an arbitrary matching, one can get an h-stable
matching by successively satisfying blocking pairs for a given instance of sr.

3An explanation for the first observation is the result of Blum and Rothblum [6] which
demonstrates that, when using the Roth-Vande Vate algorithm, the last agent to arrive always
gets their best stable partner (an alternative proof of this result is given by Biró et al. [3]).
Hence, a stable matching in which nobody gets their best partner cannot be obtained by this
mechanism.

4The existence of a half-matching may be proved by the Lemma of Scarf [27], as Aharoni
and Fleiner [1] demonstrate. The notion of stable fractional matching (or fractional core) is
an extension of stable half-matching that may be defined for more general matching problems
(or NTU-games) as well, see more on this theory in a recent paper by Biró and Fleiner [4].

5This concept was originally proposed by Tan [29] as a method to find a matching as large
as possible that is stable for the matched agents in an unsolvable instance.
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Note that for every solvable instance of sr the set of h-stable matchings is
equivalent to the set of stable matchings, thus the above result generalises the
theorem of Diamantoudi et al. [7]. In Section 2, we give an alternative short
proof for the theorem of Inarra et al. [10] by using the Tan-Hsueh algorithm, by
providing also upper bounds for the steps needed to reach a desired matching.

In another paper, Inarra et al. [11] define the absorbing sets for an instance of
sr as follows. Each absorbing set consists of matchings that are reachable from
one another by successively satisfying blocking edges, but no other matching
can be reached from this set by satisfying a blocking edge. These are in fact the
ergodic sets of the corresponding Markov chain (see e.g. [14]), and a matching
M is in an ergodic set if and only if the limit probability of M , starting from the
empty matching, is positive. Moreover, Klaus et al. [17] prove that the absorbing
sets consist of exactly those matchings that have positive probabilities in the
limit distribution of a stochastic process where, starting from any matching, the
agents make mistakes with small probabilities in their myopic blocking decisions.
They called this process perturbed blocking dynamics. Similar stochastic systems
have been studied for the Stable Marriage problem in the context of network
formations by Jackson and Watts [13].

Ackermann et al. [2] study the convergence time of the stochastic processes
occurring from stable marriage problems. They refer to the stochastic process,
where in each step a blocking pair is chosen uniformly at random and satisfied,
as the random better response dynamics. They demonstrate that, although
the process converges to a stable matching, the expected convergence time is
exponential for a family of sm instances. Our experiments conducted for the
above family of instances confirm this finding, as we describe in Section 3.
However, we also demonstrate that this behaviour is unexpected in an average
market, since for the randomly generated instances the expected convergence
time is significantly smaller.

The dynamics of matching markets have also been in focus in some recent
engineering papers on P2P systems, see, e.g, [23] for an overview. In particular,
Lebedev et al. [21] show that the convergence is fast for systems, modelled with
sr instances, where the preferences are acyclic, i.e., the preferences are derived
from some global rank function on the pairs. This is a realistic assumption in
case of some real P2P networks.

To summarise, the contribution of this paper is the following. In Section 2 we
give an alternative proof for the theorems of Diamantoudi et al. [7] and Inarra
et al. [10]. This new proof, which is based on the Tan-Hsueh algorithm, is not
only shorter and simpler than the originals, but also provides upper bounds on
the number of steps needed to reach a stable (or h-stable) matching. In Section
3 we define the Stable Marriage and Stable Roommates Automata and then we
demonstrate how the probabilistic model checker PRISM [20, 34] can be used to
analyse and compare the performance of difference instances. In particular, we
study two well-known sm instances, a sr instance and then present a case study
involving structured and random sm instances. We believe that this approach
will also have applications in the study the interaction of agents in real markets
and networks for more complex settings.
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2. Convergence to stability, an alternative proof

In this section we describe the Roth-Vande Vate and the Tan-Hsueh al-
gorithms. We use the latter to give an alternative proof for the theorems of
Diamantoudi et al. [7] and Inarra et al. [10]. That is, we show that starting
from an arbitrary matching of a solvable sr instance one can always find a sta-
ble matching by successively satisfying blocking pairs; and that starting from an
arbitrary matching of an instance of sr (solvable or unsolvable) one can always
find an h-stable matching by successively satisfying blocking pairs, respectively.
Note that these theorems were the main results of the above papers. Our proof
is much shorter and it gives upper bounds for the number of blocking pairs that
need to be satisfied to obtain a stable (or h-stable) matching. Also, it shows that
the argument of Roth and Vande Vate for the marriage case can be extended
for the roommates case in a natural way.

The Roth-Vande Vate algorithm. Suppose that we are given an instance I
of sm together with a matching M0 = {(m1, w1), . . . , (mk, wk)}. We shall show
that we can reach a stable matching by successively satisfying blocking pairs.
A variant6 of the Roth-Vande Vate algorithm works as follows.

During the procedure we gradually extend a set S ⊆ (U∪W ) and a matching
MS that is stable in S. Initially let S = {∅} and MS = {∅}. For each index
i (i = 1, . . . , k), if MS ∪ {(mi, wi)} is stable in S ∪ {mi, wi}, then let MS′ =
MS ∪ {(mi, wi)} and S′ = S ∪ {mi, wi} (i.e. we simply enlarge both S and MS

with a new pair). Otherwise we add mi and wi to S one by one as follows.
Without loss of generality suppose that mi is involved in a blocking pair

with an agent of S with respect to matching MS ∪ {(mi, wi)}, let wi1 be the
woman who is the best blocking partner of mi and let S′ = S ∪ {mi}. If wi1

is unmatched in MS , then MS′ = MS ∪ {(mi, wi1)} is a stable matching in S′.
Otherwise, let mi1=MS(wi1) and MS′\{mi1} = (MS \ {(mi1 , wi1)}∪ {(mi, wi1)}
is stable for S′ \ {mi1}. Now we let mi1 re-enter the market. If mi1 is not
involved in any blocking pair, then MS′\{mi1} is stable for S′. Otherwise we
satisfy the best blocking pair mi1 is involved in according to his preferences, and
so on. This process must terminate after satisfying at most m blocking pairs,
since no woman ever receives a worse partner. We can also add wi in a similar
manner, reversing the role of men and women. (Note that if mi was not involved
in a blocking pair with an agent of S with respect to matching MS ∪{(mi, wi)}
then wi must have been involved in a blocking pair, so we start by adding wi

to S first, followed by mi.)
After processing all pairs of M0, we add the remaining agents one by one in

the same way. Therefore, we obtain the sequence of blocking pairs that we need
to satisfy to reach a stable matching starting from M0. Since we never satisfy
a pair twice when adding a new agent to S, it follows that the number of steps

6This version of the Roth-Vande Vate algorithm has been described by Ma [22]. Note
that it slightly differs from the original method described in [26], but the difference is not
substantial.
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in the path to stability is at most mn.

The Tan-Hsueh algorithm. The Tan-Hsueh algorithm deals with sr in-
stances (rather than sm instances) and stable half-matchings (rather than stable
matchings), and there is no starting matching M0. But otherwise it is based
on the same idea as the Roth-Vande Vate algorithm: we gradually extend a set
S ⊆ V (G) and we restore the stability of a half-matching hS in S.7

Suppose that we are given an instance I of sr with an underlying graph
G(V,E). Initially let S={∅} and hS(e)=0 for each e ∈ E(G). Suppose that after
adding k agents we have S={v1, v2, . . . , vk} with a corresponding stable half-
matching hS where each half-weighted cycle has odd length. Let S′ = S∪{vk+1}.
Now we describe how we can construct the new stable half-matching hS′ in S′.

If vk+1 is not involved in any blocking pair in S′, then hS remains sta-
ble in S′, obviously. Otherwise let vj be the best blocking partner of vk+1 in
S′. If vj is unmatched (i.e., not matched and not covered by a half-weighted
cycle either), then by setting hS′((vk+1, vj))=1 and hS′(e)=hS(e) for every
other edge we obtain a new stable half-matching in S′. If vj is covered by a
half-weighted odd cycle, say by (vc1 , vc2 , . . . , vc2l+1

) where vj=vc1 , then by set-
ting hS′((vk+1, vj)) = 1, hS′((vc2i , vc2i+1))=1 for i=1, . . . , l, hS′((vc2i−1 , vc2i))=0
for i=1, . . . , l and hS′((vc2l+1

, vc1))=0 we obtain a new stable half-matching.
The last case is when vj is matched in hS to an agent, say va1 . By setting
hS′\{va1}((vk+1, vj))=1 and hS′\{va1}((vj , va1))=0 we obtain a half-matching
that is stable in S′ \ {va1}. Now, we restart the process with va1 .

In contrast with the sm context, it is possible that the latter case happens ev-
ery time and the above process never ends, since in a sequence va1 , vb1 , . . . , val

, vbl ,
vbl may be the same as va1 . Tan and Hsueh [31] showed that, if such a repe-
tition occurs, then a subset of these agents will be involved in a never ending
cycling and we can form a new half-weighted odd cycle on the corresponding
edges resulting in a new stable half-matching hS′ in S′.

Alternative proofs of [10] and [7]. Modifying the Tan-Hsueh algorithm
slightly (with h-stable matchings rather than with stable half-matchings), we
can obtain an alternative proof for the following theorem of Inarra et al. [10],
with an upper bound on the number of steps needed to reach an h-stable match-
ing.

Theorem 1. Suppose that we are given an instance of sr and a matching M0,
then one can always reach an h-stable matching starting from M0 by successively
satisfying at most mn blocking pairs.

Proof. Let M0={(v1, v2), (v3, v4), . . . , (v2k−1, v2k)}. Just as in the proof of
Roth and Vande Vate, we gradually extend a set S ⊆ V (G) and a matching MS

in S, where initially S = {∅} and MS={∅}.

7For any bipartite graph the Tan-Hsueh algorithm is identical to the Roth-Vande Vate
algorithm if the starting matching of the latter algorithm is {∅}. Detailed descriptions of the
two algorithms with illustrative examples can be found in [3].
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Suppose that S={v1, v2, . . . , v2i} and MS is a hS-stable matching relative
to a stable half-matching hS . Recall that each edge e of weight 1 in hS is
represented in MS and each half-weighted odd cycle C=(vc1 , vc2 , . . . , vc2l+1

) is
represented by l disjoint edges of C in MS . Consider a half-matching h∗ in
S∪{v2i+1, v2i+2} where h∗((v2i+1, v2i+2))=1 and the other weights are the same
as in hS . If h

∗ is stable in S ∪ {v2i+1, v2i+2}, then it follows that MS′ = MS ∪
{(v2i+1, v2i+2)} is an h∗-stable matching in S′ = S ∪ {v2i+1, v2i+2}. Otherwise,
if h∗ is not stable in S ∪ {v2i+1, v2i+2}, then we add v2i+1 and v2i+2 to S as
follows.

Without loss of generality suppose that v2i+1 is involved in a blocking pair
with an agent of S with respect to matching MS ∪{(v2i+1, v2i+2)}, let vj be the
best blocking partner of v2i+1 and let S′ = S ∪ {v2i+1}. If vj is unmatched in
hS (and so also in MS), then MS′ = M ∪{(v2i+1, vj)} is an hS′-stable matching
in S′ where hS′((v2i+1, vj))=1 and otherwise it is the same as hS . Note that
(v2i+1, vj) must be a blocking pair for MS too, so we may obtain MS′ from MS

by satisfying (v2i+1, vj).
If vj is covered by a half-weighted odd cycle in hS , say by C=(vc1 , . . . , vc2l+1

)
where vc1=vj , then we proceed as follows. Note vj may be matched to her
preferred partner among her two neighbours in C, say to vc2 . In this case it
might be the case that (v2i+1, vj) is blocking for hS but it is not blocking for
MS . However, in this case, we can always rotate the edges of MS in C by
successively satisfying blocking pairs so that vj becomes unmatched. Then we
can satisfy (v2i+1, vj) and obtain an hS′-stable matching MS′ where hS′ is the
stable half-matching that we would get from hS according to the Tan-Hsueh
algorithm.

Finally, if vj is matched in hS (and also in MS) to an agent vj1 , then we sat-
isfy (v2i+1, vj) obtaining a matchingMS′\{vj1} = (MS\{(vj , vj1)})∪{(v2i+1, vj)}
which is an hS′\{vj1}-stable matching in S′ \ {vj1}, where hS′\{vj1} is a stable
half-matching in S′ \ {vj1} that we would obtain in the Tan-Hsueh algorithm.
Again, we continue the same process with vj1 .

If a repetition occurs for the first time, namely, when a left-alone agent gets
a proposal later in the process, then in the Tan-Hsueh algorithm we would form
a new half-weighted odd cycle from the agents involved in the cycling, resulting
in a new stable half-matching hS′ . But regarding the matching MS′ , we can just
stop after seeing the first repetition, and MS′ will be an hS′-stable matching.

Note that if a repetition occurs, then we have to satisfy at most m blocking
pairs (since each left-alone agent keeps getting worse partners, so no pair occurs
twice as a blocking pair). Otherwise, if we have no repetition, then we also reach
a new h-stable matching within m steps, since even if we have to rotate edges
along a half-weighted odd cycle, the agents of this cycle could not be involved
in any blocking pair satisfied before invoking this rotation. Thus we can obtain
the final h-stable matching in mn steps. �

This result implies the theorem of Diamantoudi et al. [7] with an upper bound
on the number of steps needed to reach a stable matching.

Corollary 1. Suppose that we are given a solvable instance of sr and a match-

7



ing M0, then one can always reach a stable matching starting from M0 by suc-
cessively satisfying at most mn blocking pairs.

3. Analysing the market behavior with automata

If the input is random, then the automaton may simulate the dynamics of a
matching market where two agents meet with each other randomly and behave
in a myopic way (i.e. they form a new pair if they both would be better off).
This is called the better response dynamics by Ackermann et al. [2]; whilst, Klaus
et al. [17] refer to it as unperturbed blocking dynamics. What is the expected
outcome of a matching market with myopic agents? To answer this question
first we define the stable marriage and roommates automata as follows.

Definition 1. Let I be a sr (sm) instance with underlying graph G. The sta-
ble roommates automaton (stable marriage automaton) of I, denoted SRA(I)
(SMA(I)) is the automaton (M(G),M0, E(G), δ, SI) where:

• the set of states is the set of all matchings M(G) of G;

• the initial state M0 is any matching (e.g. the empty matching {∅});

• the set of symbols is the set of edges E(G) of G;

• the transition function δ : M(G)×E(G) → M(G) is given by:

δ(M, (vi, vj)) =

{
M (vi,vj) if (vi, vj) blocks M

M otherwise

• the set of accepting states equals the set SI of stable matchings of I.

Recall, for a matching M and blocking pair (vi, vj), M
(vi,vj) is the matching

such that (vi, vj) ∈ M (vi,vj) and for each w ∈ {vi, vj}, if w is matched in M ,
then M(w) is unmatched in M (vi,vj).

Suppose that in each step of the process each blocking edge is chosen with
equal probability, then starting from an arbitrary matching (e.g. the empty
matching {∅}) we can calculate the exact probabilities of particular matchings
occurring after certain rounds. To be more precise, we will calculate these
probabilities in the following absorbing Markov chain.

Definition 2. Let I be a sr instance with corresponding automaton SRA(I) =
(M(G),M0, E(G), δ, SI). The Markov chain of I is given by (M(G),M0,P)
where the set of states and initial state are taken from SRA(I) and the probability
transition matrix P : M(G)×M(G) → [0, 1] is such that for M,M ′ ∈ M(G) :

• if M is stable, then P(M,M ′) equals 1 if M=M ′ and 0 otherwise;

• if M is not stable, then

P(M,M ′) =
|{(v, v′) ∈ E(G) | (v, v′) blocks M and δ(M,σ) = M ′}|

|{(v, v′) ∈ E(G) | (v, v′) blocks M}| .
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For any sm instance or solvable sr instance, the stochastic process is an absorb-
ing Markov chain where the absorbing states are the stable matchings.

We now report on our experiments to construct and analyse the Markov
chain of a number of different instances with the probabilistic model checking
tool PRISM [20, 34]. PRISM has both efficient solution engines for performing
analysis of Markov chains and a high-level formal modelling language for mod-
elling the instances. Further details of our experiments are available from the
PRISM website.8 For small instances, we also exported the PRISM models to
the symbolic solver Maple [24] and computed the exact rational values.

Example 1.. We start with a classical instance by Gale and Shapley [8] with
three men and three women and the following preferences:

m1 : w1, w2, w3 m2 : w2, w3, w1 m1 : w1, w2, w3

w1 : m2,m3,m1 w2 : m3,m1,m2 w3 : m1,m2,m3

Here, the Markov chain has 34 states and 123 transitions, and the following
three absorbing states (stable matchings):

Mm = {(m1, w1), (m2, w2), (m3, w3)} (man-optimal)
Mw = {(m1, w3), (m2, w1), (m3, w2)} (woman-optimal)
Me = {(m1, w2), (m2, w3), (m3, w1)} (egalitarian)

Calculating the absorption probabilities we find:

x∗(Mm) = x∗(Mw) =
299
1362 ∼ 0.2195301028 and x∗(Me) =

382
681 ∼ 0.5609397944 .

The egalitarian stable matching is therefore more likely than both the extreme
solutions together. This differs from using the random order mechanism, since
in this case the egalitarian stable matching is not achievable (as nobody gets
their best stable partner) and the remaining stable matchings have probability
1
2 .

Example 2.. The following classical instance was proposed by Knuth [18] with
four men and four women and the following preferences:

m1:w1, w2, w3, w4 m2:w2, w1, w4, w3 m3:w3, w4, w1, w2 m4:w4, w3, w2, w1

w1:m4,m3,m2,m1 w2:m3,m4,m1,m2 w3:m2,m1,m4,m3 w4:m1,m2,m3,m4

8http://www.prismmodelchecker.org/casestudies/stable\_matching.php
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In this case, the Markov chain has 209 states, 1280 transitions, and the following
10 absorbing states (stable matchings):

M1 = {(m1, w1), (m2, w2), (m3, w3), (m4, w4)}
M2 = {(m2, w1), (m1, w2), (m3, w3), (m4, w4)}
M3 = {(m1, w1), (m2, w2), (m4, w3), (m3, w4)}
M4 = {(m2, w1), (m1, w2), (m4, w3), (m3, w4)}
M5 = {(m3, w1), (m1, w2), (m4, w3), (m2, w4)}
M6 = {(m2, w1), (m4, w2), (m1, w3), (m3, w4)}
M7 = {(m3, w1), (m4, w2), (m1, w3), (m2, w4)}
M8 = {(m4, w1), (m3, w2), (m1, w3), (m2, w4)}
M9 = {(m3, w1), (m4, w2), (m2, w3), (m1, w4)}
M10 = {(m4, w1), (m3, w2), (m2, w3), (m1, w4)}

and calculating the absorption probabilities we find:

x∗(M1) = x∗(M10) =
549582018404187049
9518428268802561564 ∼ 0.0577387362

x∗(M2) = x∗(M3) = x∗(M8) = x∗(M9) =
1582747100504304809
19036856537605123128 ∼ 0.0831412002

x∗(M4) = x∗(M7) =
61576717268573787
528801570489031198 ∼ 0.1164457912

x∗(M5) = x∗(M6) =
253084017443076793
1586404711467093594 ∼ 0.1595330722 .

Using the random order mechanism we find M4, . . . ,M7 are not achievable,
whilst in our case it is more likely one of these matchings will be reached.9

Example 3.. In this example we consider the roommates instance from [17,
Example 3, page 25], provided by Elena Molis. This instance concerns eight
agents with the following preferences:

a1 : a2, a3, a4, a6, a5, a7, a8
a2 : a3, a1, a4, a5, a6, a8, a7
a3 : a1, a2, a4, a5, a6, a7, a8
a4 : a6, a3, a5, a1, a2, a7, a8
a5 : a4, a7, a1, a2, a3, a6, a8
a6 : a7, a4, a2, a3, a1, a5, a8
a7 : a5, a6, a1, a2, a3, a4, a8
a8 : a3

It is an unsolvable instance, it admits two stable half-matchings (with no even
cycles), namely h1 and h2, where

h1((4, 5)) = h1((6, 7)) = 1 and h1((1, 2)) = h1((2, 3)) = h1((3, 1)) =
1
2

h2((4, 6)) = h2((5, 7)) = 1 and h2((1, 2)) = h2((2, 3)) = h2((3, 1)) =
1
2

9The probabilities of getting these six matchings by the random order mechanism are as
follows [16]: p(M1)=p(M10)=

9600
40320

and p(M2)=p(M3)=p(M8)=p(M9)=
5280
40320

.
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The h1-stable matchings are:

M1 = {(2, 3), (4, 5), (6, 7)}
M2 = {(1, 2), (4, 5), (6, 7)}
M3 = {(1, 3), (4, 5), (6, 7)}

while the h2-stable matchings are:

M4 = {(2, 3), (4, 6), (5, 7)}
M5 = {(1, 2), (4, 6), (5, 7)}
M6 = {(1, 3), (4, 6), (5, 7)}

Theorem 1 states that, starting from any matching, we can always reach one of
these matchings by successively satisfying blocking pairs. This implies that
any ergodic set (which is called absorbing set in [11] and [17]) of the cor-
responding Markov chain must contain some of the above matchings. Con-
structing this instance in PRISM, we find there are 308 matchings and a single
ergodic set which consists of the matchings {M4,M5,M6,M7}, where M7 =
{(1, 2), (3, 8), (4, 6), (5, 7)}. This corresponds to the results presented in [17].
Computing the long-term likelihood of being in any one of the matching (i.e.
the steady state probabilities of the Markov chain) we find:

x∗(M4) = x∗(M5) = x∗(M6) =
2
7 ∼ 0.285714 and x∗(M7) =

1
7 ∼ 0.142857 .

Case study.. We now compare the performance characteristics of a number of
different instances of the sm problem, as the number of men and women k(=n/2)
varies between 4 and 8.

• Symmetric: in this instance the preferences of the men and women are of
the formmj : wj , . . . , wk, w1, . . . , wj−1 and wj : mj , . . . ,mk,m1, . . . ,mj−1.

• Uncoord: this instance is used in [2] to show an exponential lower bound
for the convergence time. The preference lists in this instance are given
by mj : wj+1, . . . , wk, w1, . . . , wj and wj : mj ,mj+1, . . . ,mk,m1, ..,mj−1.

• Uniform: in this case the preference lists of all men and all women are
the same and equal w1, w2, . . . , wk and m1,m2, . . . ,mk respectively.

In our experiments we consider both the case when we start with a random
(complete) matching and the empty matching. Tables 1 and 2 report on the
model statistics (states and transitions) of the Markov chains generated with
PRISM. Table 1 includes both the average and the maximum expected time to
reach a stable matching when starting from a complete matching, while Table 2
the expected time when starting from the empty matching and number of stable
matchings. For comparison, the tables also includes the minimum, average and
maximum values obtained from a sample of 1,000 random instances.10

10Since for k=8 each instance takes over 20 minutes to analyse, it was not feasible to study
1,000 different instances.
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Model k states transitions
expected time
av. max.

Symmetric

4 208 1,433 3.595 5.713
5 1,545 15,901 5.456 7.919
6 13,326 189,691 7.692 11.05
7 130,921 2,450,001 10.30 14.09
8 1,441,728 34,194,273 13.27 17.97

Uncoord

4 208 1,268 18.97 25.22
5 1,545 14,205 84.23 93.74
6 13,326 170,886 399.2 413.5
7 130,921 2,222,745 2,197 2,216
8 1,441,728 31,209,032 14,361 14,385

Uniform

4 87 369 6.822 9.160
5 665 4,746 12.04 14.92
6 5,972 64,341 19.08 22.73
7 61,215 926,095 28.18 32.42
8 702,311 14,175,310 39.61 44.56

1000
random
samples
(min)

4 102 461 4.735 6.932
5 993 8,524 8.082 11.21
6 9,272 119,035 11.61 15.59
7 130,884 2,378,889 15.93 20.89

1000
random
samples
(average)

4 193 1,247 8.032 10.65
5 1,562 15,618 13.83 17.34
6 13,317 192,465 22.84 27.28
7 130,918 2,524,157 37.34 42.74

1000
random
samples
(max)

4 208 1,460 17.25 20.30
5 1,545 16,660 46.28 50.68
6 13,326 202,560 115.8 121.1
7 130,921 2,657,024 164.9 170.7

Table 1: Expected time to reach a stable matching from a complete intial matching

The number of states reported in Tables 1 and 2 demonstrate that, when
starting from a randomly chosen complete matching, the number of reachable
matchings is dependent on the particular instance. We also see that for the
Symmetric and Uncoord instances all matchings (except the empty matching)
are reachable. The results for the Uncoord instances are far slower than for the
other instances, corresponding to the fact that [2] uses this instance to demon-
strate a exponential lower bound on the convergence time. Considering the
random sample results, we see that the performance of the Uncoord instance is
unlikely to be seen in practice. These results also indicate that the number of
stable matches does not seem to be cause of the slow convergence time demon-
strated by the Uncoord instance. To further demonstrate how PRISM can be
used to analyse instances, Figure 1 plots the probability of reaching a stable
matching within R rounds when starting from the empty configuration.

4. Further remarks

As an extension of the approach presented in this paper, it would be in-
teresting to study stochastic processes occurring in more general settings, for
example, in coalition formation games, where the size of possible coalitions can
be larger than two. However, in this case the existence of a stable solution does
not guarantee that there is a convergence to a stable solution when starting
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Model k states transitions
expected no. of stable

time matchings

Symmetric

4 209 1,449 7.469 1
5 1,546 15,926 10.51 1
6 13,327 189,727 13.95 1
7 130,922 2,450,050 17.78 1
8 1,441,729 34,194,337 21.99 1

Uncoord

4 209 1,284 28.04 4
5 1,546 14,230 97.16 5
6 13,327 170,922 416.5 6
7 130,922 2,222,794 2,220 7
8 1,441,729 31,209,096 14,388 8

Uniform

4 209 1,421 11.31 1
5 1,546 15,926 17.66 1
6 13,327 192,862 25.82 1
7 130,922 2,525,804 36.03 1
8 1,441,729 35,686,961 48.56 1

1000
random
samples
(min)

4 209 1,421 7.851 1
5 1,546 15,926 11.53 1
6 13,327 192,862 15.77 1
7 130,922 2,525,804 21.04 1

1000
random
samples
(average)

4 209 1,421 11.02 1.506
5 1,546 15,926 17.54 1.657
6 13,327 192,862 27.39 1.961
7 130,922 2,525,804 42.80 2.187

1000
random
samples
(max)

4 209 1,421 20.35 5
5 1,546 15,926 50.61 5
6 13,327 192,862 121.2 7
7 130,922 2,525,804 170.8 9

Table 2: Expected time to reach a stable matching from the empty initial matching

(a) Symmetric (b) Uncoord (c) Uniform

Figure 1: Probability of reaching a stable matching within R rounds.

from any unstable state, as illustrated by Klaus et al. [17]. So in this case ab-
sorbing states and ergodic sets may appear together in the Markov chain. Yet,
one could investigate the structure of absorbing and ergodic states for special
classes of coalition formation games, and analyse particular games in a similar
framework as we did here, using PRISM. Furthermore, the same questions can
be asked for cooperative games with transferable utilities as well, such as the
stable matching problem with payments [5], where the agents who are matched
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together may share the value of their cooperation between themselves.11 Fi-
nally, more general network formation games and matching problems could also
be analysed with this technique. An example for this is the resident allocation
problem with couples, where the existence of a stable matching is not guaran-
teed in general. However, for particular preference structures Klaus and Klijn
[15] show that not only the existence of a stable solution can be guaranteed but
also the path to stability from any starting matching.

[1] R. Aharoni and T. Fleiner. On a lemma of Scarf. J. Combin. Theory Ser.
B, 87(1):72–80, 2003. Dedicated to Crispin St. J. A. Nash-Williams.

[2] H. Ackermann, P.W. Goldberg, V. Mirrokni, H. Röglin and B. Vöcking.
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